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Abstract In spite of missing dynamical correlations,

the projected generator coordinate method (PGCM)

was recently shown to be a suitable method to tackle

the low-lying spectroscopy of complex nuclei. Still, de-
scribing absolute binding energies and reaching high

accuracy eventually requires the inclusion of dynami-

cal correlations on top of the PGCM. In this context,

the present work discusses the first realistic results of a

novel multi-reference perturbation theory (PGCM-PT)

that can do so within a symmetry-conserving scheme for

both ground and low-lying excited states. First, proof-

of-principle calculations in a small (emax = 4) model

space demonstrate that exact binding energies of closed-

(16O) and open-shell (18O, 20Ne) nuclei are reproduced

within 0.5− 1.5% at second order, i.e. through PGCM-

PT(2). Moreover, profiting from the pre-processing of

the Hamiltonian via multi-reference in-medium simi-

larity renormalization group transformations, PGCM-

PT(2) can reach converged values within smaller model

spaces than with an unevolved Hamiltonian. Doing so,

dynamical correlations captured by PGCM-PT(2) are

shown to bring essential corrections to low-lying excita-

tion energies that become too dilated at leading order,
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i.e., at the strict PGCM level. The present work is laying

the foundations for a better understanding of the opti-

mal way to grasp static and dynamical correlations in a

consistent fashion, with the aim of accurately describing
ground and excited states of complex nuclei via ab initio

many-body methods.

1 Introduction

The recent breaking of ab initio calculations away from

p-shell nuclei into the realm of mid-mass nuclei has been

made possible by the formulation and implementation

of so-called many-body expansion methods. Because of

their polynomial scaling with system size, expansion

methods provide the best candidates yet to extend the

reach of ab initio calculations to even heavier nuclei.

However, and as explained in the introduction to the

first paper of the present series [1], hereafter referred

to as Paper I, a current challenge concerns the optimal

way to consistently capture both static and dynam-

ical correlations within such methods. While doubly

closed-shell nuclei are dominated by (weak) dynami-

cal correlations that are efficiently grasped through a

coherent sum of (mostly low-rank) particle-hole excita-

tions of a symmetry-conserving unperturbed product

state, open-shell nuclei display strong static correlations

that cannot be conveniently accounted for in this way.

This results in the necessity to design expansion meth-

ods based on more general unperturbed states that can

already capture static correlations.
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A good candidate to provide appropriate unperturbed

states is the projected generator coordinate method

(PGCM). The main conclusion of the second paper of

the present series [2] (Paper II in the following) is that

the PGCM is suitable to address the low-lying spec-

troscopy of complex nuclei within reasonable theoret-

ical uncertainties in spite of missing dynamical corre-

lations. For instance, the energy spectrum and electric

multipole transition strengths of the low-lying parity-

doublet bands in 20Ne were reproduced by taking into

account both quadrupole and octupole collective fluctu-
ations.

Still, describing absolute binding energies, accounting

consistently for a wide range of spectroscopic observ-

ables, tackling a large class of nuclei displaying different

characteristics and achieving high accuracy eventually

requires the inclusion of dynamical correlations on top

of the PGCM. This coherent incorporation is made

possible by expanding the wave operator Ω connecting

the PGCM state to the exact eigenstate via the novel

multi-reference perturbation theory (PGCM-PT) formu-

lated in Paper I. Doing so, PGCM-PT embeds, for the

first time, the PGCM within a systematic symmetry-

conserving expansion method.

The objective of the present work, the third paper of

the series, is to discuss first proof-of-principle results of

second-order PGCM-PT, i.e. PGCM-PT(2), calculations

in three selected nuclei, namely the doubly closed-shell
16O, the singly open-shell 18O and the doubly open-shell
20Ne that was studied at length at the PGCM level in

Paper II.

In addition to displaying the first set of PGCM-PT(2)

results, the goal of the present work is to do so while ex-

ploiting an additional degree of freedom at our disposal

in quantum many-body calculations, i.e. the possible

pre-processing of the Hamiltonian, e.g., via unitary trans-

formations generated by nucleus-dependent in-medium
similarity renormalization group (IMSRG) evolution.

While nucleus-independent vacuum similarity renormal-

ization group (VSRG) transformations of the Hamilto-

nian have already become a standard tool to pre-sum

ultra-violet (UV) dynamical correlations by decoupling

low- and high-momentum modes, nucleus-dependent

transformations can be exploited more systematically to

pre-sum infra-red (IR) dynamical correlations.

The single-reference IMSRG (SR-IMSRG) method [3,4]

applicable to closed-shell systems can in principle fully

decouple the unperturbed product state from the rest

of the Hilbert space, i.e. from the Q space, and thereby

make it the actual ground-state of the pre-processed

Hamiltonian at the end of the flow. In this case, the

wave operator eventually becomes nothing but the iden-

tity operator and the expansion method on top of the

unperturbed state is trivial. The more general multi-

reference IMSRG (MR-IMSRG) method [5,6,7] applica-

ble to all nuclei cannot, even in principle, fully decouple

the PGCM unperturbed state from the associated Q
space such that non-zero dynamical correlations remain

to be included via a non-trivial, e.g. PGCM-PT, wave

operator1. While the impact of these remaining dynam-

ical correlations on absolute energies may be small, we

will show that their inclusion is important for a proper
description of low-lying excitation spectra.

Eventually, a clear picture will emerge that is schemati-

cally illustrated in Fig. 1. Three complementary levers

must be consistently exploited to efficiently capture cor-

relations within many-body expansion methods in order

to describe (complex) nuclei

1. the pre-processing of the Hamiltonian,

2. the possibly non-trivial nature of the unperturbed

state,

3. the rationale of the expansion.

While each lever is best suited to capture a certain

category of correlations, the latter are not orthogonal to

one another such that the ideal way to share the load is
unclear and will require extensive trial-and-error in the

future. The present work wishes to contribute to this

long-term endeavor.

The present paper is organized as follows. Section 2.1

details the results obtained in 16O, 18O and 20Ne on the

basis of (the two-body part of) a chiral effective field the-

ory (χEFT) Hamiltonian evolved via VSRG. Section 3

then elaborates on the impact of further pre-processing

the Hamiltonian via MR-IMSRG transformations on the

results. Conclusions and future perspectives are eventu-

ally discussed in Sec. 4. A set of technical appendices

provides additional details about the numerical solution

of the large-scale linear system of equations at play in

PGCM-PT(2) calculations.

2 Calculations with VSRG pre-processing

The reader is referred to Paper I for all necessary details

about the PGCM-PT formalism as well as to Refs. [8,9,

10] and Refs. [4,6,7] for vacuum and in-medium IMSRG

1While the IMSRG constitutes per se a method to solve
Schrödinger’s equation when the SR-IMSRG implementation
can be applied, it is not the case for the MR-IMSRG approach
that can only be seen as a pre-processing of the Hamiltonian
on top of which an appropriate many-body method must be
applied.
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Fig. 1: (color online) Schematic workflow of expansion many-body methods (vertical axis) versus potential pre-

processings of the Hamiltonian (horizontal axis). Unitary vacuum (in-medium) similarity renormalization group

transformations denote a nucleus-independent (nucleus-dependent) pre-processing of the Hamiltonian.

methods, respectively. The PGCM-PT(2) solver is built

on top of an axially-deformed Hartree Fock Bogoliubov

(HFB) code [11] and a consistent PGCM solver [12]

allowing for the projections on good particle number,

angular momentum and parity. All notations used below

are consistent with those introduced in Papers I and II

that should be consulted for reference.

2.1 Numerical setting

Proof-of-principle calculations are performed using the

spherical harmonic oscillator (HO) basis of the one-body

Hilbert spaceH1 characterized by an oscillator frequency

~ω = 20 MeV and 5 oscillator shells (emax = 4).

The next-to-next-to-next-to-leading order (N3LO) χEFT

Hamiltonian introduced in Refs. [13,14] and evolved via

VSRG to the low-momentum resolution scale λvsrg =

1.88 fm−1 is employed. Thus, UV dynamical correlations

are already processed via the VSRG decoupling of low-

and high-momentum modes.

In these proof-of-principle calculations, only the two-

body part of the evolved Hamiltonian is actually re-

tained. Thus, the goal is not to reproduce experimental

data but rather to benchmark PGCM-PT(2) results

against those obtained from full configuration interac-

tion (FCI) calculations in the same emax = 4 space. The

FCI calculations rely on a sequence of Nmax-truncated

many-body Hilbert spaces up to Nmax = 8 embedded

into the FCI space defined by the emax = 4 truncation

on the single-particle basis. The results are extrapolated

to the full emax = 4 model space limit such that FCI

results come with an uncertainty associated with this

extrapolation2.

Additional many-body methods are also considered for

comparisons. First, the sub-cases of PGCM and PGCM-
PT obtained by only using one ”seed” HFB state, i.e.

omitting the GCM part of the calculation, are consid-

ered and referred to as PHFB and PHFB-PT methods.

The case where the projection part is further omitted

is utilized as well. This single-reference limit of PGCM-

PT has been formally elaborated on in Paper I and

denotes a symmetry-breaking scheme in case the seed

state (i.e. becoming the unperturbed state) is itself sym-

metry breaking. This limit will be also compared to

2The uncertainties on excitation energies do not originate from
this extrapolation but are taken from the difference between
the results obtained for the largest Nmax = 8 and the smallest
space. Excitation energies are more accurate than absolute
ones because they converge faster with Nmax.
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the standard single-reference symmetry-breaking Bogoli-

ubov many-body perturbation theory (BMBPT) [15,16,

17,18,19].

Our study focuses on three nuclei of increasing com-

plexity. In each case, a different collective coordinate q

is employed at the constrained HFB (cHFB) level and

for the subsequent GCM mixing. The characteristics

of the associated mean-field, PGCM and PGCM-PT

calculations are

1. Doubly closed-shell 16O

– spherically-symmetric Hartree-Fock (HF) states,

– constraint on the root-mean-square (rms) matter

radius (q ≡ rrms),

– no symmetry projection needed.

2. Singly open-shell 18O

– spherically-symmetric HFB states,

– constraint on the pairing gap (q ≡ δ) [20],

– projection of neutron number N .

3. Doubly open-shell 20Ne

– axially-deformed HFB states,

– constraint on the axial quadrupole moment (q ≡
q20),

– projections on neutron N and proton Z numbers

as well as on angular momentum J .

2.1.1 16O

In doubly closed-shell systems, the mean-field solution

is nothing but a spherical HF state. Since the rms radius

operator employed to perform constrained calculations

commutes with the total angular momentum J2, all

mean-field states involved in the 16O calculation carry

good symmetry quantum numbers and no symmetry

projection is necessary in the subsequent PGCM and

PGCM-PT calculations, hence they are simply referred

to as GCM and GCM-PT, respectively.

The ground-state total energy curves (TECs) of 16O

are displayed in Fig. 2 as a function of the rms radius

rrms of the (underlying) HF vacua. One first observes

that cHF and GCM results are underbound by about

20 MeV (12%) with respect to FCI, missing significant

IR dynamical correlations. In the present case3, the

GCM adds almost no energy (specifically, 165 keV) to

the HF minimum, which signals that static IR collective

3The GCM and GCM-PT(2) calculations are performed on
the basis of the nine cHF states visible on the TEC.
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Fig. 2: (Color online) Ground-state energy of 16O as a

function of rrms of the (underlying) HF vacua.

correlations are marginal in such a doubly closed-shell

nucleus.

Given the negligible character of static correlations, 16O

acts as a good benchmark for the (P)GCM-PT for-
malism. First, its single-reference reduction HF-PT(2)

is, as formally demonstrated in Paper I, identical to

canonical MBPT(2), i.e. Møller-Plesset MBPT based on

the unconstrained HF solution at the minimum of the

TEC (rrms = 2.03 fm). While both single-reference par-

titionings of the Hamiltonian provide slightly different

results away from the minimum of the HF TEC, they

are qualitatively and quantitatively similar. The minima

of the two TECs are close to the FCI result. However,

perturbation theories are not variational such that it is

difficult to argue that these values are to be preferred
to canonical ones. As a matter of fact MBPT(3) (not

shown) does not flatten the curve in the vicinity of the

lowest MBPT(2) value4.

Focusing on the canonical point, one observes that GCM-

PT(2) is consistent with MBPT(2)/HF-PT(2), adding

only 146 keV static correlation energy. This consistency

constitutes a validation of GCM-PT(2), knowing that

it is formally very different from MBPT(2) and relies

4Empirically, the MBPT expansion shows less sign of conver-
gence away from the canonical point such that the correspond-
ing MBPT(2) values should not be preferred.
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Fig. 3: (Color online) Upper panel: collective ground-

state GCM wave-function probability distribution

(|f̆0+
1 (rrms)|2) in 16O as a function of the rms radius

of the underlying HF vacua. Lower panel: contributions

to GCM (e
(0+1)
0 (rrms)) and GCM-PT(2) (e

(2)
S (rrms) +

e
(2)
D (rrms)) ground-state energies as a function of rrms.

GCM-PT(2) constributions are split into single (one-

particle/one-hole) and double (two-particle/two-hole)

excitations.

on a completely different numerical procedure as can be

appreciated from the various appendices to the present

paper.

Furthermore, this consistency sheds some light on single-

reference MBPT(2)/HF-PT(2) results. The upper panel

of Fig. 3 shows that, while the GCM ground-state col-

lective wave-function spreads over a large interval of

rrms values due to nuclear-size fluctuations, the Hamil-

tonian dictates that the contributions to the left of

the HF minimum (i.e. for rrms ≤ 2.03 fm) dominate it.

From the energetic viewpoint, the lower panel of Fig. 3,

which shows the decomposition5 of the GCM energy as

a function of rrms demonstrates that the largest contri-

butions originate from configurations centered around

the HF minimum. Next6, the lower panel also illustrates

that the physically-informed weights in the GCM un-

5The PGCM collective wave function and the contribution
e
(0+1)
0 (rrms) of each value of the collective coordinate to the

PGCM energy are introduced in App. A of Paper II.
6The decomposition of the PGCM-PT(2) correlation energy
is provided in Sec. 3.3.2 of Paper I.

perturbed state propagate to GCM-PT(2) such that

configurations around the HF minimum contribute the

most to the second-order correction whereas those as-

sociated with the lowest MBPT(2)/HF-PT(2) values

around rrms ∈ [2.1, 2.2] fm are largely subleading. Even-

tually, the total GCM-PT(2) energy is nearly identical to

canonical MBPT(2)/HF-PT(2) results. This definitely

gives more credit to low-order MBPT(2)/HF-PT(2) en-

ergies obtained at the canonical point than to those

obtained at smaller and larger values of rrms. Interest-

ingly, one also observes that the GCM-PT(2) energy
correction is dominated by double (two-particle/two-

hole) excitations given that the energy contribution of

single (one-particle/one-hole) excitations is negligible

at all values of rrms. While this feature is expected at

the canonical point given that single excitations do not

contribute to MBPT(2)/HF-PT(2)7, it is not evident

away from it.

Eventually, the GCM-PT(2) binding energy differs by
0.8% from the FCI result. A common theme throughout

the paper regards the best way to achieve even greater

accuracy. At this point, one can either hope to enrich

the PGCM unperturbed state by selecting a potentially

pertinent additional collective coordinate q and/or go

to PGCM-PT(3)8. A third (complementary) option to
achieve such a goal will be introduced in Sec. 3.

2.1.2 18O

The singly open-shell 18O constitutes the first nucleus

of the present study in which static correlations are

expected to be significant. In this particular case, static

correlations relate to superfluidity and thus translate

first at the HFB level into the spontaneous breaking of
the U(1) global-gauge symmetry associated with parti-

cle number conservation. Correspondingly, the pairing

gap operator is used here as a constraint to vary the

amount of pairing correlations in the HFB seeds [20].

As a next step, further static correlations are captured

via the restoration of neutron number and the inclusion

of pairing fluctuations through the PGCM.

The ground-state TECs of 18O are displayed in Fig. 4

as a function of the pairing constraint δ of the (under-

lying) HFB vacua9. By definition δ = 1 corresponds to

the canonical, i.e. unconstrained, HFB solution. While

7This a consequence of Brillouin’s theorem that implies a
decoupling between the HF reference state and its singles
excitations at the canonical point.
8The benefit of going to PGCM-PT(3) (see Ref. [21] for a
similar situation) given the associated numerical scaling makes
probably more efficient to seek for a further improvement of
the PGCM unperturbed state.
9See Ref. [20] for the definition of δ.
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Fig. 5: (Color online) Upper panel: collective ground-

state PGCM wave-function probability distribution

(|f̆0+
1 (δ)|2) in 18O as a function of the pairing constraint

δ characterizing the underlying HFB vacua. Lower panel:

contributions to the PGCM (e
(0+1)
0 (δ)) ground-state en-

ergy and to the PGCM-PT(2) (e
(2)
S (δ) + e

(2)
D (δ)) corre-

lation energy. The latter is split into single (two quasi-

particle) and double (four quasi-particle) contributions.

the PHFB TEC follows the HFB one, it is less bound,

e.g. by 1.2 MeV at the canonical point. The fact that

the particle-number projection after variation (PNPAV)

decreases the binding reflects the fact that the distribu-

tion of particle numbers in the HFB state around the

average is distorted towards heavier systems. In the next

step, the GCM mixing associated with the inclusion of

pairing fluctuations yields negligible correlation energy

compared to the PNPAV that provides the essential IR

correlations.

Similarly to 16O, PGCM underbinds the FCI result

by about 25 MeV (∼ 13%), thus missing significant IR
dynamical correlations. While formally not identical to

canonical BMBPT(2)10, the single-reference reduction

of PGCM-PT(2), here denoted by HFB-PT(2), captures

dynamical correlations on top of HFB. Results from both

single-reference methods are very similar and agree with

FCI within uncertainties.

However, this close agreement is accidental and some-

what spurious. Indeed, PHFB-PT(2), which actually

corrects for the U(1) breaking of HFB-PT(2), pushes

the energy up by about 1.5 MeV, away from the FCI

result at the canonical point. This number is close to the
difference between HFB and PHFB mentioned above.

This is the first example that demonstrates the impact

of exactly restoring symmetries within (perturbative)

expansion methods. Adding the GCM mixing into the

unperturbed state, the PGCM-PT(2) result remains con-

sistent with PHFB-PT(2) at the canonical point within

uncertainties.

Going away from the canonical point, BMBPT(2) and

HFB-PT(2) differ. This behavior reflects the different

nature of the partitionings used by the two expansions,

which is magnified as one departs from the canoni-

cal point. At the same time, PHFB-PT(2) becomes

less (more) bound than PGCM-PT(2) as δ becomes

smaller (greater) than 1. Once again, these behaviors

do not instill trust in perturbative results away from

the canonical point. Thankfully, PGCM-PT(2) is better

controlled given that the configurations associated with

different values of the collective coordinate δ enter the

unperturbed PGCM state with weights dictated by the

physical Hamiltonian. As shown in Fig. 5, the collec-

tive PGCM wave-function spreads significantly on both
sides of the canonical point with a maximum located

to the left of it (δ = 0.7). While the decomposition of

the PGCM energy reflects this distribution, the second-

order correction is flatter with δ but slightly favors values

smaller than 1. Eventually, the PGCM-PT(2) binding

energy is very close to the PHFB-PT(2) energy at the

10See the related discussion in Paper I.
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canonical point and lies 1.5 MeV (0.8%) above the FCI

result.

Still, PGCM-PT(2) and PHFB-PT(2) results carry error

bars associated with the approximate solution of the

linear system at play in the formalism. Due to to its

large dimension, this linear system is solved iteratively

as discussed in App. B, introducing an uncertainty that

can be evaluated through Eq. (24). The solution can

also be affected by linear redundancies and intruder

problems that are dealt with via the simultaneous use of

a norm preconditioning and a complex shift γ as detailed

in Apps. B.3.1 and C, respectively. While increasing

the precision, the use of an overly large complex shift

may degrade the accuracy by generating a bias in the

extracted value.

In 18O, which qualifies as a difficult case, the iterative

procedure can be converged in a stable fashion with

a complex shift γ = 10 MeV, eventually leading to a

±0.3 MeV precision on the PGCM-PT(2) energy11 that

is visualized by a band in Fig. 4. While the central value

reported in Fig. 4 is obtained for γ = 10 MeV, the bias

(not reported on the figure) due to this complex shift12

pushes the PGCM-PT(2) energy up by about 1 MeV,

and therefore causes a significant fraction of the 1.5 MeV

(0.8%) disagreement with the FCI result.

2.1.3 20Ne

The doubly open-shell 20Ne displays strong static cor-

relations that manifest through the breaking of SU(2)

rotational symmetry associated with angular momentum

conservation at the HFB level. Accordingly, the axial

quadrupole moment operator is used as a constraint to

vary the deformation of the HFB seeds. As a next step,

further static correlations are captured via the restora-

tion of angular momentum and the inclusion of shape

fluctuations through the PGCM. As demonstrated in

Paper II, the description of 20Ne strongly benefits from

breaking and restoring parity as well as the inclusion

of octupole shape fluctuations. Our present calculations

are however restricted to axial quadrupole deformation,

leaving some room for further improvement in the future.

While U(1) global gauge symmetry is also allowed to

break spontaneously, it does not do so with the presently

employed Hamiltonian, hence all HFB states actually

reduce to (deformed) HF Slater determinants.

11The precision on the PHFB-PT(2) is better (±0.1 MeV)
thanks to the lower dimension and the near diagonal character
of the linear system.
12The bias is estimated by varying the shift over the interval
γ ∈ [5, 15] MeV, see App. C.3 for an illustration.
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Fig. 6: Ground-state energy of 20Ne as a function of

the axial quadrupole deformation β2 of the (underlying)

HFB states.

The ground-state TECs of 20Ne are displayed in Fig. 6

as a function of the axial quadrupole deformation13

β2 of the (underlying) HFB vacua. One first observes

that the projection on J provides a significant energy

gain of 5.5 MeV and moves the minimum of the PHFB

TEC to larger deformation (β2 = 0.35) than the canoni-

cal HFB minimum (β2 = 0.3). The GCM mixing only

adds 80 keV correlation energy given that the TEC is

rather stiff along the axial quadrupole direction14. Once

again, static correlations are dominated by the symme-

try restoration. Having included essential static correla-

tions, the PGCM energy is still 21.7 MeV (10%) away

from the FCI result, and misses significant dynamical

correlations.

Stepping back to canonical HFB and adding dynam-

ical correlations via BMBPT(2) lowers the energy by

24.6 MeV, yielding a result that is 2.6 MeV (1.2%) un-

derbound compared to FCI15.

13See Paper II for a precise definition.
14As shown in Paper II, the energy is softer against axial
octupole deformations.
15Canonical BMBPT(2) is the closest point to FCI along the
TEC in the present example. Note that canonical BMBPT(3)
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Fig. 7: (Color online) Upper panel: collective ground-

state PGCM wave-function probability distribution

(|f̆0+
1 (β2)|2) in 20Ne as a function of the axial quadrupole

deformation (β2) of the underlying HFB vacua. Lower

panel: contributions to PGCM (e
(0+1)
0 (β2)) and PGCM-

PT(2) (e
(2)
S (β2) + e

(2)
D (β2)) ground-state energies as a

function of the axial quadrupole deformation (β2) of

the underlying HFB vacua. The PGCM-PT(2) constri-

butions are split into singles (two quasi-particle) and

doubles (four quasi-particle) contributions.

On the other hand, starting from the PHFB TEC and

adding dynamical correlations via PHFB-PT(2) low-

ers the energy by 25.1, 24.9 and 25.7 MeV at the HFB,

PHFB, and PHFB-PT(2) minima, respectively. These

energies overshoot the FCI result by about 2.5/3.2/3.4 MeV

(1.2/1.5/1.6%). While the difference between BMBPT(2)

and PHFB-PT(2) TECs is similar to the difference be-

tween HFB and PHFB TECs, one observes that a con-

sistent angular-momentum restoration favors larger de-

formations when adding dynamical correlations.

The mixing of quadrupole shapes in PGCM-PT(2) only

adds 310 keV to the PHFB-PT(2) minimum. The PGCM-

PT(2) result keeps a close memory of the PHFB-PT(2)

minimum (β2 = 0.4) rather than the PHFB-PT(2) value

at the canonical HFB minimum (β2 = 0.3). All in all,

only provides an extra 0.3 MeV correlation energy compared
to canonical BMBPT(2).

2
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Fig. 8: (Color online) Excitation energy in 20Ne as a

function of the axial quadrupole deformation (β2) of

the underlying HFB vacua. Top panel: first 4+ state.
Bottom panel: first 2+ state. Calculations are performed

with ~ω = 20 MeV, emax = 4 and employing the two-

body part of the N3LO χEFT Hamiltonian evolved to

λvsrg = 1.88 fm−1.

the PGCM-PT(2) energy16 overshoots the FCI result

by 1.7%. This discrepancy is expected to decrease after

the inclusion of the octupole degree of freedom into the

PGCM.

In order to further analyse the theoretical content of the

above results, Fig. 7 shows that the collective PGCM

ground-state wave-function and the associated energy

contributions are distributed rather symmetrically around

the Jπ = 0+ PHFB minimum (β2 = 0.35) of the TEC

visible in Fig. 6 and spread over a large interval of β2 val-

ues. Interestingly, dynamical correlations captured via

16Present PGCM-PT(2) and PHFB-PT(2) results were ob-
tained with a complex shift γ = 15 MeV. The precision error
associated with solving the linear system is shown through an
error band in Fig. 23.
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states in 20Ne computed via PGCM, PGCM-PT(2) and

FCI.

PGCM-PT(2) favor configurations17 to the left of the

HFB minimum (β2 = [0.25, 0.30]). As a result, dynami-

cal correlations could counterbalance the overestimated
radii obtained at the PGCM level (see Paper II) due

to the opposite predilection of the latter for deforma-

tions larger than the HFB minimum. This interesting

and non-trivial finding will have to be confirmed by an

explicit calculation of rms radii at the PGCM-PT(2)

level in the future.

In addition to providing accurate absolute energies in

complex systems, e.g. in doubly open-shell nuclei dis-

playing strong collective static correlations, a key ad-

vantage of the multi-reference PGCM-PT formalism

over BMBPT is that it provides natural access to the

low-lying spectroscopy within a symmetry-conserving

scheme by correcting each PGCM eigenstate for dynam-

ical correlations.

The first 2+ and 4+ excitation energies in 20Ne are

shown in Fig. 8 as a function of the axial quadrupole

deformation. First, one observes that the PGCM 2+
1

and 4+
1 excitation energies differ from the FCI results

17Once again, single excitations bring negligible contributions
to the correlation energy.

by 300 keV (27%) and 560 keV (13%), respectively. This

is consistent with the results displayed in Paper II. One

also sees that PHFB results at the canonical deformation

(β2 = 0.3) are very close to PGCM ones, but the differ-

ences grow for smaller or large deformations. Adding

dynamical correlations, PHFB-PT(2) flattens the exci-

tation energies as a function of β2 compared to PHFB,

systematically going into the direction of PGCM-PT(2)

for each deformation. Given that exact results would be

independent of the deformation of the underlying vac-

uum, this feature is an empirical sign that PHFB-PT(2)
results are better converged than PHFB ones. It also

implies that the PGCM-PT(2) spectrum converges with

fewer states than the PGCM one. Still, at the canoni-

cal deformation (β2 = 0.3) dynamical correlations are

small, which remains true even when shape mixing is

added, given that PGCM-PT(2) excitation energies are

essentially identical to PGCM ones.

Overall, the PGCM-PT(2) 2+
1 and 4+

1 excitation ener-

gies differ by 24% and 15% from FCI results respectively,

which seems to indicate that missing correlations are

beyond two-particle/two-hole excitations of axially de-

formed HF states. While going to PGCM-PT(3) will

help reduce this difference, it might be numerically less

costly and more relevant in this case to enrich the PGCM

unperturbed state via, e.g., the inclusion of octupole,

triaxial and/or pairing degrees of freedom, or to start

from HFB states obtained via a variation after particle-

number-projection (VAPNP) calculation, in order to

compress the spectrum. In the future, another possibility

would be to design a non-perturbative extension of the

multi-reference PGCM-PT formalism to more efficiently

capture higher-rank particle-hole excitations.

Our 20Ne results are summarized in Fig. 9 where the

combined benefits of PGCM-PT are clearly apparent.

Although a slight overbinding of about 3 MeV (∼ 1.5%)

is observed, PGCM-PT(2) brings down absolute energies

to the right range of values without degrading their

relative position. This latter feature is far from trivial

given that the PGCM-PT formalism is state specific,

i.e. calculations are performed separately on top of each

PGCM eigenstate, and considering that each PGCM

energy is corrected by about 25 MeV while their relative

distance is on the MeV scale. In particular, the (non-

trivial) numerical techniques used to solve the PGCM-

PT(2) equations must be well controlled to maintain the

consistency of the spectra. For example, it is essential

to use the same complex shift γ for all states belonging

to a given nucleus in order for the bias on absolute

energies to be consistent and to largely cancel out in

the excitation spectrum.
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3 Adding the MR-IMSRG pre-processing

In the present part, PGCM-PT(2) calculations are per-

formed in a larger model space with emax = 6 (and ~ω =

16 MeV)18. We use a Hamiltonian consisting of an SRG-

evolved chiral N3LO nucleon-nucleon interaction with

λvsrg = 1.8 fm−1, supplemented with an N2LO three-

nucleon interaction with cutoff Λ = 2.0 fm−1 whose

low-energy constants are adjusted to A = 3, 4 observ-

ables, as described in Refs. [22,23]. The Hamiltonian

is further pre-processed via the MR-IMSRG unitary

transformation based on the canonical PHFB state.

The evolutions are based on the MR-IMSRG(2) trun-

cation scheme, employing the so-called Brillouin gen-

erator — see Refs. [4,7] for details. The MR-IMSRG

transformation is parametrized by the flow parameter

s ∈ [0, 20] MeV−1, where s = 0 means that no transfor-

mation is applied and the upper limit is chosen such

that the transformed Hamiltonian no longer exhibits

significant evolution. In closed-shell nuclei (not shown

here), the PHFB reference state reduces to a spherically

invariant Slater determinant such that MR-IMSRG is
nothing but the simpler SR-IMSRG method. In this

case, pushing the transformation to s =∞ (s sufficiently

large in practice) leads to a complete resummation of

dynamical correlations into the pre-processed Hamilto-

nian such that the unperturbed HF Slater determinant

becomes its exact ground state, i.e. no further correla-

tions need to be added. While dynamical correlations

are largely resummed in open-shell nuclei via the MR-

IMSRG pre-processing, the decoupling of the reference

state cannot be complete such that an additional step

is always needed to grasp the remaining correlations as

illustrated below.

3.1 18O

The absolute binding energy of 18O is displayed in Fig. 10

as a function of s. Due to the PNPAV in 18O, the number

of single and double excitations of the HFB vacuum re-

quired to perform a PHFB-PT(2) calculation is already

very large (106 states) for emax = 6. The numerical

implementation will be optimized in the future, but in

the mean-time, the calculation is made faster by dis-

carding configurations based on their norm as specified

in App. D. For the same reason, only PHFB-PT(2) cal-

culations on top of the spherical 18O canonical HFB

vacuum have been performed, leaving a PGCM-PT(2)

calculation for the future.

18The limitation to emax = 4 was due to the wish to bench-
mark PGCM-PT(2) calculations against FCI results.
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Fig. 10: (Color online) Absolute binding energy of 18O

as a function of the flow parameter s associated with

the MR-IMSRG pre-processing of the Hamiltonian.
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the flow parameter s associated with the MR-IMSRG

pre-processing of the Hamiltonian.
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In spite of the change of model space and Hamiltonian,

the situation encountered at s = 0 is qualitatively similar

to the one discussed in Sec. 2.1. Indeed, while HFB and

PHFB are largely underbound, BMBPT(2) and PHFB-

PT(2) bring in the dominant fraction of dynamical cor-

relations19, with BMBPT(3) adding an extra 2 MeV.

Switching on the MR-IMSRG pre-processing, HFB and

PHFB energies drop dramatically for small values of s

and flatten out very quickly beyond s = 1 MeV−1. At the

same time, BMBPT(2), PHFB-PT(2) and BMBPT(3)

drop towards a similar value, about 1.5 MeV below the
original BMBPT(3) result, which happens to be also

similar to the PHFB value. Eventually, PHFB-PT(2) is

about 4 MeV (2.9%) away from experiment. No conver-

gence analysis as a function of the model space has been

performed and reaching a converged absolute binding

energy clearly requires (an extrapolation to) a larger

model space.

To better appreciate the impact of the MR-IMSRG evo-

lution, the correlation energy, i.e. the difference to the

HFB result, is shown in Fig. 11. Having already ab-

sorbed the bulk of dynamical correlations, pre-processed

Hamiltonians become more and more perturbative with

increasing s such that BMBPT(2,3) and PHFB-PT(2)

corrections become less important with the flow, i.e.

one goes from 38.8 MeV and 36.2 MeV for BMBPT(3)

and PHFB-PT(2) at s = 0 to 288 keV and 369 keV at

s = 10 MeV−1, respectively, with an inversion of the

two results. At the same time, the particle number pro-
jection that is repulsive at s = 0 (−394 keV) brings

in additional binding for s ≥ 1 MeV−1 (+327 keV at

s = 10 MeV−1). These results demonstrate that cor-

relations are reshuffled through the MR-IMSRG flow,

such that the importance of dynamical correlations is

strongly reduced whereas static correlations are some-

what enhanced.

Dynamical correlations added on top of PHFB via

PHFB-PT(2)20 become as small as 42 keV at s = 10 MeV−1.

Thus, the PHFB state used as a reference for the MR-

IMSRG pre-processing is, for all practical purposes, de-

coupled from the Q space at the end of the transforma-

tion in the present calculation. Although the decoupling

19Contrarily to the results obtained in Sec. 2.1.2 with a two-
body interaction only and emax = 4, PHFB-PT(2) is very close
to BMBPT(2) at s = 0. At the same time, the contribution of
BMBPT(3) is enlarged.
20The numerical solution of the PHFB-PT(2) linear system is
very stable in the present example such that a small complex
shift (γ = 1 MeV) can be used safely. The precision error on
PHFB-PT(2) energies is essentially invisible in Fig. 11 whereas
the bias generated for γ = 1 MeV is negligible compared to the
42 keV difference between PHFB and PHFB-PT(2) energies
at s = 10 MeV−1.

cannot be exact in principle, 18O behaves similarly to a

closed-shell nucleus such that the dynamical correlations

left to be captured after PNPAV are very small.

3.2 20Ne

The doubly open-shell 20Ne constitutes a richer and

more instructive example. Figure 12 shows the Jπ =

0+, 2+ and 4+ PHFB TECs as a function of the ax-

ial quadrupole deformation β2 for three values (s =

0, 10, 20) MeV−1 of the MR-IMSRG flow parameter [7].

The TECs are strongly lowered with s, e.g. the PHFB

minimum gains 45.4 MeV going from s = 0 to s =

20 MeV−1, with most of the effect occuring for 0 ≤ s ≤
10 MeV−1. At the same time, the deformation of the

PHFB minimum is lowered from β2 = 0.55 to β2 = 0.52

while the TECs become stiffer.

In Fig. 13, PGCM and PGCM-PT(2) binding energies

are displayed as a function of the flow parameter. Start-

ing from Jπ = 0+ PHFB TECs, PGCM and PGCM-

PT(2) calculations mix five HFB configurations with ax-

ial quadrupole deformations β2 = (0.3, 0.4, 0.5, 0.6, 0.7).

Unlike in 18O, the convergence of PGCM energies is not

fully reached yet for s = 20 MeV−1. Still, the bulk of

dynamical correlations has already been resummed into

the pre-processed Hamiltonian at s = 10, which suggests

a convergent behavior. Eventually, the PGCM energy is

lowered by 45.2 MeV between s = 0 and s = 20 MeV−1.

At the same time, PGCM-PT(2) systematically low-

ers the PGCM value, the added dynamical correlations

reducing from 42.5 MeV at s = 0 to only 2.0 MeV at

s = 20 MeV−1. Similarly, the difference between PHFB

and PGCM-PT(2) is drastically reduced as s grows but

does not vanish, i.e. it still amounts to 2.03 MeV with

the most pre-processed Hamiltonian21. This indicates

that, while very effective, the decoupling of the PHFB

state from the Q space is not complete and thus less

effective than in the singly open-shell 18O. This feature

points to the stronger multi-reference character of 20Ne

associated with the breaking and restoration of SU(2)

symmetry.

The PGCM-PT(2) energy changes by less than 5 MeV

over the interval s ∈ [0, 20] MeV−1, thus strongly reduc-

ing the flow parameter dependence compared to PGCM

results. The residual dependence of the ground-state

energy on the flow parameter results both from the

breaking of unitarity associated with the truncation

of the flow equations at the MR-IMSRG(2) level and

from the approximations to the solution of the A-body

21PHFB and PGCM energies differ by less than 200 keV all
throughout the interval s ∈ [0, 20] MeV−1.
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Fig. 12: (Color online) Jπ = 0+, 2+, 4+ PHFB TECs

in 20Ne as a function of the axial quadrupole deforma-

tion β2 for s = 0 MeV−1 (upper panel), s = 10 MeV−1

(middle panel) and s = 20 MeV−1 (lower panel).
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Fig. 13: (Color online) Absolute PGCM and PGCM-

PT(2) binding energies of 20Ne as a function of the

MR-IMSRG flow parameter s.

Schrödinger’s equation at the PGCM-PT(2) level. Under

the hypothesis that the PGCM-PT is convergent and

given that the second-order correction reduces to 2 MeV

at s = 20 MeV−1, one can speculate that the PGCM-

PT(2) energy is eventually better converged than the

5 MeV spread over the interval s ∈ [0, 20] MeV−1, i.e.

by better than 3%.

Turning to the low-lying spectroscopy, Fig. 14 displays

the first 2+ and 4+ excitation energies as a function of

β2 for the three values of the flow parameter. Focusing

first on s = 0, the conclusions drawn in Sec. 2.1.3 remain

valid, i.e. PHFB-PT(2) flattens the excitation energies

as a function of β2 compared to PHFB whereas dynami-

cal correlations brought in through PGCM-PT(2) do not

modify the low-lying part of the PGCM ground-state ro-

tational band. However, the picture changes drastically

when pre-processing the Hamiltonian via MR-IMSRG.

Indeed, the PGCM spectrum becomes more dilated with

increasing s. This can be understood from the TECs

in Fig. 12 where the decrease with s of the minimum

deformation spreads out the PHFB rotational spectrum

whereas the increased stiffness further pushes up the

excitation energies via the coupling to shape fluctua-

tions within the GCM. Based on this trend, one observes

that PHFB-PT(2), while always flattening the depen-

dence on β2, systematically corrects for this dilatation
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of the rotational spectrum. This non-trivial feature is
confirmed at the PGCM-PT(2) level.

This key result can be better appreciated in Fig. 15

where PGCM and PGCM-PT(2) spectra are compared

to experiment and to the spectrum obtained from a

richer PGCM calculation including additional axial

states along with triaxially deformed ones. Although the

PGCM calculation based on five axial states is rudimen-

tary, the observed dilatation of spectra is not compen-

sated for by such an enrichment of the PGCM unper-

turbed state. Correspondingly, the systematic compen-
sation of that dilatation via PGCM-PT(2) corresponds

to a genuine action of the perturbation that captures

dynamical correlations lying outside the reach of the

presently used PGCM ansatz. In the end, the PGCM-

PT(2) 2+
1 excitation energy is independent of s within

uncertainties. While reduced compared to PGCM, the s

dependence of the PGCM-PT(2) 4+
1 excitation energy is

still significant and would probably benefit from being

performed on top of a richer PGCM state and/or by

going to PGCM-PT(3).

The global picture that emerges for pre-processed Hamil-

tonians is illustrated for 20Ne in Fig. 16. The MR-

IMSRG evolution largely reshuffles the hierarchy of
correlations at play. As s grows, one observes that

1. static correlations captured through the breaking

of symmetries at the HFB level as well as by their

restoration and the inclusion of collective fluctua-
tions at the PGCM level slightly increase,

2. dynamical correlations brought either on top of HFB

via BMBPT(2) or on top of PGCM via PGCM-PT(2)

are drastically reduced.

Overall, dynamical correlations go from being highly

dominant to being largely subleading. Still, their in-

clusion on top of PGCM via PGCM-PT(2) remains

mandatory, in particular when dealing with low-lying

excitation energies.

Eventually, the great benefit of the pre-processing relates

to the fact that many-body calculations performed with

evolved Hamiltonians become numerically gentler as

s increases, i.e. the numerical solution of the PGCM-

PT(2) linear system is more precise, corrections beyond

PGCM-PT(2) are minimized and the convergence with

the model-space size (emax) is probably faster, although
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Fig. 15: (Color online) Low lying spectrum of 20Ne as a

function of the MR-IMSRG flow parameter.

this latter point remains to be studied22. Given that

PGCM-PT(2) is numerically more costly than the MR-

IMSRG(2) step (see App. D.1), the optimal combination

of both methods is of great interest. Of course, this

optimal point must be such that the error due to the

breaking of unitarity through the MR-IMSRG(2) pre-

processing is not larger than the error associated with

PGCM-PT(2) results.

4 Conclusions

This work, the third paper of the series on PGCM-

PT, presented the first realistic results for the novel

multi-reference perturbation theory built on top of an

unperturbed state generated through the projected gen-

erator coordinate method. While the unperturbed state

captures crucial static correlations via the breaking and

restoration of symmetries along with collective fluctu-

ations, the perturbative expansion brings in comple-

mentary dynamical correlations in a consistent fashion

22See Ref. [24] for an accelerated convergence in so-called
in-medium no-core shell model calculations.
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Fig. 16: (Color online) Total ground-state energy of 20Ne

computed within various many-body methods for three

different values of the MR-IMSRG flow parameter. Num-

bers next to downward arrows denote the corresponding
gain in correlation energy (in MeV).

within a symmetry conserving scheme. Furthermore,
being a state-specific multi-reference many-body pertur-

bation theory, PGCM-PT accesses ground and low-lying

excited states on an equal footing.

First, the novel many-body formalism was shown to be

both versatile and accurate by benchmarking proof-of-

principle results for the doubly closed-shell 16O, singly

open-shell 18O and doubly open-shell 20Ne nuclei in

a small (emax = 4) harmonic oscillator model space

against full configuration interaction results. Binding
energies obtained at second order, i.e. through PGCM-

PT(2), were shown to be typically 0.5−1.5% away from

FCI results.

The second focus of the present paper was to demon-

strate the benefit of combining low-order PGCM-PT

with a pre-processing of the Hamiltonian via multi-

reference in-medium similarity renormalization group

transformations. The rather low cost of MR-IMSRG(2)

calculations makes it possible to efficiently capture the

bulk of dynamical correlations in large model spaces

(cf. Refs. [24,25,26]). Based on such a pre-processed

Hamiltonian, PGCM-PT(2) can bring in crucial static

correlations and any remaining dynamical correlations
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while working in a smaller model space. The present

work showed that, after the MR-IMSRG(2) pre-processing,

dynamical correlations included on top of the PGCM

via PGCM-PT(2) are indeed essential for a satisfactory

description of low-lying spectra.

Eventually, it emerges from the present work that a

versatile and accurate description of complex mid- and

heavy-mass nuclei will probably rely on the combina-

tion of three levers whose complementarity needs to be

further studied and optimized:

1. the pre-processing of the Hamiltonian via, e.g., MR-

IMSRG to efficiently capture the bulk of dynamical

correlations,

2. the use of a, e.g., PGCM unperturbed state capturing

collective static correlations via a low-dimensional di-

agonalization problem that is thus scalable to heavy

nuclei23,

3. the low-order truncation of a systematic expansion

on top of the multi-reference unperturbed state via,

e.g., PGCM-PT to bring in remaining dynamical

correlations.

Each of the three steps comes with its own flexibility

that can be exploited in order to optimize their com-

bination24. First, the pre-processing is a function of a

flow parameter s that must be optimized to resum the

bulk of dynamical correlations without inducing a large

breaking of unitarity25. Second, the PGCM depends on a

choice of suitable collective coordinates that must be rich

enough to capture all non-perturbative static correla-

tions at play, only leaving weak perturbative corrections

to the subsequent PGCM-PT step, while maintaining a

low-enough dimensionality to retain its advantage over

large-scale diagonalization methods. For example, while

adding the triaxial degree of freedom did not impact the

dilated PGCM spectrum of 20Ne at s = 10, 20 MeV−1,

the use of HFB states obtained while adding a cranking

constraint breaking time-reversal invariance [27,28] typ-

ically compresses the PGCM spectrum as demonstrated

in MR-EDF calculations and in recent ab initio stud-

ies [26,29]. Obtaining such a compression at the PGCM

level is expected to correlate with a further suppression

of dynamical correlations on top of the PGCM step.

23This can be particularly useful for implementations on GPUs
or other accelerators with limited memory.
24It is worth mentioning that the combination of the three
steps is always consistent, i.e. there is no double counting
given that each step automatically adapts to the other two.
25In this context, the truncation order of the MR-IMSRG(n)
procedure plays a critical role. MR-IMSRG(3), for instance,
would allow us to reduce any violation of the unitarity, but it
comes with a significantly higher numerical cost.

Still, if needed, the PGCM-PT can in principle be im-

plemented at various perturbative orders n. In practice,

however, going beyond PGCM-PT(2) shall probably be

avoided due to the prohibitive numerical scaling.

While the present work has laid the foundations of such

an optimal scheme, future studies will allow us to better

understand the way many-body correlations can be most

efficiently captured in complex heavy nuclei within an ab

initio setting. For example, describing nuclei displaying

strong shape coexistence via ab initio many-body calcu-

lations constitute an interesting milestone to achieve in

the years to come.
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A Anti-symmetry reduction

From a technical viewpoint, and as extensively explained

in Paper I, PGCM-PT(2) calculations rely on solving a

large-scale linear problem of the form

Ma = −h1 . (1)

The linear problem relates to excitations I of several

non-orthogonal Hartree-Fock-Bogoliubov vacua, each of

which is defined by a set of quasi-particle creation opera-

tors, i.e. a rank-n excitation is defined through a set of n

quasi-particle labels I ∼ (ki1 , · · · , kin). Correspondingly,

the problem is initially expressed in terms of unrestricted

sets of quasi-particle indices. Still, anti-commutation re-

lations of quasi-particle creation operators imply that

M, a and h1 are anti-symmetric with respect to the

permutations of quasi-particle indices. This can be ex-

ploited to reduce the effective dimensionality of the

linear system.

Given a rank-n excitation I ∼ (ki1 , · · · , kin) on a given

Bogoliubov state, the set I ≡ {τ(I)}τ∈Sn of |I| ≡ n!
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permutations of the quasi-particle indices of I needs

to be considered. For a pair (I, J) of excitations and

two permutations (τ, τ ′) applicable to I and J , the

antisymmetry properties are given by

MpIqJ = ε(τ)ε(τ ′)Mpτ(I)qτ ′(J) , (2a)

aJ(q) = ε(τ)aτ(J)(q) , (2b)

hI1(p) = ε(τ ′)h
τ ′(I)
1 (p) , (2c)

where ε(τ) denotes the signature of the permutation τ .

First, these antisymmetry properties trivially imply that

excitations with repeated quasi-particle indices can be

excluded from the basis. Second, the set of excitations

I corresponding to one another via a change of the

quasi-particle ordering can all be tracked through the

one representative Ī of I characterized by a strictly

increasing ordering of the quasi-particle indices k1 <

· · · < kn. Writing Eq. (1) for such an external ordered

excitation Ī∑
q

∑
J

∑
J∈J

MpĪqJa
J(q) = −hĪ1(p) , (3)

the internal sum is split such that, with the help of

Eq. (2), |J | equivalent terms are generated that eventu-

ally yield the reduced form∑
q

∑
J
|J |MpĪ qJ̄a

J̄(q) = −hĪ1(p) . (4)

In order to maintain the Hermiticity of the reduced

matrix one further left-multiplies the equation by
√
|I|

such that the final form∑
q

∑
J

√
|J |
√
|I|MpĪqJ̄

√
|J |aJ̄(q) = −

√
|I|hĪ1(p) ,

(5)

naturally leads to a trivial redefinition of the reduced

matrix and vectors through the inclusion of the combi-

natorial factors. In the following, the above reduction

process is assumed such that the effective working basis

only includes excitations characterized by quasi-particle

indices in a strictly increasing order. The total number

of matrix elements is therefore reduced by a factor of

242.

B Solution of the linear problem

Finding the numerical solution of Eq. (1) is delicate

due to the non-orthogonality of the many-body states

used to represent it. Thus, a careful handling of zeros

in the norm eigenvalues is typically necessary to avoid

instabilities while solving the equation. In the following,

techniques of increasing sophistication are progressively

introduced in order to eventually motivate the use of

the iterative MINRES-QLP algorithm.

B.1 Exact SVD-based solution

The pedestrian way to solve the linear system can be

summarized in three steps: (i) diagonalize the norm

matrix to transform the equation into an orthonormal

basis, (ii) diagonalize the Hamiltonian matrix in that

basis and (iii) finally invert the problem. This strategy

is essentially the same as the one used in PGCM to solve

the HWG equation (see App. A of Paper II).

The norm matrix (see Paper I) is first decomposed

by projecting on the range of N via a singular-value

decomposition (SVD)

N = XIX† , (6)

where X is unitary. Matrix I gathers the singular values

whose smallest representatives can eventually be dis-

carded. Correspondingly, M, a and h1 are transformed

into the resulting orthogonal basis

M̃ ≡ XMX† , (7a)

ã ≡ X†a , (7b)

h̃1 ≡ X†h1 , (7c)

such that the linear problem equivalently reads

M̃ã = −h̃1 . (8)

The solution of this system is then found by diagonaliz-

ing M̃

∆ = Y†M̃Y , (9)

such that, similarly to canonical MBPT, the system is

inverted in the basis where M̃ is diagonal to obtain the
second-order energy in the form

E(2) = −h1
†XY∆−1Y†X†h1 . (10)

In principle, the projection on the range of N is not

necessary to solve the system. However, in numerical

applications, the coupling between spurious eigenval-

ues of N and large eigenvalues of M can arise and the

explicit removal of the redundancies is often necessary.
Eventually, full diagonalization is anyway not feasible

for the large matrices encountered in realistic PGCM-

PT(2) calculations (contrary to the PGCM step where

the typical dimensions are sufficiently small) such that

other methods need to be designed to solve the prob-

lem.

As an example, the distribution of the eigenvalues of

N and M obtained from a PHFB-PT(2) calculation of
20Ne in a small model-space is displayed in Fig. 17. Two

observations can be made
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Fig. 17: (Color online) Distribution of eigenvalues of N

and M matrices for 20Ne. The calculation is performed

with a two-body χEFT Hamiltonian, λsrg = 1.88 fm−1,

~ω = 20 MeV and emax = 2.

– The eigenvalue distributions are very close up to

a scaling factor. In particular, as expected, their

(numerical) kernels have the same dimension.

– The kernel’s dimension is small compared to the ma-

trices’ dimension, and all eigenvalues have the same

magnitude. This prevents us from using truncated

SVD approaches in larger model spaces.

Although the GCM mixing enlarges the kernel of the

PGCM-PT(2) matrices compared to PHFB-PT(2) due

to the partial linear dependencies of the added HFB

states, a large number of independent configurations is

still present in that case too.

B.2 Pivoted factorizations

Factorization algorithms can be applied in order to re-

move spurious eigenvalues without paying the price of

fully diagonalizing the norm and Hamiltonian matrices.

Typical examples are pivoted QR [30] and QLP [31]

factorizations, which are briefly discussed in the follow-

ing.

B.2.1 Pivoted QR

An arbitrary n×m complex matrixA can be decomposed

according to

AD = QR , (11)

where D is obtained via a permutation of the columns of

A, Q is a unitary matrix, and R is an upper triangular

matrix. The permutation D is used to sort the diagonal

entries of R in decreasing order of magnitude. In this

way, the kernel of A corresponds to the last columns of

R.

Fig. 18: (Color online) PHFB-PT correlation energy of
20Ne obtained for SVD, QR and QLP decompositions

as function of the size of the excluded kernel in the

decomposition. The calculation is performed with a

two-body χEFT Hamiltonian, λsrg = 1.88 fm−1, ~ω =

20 MeV and emax = 2.

B.2.2 Pivoted QLP

Matrix A can be decomposed further by performing

two successive pivoted QR decompositions, yielding the

form

D′AD = QLP (12)

where D,D′ are permutation matrices, Q, P are unitary

matrices and L is a lower triangular matrix. In particular,

L has the block-diagonal form

L =

(
L̃ 0

0 0

)
, (13)

such that Q and P naturally block factorize A into a

full-rank part and its null-space.

B.2.3 Illustration of non-iterative solvers

In our case, pivoted QR/QLP factorizations can either

be used directly on M to solve Eq. (1) or on the norm

matrix in order to remove redundancies in the basis. In

both cases, the symmetry of the matrices guarantees

that the range and the kernel of both matrices are in

direct sum. QLP factorization can thus be seen as a

way to re-express the original problem in the range of

M or N. In practical applications, some tolerance must

be used (as with SVD) to discard numerically small

eigenvalues and disentangle the numerical kernel from

the numerical range. The QLP factorization, although

twice more expensive than the single QR decomposition,
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is found to be more stable and to better discard spurious

eigenvalues.

Figure 18 shows a comparison of SVD, QR and QLP

decompositions in a PHFB-PT(2) calculation. Errors

estimated via δE ≡ ‖Ma + h1‖‖a‖ (see Sec. B.3.2) are

also represented on the figure. The three methods are in

very good agreement with vanishing errors when nearly

all the space is kept in the calculation. However, discrep-

ancies arise when the truncation is performed according

to the magnitude of the diagonal elements of the de-

composition. While the SVD is by far the most reliable

method, the QLP decomposition significantly improves

the correlation energy with respect to the simpler QR

decomposition and reduces the corresponding error for
a fixed kernel dimension. Eventually, the reduced cost

of QLP/QR decompositions compared to SVD, espe-

cially in their sparse version, make them well suited to

large-scale calculations.

B.3 Iterative solvers

The QLP decomposition introduced above is still not

applicable to very large matrices due to the runtime

and memory requirements. An alternative solution is

to use an iterative method, preferably exploiting the

symmetry of the input matrix. Among various available

solvers, the MINRES algorithm [32] finds the minimum-

residual solution to ||Ma + h1|| via QR factorizations

in the Krylov space of M. In the case of ill-conditioned

problems, QR factorizations are replaced by QLP fac-

torizations, and the corresponding algorithm is referred

to as MINRES-QLP [33].

The benefit of iterative solvers compared to exact de-

compositions is that, in the former, QR and QLP fac-

torizations are performed in a Krylov subspace of the

matrix. At iteration k, the problem is of dimension

k× k, where k is usually much smaller that the original

matrix dimensions. This results in both runtime and

memory savings, at the cost of solving the system only

approximately.

B.3.1 Preconditioning of the linear system

The number of iterations required by the solvers strongly

depends on the eigenvalue distribution of the linear sys-

tem under consideration. Typically, systems where the

eigenvalues are clustered will have a faster convergence

than systems with a spread-out spectrum. The spread

of the eigenvalues can be altered with preconditioning

techniques that amounts to finding equivalent systems

with different (generally much smaller) condition num-

bers.

In this subsection, the compatible symmetric system

Mx = −h1 , (14)

is considered. Let A = CCT be a positive definite

matrix. The solution of the initial system can be deduced

from the solution of the preconditioned system

C−1MC−Ty = −C−1h1 . (15)

Whereas various techniques are available to build an

appropriate matrix A, designing efficient precondition-

ers is still an active field of research [34]. There is no

perfect preconditioner, and finding the trade-off between

effectiveness and computational cost heavily relies on

heuristics. Furthermore, for systems only known up to a

given precision, preconditioners can artificially magnify

eigenvalues that are numerically close to zero. Thus,

a slower convergence with the possibility to stop the
iterations before the appearance of spurious divergences

might be preferable. Eventually, solving several equiva-

lent systems simultaneously can make it easier to identify
problematic features, and discrepancies between differ-

ent solutions can be used as uncertainty estimates in

the resolution.

Matrix scaling. Matrix scaling is a type of precondi-

tioning where the preconditioner is a diagonal matrix

A ≡ D such that the equivalent system reads

D−
1
2 MD−

1
2 y = −D−

1
2 h1 . (16)

If the scaled matrix

M̃ ≡ DMD (17)

is better conditioned than M, then the solution to the

initial system can be found in fewer iterations. For a

diagonally dominant matrix M, scaling the matrix with

its own diagonal elements will reduce its condition num-

ber. The binormalization method detailed in Ref. [35]

amounts to scaling all rows and columns to unit norm,

which can yield significantly better results at low cost.

A stochastic matrix-free variant [36] allows one to effi-

ciently apply this method for abstract linear operators

that are not necessarily defined explicitly by a matrix-

vector product. Below, the stochastic binormalization

preconditioner is denoted as SBIN.

Incomplete Cholesky decomposition. For a sparse posi-

tive definite matrix N, an approximate Cholesky factor-

ization preserving the sparsity pattern of the original

matrix can be computed as

N ∼ LLT , (18)
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with L a (sparse) lower triangular matrix. A variant of

Cholesky factorization applicable to positive indefinite

matrices can be applied directly on the norm matrix N.

Since N and M have similar eigenvalue spread, eigen-

values of the system preconditioned with LLT will be

much more clustered than those of the original system,

hence separating the useful directions of the problem

from the rest of the Hilbert space. Below, the incomplete

Cholesky preconditioner is denoted as IC0.

Norm preconditioning. In some cases, spurious eigenval-

ues in the linear system can couple to physical modes

and prevent any convergence of the iterative solvers. In

this case, clustering the eigenvalues via preconditioning

techniques is counterproductive as spurious modes are

given an equivalent amplitude to physical ones. When

this happens, it is preferable to amplify the separation

of scale between numerically small and large eigenvalues.

Instead of manually removing redundancies in the norm
matrix, there exists a simple way to reach the image

of N without resorting to a decomposition: Instead of

solving

Ma = −h1 , (19)

one directly solves for N−1a inside the range of N via

NMN
(
N−1a

)
= −Nh1 . (20)

Even if N is singular, the fact that h1 and a live in the

range of N by construction ensures that N−1a is well-
defined. The procedure ensures that small numerical

eigenvalues of N, originating from collinear many-body

basis vectors, are tamed down in NMN. Furthermore,
numerical errors in h1 are suppressed as well. Of course,

in exact arithmetic, the two systems are equivalent.

This method corresponds in fact to preconditioning the
system with N−2. As mentioned, this slows down the

convergence of the iterative procedure and must be

kept for cases where the direct approach or the com-

plex shift method (see below) do not provide accurate

solutions. Below, the norm precondition is denoted as

NMN.

B.3.2 Error evaluation

Iterative methods may require a large number of iter-
ations or even diverge due to numerical errors. In this

subsection, a conservative bound to estimate the error on

the computed second-order energy is developed.

Given an approximate solution of the system

Ma = −h1 + b , (21)

the second-order energy evaluated with Hylleraas’ func-

tional reads

E(2) = a†Ma + h†1a + a†h1

= a†b + h†1a . (22)

The difference between this expression and the directly

evaluated second-order energy reads

δE(2) = a† (Ma + h1) . (23)

Thus, a conservative error estimate on the second-order

energy is given by

|δE|(2) ≡ ‖a‖‖Ma + h1‖ . (24)

The quantity |δE|(2) vanishes for an exact solution and

grows whenever ‖a‖ becomes too large, which gener-

ally occurs if M is badly conditioned. When the norm-

preconditioning is used, the error estimate is obtained

as

|δE|(2) ≡ ‖N−1a‖‖NMN
(
N−1a

)
+ Nh1‖ . (25)

B.3.3 Stopping condition for the iterative solver

MINRES-QLP already implements by default its own

stopping criterion based on the relative norm of the

residuals

r ≡ ‖Ma + h1‖
‖a‖

. (26)

In the present case, elements of M and h1 are obtained

after several computational steps such that round-off and

discretization errors will alter the quality of the input

matrices. Furthermore, a threshold on the magnitude

of the matrix elements of M is employed to enforce the

sparsity of the matrix. As such, iterations should be

stopped when the residual errors are of the same order

as the precision of the input matrix elements.

B.3.4 Illustration of iterative solvers

In order to illustrate the use of iterative solvers and pre-

conditioning techniques, results obtained in 20Ne with

emax = 2 are shown in Fig. 19. One observes that the

IC0 preconditioning significantly reduces the number

of iterations needed to reach the converged value. Con-

trarily, the norm preconditioning tends to spread the

eigenvalues of the system and therefore slows down the

convergence. For a well-behaved system, applying the

IC0 preconditioning to the original matrix is therefore

the method of choice. In contrast, whenever spurious

eigenvalues prevent the convergence of the iterative pro-

cess, the IC0 preconditioning amplifies the problem.
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Fig. 19: (Color online) Correlation energy (top) and

corresponding error (bottom) at each MINRES-QLP

iteration for the ground state of 20Ne. Results obtained

with combination of IC0 and norm preconditionings are

compared to the exact solution obtained via SVD. Cal-

culations are performed with a two-body χEFT Hamil-

tonian [13,14], λsrg = 1.88 fm−1, ~ω = 20 MeV and
emax = 2.

Such a case is shown Fig. 20 for the ground state of
18O. Here, applying a combination of SBIN and norm

preconditioning is necessary to converge the system to

the SVD solution.

C Complex-shift method

C.1 Motivations

As it appears in Eq. (10), the second-order energy relies

on the invertibility of ∆ to generate non-zero energy

denominators. However, the eigenvalues of ∆ can vanish,

which makes the calculation of the second-order energy

unstable or even ill-defined. Multi-reference methods

are indeed susceptible to this so-called intruder-state

problem [37,38].

One way to regularize these zeros is to introduce a

diagonal imaginary shift in the eigenbasis of M. The

Fig. 20: (Color online) Correlation energy (top) and

corresponding error (bottom) at each MINRES-QLP

iteration for the ground state of 18O. Results obtained

with a combination of SBIN and norm precondition-

ings are compared to the exact solution obtained via

SVD. Calculations are performed with a two-body χEFT

Hamiltonian [13,14], λsrg = 1.88 fm−1, ~ω = 20 MeV

and emax = 2.

eigenvalues are thus replaced by

∆̄ ≡∆ + ıγI , (27)

or, equivalently, working in the original basis

M̄ ≡M + ıγN , (28)

which simply corresponds to adding a complex term to

the unperturbed Hamiltonian H0. The imaginary shift

moves zero eigenvalues of ∆ into the complex plane

and provides a robust way to remove intruder-state

divergences.

In this context, the second-order energy is eventually

evaluated by simply taking the real part of the Hylleraas

functional,

E(2) = <
[
a†M̄a + a†h1 + h†1a

]
. (29)
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C.2 Implementation in real arithmetic

Although an extension of MINRES-QLP has been devel-

oped to handle complex symmetric matrices [39,40], it is

possible to rewrite the complex PGCM-PT(2) equations

as an enlarged real-valued system, for which the original

MINRES-QLP algorithm can be applied directly. The

system of equations

(M + ıγN)(a + ıb) = −h1 (30)

is recast into a blockwise 2x2 real symmetric system

(
M −γN

−γN −M

)(
a

b

)
=

(
−h1

0

)
. (31)

Since the matrices are real by default after projection,

implementing the imaginary shift via an augmented real

system is profitable to make use of the MINRES-QLP

real symmetric solver instead of variants designed for
complex matrices.

Note that preconditioning techniques such as SBIN and
N-IC0 are still applicable within the augmented sys-

tem.

C.3 Illustration

Proceeding with the 20Ne test case (emax = 2), the effect

of the complex shifts on the MINRES-QLP iterations

with the IC0 preconditioning is illustrated in Fig. 21. In

general, the complex shift tends to lower the correlation

energy — in the limit of an infinite shift, the correlation

energy vanishes. Thus, a bias is introduced that must

be monitored. Eventually, the larger the complex shift,

the faster the iterative procedure will converge (towards

a biased result).

In the case of 18O, we can combine the norm and SBIN

preconditioning (cf. Fig. 20), with the complex shift, as

pictured in Fig. 22. In contrast to 20Ne, the complex shift

with the norm preconditioning decreases the convergence

speed in this case. Applying the complex shift without

norm preconditioning is also possible, but does only lead

to a stabilization of the result before the occurrence of

a divergence.

In practical applications, the optimal shift depends on

the interaction, the model space and the system under

consideration. As the model space is enlarged, encoun-

tering small eigenvalues becomes more probable and

the complex shift becomes necessary to smear out the

contaminations. A shift γ ∈ [10, 20] MeV is well suited

to remove spurious behaviors, with an estimated error

of around 4% on the correlation energy, as can be seen

Fig. 21: (Color online) Correlation energy (top panel)

and corresponding estimated error for different values

of the complex shift γ as a function of the number

of MINRES-QLP iterations in 20Ne. Calculations are

performed with a two-body χEFT Hamiltonian [13,14],

λsrg = 1.88 fm−1, ~ω = 20 MeV and emax = 2.

in Fig. 23. The difference between the results obtained

with γ = 15 MeV and γ = 4 MeV26 is used to estimate

the bias due to the shift. Note that PHFB-PT(2) is more

sensitive to intruder-state problems than PGCM-PT(2),

hence the need to employ a larger shift to smooth out

singularities on the energy curve. In practice, it is es-

sential to use the same shift for all quantum states of

a given nucleus to obtain a consistent bias in absolute

binding energies that will largely cancel out in the exci-

tation spectrum. The development of an extrapolation

method towards γ → 0 to correct for the bias due to

the complex shift is left for a future study.

26In the present case, γ = 4 MeV constitutes the lowest value
that is empirically found to deliver a controlled numerical
result. Below this value, the energy curve displays an erratic
behavior due to the occurrence of an intruder state.
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Fig. 22: (Color online) Correlation energy (top panel)

and corresponding estimated error for different values

of the complex shift γ as a function of the number

of MINRES-QLP iterations in 18O. Calculations are

performed with a two-body χEFT Hamiltonian [13,14],

λsrg = 1.88 fm−1, ~ω = 20 MeV and emax = 2.

D Discussion on numerics

D.1 Scaling

Any method to solve A-body Schrödinger equation’s

comes with its numerical complexity and memory re-

quirement. For a given basis size N of the one-body

Hilbert space, the naive polynomial scaling of runtime

and storage of the methods discussed in the present

work is displayed in Tab. 1. These asymptotic values

are to be revised when particular symmetries are ex-

ploited in the many-body bases (e.g. spherical or axial

symmetry reducing the size of the many-body tensors

at play). Moreover, prefactors (ignored here) may play

a significant role. Nevertheless, the table gives a fair

idea of the asymptotic cost of the different many-body

techniques.

As an example, the computational cost of each indi-

vidual matrix element at play in PGCM-PT(2), which

requires about 1000 vectorized elementary operations,

makes the construction of the matrix the most time-
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Fig. 23: (Color online) Correlation energy in 20Ne for a

complex shift γ = 15 MeV. Error bars associated to the

effect of the shift correspond to the correlation energy

with γ = 4 MeV. The calculation is performed with a

two-body χEFT Hamiltonian [13,14], λsrg = 1.88 fm−1,

~ω = 20 MeV and emax = 2.

consuming step in the calculation. In other words, the

computation of theN8 matrix elements dictates the over-
all complexity, given that the (approximate) sparsity of

the matrix makes the cost of solving the linear system

subleading. Similarly, even if BMBPT(3) has the same

storage cost as HFB in principle, symmetry properties

of the density matrices are used to drastically reduce the

number of matrix elements that are needed at the HFB
level. In general, the nominal complexity and storage

requirement have to be balanced with the optimizations

(vectorization, parallelization, compression techniques)

that can be applied for a specific method, and they can

play a decisive role in practical applications. Also, shape
mixing through PGCM scales quadratically with the

number of reference states, i.e. a PGCM (PGCM-PT(2))

calculation with 10 states is 100 times more costly than

a PHFB (PHFB-PT(2)) calculation.

A selection of runtimes as a function of the one-body

basis dimension is displayed in Fig. 24. For BMBPT(2,3)

and PHFB, symmetry properties lower the effective com-

plexity to O(N4). The main differences reside in the

prefactor, which is, intiutively, larger for BMBPT(3).

Note that the normal ordering of the Hamiltonian and

the transformation to the quasi-particle basis are in-

cluded in the runtime estimate.
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Method HFB PGCM BMBPT(2) BMBPT(3) PGCM-PT(2) FCI

Runtime O(N4) O(nprojn
2
gcmN

4) O(N5) O(N6) O(nprojn
2
gcmN

8) O(NA)

Storage O(N4) O(N4) O(N4) O(N4) O(n2
gcmN

8) O(NA)

Table 1: Runtime complexity and storage requirements for various resolution methods of the many-body problem.
nproj denotes the number of gauge angles used for projections and ngcm the number of states used in the mixing.
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D.2 Complexity reduction in PGCM-PT(2)

The multi-reference PGCM-PT(2) calculation is, in its

naive formulation, significantly more costly than its

single-reference counterparts. This is mainly due to the

redundancies in the visited Hilbert space: many pro-

jected quasi-particle configurations play little to no role

in the correlation energy or are redundant. This is even

more true for large-scale applications where the multi-

reference unperturbed state mixes many product HF(B)

states. This naturally leads to the idea of reducing the

dimensionality of the problem by selecting only relevant

configurations (see Refs. [41,42] for recent applications

of this idea in nuclear physics and chemistry). In par-

ticular, the application of importance-truncation tech-

niques in the context of non-perturbative methods [43]

shows promising results that should be applicable to the

present problem.

Several procedures to reduce the number of configura-

tions in a controlled way are now briefly introduced, al-

though not all of them have been implemented yet.

D.2.1 Norm-based importance truncation

Exact arithmetic The norm of a projected configuration

is

nI(p) ≡ 〈ΩI(p)|ΩI(p)〉 ∈ [0, 1] (32)

such that a configuration I for which nI(p) = 0 satisfies

|ΩI(p)〉 = 0 . (33)

Trivially, a null vector does not contribute to the linear

system and can be safely removed from the calcula-

tion.

Approximate zeros Given a threshold εn > 0, the norm-

based importance-truncated problem is introduced by

removing configurations I with nI(p) < εn. The exact

problem is obtained in the limit εn = 0. For now, this is

the only method that has been implemented and applied

to discard configurations in 18O at emax = 6. Although

the number of configurations was divided by two (from

106 to 5·105) by only keeping configurations whose norm

reaches 2% of the maximal value, the induced error was

shown to be less than 1%. A systematic study of the

results obtained via this procedure still remains to be

performed.

D.2.2 Hamiltonian-based importance truncation

Exact arithmetic The Hamiltonian matrix element of a

projected configuration reads

hI1(p) ≡ 〈ΩI(p)|H1|Θ(0)〉 . (34)

A configuration I for which hI1(p) = 0 does not con-

tribute to the linear system nor to the second-order

energy, hence it can be safely removed from the calcula-

tion.

Approximate zeros The Hamiltonian-based importance-

truncated problem is introduced by removing configura-

tions I satisfying |hI1(p)| < εh, with εh > 0. The exact

problem is obtained in the limit εh = 0.
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D.2.3 Energy-based importance truncation

The contribution of a configuration I associated with the

vacuum |Φ(q)〉 to the second-order correlation energy is

e(2)I(q) = hI∗1 (q)aI(q) . (35)

A configuration (q, I) for which e(2)I(q) = 0 does not

contribute to the correlation energy27. Removing config-

urations based on the size of their contribution to the

correlation energy corresponds to the method advocated

in Refs. [41,43]. The method is expected to lead to a

substantial gain for a negligible error on the energy, al-

though the impact on other observables must be checked

as well. Of course, computing e(2)I(q) requires to solve

the problem in the first place and is thus impractical.

The idea is thus to evaluate the importance of a given

configuration (q, I) by calculating an approximation to

e(2)I(q) at a significantly reduced cost, which can typ-
ically be achieved by using BMBPT(2) based on the

HFB vacuum |Φ(q)〉.
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