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Abstract

A simple, yet accurate solution of the electron–phonon coupling problem in C is presented. The basic idea behind it is60

to be found in the parametrization of the ground state electronic density of the system calculated making use of ab initio
methods, in term of sp2qx hybridized orbitals. This parametrization allows for an economic determination of the
deformation potential associated with the fullerene’s normal modes. The resulting electron–phonon coupling constants are
used to calculate Jahn–Teller effects in Cy, and multiple satellite peaks in the corresponding photoemission reaction. Theory60

provides an accurate account of the experimental findings. q 1998 Published by Elsevier Science B.V.

w xThe discovery of fullerenes 1 , and the subse-
w xquent ‘‘mass synthesis’’ 2 of these hollow

molecules, have prompted the search for a new class
Ž .of materials such as fullerides salts like K C ,3 60

Ž .fullerites C molecular crystals , etc., in which60

fullerenes play the role of the building blocks. The
understanding of the response of these building
blocks to external fields is essential in the characteri-
zation of the associated new materials. A central
issue in this quest is how the electronic properties of
fullerenes are modified by the coupling of electrons
to phonons. This question can be answered in terms

Ž w xof ab initio methods e.g., Refs. 3,4 and references
w x.therein; cf. also Ref. 5 . These methods are, how-

ever, computationally demanding and not particulary
transparent, and much of the physical insight is lost
in the complexity of mathematics.

In the present Letter we present a simple, yet
accurate solution of the electron–phonon coupling
problem particularly suited for fullerenes, and apply
it to Cy. The central idea behind this solution is60

based on a parametrization of the ground state elec-
tronic density of the system calculated making use of
ab initio methods in terms of hybridized atomic
orbitals. In particular, in the case of C fullerene, of60

sp2qx orbitals. Such parametrization allows for an
economic determination of the deformation potential
associated with the different normal modes. The
resulting electron–phonon coupling constants are
used to calculate Jahn–Teller effects in Cy and60

multiple satellite peaks in the corresponding photoe-
mission spectrum. The resulting cross section agrees
well with the experimental data, better than any of
the cross sections obtained making use of the elec-
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tron–phonon coupling constants available in the lit-
w xerature 3,4,6–8 . Furthermore, the extension of the

hybrid orbital model to describe the electron–phonon
coupling phenomenon in fullerenes other than C as60

well as in nanotubes is simple to carry out.
The electron–phonon coupling is determined by

the matrix element of the deformation potential

3

� 4V r s Q = V r , R ,Ž . Ž .Ž . Ž .Ý Ýdef b b ek k
0b ks1 � 4 � 4R s R

1Ž .
� 4where R represents the set of ionic coordinates

� 04with equilibrium values R , Q the displace-Ž .b k
ment field associated with the normal modes of the

Ž .b-ion in the ks x, y, z directions, while V is thee

total potential acting on the electrons. This potential
can be expressed, in the local density approximation
Ž .LDA , as

� 4 L � 4 � 4V r , R sV r , R qV r r , RŽ . Ž . Ž .Ž .e pseudo Hartree

� 4 NL � 4qV r r , R qV r , R .Ž . Ž .Ž .xc pseudo

2Ž .
.The first three terms are local and arise from: a the
.pseudopotential associated with the ions; b the

Coulomb interaction acting among the electrons
Ž . . Ž .Hartree field ; and c exchange Fock field and

Ž .correlation effects. The last term in Eq. 2 reflects
the non-local part of the ionic pseudopotential.

Ž .Because the first and the last terms of Eq. 2
display simply an explicit dependence on the ion

Žpositions, the calculation of their gradient cf. Eq.
Ž ..1 presents no difficulties. This is not the case for

Ž .the second and third terms of Eq. 2 , which depend
� 4on R implicitly via the electronic density, a fact

which can be used to write

� 4Q P= V r r , RŽ .Ý b b i
b

w xE V ri � 4s Q P= r r , R , 3Ž .Ž .Ý b bEr
b

Ž .where is Hartree,xc . Because in the LDA there is
an explicit relation between V and r, the derivativei

E V rEr can be calculated analytically. Consequently,i

the basic difficulty associated with the calculation of
Ž .the deformation potential defined in Eq. 1 , and thus

of the electron–phonon coupling constants, lies in
the calculation of the gradient of the electronic den-
sity along the normal displacements. To overcome
this difficulty, we shall parametrize the LDA results
in term of sp2qx hybrid orbitals, in such a way that
three of the four orbitals are directed along the
carbon bonds of fullerene C , while the fourth takes60

care of the p-bonding present in the hexagons and is
directed essentially perpendicularly to the fullerene
surface.

In keeping with the fact that in C each atom has60

three nearest neighbours, the hybrid orbitals we are
interested in can be written as

< : < : < : < : < :f sa s qb p qc p qd p ,1 1 1 x 1 y 1 z

< : < : < : < : < :f sa s qd m p qn p q t p ,Ž .2 2 2 2 x 2 y 2 z

< : < : < : < : < :f sa s qd m p qn p q t p ,Ž .3 3 3 3 x 3 y 3 z

< : < : < : < : < :f sa s qd m p qn p q t p .Ž .4 4 4 4 x 4 y 4 z

4Ž .

Here m scosa , n scosb , t scosg , and a ,j j j j j j j
Ž .b , g js2,3,4 are the angles which define thej j

direction of the bond between a Carbon atom and
each of its three nearest neighbours, in a system of
reference centered on the atom. After having fixed
the direction of these orbitals, there still remain ten

Ž .free parameters in Eq. 4 , parameters which are
completely determined by the orthonormalization
condition.

< :To describe the radial dependence of the s and
< :p orbitals, we have used the functions

2 2
Žyrrs . Žyrrs .1 2R s e and R s r e ,s p3 5( (s 3s1 2

usually employed in the description of the Carbon
atom. We have however adjusted the parameters s1

and s in order to obtain the best fit to the LDA2
Ž w x.C -density see, for instance, Ref. 9 . One can then60

write the contribution to the total density arising
from a single atom and, with the help of standard
techniques, carry out a multipole expansion of this
contribution around the center of the molecule.
Adding the contributions of the 240 electrons one
obtains the total density.

In Fig. 1 we display the two lowest multipoles of
the C ground state density, calculated in the LDA60
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Ž .Fig. 1. Comparison between the results of LDA full lines and
Ž .hybrid orbital model dashed lines for the two main multipole

Ž . Ž .contributions to the ground state density of C . a and b refer60
Ž . Ž . Ž .to the L, M s 0,0 and 6,0 contributions respectively.

including exchange-correlation effects according to
w xthe parametrization of Perdew and Zunger 10 . The

role of the carbon atoms were taken into account in
w xterms of norm-conserving pseudopotentials 11 . In

the same figure we show the results of the hybrid
˚ ˚ 1orbital model, for s s0.78 A and s s0.31 A .1 2

The next step consisits in the calculation of the
Ž . Ž .gradient of the density and, through Eqs. 3 and 4 ,

the deformation potential. Within the hybrid orbital
model, moving around the ions change the direction
of the orbitals but not their shape. This means that

Ž .the weights d in Eq. 4 are fixed, and the onlyj

quantities which change are the angles a , b and g .j j j
Ž � 4.The calculation of =r r, R becomes then quite

simple.

1 These values can be compared to the atomic values, s s0.651
˚ ˚A and s s0.17 A, and testify to the effect that nearest neighbour2

atoms have on the extension of the wavefunction of each C-atom
in C .60

In Fig. 2 we display the two lowest, and most
important, multipole contributions of the local part of
the deformation potential of C for the lowest A60 g

phonon, corresponding essentially to a breathing
mode of the system, as calculated in the LDA. The
wavenumber of this mode is equal to 491 cmy1 and
to 496 cmy1 for C in solution and in the solid60

w xphase, respectively 12,13 . The wavenumber and
zero point motion of the isolated molecule, calcu-
lated in the bond-charge model, are 493 cmy1 and

y3 ˚ w x53.4 10 A, respectively 14 . As seen from Fig. 2,
the hybrid orbital model provides an overall account
of the ab initio results. The discrepancies observed

Ž . Ž .for small values of r for the multipole L, M s 0,0
have little influence on the corresponding matrix
elements, because the electronic wavefunctions are
quite small around the origin of the molecule.

Making use of these results, one can calculate the

Fig. 2. Same as Fig. 1 for the two main multipole contributions to
the deformation potential associated with the lowest A phonong

of C .60
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electron–phonon coupling matrix elements in C .60

These are the matrix elements needed, for example,
in the evaluation of the lineshape of allowed as well
as of forbidden electronic transitions in C . To carry60

out similar calculations in Cy one should employ a60

deformation potential which is evaluated by making
use of the electronic density of the negative ion, at
the ground state geometry. Because the density of
the 240 valence electrons of C is not appreciably60

altered by adding one more electron, one expects the
deformation potentials associated with C and Cy

60 60

to be quite similar. In fact, we have carried out fully
relaxed, ab-initio calculations of the matrix elements
in Cy and found that they agree with those of C60 60

within less than 10%. In keeping with these results,
the electron–phonon matrix elements calculated
starting from the C electronic density and ground60

state ionic configuration are used in the following.
In Cy the state t is occupied with a single60 1u

electron. This level is separated by an energy of the
order of the eV from neighbouring levels, while the
electron–phonon coupling matrix elements to be
found below are of the order of the meV. Conse-
quently, it seems justified to consider, within the
present context, that the electronic motion is con-
fined to the t level. Under such circumstances, and1u

because of symmetry reasons, the only possible cou-
plings are to phonons with A and H symmetriesg g
Ž w x.e.g., Ref. 7 .

² < < :The matrix elements t n V t , where n1u def 1u

stands for the quantum numbers of the phonon, are
related to the partial electron–phonon coupling con-

Ž . 2stant l r N 0 s a g r v , according ton n n

² < < : Ž . l Ž w xt n V t s g r2 W e.g., Ref. 15 and ref-1u def 1u n nm
. Ž .erences therein . In the above expression N 0 is the

density of levels at the Fermi energy, a is equal to
1r3 for A phonons and 5r3 for H phonons,g g

while v is the energy of the phonon. The quantitiesn

W l are geometric coefficients, the index l distin-nm

guishing between the different degenerate states of
Žeach phonon H is five-fold degenerate while A isg g

.single-fold degenerate .
In Table 1 we display the multipole contributions

² < < :to the matrix element t A V t , associated1u g def 1u

with the lowest energy A mode calculated makingg

use of the LDA and of the hybrid orbital model. The
different contributions of the model display the same
sign and similar order of magnitude as those calcu-

Table 1
Different multipole contributions to the matrix element
² < < :t A V t , associated with the lowest energy A mode of1u g def 1u g

Ž .C t is the LUMO of the molecule60 1u

w xMatrix element meV

L LDA hybrid orbital model

0 y47.739 y49.506
6 y3.319 y2.369
10 19.741 20.275
12 y1.030 y2.828
16 6.082 5.869
18 14.940 15.473
20 2.139 1.777
total y9.399 y11.309

lated in LDA, while the summed contribution agree
within 20%.

Following the same steps as those leading to the
results displayed in Table 1, the different matrix

² < < : Ž .elements t n V t nsA ,H have been cal-1u def 1u g g

culated. Our results have been compared with those
from other theoretical calculation available in the

w xliterature 3,4,7,8 , as well as with the empirical
values obtained from Gunnarsson’s systematic analy-

y w xsis of the photoemission spectra of C 6 . While this60

analysis indicates that the coupling of the t elec-1u
Ž .tron to the H 2 leads to the largest value ofg

Ž . w xl rN 0 , the results reported in Refs. 3,4,7,8 indi-n

Ž .cate the coupling to the H 7 –phonon to be theg

most important. In the hybrid orbital model dis-
cussed above, the largest coupling of the t level is1u

Ž .to the H 2 –phonon, in agreement with the analysisg

by Gunnarsson and co-workers 2.
² < < :Making use of the matrix elements t n V t1u def 1u

Ž .nsA ,H calculated in the hybrid orbital model,g g
w xand of the results of the bond charge model 14 to

describe the properties of the phonons, we have
solved the total electron–phonon Hamiltonian con-
taining an electronic term, a phonon term, and a

2 Ž .The electron–phonon coupling constant l rN 0 obtainedn

by Gunnarsson from the analysis of the photoemission experimen-
Ž Ž .. Ž Ž .. Žtal data are, in meV: 0.023 H 8 , 0.017 H 7 , 0.005 Hg g g

Ž .. Ž Ž .. Ž Ž .. Ž Ž .. Ž6 , 0.012 H 5 , 0.018 H 4 , 0.013 H 3 , 0.040 Hg g g g
Ž .. Ž Ž .. Ž Ž .. Ž Ž ..2 , 0.019 H 1 , 0.011 A 2 , 0.000 A 1 . The corre-g g g

sponding result of the hybrid orbital model are, in the same units:
0.008, 0.016, 0.003, 0.006, 0.005, 0.011, 0.026, 0.010, 0.006,
0.001 respectively.
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Fig. 3. Results for the photoemission spectrum of Cy, obtained60

making use of the electron–phonon matrix elements calculated in
w xthe present Letter as well as in previous theoretical works 3,4,7,8 .

w xThe solid curve correspond to the experimental results 6 .

Ž w x.linear coupling term e.g., Ref. 6 in a basis of one
t electron and up to three phonon states. The1u

˜ Ž0. Ž1.< : < : <lowest eigenvalue t sC t qÝ C t m1u 1u n n 1u
:n q . . . was calculated using the Lanczos method.

˜< :The first term in t describes a state with no1u

phonons, the second term a state with one phonon,
etc. Making use of these results, we have calculated
the photoemission cross section assuming the sudden
approximation, where the emitted electron does not

w xinteract with the system left behind 6 .
In Fig. 3 we show the results of the hybrid orbital

model, in comparison with the results of the analysis
of the photoemission data carried out by Gunnarsson

w xand co-workers 6 . Although the hybrid orbital model
leads to a somewhat weaker electron–phonon cou-
pling than required by the experimental finding, and
consequently to a somewhat too large value of C Ž0.,
it provides a much better account of the empirical
spectrum than the other theoretical models, whose
partial electron–phonon coupling constant have been

w x Žreported in Refs. 3,4,7,8 cf. also Table 1 of Ref.
w x.6 .

We conclude that the hybrid orbital model of the

electron–phonon coupling displays a number of at-
.tractive features: i it leads to matrix elements of the

deformation potential which reproduce quite accu-
.rately the results of ab initio calculations; ii it

provides an excellent account of the photoemission
y .spectra of C ; iii it is quite economic to use, and60

can be extended at profit to fullerenes other than C60

as well as to nanotubes.
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