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A direct measurement of the decay width of the first excited 0+ state of 6Li using the relative
self-absorption technique is reported. Our value of Γ

γ,0+1 →1+1
= 8.17(14)stat.(11)syst. eV provides

sufficiently low experimental uncertainties to test modern theories of nuclear forces and resolve
a long-standing ambiguity in the literature. The corresponding transition rate is compared to
ab initio calculations based on chiral effective field theory that take into account contributions to
the magnetic dipole operator beyond leading order. This enables a precision test of the impact of
two-body currents that enter at next-to-leading order.

Nuclear structure physics has entered an era of pre-
cision studies, both in experiment and theory. For
light nuclei, ab initio theory based on interactions from
chiral effective field theory [1] is reaching an accuracy
at which corrections to electromagnetic (EM) operators
that emerge naturally in the chiral expansion become rel-
evant. A recent review [2] indicates that precision mea-
surements of EM transition rates with uncertainties of a
few percent or better are required to explore and vali-
date the effects of these subleading corrections. For few-
nucleon systems, direct measurements of strong transi-
tion rates with such precision are often challenging ex-
perimentally owing to the very short lifetimes involved.

The present study is focused on the nucleus 6Li in
its first excited 0+

1 state at E0+
1

= 3562.88(10) keV [3],

which constitutes the lightest non-strange hadronic sys-
tem [4] with a dominant internal EM decay branch to
its 1+

1 ground state. The potentially competing parity-
forbidden decay via α emission has not been observed,
and it is at least a million times weaker than the γ decay
[5]. Because of its occurrence as stable matter (compared
to the lighter hypernuclei [6]) and the low nucleon num-
ber of 6Li, the decay of its 0+

1 state is the EM transition of
the most simple hadronic system which is simultaneously
accessible by precision studies in theory and experiment.
It is, therefore, ideally suited for testing our understand-
ing of nuclear forces and electromagnetic currents in a
many-nucleon system.

On the theory side, significant progress has been made
in chiral effective field theory (χEFT) [1, 7], and in the
ab initio solution of the quantum many-body problem
for light nuclei [8, 9]. Recently, the focus has been on
the consistent inclusion of electroweak transition opera-
tors [2], with a focus on the impact of two-body currents
(2BC). For EM transitions in light nuclei, calculations
with traditional 2BC and potentials were performed in
Ref. [10], while calculations with 2BC from χEFT used
in conjunction with wave functions derived from tradi-
tional potentials were performed in Ref. [11], reaching a
precision at the few percent level. In this work, we will
present the first calculations obtained with 2BC and cur-
rents derived from χEFT. In the case of weak β decays,
this has been shown to lead to a systematical improve-
ment between experiment and theory [12].

From the experimental side, the determination
of the isovector magnetic dipole transition strength
B(M1; 0+

1,T=1 → 1+
1,T=0) ∝ E−3

γ Γγ,0+
1→1+

1
between the

first excited 0+
1 state of 6Li with a total isospin quan-

tum number of T = 1 and the T = 0 ground state,
which is proportional to the product of the level width
for γ decay Γγ,0+

1→1+
1

and a γ-ray energy (Eγ) depen-

dent factor, has been subject of considerable effort in
the past. The extremely short half-life of the excited
state of about 80 as [3] makes a direct measurement of
its decay rate impossible [13]. Panels (a)-(c) of Fig. 1
show the history of published values for this quantity
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FIG. 1. (a-c): Previous measurements of the B(M1; 1+
1 → 0+

1 ) strength for 6Li with the methods of relative NRF [14, 15] (a),
SAbs [15–20] (b), and (e, e′) [21–25] (c). For each experimental method, the data are sorted by the time of publication, with
the most recent data point on the right. The low-q data of the most precise (e, e′) result by Bergstrom et al. [25] and their
extrapolation of B(M1, q) to the photon point (q0) are shown as an uncertainty band in (d). The present result, which can be
interpreted as a measurement at q0, is shown in panel (e). Panel (f) shows the result of four theoretical calculations from the
present work (see also Fig. 3) with estimated uncertainties of the many-body method. They employed different Hamiltonians
that are indicated by different colors and the labels below the data points and include the leading two-body currents.

as compiled in the Evaluated Nuclear Structure Data
Files (ENSDF) [3]. They have been obtained using
three different techniques, namely: nuclear resonance flu-
orescence relative to another transition (relative NRF)
[14, 15], self-absorption (SAbs) [15–20], and inelastic
electron scattering (e, e′) [21–25]. In the ENSDF, a
weighted average value of B(M1)ENSDF = 15.65(32)µ2

N

{from Γγ,0+
1→1+

1
= 8.19(17) eV [3, 26]} is reported from

a selection of three of the most recent publications in
Ref. [27], while a weighted average of all measurements
yields a value of B(M1) = 14.53+0.20

−0.30 µ
2
N. Regardless

of the averaging procedure, the final result is strongly
dominated by two (e, e′) results of Eigenbrod [24] and, in
particular, Bergstrom et al. [25], which claim the highest
precision. In such an (e, e′) of experiment, the B(M1)
value is obtained in a model-dependent way from the
measured form factor |F (q)|2, where q denotes the mo-
mentum transfer. Both works employed the plane-wave
Born approximation to obtain the q-dependent B(M1, q)

from |F (q)|2 [28], which is equal to the B(M1) strength
in the limit of the minimum necessary momentum trans-
fer q0 = E

0
+
1
/~c ≈ 0.018 fm, the so-called ’photon point’.

Panel (d) of Fig. 1 shows B(M1, q), obtained from the
form factor of Bergstrom et al. [25], along with an uncer-
tainty band from a set of extrapolations. Similar to Refs.
[24] and [25], the present extrapolations employed a fit of
two- (three-) parameter polynomials with even powers of
q up to q2 (q4) to varying subsets of the low-q data. In
order to match the width of the uncertainty band to the
datapoint of Bergstrom et al., the selection of fits had
to be limited to a reduced chi-square χ2

red lower than
0.5. It was found that the width of this band can easily

be extended to twice its size by increasing the order of
the fitted polynomial or relaxing the restriction of χ2

red.
Obviously, this state of the literature data is unsatisfac-
tory when faced with state-of-the art theoretical results
[2, 11] and calls for a precision measurement directly at
the photon point to avoid the extrapolation uncertainty.

We have therefore performed an experiment to mea-
sure Γγ,0+

1→1+
1

with the newly developed NRF-based rel-

ative SAbs method [29, 30]. Compared to the traditional
SAbs technique [31] used by several previous experiments
[15–20], it utilizes a normalization target (no) in combi-
nation with the scattering target of interest (sc) to sepa-
rate resonant and nonresonant processes:

Rexp = 1− Nno
nrf

Nno
abs

N sc
abs

N sc
nrf

= R
(

Γγ,0+
1→1+

1
, Teff

)
. (1)

In Eq. (1), Nx
nrf denotes the number of observed NRF

events from a γ-ray line from material x. The number
of events is reduced to Nx

abs in a second measurement by
the introduction of an absorber target, which consists of
the same material as the scatterer of interest, into the
incident continuous-energy photon beam. The reduction
of the count rate of the NRF line of interest is due to
nonresonant scattering as well as the SAbs induced by
the absorber. Both contributions can be separated in a
model-independent way using the reduction of the count
rate in the NRF lines of the normalization target [factor
Nno

nrf/Nno
abs in Eq. (1)], which is due to nonresonant effects,

only. In the absence of other decay branches, Rexp is
directly related to Γγ,0+

1→1+
1

[31, 32] [see Eq. (1)], when

the effects of thermal motion of the nuclei of interest are
taken into account. They can be treated in terms of an ef-
fective temperature Teff [31–33] that includes corrections
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due to condensed-matter effects in the target material
(see below).

The experiment was performed at the Darmstadt High-
Intensity Photon Setup (DHIPS) [34], with continuous-
energy photon beams generated by bremsstrahlung pro-
cesses of the 7.1(2) MeV electron beam of the Super-
conducting Darmstadt Linear Accelerator (S-DALINAC)
[35, 36] on a copper radiator. A scattering target
composed of 5.033(5) g [particle areal density dsc,Li =
0.02773(6) b−1, using a target diameter of 20.00(5) mm]
of lithium carbonate (Li2CO3) enriched to 95.00(1) % in
6Li, sandwiched between pure boron normalization tar-
gets of 2.118(5) g and 2.119(5) g with a 99.52(1) % 11B
enrichment, was measured for about 122 h. A second,
186 h, measurement was carried out with a 9.938(5) g
[dabs,Li = 0.05469(10) b−1] absorber of the same Li2CO3

material. Scattered γ rays from the target were detected
by three high-purity germanium (HPGe) detectors at po-
lar angles of 90◦ (twice) and 130◦ with respect to the
beam axis. To avoid direct scattering of γ rays from the
absorber target into the detectors, it was mounted at the
entrance of the 1 m-long collimation system of DHIPS,
which acts as a passive shielding. The direct scattering
into the detectors was found to be negligible by an addi-
tional 8 h measurement with the absorber target only.
A potential systematic uncertainty due to small-angle
scattering of bremsstrahlung γ rays inside the collima-
tor, which would then induce excess NRF reactions in
the scatterer, was found to be on the order of 0.33 % by
Geant4 [37–39] simulations (i.e., in the anticipated or-
der of magnitude of the uncertainty of R) and taken into
account by replacing Nno

nrf/N
no
abs with 1.0033×Nno

nrf/N
no
abs

in Eq. (1). Summed spectra of all three detectors from
the measurements with and without absorber are pro-
vided in Fig. 2. Using the known internal γ-ray transi-
tions of 11B at 2125, 4445, and 5020 keV [40], the mea-
surement with the absorber was normalized to the one
without it using the energy-dependent factor N

no
nrf/Nno

abs in
Eq. (1). The normalization factor at the three discrete
energies of the 11B transitions were interpolated by a
Geant4 simulation of the γ-ray attenuation, which was
in turn validated by an offline measurement with a ra-
dioactive 56Co source. Including the counting statistics
and the correction factor for small-angle scattering, and
propagating uncertainties with a Monte-Carlo method
[41], a value of Rexp = 0.5192(20) with a relative un-
certainty of 0.39 % was obtained.

Li2CO3 was chosen as the target material to reduce
systematic uncertainties because pure lithium, used in
all previous experiments [14–25], is highly hygroscopic,
which may lead to systematic errors in the determination
of the target thickness. Teff of Li2CO3 [see Eq. (1)] was
determined from state-of-the-art atomic theory. First,
the phonon density of states (phDOS) of Li2CO3 was
obtained from density functional theory (DFT) [42, 43].
Computations of this observable are typically in excellent
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FIG. 2. Sum spectra of the three detectors from the measure-
ment with (gold) and without (black) the 6Li absorber. For
better visibility, the spectrum with the absorber was shifted
by 100 keV to higher energies. The observed NRF events of
three transitions of 11B were used to normalize the spectrum
with the absorber, so that the difference in counts for the 6Li
transition is due to SAbs only. On the right-hand side of the
transitions of interest, the (absolute) value of the SAbs (Rexp)
is indicated, which is expected to be zero for 11B.

agreement with experimental data [44, 45]. The DFT
calculations employed the gpaw [46, 47] code in a plane-
wave basis. For the exchange-correlation (xc) potential,
the local-density (LDA) [48] and the generalized-gradient
approximation (GGA) [49] were tried, which typically
slightly under- (LDA) and overestimate (GGA) the crys-
tal binding. Both xc potentials reproduced the exper-
imental lattice constants a, b, c, and γ of Li2CO3 [50]
with deviations at the 0.1 % level; this can be seen as
a benchmark test. From the phDOS, a value of Teff =
411(11) K was obtained by the procedure described in
Ref. [33], which represents the average value and spread
of the LDA and GGA solutions. Using all the afore-
mentioned input, our experimental value for the γ-decay
width is Γγ,0+

1→1+
1

= 8.17+0.14
−0.13 (stat.)

+0.10
−0.11 (syst.) eV,

which corresponds to a strength B(M1; 0+ → 1+) =

15.61+0.27
−0.25 (stat.)

+0.19
−0.21 (syst.) µ2

N. The 68.3 % coverage
interval (CI) is divided into statistical (stat) and sys-
tematic (syst) parts, where the latter account for uncer-
tainties of the target dimensions as well as atomic and
condensed-matter contributions1.

For the ab initio calculations, the importance-
truncated no-core shell model (IT-NCSM) [51, 52]
was employed as a state-of-the-art many-body method.
Within the IT-NCSM, two-nucleon (NN) and three-
nucleon (3N) interactions derived within χEFT were

1 Since both contributions are uncorrelated and the CIs are al-
most symmetric, a symmetrized and quadratically summed un-
certainty of 15.61(33)µ2N is used in all figures.



4

used. Four different Hamiltonians (I-IV) were considered,
including (I) the Entem-Machleidt (EM) NN interaction
at N3LO [53], complemented with a local 3N interaction
(cutoff Λ = 500 MeV, cD = 0.8) at N2LO, which is fitted
to reproduce the binding energy as well as the β-decay
half-life of 3H [54, 55]. Furthermore, Hamiltonians (II-
IV) use the NN interactions by Entem, Machleidt and
Nosyk (EMN) at N2LO, N3LO and N4LO with Λ = 500
MeV [7], complemented with consistent nonlocal 3N in-
teractions up to N2LO, N3LO and N3LO, respectively.
The NN interactions were only fitted to NN scattering
data and the deuteron binding energy, while the 3N inter-
actions were fitted to reproduce the triton binding energy
and to optimize the ground-state energy and radii of 4He,
which led to the values cD = −1, cD = 2 and cD = 3,
for the cases II, III and IV, respectively. The similar-
ity renormalization group (SRG) was employed at the
NN and 3N level with a flow parameter of α = 0.08 fm4

[56, 57].

Using an SRG-transformed Hamiltonian requires a
consistent SRG transformation of the M1 operator. In
previous studies, this consistent treatment was neglected,
here SRG corrections of the M1 operator were included
at the two-body level. In addition to the SRG correction,
the NLO 2BC contributions to the M1 operator were in-
cluded as well. At NLO, these are commonly expressed
as a sum of two contributions, the intrinsic term and the
Sachs term [58]:

µNLO
[12] (R,k) = µintrinsic

[12] (k) + µSachs
[12] (R,k) (2)

with

µintrinsic
[12] (k) = − i

2
∇q × J(q,k)|q=0

µSachs
[12] (R,k) = − i

2
e(τ1 × τ2)zR×∇kv(k) .

Here, τi are the Pauli matrices, q the momentum trans-
fer of the photon, v(k) the one-pion exchange potential
in momentum representation, and R the center of mass
coordinate of the two nucleons. The Sachs term only de-
pends on the potential between the two nucleons, whereas
the translationally invariant intrinsic term is given by the
spatial part of the two-body current J. For each inter-
action, an IT-NCSM calculation was carried out with
Nmax from 2 to 12 with harmonic-oscillator frequencies
~Ω = 16, 20, 24 MeV. For the resulting value of the mag-
netic moment and the transition strength, the central
value for the highest Nmax was used as the nominal re-
sult, and the neighboring results as an estimate for the
many-body uncertainties. The results of the calculations
are listed in Tab. I and displayed in Fig. 3 [see also pan-
els (e) and (f) of Fig. 1], where they are compared to the
new experimental constraint of the present work and the
magnetic moment µ(1+

1,T=0) = 0.82205667(26)µN [3] of

the ground state of 6Li.
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FIG. 3. Results for B(M1; 1+
1,T=1 → 0+

1,T=0) and µ(1+
1,T=0)

from theoretical calculations based on Hamiltonians I-IV (see
also Tab. I). As shown in the upper legend, circular mark-
ers indicate calculations with the unevolved leading-order
(LO) one-body transition operator, triangular markers indi-
cate calculations with the consistently SRG-transformed op-
erator (LO SRG ev.), and quadratic markers indicate the cal-
culations with a consistently SRG-transformed operator in-
cluding contributions from next-to-leading order 2BC (NLO
SRG ev.). The labeled arrows illustrate the impact of the two
aforementioned improvements. Figure 1 shows only the re-
sults with the most complete transition operator in the same
color code. The experimental 68% CI for B(M1) (present
work) is indicated by a shaded area, and the most probable
values of B(M1) and µ [3] by a solid line (the CI of µ is not
visible at this scale).

Remarkably, the results of the most complete calcula-
tions, including contributions from the 2BC to the M1
operator, exhibit an excellent agreement with the new
experimental constraints of the present work. This in-
dicates the importance of 2BC for a correct description
of the 6Li nucleus. Such tests of χEFT would not have
been possible on the basis of the pre-2019 data. The
increase of the B(M1) is also found in quantum Monte
Carlo (QMC) calculations when 2BC are included [10, 11]
(see also Tab. I).

The situation encountered here may remind the reader
of the 6He beta-decay half-life discrepancy which ex-
isted in the literature before 2012, and was resolved by
a high-precision measurement of Knecht et al. [59] in
that year. Similar to the weak-interaction sector, this
work improves the experimental validation on the cor-
responding EM-analog transition by remeasuring the γ-
decay half-life of the first excited state of 6Li with isospin
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TABLE I. Results of the theoretical calculations for
B(M1; 1+

1,T=1 → 0+
1,T=0) and µ(1+

1,T=0) of 6Li. They em-
ployed four different Hamiltonians (I-IV), which are intro-
duced in the text. The calculations are sorted by the type of
M1 operator, with the same abbreviations as in Fig. 3. For
comparison, the results of QMC calculations in Refs. [10, 11]
are shown in the second part of the table. The ’standard nu-
clear physics approach’ (SNPA) for the operator in Ref. [10]
was complemented by a χEFT approach in Ref. [11], while in
both cases phenomenological potentials were used. ’LO’ refers
to one-body currents and ’Total’ to the inclusion of two-body
currents.

I II III IV
LO

µ (µN ) 0.8399(22) 0.8374(24) 0.8344(21) 0.8388(18)
B(M1) (µ2

N ) 15.02(10) 14.92(13) 14.68(10) 14.81(10)
LO SRG ev.

µ (µN ) 0.8221(28) 0.8195(29) 0.8188(26) 0.8236(23)
B(M1) (µ2

N ) 14.44(8) 14.36(11) 14.13(8) 14.32(8)
NLO SRG ev.

µ (µN ) 0.8240(34) 0.8216(34) 0.8217(32) 0.8261(28)
B(M1) (µ2

N ) 15.74(12) 15.48(15) 15.15(13) 15.32(13)
[10] [11]

QMC LO
SNPA SNPA χEFT

µ (µN ) 0.810(1) 0.817(1) 0.817(1)
B(M1) (µ2

N ) 12.84(11) – 13.18(4)
QMC Total

µ (µN ) 0.800(1) 0.807(1) 0.837(1)
B(M1) (µ2

N ) 15.00(11) – 16.07(6)

T = 1. In contrast to the single data point that presently
dominates the world average, this measurement was per-
formed directly at the photon point and with controlled
systematic uncertainties. In total, a relative uncertainty
of 2 % with balanced contributions by statistics and sys-
tematics was achieved. This translates into an uncer-
tainty of about 2 as for the half-life of the 0+

1 state of 6Li.
In addition, χEFT nuclear structure calculations were
performed which, for the first time, take 2BC at NLO,
combined with chiral interactions at various orders, into
account. The high degree of agreement between exper-
iment and theory illustrate the recent progress in both
areas.
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