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Abstract. The cross sections and spin asymmetries for the excitation of 1− states in 208Pb by transversely
polarized electrons with collision energy of 30–180 MeV have been examined within the DWBA scattering
formalism. As examples, we have considered a low-lying 1− state and also states belonging to the pygmy
dipole and giant dipole resonances. The structure of these states and their corresponding transition charge
and current densities have been taken from an RPA calculation within the quasiparticle phonon model.
The complex-plane rotation method has been applied to achieve the convergence of the radial DWBA in-
tegrals for backward scattering. We have studied the behaviour of the cross sections and spin asymmetries
as a function of electron energy and scattering angle. The role of the longitudinal and transversal contri-
butions to the excitation has been thoroughly studied. We conclude that the spin asymmetry S, related
to unpolarized outgoing electrons, is mostly well below 1% even at the backward scattering angles and its
measurement provides a challenge for future experiments with polarized electrons.

1 Introduction

Inelastic scattering of electrons is a powerful tool in nu-
clear physics. The well-known mechanism of their interac-
tion with target nuclei allows to extract nuclear structure
information in a model-independent way. The possibility
to vary the momentum transfer in this reaction by chang-
ing the energy of the beam electrons and/or the scattering
angle of the detected electrons allows to select the condi-
tions under which the states of different multipolarities
are preferably excited.

The investigation of low-lying 1− excited states in nu-
clei, which are often referred to as the pygmy dipole reso-
nance (PDR), is one of the hot topics in nuclear structure
studies of the last decade. The PDR was first observed
in experiments with tagged photons (see, e.g. [1, 2]) as a
substructure on the low-energy tail of the giant dipole
resonance (GDR). In the late 1990s the fine structure
of the PDR, being composed of a hundred of 1− states,
has been resolved in nuclear resonance fluorescence (NRF)
measurements [3, 4]. From those days the PDR has been
intensively studied in different parts of the nuclear chart
not only in the NRF experiments with unpolarized and
polarized photons but also in other nuclear reactions like
(α, α′γ) [5, 6] or heavy ion collisions [7, 8] as well. For a
detailed review of these studies we refer to [9].

Inelastic scattering of electrons with an energy of 50–
100MeV may also provide its contribution to the PDR
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studies. Some data on the observation of 1− states in
(e, e′) reactions is available (see, e.g. [10, 11]) but in gen-
eral, this information is very sparse. The required electron
energy can be provided by the S-DALINAC in Darmstadt
(Germany) where the detector system allows for measure-
ments in a wide range of scattering angles, including the
backward scattered electrons close to 180◦ which can be
detected with high angular resolution [12]. Moreover, a
new set-up has recently been installed at the S-DALINAC
which allows to perform experiments with polarized elec-
trons [13].

The goal of this paper is to provide an estimate of
the results which one may expect from inelastic scatter-
ing of polarized electrons leading to the excitation of low-
lying 1− states. As an example we have selected the well-
known 1− state in 208Pb with an energy of 5.512MeV,
and a 1− state at a slightly higher energy (7.5MeV)
which belongs to the PDR. For comparison, we have also
considered a 1− state from the GDR region. The cross
section of the reaction is calculated within the standard
distorted-wave Born approximation (DWBA) [14], which
accounts for the Coulomb distortion of the electronic scat-
tering states. The respective nuclear transition charge and
current densities are calculated within the quasiparticle
phonon model (QPM) which describes rather well the 1−

states in 208Pb [15, 16].
Another motivation of our theoretical work concerns

the predictions for the spin asymmetry which is known
from elastic scattering to be particularly large for heavy
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nuclei and backmost scattering angles. In fact, there ex-
ist no systematic measurements on the spin asymmetry
in the low-energy region (apart from its angular distri-
bution at 14MeV for elastic 208Pb(e, e′) scattering [17]).
Any comparison between experiment and proper calcula-
tions is therefore missing, in particular for inelastic elec-
tron scattering. Such tests of theoretical models with the
kinematics of the S-DALINAC may also help to under-
stand discrepancies between theory and experiment at ul-
trahigh energies [18]. Since at scattering angles near 180◦
the momentum transfer is quite large even at moderate
collision energies, the importance of the two-photon ex-
change (in the sense of excited intermediate nuclear states)
or of other perturbative effects is unclear. Therefore a re-
production of our theoretical predictions by experiment is
by no means trivial. One should also keep in mind that
the information on the nuclear properties extracted from
the spin asymmetry is complementary to the information
extracted from the form factors due to its additional sen-
sitivity to the structure of the nuclear wave functions or
to interference effects [19–21]. Hence the spin asymmetry
allows for a more stringent test of the nuclear models than
mere cross section measurements.

In approaching the scattering angle of 180◦ we face an
old problem that the radial integrals hardly converge for
multipolarities 0 (which occur in the contribution from
the transition current density J10). We suggest a solu-
tion of this problem by using the complex-plane rota-
tion method (CRM) instead of performing the integra-
tion along the real axis. This method was introduced in
its non-relativistic version in the context of (d, p) reac-
tions [22] and was generalized for bremsstrahlung emis-
sion in relativistic electron-atom collisions to the case of
fast electrons scattering from heavy point nuclei [23]. In
the present work we provide an extension of the CRM to
account for scattering from extended nuclei.

The paper is organized as follows. Section 2 gives a
short account of the DWBA scattering formalism and in-
troduces the CRM. The nuclear model for the transition
densities is described in sect. 3. Results for the selected 1−
excitations of 208Pb are presented in sect. 4. The conclu-
sion is drawn in sect. 5. Atomic units (� = m = e = 1) are
used unless indicated otherwise. In particular, the electron
mass m is retained throughout.

2 DWBA formalism and the complex-plane
rotation method

Let us describe the excitation of a nucleus with initial an-
gular momentum quantum numbers Ji,Mi to a final state
characterized by Jf ,Mf . Let us consider transitions with
only one multipolarity L. The differential cross section for
the excitation by electrons with initial spin polarization
ζi and final spin polarization ζf is obtained from [14, 24]

dσ

dΩ
(ζi, ζf ) =

kf

ki

1
frec

4π3EiEf

c2

× 1
2Ji + 1

∑

Mi,Mf

∣∣Acoul
fi (Mi,Mf ) + Amag

fi (Mi,Mf )
∣∣2, (1)

where frec is the recoil term arising from the finite mass
of the target nucleus. Assuming that the polarization of
the nucleus is not observed, an average over Mi and a
sum over Mf is included. The transition amplitudes for
Coulomb and magnetic scattering are given by [14, 25, 26]

Acoul
fi (Mi,Mf ) = −1

c

∫
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(
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i (re)

)

×eik|re−rN |

|re − rN |
√

4π �fi(rN )
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×
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where re and rN are electron and nuclear coordinate, re-
spectively, k = Ex/c, with Ex the nuclear excitation en-
ergy, ki, σi, Ei and kf , σf , Ef are the initial and final
momentum, spin projection and total energy of the elec-
tron, respectively, α is the vector of Dirac matrices and

↔
I

the dyadic unit matrix.
For the nuclear transition matrix elements �fi and jfi

multipole expansions are conventionally made [27, 28]. In-
troducing the transition charge density �L and the tran-
sition current densities JL,L±1 (i.e. restricting ourselves
to transverse electric excitations as described in sect. 3),
these are given by

�fi(rN ) =
L∑

M=−L

(JiMi LM |JfMf ) �L(rN )Y ∗
LM (r̂N ),

jfi(rN ) = −i
∑

λ=L±1

L∑

M=−L

(JiMi LM |JfMf )

×JLλ(rN )Y M∗
Lλ (r̂N ), (3)

where YLM and Y M
Lλ are spherical harmonics and vector

spherical harmonics, respectively, multiplied by Clebsch-
Gordan coefficients [29]. These assure that for spin-zero
nuclei (Ji =0) such as 208Pb, one has L=Jf and M =Mf .

For the propagator as well as for the electronic scat-
tering states ψ

(σi)
i and ψ

(σf )
f a partial-wave expansion is

made [14, 27]. The radial functions are obtained by solving
the Dirac equation for the electron in the nuclear poten-
tial (derived from a Fourier-Bessel expansion of the 208Pb
ground-state charge density [30]) with the help of the For-
tran code RADIAL of Salvat et al. [31]. In this code the
radial step size should be reduced for the higher collision
energies.

The infinite electronic radial integrals occurring in the
DWBA formalism are of the type [14, 32]

∫ ∞

Rm

drer
2
e h

(1)
λ (kre)D(re), (4)

where Rm is some distance outside the nuclear transition
density distributions, h

(1)
λ (with λ ≥ 0) is a spherical Han-

kel function of the first kind and D(re) denotes a product
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of radial Dirac functions. Along the real axis the inte-
grand in (4) is strongly oscillating with a weak asymptotic
decrease (∼ 1/re). The numerical convergence problems,
which are particularly large for λ = 0 [32], can be circum-
vented by deforming the contour into the complex plane
as described in [22]. To do so, we recall that D(r) consists
of functions which are linear combinations of regular and
irregular Coulomb-Dirac functions [31, 33], provided Rm

is large enough such that it is outside the grid defined by
RADIAL (i.e. well outside the range of the short-range
part of the potential),

(
gκ

fκ

)
= cos δκ

(
gκ

fκ

)reg

+ sin δκ

(
gκ

fκ

)irr

, (5)

where δκ is the phase shift caused by the short-range part
of the potential, gκ is the large and fκ is the small com-
ponent of the radial Dirac function. As shown in the ap-
pendix, these functions can for sufficiently large distances
readily be continued into the complex plane, where they
can be split into a sum of two terms, one behaving asymp-
totically like eikz, the other like e−ikz (with k equal to ki

or kf ), according to

gκ(z) ≡ g(+)
κ (eikz) + g(−)

κ (e−ikz)

fκ(z) ≡ f (+)
κ (eikz) + f (−)

κ (e−ikz). (6)

If D(r) consists just of regular Coulomb-Dirac functions
(i.e. in the case of point nuclei or for large relativistic
quantum numbers κi and κf ) the above splitting was
derived in [23]. The Hankel function in (4) behaves like
h

(1)
λ (kz) ∼ eikz (with a bounded coefficient for |z| ≥ Rm).

Therefore the deformed contour, starting at Rm and fol-
lowing the positive, respectively negative imaginary axis
to infinity, can be closed along the infinitely far semicircle
in the upper and lower half plane, respectively. According
to [22, 23], a necessary condition for this method to work
is that

Δk = ki − kf − k > 0, (7)

which holds for nuclear excitation (provided the electron
mass m is retained). It follows that this method does not
work for elastic (k = 0), recoil-free (kf = ki) electron
scattering. From (7) it follows that the sign of the expo-
nential e±ikiz determines exponential growth or decay for
imaginary z. Therefore it is sufficient to use the decompo-
sition (6) only for the initial scattering state. Substitut-
ing r ≡ z = Rm + iy in the integral involving g

(+)
κi and

r = Rm − iy in the integral involving g
(−)
κi , one obtains,

for example,
∫ ∞
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(r)fκf

(r)h
(1)
λ (kr) =

i
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, (8)

with fκf
(r) from (A.7). The upper integration limit, neces-

sary for convergence, is determined by ymax ∼ 8/Δk with
Δk from (7), which is even larger than suggested in [34].

For very small Δk, leading to very large ymax, (8) ac-
tually has to be modified. Let us take for example the
collision energy Ei,kin = Ei − c2 = 70MeV, θ = 175◦ and
Ex = 5.5MeV. Then one has ki = 1.9 × 104 a.u. but, in-
cluding recoil for 208Pb, Δk = 12.6 a.u., so that ymax ∼ 1
a.u. Thus the terms in the integrand of (8) which behave
like ei(ki+kf+k)r or e−i(ki+kf−k)r lead to exponential over-
flow. Therefore, the upper integration limit in (8) should
be reduced to ymit � 10−2 a.u., the smaller, the higher Ei,
leaving a tail contribution from ymit to ymax. In this tail,
the final-state wave function should also be split according
to (6), retaining only f

(−)
κf in the first integral of (8) and

f
(+)
κf in the second one. Moreover, all appearing functions

should be defined without the corresponding exponen-
tials, while eiΔkr and e−iΔkr, respectively, should be intro-
duced as an additional factor in the integrand. With this
procedure, excellent convergence of the radial integrals is
achieved, even for large |κ|. This leads also to a fast conver-
gence of the partial-wave series for the cross section. When
the Yennie et al. convergence acceleration is applied [14,
33], a cutoff at angular momentum lf,max ∼ 15–25 is suf-
ficient for the collision energies under consideration.

The difference between the results using the CRM on
one hand and real integration paths on the other hand
with identical parameters (i.e. applying the Ei- and θ-
dependent cutoffs re ≤ 4/Δk as well as lf ≤ lf,max, where
lf = |κf + 1

2 |−
1
2 , as determined within the CRM) is shown

in fig. 1. Notice that the integration along the real paths
yields artificial fluctuations in both, differential cross sec-
tion and spin asymmetry (thin dotted lines in fig. 1), es-
pecially at the higher energies of the electrons. The CRM
approach is free from these problems (solid lines in fig. 1)
and its computation time is up to a factor of 100 shorter.

3 The quasiparticle phonon model

We have used for our studies transition charge and cur-
rent densities obtained within the quasiparticle phonon
model (QPM) [35]. The model Hamiltonian consists of
three terms corresponding to a mean field for protons
and neutrons, monopole pairing and residual interaction
which is taken in a separable Bohr-Mottelson form. Ex-
cited states of even-even nuclei are treated as phonons
and are obtained from the solution of the quasiparticle
RPA equations. The nuclear charge �Li(rN ) and current
JLλi(rN ) densities of the i-th one-phonon state with mul-
tipolarity L have the form

�Li(rN ) =
n,p∑

jj′

(ujvj′ + vjuj′)
(
XLi

jj′ + Y Li
jj′

)
�L

jj′(rN )

(9)

JLλi(rN ) =
n,p∑

jj′

(ujvj′ − vjuj′)
(
XLi

jj′ − Y Li
jj′

)
JLλ

jj′ (rN ),

(10)
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Fig. 1. (a) Differential cross section and (b) spin asymmetry
for the excitation of the 1− state at 5.5 MeV in 208Pb at a
scattering angle θ = 175◦ as a function of collision energy.
Shown are the results from the CRM (solid line) and from
performing the radial integrals along the real axis (thin dotted
line). The DWBA calculations have been performed neglecting
the magnetization current.

where uj and vj are the coefficients of the Bogoliu-
bov transformation from particles to quasiparticles (their
squares are the occupation numbers for holes and parti-
cles, respectively, in non-magic nuclei) and X and Y are
the forward and backward amplitudes in the definition of
the phonon operator,

Q†
LMi =

n,p∑

jj′

(
XLi

jj′ [α†
jα

†
j′ ]LM−(−1)L−MY Li

jj′ [αj′αj ]L−M

)
,

(11)
built up of the quasiparticle (α†

jm) pairs,

[α†
jα

†
j′ ]LM =

∑

mm′

(jmj′m′|LM)α†
jmα†

j′m′ . (12)

The quantities �L
jj′(rN ) and JLλ

jj′ (rN ) in eqs. (9)
and (10) are the particle-hole charge and current tran-
sition densities, respectively. The first one has the form,

�L
jj′(rN ) = (−)j+L−1/2 il

′−l+L ĵĵ′(j 1
2 j′ − 1

2 |L0)
√

4πL̂

×R∗
j (rN )Rj′(rN ); ĵ =

√
2j + 1, (13)

where Rj(rN ) is the radial part of a single-particle wave
function for the mean field level j ≡ {nlj}. The current
particle-hole transition density JLλ

jj′ (rN ) is more complex
and we refer for its explicit expression to [27].

The natural parity (or electric) states are described by
the charge and current transition densities with λ = L±1.
In the case of unnatural parity (or magnetic) states only
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Fig. 2. QPM prediction for the B(E1↑) strength distribution
in 208Pb. The three selected states are marked by an asterix.

the current with λ = L is involved. Each nuclear current is
composed of a convection part Jconv

Lλi and a magnetization
part Jmag

Lλi according to

JLλi(rN ) = Jconv
Lλi (rN ) + Jmag

Lλi (rN ). (14)

We have applied the formalism of the previous section
to study the excitation of 1− states in 208Pb in inelas-
tic scattering of polarized electrons. The nuclear structure
calculations have been performed with the same set of pa-
rameters as in ref. [15]. To exclude the centre of mass
motion for the 1− states we have used effective charges
ez = N/A and en = −Z/A for the protons and neutrons,
respectively. Effective g-factors, geff

s = 0.8gfree
s , have been

used in the calculation of the magnetization current. The
Bogoliubov coefficients uj and vj are either 0 or 1 for the
double-magic nucleus 208Pb.

The B(E1↑) strength distribution from these calcula-
tions are displayed in fig. 2. For our future studies we have
selected three 1− states marked with an asterix in this fig-
ure. The lowest 1− state in fig. 2 with energy 5.497MeV
and B(E1↑) = 0.418 e2fm2 corresponds to the experimen-
tal level at 5.512MeV. This is a weakly collective state
with dominant contribution of the neutron {2f−1

7/2 2g9/2}
and {3p−1

1/2 4s1/2} particle-hole components. The second
1− state, at 7.5MeV with B(E1↑) = 0.203 e2fm2, be-
longs to the PDR. It is a collective state characterized
by a destructive interference between many neutron and
proton 1p1h-configurations. The third 1− candidate is a
high-lying state at 14.2MeV with B(E1↑) = 13.7 e2fm2.
It represents the GDR states with a typical constructive
interference.

The transition charge and current densities for these
states are shown in fig. 3. It is seen that the current den-
sities are very large for the two lower states, while the
GDR state is dominated by the charge density which is
strongly peaked at the nuclear surface. For the state at
7.5MeV, the charge density has only a tail contribution
at the nuclear surface such that it will play a minor role
at low collision energies. Correspondingly, the (e, e′) re-
sults for these three states are very different (see the next
section).
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the 1− states in 208Pb at Ex = 5.5 MeV (upper panel), Ex =
7.5 MeV (middle panel) and Ex = 14.2 MeV (lower panel). The
sign of J10 is chosen in accord with [28].

4 Results

Figure 4 shows the energy dependence of the excitation
cross sections for unpolarized electrons, (dσ/dΩ)0, at a
scattering angle of 175◦. At this backward angle the exci-
tation cross sections are only well below the cross section
for elastic scattering for energies smaller than 120MeV,
while they may become dominant at the higher collision
energies. The oscillations are diffraction structures which
evolve at energies sufficiently high such that the electron
can penetrate the nuclear surface and scatter from the in-
dividual nucleons. The figure also indicates that Coulomb
scattering is completely unimportant for the PDR state
and loses its importance for the 5.5MeV state at ener-
gies above 60MeV. The 14.2MeV excitation, in contrast,
is composed of nearly equal contributions from Coulomb
and magnetic scattering, at least up to 140MeV.

The angular dependence of the excitation cross sec-
tions for the three states (at collision energies where the
spin asymmetry is comparatively large) is displayed in
fig. 5. There are two features which are different from the
behaviour of higher multipole excitations. In contrast to
the plane-wave Born approximation where Coulomb and
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Fig. 4. Differential cross section (dσ/dΩ)0 for the excitation of
the 1− states of energy 5.5 MeV (left panel), 7.5 MeV (middle
panel) and 14.2 MeV (right panel) in 208Pb at a scattering
angle of 175◦ as a function of kinetic electron energy Ei,kin

(1 fm2/sr = 10−2 b/sr). Shown is the total cross section (solid
lines) as well as the charge contribution (dashed lines) and the
transverse electric contribution (thin dotted lines). The result
from elastic potential scattering [36] is shown by the dash-
dotted line in the right panel.
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Fig. 5. Differential cross section (dσ/dΩ)0 for the excitation
of the 1− states in 208Pb as a function of scattering angle θ.
Left panel: Ex = 5.5 MeV at impact energy 65 MeV. Middle
panel: Ex = 7.5 MeV at impact energy 52 MeV. Right panel:
Ex = 14.2 MeV at impact energy 135MeV. Shown is the total
cross section (solid lines) as well as the charge contribution
(dashed lines) and the transverse electric contribution (thin
dotted lines).

magnetic scattering add incoherently, the DWBA shows
for low multipolarities a significant coherence between
these two scattering processes [37]. For the 5.5MeV state
at a collision energy of 65MeV, for example, it is seen
that at large angles the excitation cross section exceeds
the sum of Coulomb and magnetic contributions. On the
other hand, the total cross section may fall below its mag-
netic contribution (for the 7.5MeV state at 52MeV) or
below the Coulomb contribution (for the 14.2MeV state
at 135MeV below 160◦). The second feature concerns the
comparatively large value of the Coulomb scattering at the
backmost angles, which flattens towards 180◦ in contrast
to the rapid decrease in the plane-wave Born approxima-
tion. Similar enhancements of the Coulomb contribution
within the DWBA had been found for particular L = 2
excitations of 181Ta and 166Er at 180◦ [37]. This invali-
dates the common method of extracting nuclear current
densities from 180◦ measurements [38].
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In the following we give predictions for the spin asym-
metry [39] which is defined by [32]:

P (ζi) =
dσ(ζi, ζf ) − dσ(−ζi, ζf )
dσ(ζi, ζf ) + dσ(−ζi, ζf )

, (15)

with dσ(ζi, ζf ) abbreviating the differential cross section
from (1). If the beam electrons are polarized perpendicu-
lar to the scattering plane (i.e. ζi = k̂i × k̂f ≡ ey) the rhs
of (15) is independent of ζf and defines the so-called Sher-
man function S = P (ey) (also called analyzing power). If,
on the other hand, ζi lies in the scattering plane perpen-
dicular to the beam axis (ζi = k̂i × ey ≡ −ex) and the
final electron is in a helicity (+) state, the rhs of (15)
defines the polarization correlation R = P (−ex).

The energy dependence of S at the scattering angle
θ = 175◦ is displayed in fig. 6 (top part). As compared
to the spin asymmetry in elastic scattering it is consider-
ably reduced, particularly when the magnetic contribution
dominates the cross section. The quenching of S due to the
magnetic scattering (also present for excitation of higher
multipolarities [32]) is made evident by considering the
spin asymmetry from the Coulomb scattering alone. This
contribution is quite large, in some regions even of similar
magnitude as S for elastic scattering.

For the lowest state an appreciable (total) spin asym-
metry exists only below 60MeV at this angle, while at the
higher energies S � 1%. It is seen that the small extrema
in S correspond to the diffraction minima of the trans-
verse electric contribution to the cross section (cf. fig. 4).
This is also true for the 7.5MeV state where |S| does not

exceed 10−3. However, near 60MeV as well as at 110MeV
S shows a resonance structure instead of a simple peak or
dip.

Surprisingly, the spin asymmetry is also very small for
the GDR state despite its huge surface-peaked transition
charge density. The explanation lies in the spin asymmetry
pertaining to the magnetic scattering alone (also shown
in the figure) which is out of phase with respect to the
Coulombic spin asymmetry. Thus there is a considerable
mutual cancellation, which also points to a strong coher-
ence of the excitation process.

It should be remarked that the accuracy of S, being
defined as a difference of cross sections, is much poorer
than the accuracy of the cross sections. Therefore, a multi-
ple convergence acceleration (e.g. fourfold) in the DWBA
code is mandatory for a reliable extraction of the spin
asymmetry (resulting in an accuracy of about 5%, except
for the higher collision energies when S is close to zero, or
for some smaller scattering angles).

The polarization correlation R is displayed in fig. 6
(bottom part). Its modulus is in general higher than |S|.
Moreover, the extrema of R correspond to the extrema
of S, sometimes with a sign reversal. Both are related
to the relative dominance of the Coulomb scattering at
those energies. In the regions where magnetic scattering
prevails, R is, like S, reduced to values close to zero.

Figure 7 (left part) displays the angular dependence
of the spin asymmetry S. For the lowest excited state we
have taken collision energies of 40 and 65MeV where |S|
is still comparatively large. The backward minimum for
40MeV, known from low-energy elastic scattering [39, 40],
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Fig. 7. Left: Sherman function S; right: polarization correla-
tion R for the excitation of the 1− states in 208Pb as a function
of scattering angle θ. Upper panels: Ex = 5.5 MeV at collision
energies of 65 MeV (dot-dashed line) and 40 MeV (solid line).
The double dot-dashed line presents the spin asymmetry for
40 MeV when recoil is neglected. Middle panels: Ex = 7.5 MeV
at collision energies 52 MeV (dot-dashed line) and 106MeV
(solid line). Results from pure Coulomb scattering at 106MeV
are presented by the dashed line. For R, the Coulombic result
has been scaled down by a factor of 0.03. Lower panels: Ex =
14.2 MeV at a collision energy of 135 MeV (solid line). Results
from pure Coulomb scattering are given by the dashed line.

has turned into a maximum in the 65MeV predictions by
the diffraction effects. The same is true for the 14.2MeV
state at impact energy 135MeV. The spin asymmetry for
the 7.5MeV state is shown at the two collision energies
52MeV and 106MeV where |S| has local maxima. As
compared to pure Coulomb scattering, the minimum of
S is shifted downward to smaller angles, the more so, the
lower the collision energy. We note that for elastic scat-
tering the extremum of S is always beyond 179◦ for all
energies investigated.

The shift of the extremum due to the presence of the
magnetic scattering holds also true for R (see fig. 7 (right
part)). It should be remarked that the angular distribu-
tion of both the cross section and the spin asymmetries is
less sensitive to the diffraction structures than the energy
distribution. Therefore oscillations do not show up at the
energies considered.

We have also studied the influence of recoil by compar-
ing our results with those obtained by setting the mass of
the nucleus to infinity. Although the recoil-based modifica-
tion of the momentum kf is negligibly small, it drastically
increases Δk in eq. (7) and thus reduces the range of the
radial integral, the more so, the larger Ei and the smaller
θ. Again, low multipolarities are extremely sensitive to re-
coil effects because of the extra long range of the radial
integrals. While e.g. for the multipolarity L = 3 recoil af-
fects both cross section and spin asymmetries by less than
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Fig. 8. (a) Differential cross section and (b) spin asymme-
try for the excitation of the 1− state at 5.5 MeV in 208Pb at
θ = 175◦ by Coulomb and transverse electric scattering. The
complete results (solid line) are compared to the ones when
only the magnetization Jmag

1λ (dot-dashed line) or the convec-
tion Jconv

1λ (dashed line) current density is accounted for.

1% (as investigated for the lowest 3− state at θ = 175◦ and
energies 30–100MeV), for L = 1 recoil is non-negligible at
all angles and energies below 90MeV. In particular for the
5.5MeV state at θ = 175◦ and energies up to 70MeV, the
excitation cross section is changed by about 5% or less,
but the recoil effect on the spin asymmetry is strong, as
shown for 40MeV in fig. 7. Beyond 100MeV Δk is large
enough to make the radial range sufficiently small so that
recoil effects become unimportant.

In order to study the influence of the transition cur-
rent densities on the cross section and the spin asymmetry
in more detail we have performed calculations in which
the current densities J1λ (λ = 0, 2) are presented by only
magnetization (Jmag

1λ ) or only convection (Jconv
1λ ) compo-

nents. The results are shown in fig. 8 by dot-dashed and
dashed lines, respectively, for comparison with complete
results (solid line). Since the magnitude of Jmag

1λ is similar
to the one of J1λ, there is only a slight shift of the diffrac-
tion structures in the resulting cross section as shown in
fig. 8(a) for the 5.5MeV state. However, the substitution
of J1λ by Jmag

1λ has a large effect on the spin asymmetry,
even changing its sign at the backmost angles between
50MeV and 60MeV. The convection current densities are
about an order of magnitude weaker than Jmag

1λ for this
state such that, if only they are retained, the relative im-
portance of the charge density �1 increases. This leads to
a strongly reduced cross section above 70MeV (except in
the diffraction minima, see fig. 8(a)), but to a much larger
spin asymmetry (see fig. 8(b)).

5 Conclusion

We have given predictions for the differential cross sec-
tions and for the transverse spin asymmetries S and R of
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dipole excitations of 208Pb by the impact of electrons po-
larized perpendicular to the beam axis. This was achieved
by calculating the nuclear transition densities within the
quasiparticle phonon model and by applying the DWBA
scattering formalism.

For the lowest dipole state investigated, with its large
transition current densities, we have found that for scat-
tering angles above 170◦ and collision energies beyond
70MeV the cross section is strongly dominated by the
magnetic scattering amplitude. This leads to a consider-
able quenching of the transverse spin asymmetries to val-
ues well below 1%.

For the PDR state at 7.5MeV, for which the transi-
tion charge density even falls below the transition current
densities near the nuclear surface, the moduli of S and R
are smaller than 4 × 10−3 and 10−2, respectively, at all
angles and energies considered.

The highest excited state considered is the only one
which, due to its dominating transition charge density and
constructively interfering collectivity, shows an apprecia-
ble spin asymmetry beyond 100MeV collision energy. In
fact, the maxima of |S| ∼ 0.01 and |R| ∼ 0.02 occur near
135MeV.

Besides the quenching, the presence of magnetic scat-
tering also leads to a considerable shift of the backward
scattering angle which pertains to the largest spin asym-
metry. No longer is the extremum of S beyond 179◦ as
for elastic scattering but is, for example, reduced to 170◦
for the GDR state excited by 135MeV electrons, or even
shifted down to 130◦ for the PDR state at 52MeV impact
energy.

In a proof-of-principle measurement both |S| and the
cross section should be large. We therefore suggest an in-
vestigation of the 5.5MeV state near 40MeV at a scatter-
ing angle of about 172◦ (with S ≈ −0.035 and dσ/dΩ ≈
2.5×10−7 fm2/sr). The effect of the diffraction structures,
the change of the minimum of S into a maximum, is only
accessible at collision energies beyond 60MeV. This might
be achieved by choosing an energy of 65MeV for this state
(S = 6.1 × 10−3 at 169◦) or to measure the GDR state
at 135MeV (S = 9.3 × 10−3 at 170◦). However, this is at
the expense of smaller cross sections (4.4×10−8 fm2/sr for
the 5.5MeV state and 6.5× 10−9 fm2/sr for the 14.2MeV
state).

By evaluating the scattering theory separately for the
magnetization contribution and for the convection con-
tribution to the transition current densities we were able
to study the effect of changes in J1λ on both differential
cross section and spin asymmetry. As a result we have
confirmed that S is indeed far more sensitive to such
changes than the cross section. Its measurement there-
fore offers the possibility for a refined test of the nuclear
models.

DHJ would like to thank Prof. J. Enders for initiating this work
and for encouraging discussions. VYuP acknowledges support
by the DFG (Contracts No. SFB 1245) and stimulative discus-
sions with Prof. J. Wambach.

Appendix A.

We derive the asymptotic splitting of the radial Dirac
functions into a sum of two terms, one behaving like eikz,
the other like e−ikz (with k equal to ki or kf ).

Using the representation of gκ and fκ in terms of
regular (Fγ) and irregular (Gγ) non-relativistic Coulomb
waves [31] (where γ =

√
κ2 − (ZT /c)2 and ZT > 0 is the

nuclear charge number) one has

(
greg

κ (r)

girr
κ (r)

)
=

Nκ

kr

[
(κ + γ)

√
γ2 + η2 kc

(
Fγ(η, kr)

Gγ(η, kr)

)

− ZT

c
(γc2 − κE)

(
Fγ−1(η, kr)

Gγ−1(η, kr)

)]
,

Nκ =

√
E + c2

πE
sign κ

1
γ

× 1√
(ZT /c)2(E + c2)2 + (κ + γ)2(kc)2

,

(A.1)

where E =
√

k2c2 + c4 (with k equal to ki or kf ) is the
total energy and η = ZT E/(kc2) is the Sommerfeld pa-
rameter. A similar expression holds for the small compo-
nents,
(

f reg
κ (r)

f irr
κ (r)

)
= −Nκ

kr

[
−ZT

c

√
γ2 + η2 kc

(
Fγ(η, kr)

Gγ(η, kr)

)

+ (κ + γ)(γc2 − κE)

(
Fγ−1(η, kr)

Gγ−1(η, kr)

)]
.

(A.2)

We note that the normalization in (A.1) and (A.2) has

been chosen such that greg
κ ≡

√
E+c2

πE
1
kr · Greg

κ [32],
where Greg

κ stands for the large component of the regular
Coulomb-Dirac function being asymptotically plane-wave
normalized (with unit amplitude) as done in the Salvat
code [31].

For large distances the asymptotic expansions of Fγ (=
g cos θγ + f sin θγ) and Gγ (= f cos θγ − g sin θγ) [41] may
be used, which readily can be continued into the complex
plane. Then, from (5) for |z| large,

gκ(z) =
Nκ

kz

{
−ieiδκ

1
2

[c1Cγ(z) − c2Cγ−1(z)]

+ ie−iδκ
1
2

[
c1C

conj
γ (z) − c2C

conj
γ−1(z)

]}
, (A.3)

where c1 = (κ + γ)
√

γ2 + η2 kc and c2 = ZT

c (γc2 − κE).
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The functions Cγ and Cconj
γ are defined by

Cγ(z) = eiθγ(z) (f + ig)(z)

Cconj
γ (z) = e−iθγ(z) (f + ig)∗(z), (A.4)

where

θγ(z) = kz+η ln 2kz−γπ/2+ arg Γ (γ +1− iη) (A.5)

and [41]

(f + ig)(z) = 1 +
(−iη − γ)(−iη + γ + 1)

2ikz
+ . . .

(f + ig)∗(z) = 1 +
(iη − γ)(iη + γ + 1)

−2ikz
+ . . . , (A.6)

which is rapidly converging for γ not too large (otherwise
Rm has to be increased). Likewise, the small component
is written as

fκ(z) = −Nκ

kz

{
−ieiδκ

1
2

[d1Cγ(z) + d2Cγ−1(z)]

+ ie−iδκ
1
2

[
d1C

conj
γ (z) + d2C

conj
γ−1(z)

]}
, (A.7)

with d1 = −ZT

c

√
γ2 + η2 kc and d2 = (κ + γ)(γc2 − κE).

Since eiθγ(z) ∼ eikz, the function g
(+)
κ (eikz) as defined

in (6) comprises the first line of (A.3), and g
(−)
κ (e−ikz) is

given by the second line of (A.3). Similarly the two lines
in (A.7) define f

(+)
κ (eikz), respectively f

(−)
κ (e−ikz).
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