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Abstract

In this work, we extend two successful nuclear-structure methods, the valence-space and
the no-core shell model, to new domains of applications.

We address key developments for a realistic implementation of the valence-space shell
model to enhance its predictive power and allow for a description of arbitrary nuclei,
ranging from the valley of stability to the neutron-deficient or neutron-rich extremes of the
Segrè chart. One essential step is the capability to deal with valence spaces that comprise
more than a single major shell. We propose an importance-truncation scheme for the
valence-space shell model based on a physics-driven and adaptive truncation that, in
combination with refined extrapolation techniques, provides an efficient and accurate tool
for the description of nuclei in large-scale model spaces. Additionally, we explore effective
valence-space Hamiltonians derived from chiral interactions in the in-medium similarity
renormalization group. These interactions are rooted in quantum chromodynamics and
provide an excellent framework to describe nuclear properties from first principles. Using
these interactions, we demonstrate the reliability of the approach in single-shell valence
spaces; however, difficulties persist with the construction of effective Hamiltonians for
multi-shell valence spaces. While an ab initio description of nuclei in the framework of
the importance-truncated valence-space shell model is not yet feasible, we study ground
and first excited states of neutron-deficient tin isotopes in the gds valence space based on
effective Hamiltonians that are constrained by few-body data only. Our results highlight
the need for a more rigorous and systematic approach for the construction of nuclear
interactions.

Moreover, we present an ab initio approach for the description of collective excitations
and transition-strength distributions by combining the importance-truncated no-core shell
model with the Lanczos strength-function method. Due to its computational efficiency, this
method can be applied to all nuclei that are feasible in the no-core shell model. It provides
access to the full energy range from low-lying excitations to the giant-resonance region
and beyond in a unified and consistent framework, including a complete description of
fragmentation and fine structure. The method relies solely on the basis truncation, and
we demonstrate convergence of the strength distributions with the truncation parameter.
Starting from chiral effective-field-theory interactions, we explore the electric monopole,
dipole, and quadrupole response of oxygen, carbon, and helium isotopes. We focus on the
emergence and evolution of pygmy and giant resonances, as well as the systematics of
dipole polarizabilities throughout the isotopic chains. Furthermore, we study transition
densities of prominent transitions in the distributions, which provide valuable insights in
their nature. The results underline the importance of collective modes for constraining
nuclear interactions. In addition, we elaborate on the relation with approximate methods,
such as the random-phase approximation, and shed new light on their deficiencies.
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Zusammenfassung

In dieser Arbeit erweitern wir zwei erfolgreiche Kernstrukturmethoden, das Valenzraum-
Schalenmodell und das No-Core Schalenmodell, um neue Anwendungsfelder.

Wir nehmen wesentliche Entwicklungen für eine realistische Implementierung des
Valenzraum-Schalenmodells in Angriff, um dessen Vorhersagekraft zu verbessern und
eine Beschreibung beliebiger Kerne, vom Tal der Stabilität bis zu den neutronenarmen und
neutronenreichen Extremen der Segrè-Nuklidkarte, zu ermöglichen. Ein unverzichtbarer
Schritt dabei ist die Erweiterung von Valenzräumen auf mehr als nur eine Hauptscha-
le. Wir führen die Importance-Trunkierung für das Valenzraum-Schalenmodell ein, die
auf einer physikalisch motivierten und adaptiven Trunkierung basiert. In Verbindung
mit geeigneten Extrapolationsmethoden stellt sie ein effizientes und genaues Werkzeug
zur Beschreibung von Kernen in sehr großen Modellräumen dar. Des Weiteren unter-
suchen wir effektive Valenzraum-Hamiltonians, die mittels der In-Medium Similarity
Renormalization Group von chiralen Wechselwirkungen abgeleitet sind. Diese Wechsel-
wirkungen bieten einen ausgezeichneten Rahmen, um Kerneigenschaften ausgehend von
den Grundprinzipien der Quantenchromodynamik zu beschreiben. Wir nutzen diese
effektiven Hamiltonians, um die Zuverlässigkeit des Importance-trunkierten Valenzraum-
Schalenmodells für Valenzräume zu zeigen, die eine Hauptschale umfassen. Die Kon-
struktion entsprechender effektiver Hamiltonians für erweiterte Valenzräume ist derzeit
allerdings noch problembehaftet. Solange eine ab initio Beschreibung von Kernen im
Importance-trunkierten Valenzraum-Schalenmodell noch nicht möglich ist, untersuchen
wir Grund- und Anregungszustände von neutronenarmen Zinn-Isotopen in der gds Schale
ausgehend von effektiven Valenzraum-Wechselwirkungen, die nur von Daten aus Syste-
men mit wenig Teilchen abhängen. Unsere Ergebnisse hierzu stellen die Notwendigkeit
eines strengeren und systematischeren Ansatzes zur Konstruktion von Kernwechselwir-
kungen heraus.

Außerdem präsentieren wir eine ab initio Methode zur Beschreibung von kollektiven
Anregungen und Übergangsstärkeverteilungen, die aus der Kombination des Importance-
trunkierten No-Core Schalenmodells mit der Lanczos-Stärkefunktionen-Methode hervor-
geht. Aufgrund ihrer Recheneffizienz kann diese Methode auf alle Kerne angewendet
werden, die auch im No-Core Schalenmodell realisierbar sind. Sie bietet einen vereinheit-
lichten und konsistenten Zugang zu Stärkeverteilungen im gesamten Energiebereich von
niedrig liegenden Anregungen bis über die Riesenresonanzregion hinaus inklusive einer
vollwertigen Beschreibung von Fragmentierung und Feinstruktur. Die Methode hängt
ausschließlich von der Basistrunkierung ab und wir zeigen Konvergenz der Stärkever-
teilungen mit dem Trunkierungsparameter. Ausgehend von Wechselwirkungen aus der
chiralen effektiven Feldtheorie untersuchen wir Responsefunktionen von elektrischen
Monopol-, Dipol- und Quadrupolübergängen für Sauerstoff-, Kohlenstoff- und Helium-
isotope. Dabei legen wir den Schwerpunkt auf die Entstehung und Evolution von Pygmy-

v



und Riesenresonanzen, sowie auf die Systematik der Dipolpolarisierbarkeit durch die
Isotopenketten hinweg. Zusätzlich untersuchen wir Übergangsdichten von besonders
ausgeprägten Übergängen in den Stärkeverteilungen, da diese wertvolle Rückschlüsse auf
deren Natur erlauben. Die Ergebnisse stellen heraus, wie wichtig kollektive Moden zur
Bestimmung von Kernwechselwirkungen sind. Des Weiteren stellen wir eine Verbindung
mit Näherungsmethoden, wie zum Beispiel der Random-Phase Approximation, her und
geben neue Aufschlüsse über deren Defizite.
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1. Introduction

The fascination of nuclear physics results from its broadness, ranging from the most
microscopic to cosmic scales, its impact on other fields, and the fast advances made since
Chadwick’s discovery of the neutron in 1932 [Cha32]. Before his seminal experiment,
we only had a very basic understanding of atoms and were still ignorant regarding the
complexity of their nuclei. Knowing about the existence of the neutron, it became evident
that atomic nuclei—which are resolved by zooming in the atoms by a factor of 100 000—
have a substructure of A nucleons interacting strongly with each other. Today, a wealth of
theories and models are available that try to approximate the interactions inside nuclei so
that experimental observations, e.g., binding and excitation energies, can be reproduced
accurately. Only then can these models be used to provide quantitative predictions where
no data is available and offer vital guidance for the design of future experiments. Several
approaches exist to devise such models. Traditionally, phenomenological models provided
the best description of nuclear observables. However, they typically involve adjustments
to data, which is mainly available near the valley of stability. Since drastic changes in
the nuclear structure happen when moving toward more exotic nuclei, e.g., for neutron-
deficient or neutron-rich nuclei, extrapolations of phenomenological theories toward these
regions often fail. Today, the goal of modern nuclear-structure theory is more ambitious.
Since we have also learned that nucleons are not the fundamental building blocks of
nuclei, but have a substructure of quarks and gluons, we wish to describe nuclei starting
from these degrees of freedom. First attempts have been made for light nuclei [Bea+13;
Bea+14], but are still in an early stage and suffer from large systematic errors. Therefore,
we choose an intermediate approach and aim at the description of properties of stable
and exotic nuclei using theories that are based on nucleons as degrees of freedom, but
are rooted as much as possible in the fundamentals of quantum chromodynamics (QCD).
Ideally, these theories rely on controllable approximations only, i.e., they can be improved
systematically. Such theories are called ab initio theories.

Because of their relevance for this thesis, we outline the historical development of
the nuclear valence-space shell model (VSSM) and no-core shell model (NCSM). Both
theories have emerged from the naive shell model, also known as independent particle
model, where the nucleus is, in a first approximation, described in terms of A independent
particles moving in a central field. This central field accounts for the average action of
all particles on one given particle, while the mutual interaction between the particles
has to be considered explicitly via a residual interaction. The name “naive shell model”
or “independent particle model” results from the fact that independent fermions in
a central field exhibit some shell structure. At first glance, it is not evident that this
simplified model can be applied to the atomic nucleus, a self-bound system consisting
of A interacting nucleons without external potential. However, its validity has been
confirmed experimentally. The observation of high-lying first excited states for some
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1. Introduction

nuclei in comparison with neighboring nuclei indicates relatively large energy gaps
between the single-particle orbits for particular proton and neutron numbers, the magic
numbers. In the 1950’s, it became clear that the central potential must be modified to
include a term accounting for spin-orbit splitting to reproduce higher magic numbers
[May49; HJS49].

These observations and ideas form the basis of the more elaborate VSSM and NCSM.
The VSSM assumes a closed-shell nucleus as inert core. All single-particle orbits of the core
are fully occupied in a frozen configuration. The only degrees of freedom are the valence
nucleons, the nucleons outside the core, restricted to one or several (sub-)shells. Once a
suitable valence space is defined, the VSSM requires an effective interaction that accounts
for interactions between core and valence nucleons and for effects of single-particle orbits
above the valence space, which are excluded from the calculation. Traditionally, these
interactions are constructed using renormalized nucleon-nucleon (NN) interactions com-
bined with phenomenological fits of matrix elements to a subset of data. The eigenstates
of a nucleus are obtained by solving the eigenvalue problem of the Hamilton matrix
numerically. We note that the VSSM—though based on tight global truncations—has
produced nuclear properties in remarkable agreement with experiment.

In 2000, advances in computer technology made new approaches such as the NCSM
possible. The NCSM is conceptually simpler than the VSSM, as it does not require the
artificial partitioning of the model space in core, valence, and excluded part, but considers
all A nucleons as active degrees of freedom. This, however, restricts its applicability
basically to s- and p-shell nuclei. The NCSM also allows to establish a connection to the
underlying physics of quarks and gluons by using interactions derived in chiral effective
field theory (EFT).

One major advantage of the VSSM and NCSM is that these methods provide the
eigenstates, and thus, in principle, allow for the description of any observable of interest.
In the VSSM, however, the phenomenological Hamiltonians are typically adjusted to
nuclear spectra, and it is not clear a priori how other observables can be described in
a consistent way. As a remedy for electromagnetic observables, e.g., effective charges
are often introduced. In the NCSM with Hamiltonians from chiral EFT, it is possible to
derive consistent operators and describe any observable on equal footing with the energies.
Since different observables are sensitive to different aspects of the nuclear interaction, the
study of various observables simultaneously provides valuable feedback on the quality of
nuclear Hamiltonians.

Both, the VSSM and NCSM, are limited by model-space dimensions that increase
combinatorially with the number of single-particle orbits and nucleons. The calculations
are, thus, either restricted to systems with few particles in the active space or need
to be carried out in severely truncated model spaces, which do not allow for reliable
extrapolations. In order to extend the NCSM to larger model spaces and heavier nuclei, an
importance-truncation scheme has been proposed and successfully implemented [RN07;
Rot09]. The importance truncation is a conceptually simple approach based on a physics-
driven, adaptive truncation of the many-body model space that allows to construct a
reduced model space tailored specifically to the target eigenstates and Hamiltonian under
consideration. Variations of this truncation further allow for an a posteriori extrapolation
of the observables, which corrects for effects of the neglected basis states.
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This thesis covers two major projects, with the goal to extend both, the VSSM as well as
the NCSM, to new fields of applications. Within the first project, the importance-truncation
scheme is applied to the VSSM, thus introducing the importance-truncated VSSM (IT-
VSSM). In addition to the already established importance-threshold extrapolation, we
explore extrapolations based on the energy variance. We demonstrate the efficiency and
accuracy of the method by comparing to results in the full model space. With these
developments, we aim at the description of new phenomena, as, e.g., intruder physics
is captured in multi-shell valence spaces, and the domain of very neutron-deficient or
neutron-rich nuclei becomes accessible. Recently, promising advances have been made
in the derivation of effective valence-space Hamiltonians and operators in an ab initio
framework [TBS12; Bog+14; Jan+14; Dik+15]. Within these approaches, we concentrate
on the in-medium similarity renormalization group (IM-SRG) [TBS11; TBS12; Her+16;
Her17] and benchmark effective valence-space Hamiltonians that are derived from chiral
interactions for single- and multi-shell valence spaces. These developments represent
important cornerstones toward an ab initio description of any medium-mass open-shell
nucleus, starting from realistic interactions that are constrained by few-body data only.

The second project aims at the ab initio description of collective excitations and strength
distributions in the framework of the importance-truncated no-core shell model (IT-
NCSM). The study of collective modes, including the giant electric monopole, dipole,
and quadrupole resonances, as well as the electromagnetic and weak response in general,
has an extensive history in nuclear-structure physics [Spe91; HW01; Row10]. Many
new aspects, e.g., the so-called pygmy dipole resonance, the fragmentation and fine
structure of giant resonances, and the response of neutron-rich nuclei, are at the heart of
ongoing experimental and theoretical investigations. These collective excitations serve
as a magnifying glass for the internal dynamics of the nucleus and provide additional
and complementary information on the effects of nuclear interactions. However, the
theoretical description of collective excitations is still dominated by phenomenological
models. First steps to describe collective excitations in an ab initio framework beyond
the lightest nuclei have been made using the Lorentz-integral transform (LIT) method
combined with the coupled-cluster (CC) method [Bac+13; Bac+14; Hag+16; Mio+16;
Bir+17]. The LIT maps the continuum problem onto a bound-state problem, and, in this
way, avoids the challenging calculations of final states in the continuum. However, the
derivation of response functions requires a delicate inversion procedure, which only yields
the gross structure of giant resonances above the particle threshold. We present an ab initio
approach for the description of collective excitations and transition-strength distributions
of arbitrary nuclei up into the sd-shell by combining the IT-NCSM with the Lanczos
strength-function method. Our method describes electromagnetic strength distributions in
the full energy range from low-lying excitations to the giant-resonance region and beyond
in a unified and consistent framework, including a complete description of fragmentation
and fine structure.

This thesis is organized as follows: Chapters 2 and 3 introduce the chiral Hamiltonians
and electromagnetic quantities that are considered in the benchmarks and applications of
the IT-VSSM and IT-NCSM. The concept of configuration-interaction (CI) methods and
their relevant variants, the VSSM and NCSM, as well as their extension via the importance
truncation and the different extrapolation techniques are presented in chapters 4 and 5.
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Chapter 6 introduces the Lanczos strength-function method in the IT-NCSM and demon-
strates its efficiency and accuracy in an extensive study of the model-space convergence
behavior of the strength distributions. Finally, we show applications within the two
projects covered in this thesis: Chapter 7 is dedicated to the first project. We validate
the IT-VSSM by comparing results for nuclei in the p f and p f g9⁄2 valence spaces using
phenomenological interactions to available calculations in the full model spaces. In a
second step, we address the performance of effective Hamiltonians derived in the IM-SRG
for valence spaces comprising one major shell and two major shells. Finally, we apply
this new method to the description of neutron-deficient tin isotopes, which have obtained
recent attention in experimental and theoretical investigations. Applications in the frame-
work of the second project are summarized in chapter 8. Here, we investigate the electric
monopole, dipole, and quadrupole response of oxygen, carbon, and helium isotopes in
the IT-NCSM and focus on their systematics throughout the isotopic chains. Additionally,
we study the nature of pronounced individual transitions in the strength distributions by
means of their transition densities and provide the dipole polarizabilities. We also compare
our results to established approximate methods, such as the random-phase approximation
(RPA) [RS80]. By imitating the truncations typically used in RPA-type methods in the
IT-NCSM, we are able to shed new light on the deficiencies in these methods. Finally, we
present conclusions and an outlook on future developments and research opportunities in
chapter 9.
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2. Input Hamiltonians

The quality of nuclear structure calculations is determined by the input Hamiltonian
and the accuracy of the many-body method. This chapter is intended to present the
Hamiltonians used in this thesis and to provide references for more details.

The translationally invariant nuclear Hamiltonian is given by

HHH = TTTint +VVV [NN] +VVV [3N] + · · ·

=
1
A

A

∑
i<j

(~pppi −~pppj)
2

2m
+

A

∑
i<j

VVV [NN]
ij +

A

∑
i<j<k

VVV [3N]
ijk + · · · . (2.1)

The first term denotes the intrinsic kinetic energy. It is obtained from the kinetic energy of
all nucleons by subtracting the kinetic energy of the nucleus’ center of mass and depends
only on the relative momenta ~pppi −~pppj and the mass m of the nucleons. All other terms
describe the interaction between the nucleons in hierarchical order. In general, up to
A-body contributions can exist in an A-body system; however, we typically truncate the
Hamiltonian at the three-body level at most.

Since a derivation of nuclear forces from QCD is currently not feasible because of its
non-perturbative character in the low-energy regime relevant to nuclear structure theory,
we resort to nuclear interactions derived in chiral EFT. Although these interactions are
relatively soft compared to the traditionally used realistic nuclear potentials derived in
meson-exchange theory [WSS95; Mac89], a prediagonalization via the similarity renormal-
ization group (SRG) is vital to many-body methods to obtain observables which are either
sufficiently converged or allow for a reliable extrapolation to infinite model spaces.

Many-body calculations with explicit three-nucleon (3N) interactions rapidly render
unfeasible beyond the lightest nuclei because they come along with tremendously in-
creased memory requirements compared to calculations including only NN forces. In
order to limit the computational cost in the IT-NCSM, we often employ the normal-ordered
two-body (NO2B) approximation. In the following, we give a brief overview of these
topics.

2.1. Chiral Hamiltonians

Chiral EFT allows for the derivation of nuclear Hamiltonians in connection with the
underlying physics of the strong interaction. In this framework, pions and nucleons are
treated as degrees of freedom rather than quarks and gluons inherent to QCD. The basic
idea of chiral EFT, as outlined by Weinberg in [Wei79], is to write down the most general
Lagrangian consistent with the symmetry principles of QCD, in particular, the (broken)
chiral symmetry. In principle, this Lagrangian consists of an infinite number of terms.
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However, Weinberg showed that it can be expanded systematically in terms of (Q/Λχ)ν,
with a finite number of terms per order ν of the expansion. Here, Q is a typical nuclear
momentum scale and Λχ the breakdown scale of the effective theory.

A great advantage of chiral interactions is that many-body forces emerge naturally in
a hierarchical fashion. At order ν = 0 and ν = 2, commonly denoted by leading order
(LO) and next-to-leading order (NLO), only two-body forces are present. Note that no
contributions from order ν = 1 exist. Starting from order ν = 3, the next-to-next-to-leading
order (N2LO), also three-body interactions arise, and so on. The interactions employed
later are regularized using a momentum cutoff ΛC, which is typically chosen around
500 MeV as a trade-off between the soft scale Q and the hard scale Λχ. Any physics at
higher energies than ΛC, which cannot be resolved in this theory, is absorbed into a set
of low-energy constants. At present, they are determined from fits to experimental data,
such as nucleon-nucleon and pion-nucleon scattering data and properties of two- and
few-body systems, e.g., binding energies. First efforts regarding the determination of these
low-energy constants in lattice QCD calculations have been made [EMN10], indicating a
path for future developments.

Presently, interactions derived in chiral EFT include up to 3N forces, but research is
ongoing to extend the available chiral potentials to the inclusion of four-body interactions
and beyond [Epe07; Nog+10; Krü+13; Sch18]. Moreover, first efforts have been made
to quantify theoretical uncertainties in chiral Hamiltonians [EKM15a; EKM15b; Bin+16;
Car+16; EMN17; Bin+18]. We refer the reader to [ME11; EHM09] for reviews on chiral EFT
and nuclear forces.

In applications of the methods developed in the framework of this thesis, we employ
various chiral interactions: The interaction denoted “EM” is the chiral NN interaction at
N3LO of Entem and Machleidt [EM03].

The “EMN500” interaction uses the EM interaction in combination with the 3N inter-
action at N2LO [Nav07], where the low-energy constants are fitted to the ground-state
energy of A = 3 systems and the β-decay half-life of 3H1 [GQN09]. The 3N interaction
uses a cutoff Λ3N = 500 MeV. As shown in [Rot+14], it has proven to yield ground-state
energies in excellent agreement with data for light nuclei.

Furthermore, we employ the so-called “EMN400” interaction [Rot+12; Rot+14], obtained
in the same way as the EMN500 interaction from the EM and the 3N interaction at N2LO
[Nav07], but with a reduced 3N cutoff Λ3N = 400 MeV. One low-energy constant is refitted
so that the properties of two- and few-body systems are reproduced. This interaction—
when SRG-evolved—performs better for medium-mass nuclei than the SRG-evolved
EMN500 interaction because it suppresses SRG-induced contributions beyond the three-
body level. The EMN400 interaction reproduces the experimental ground-state energies
throughout the oxygen isotopic chain and describes the position of the dripline correctly.

The EMN500 and EMN400 interactions underestimate nuclear radii. To improve on that,
the “N2LOsat” interaction [Eks+15] was derived following a different approach. The NN
and 3N forces at N2LO of the chiral expansion are optimized simultaneously to low-energy
NN scattering data, as well as binding energies and radii of both, few-nucleon systems

1Very recently, it was discovered that a factor of −1/4 was missing in the current-operator term relevant to
the β decay. An updated set of low-energy constants is under way.
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and selected carbon and oxygen isotopes. This interaction yields improved saturation
properties of nuclear matter and accurately reproduces the binding energies and radii of
sd-shell nuclei.

All of the above interactions are usually subjected to an SRG evolution before using
them in a many-body method, e.g., the IT-NCSM, to enhance the convergence behavior.

Additionally, we use a different set of chiral interactions, denoted by “1.8/2.0(EM)” and
“2.0/2.0(EM)” [Heb+11]. These interactions result from an SRG-evolved EM interaction,
where the first value in the name labels the SRG cutoff, i.e., λ = 1.8 fm−1 and λ = 2.0 fm−1.
Note that we use an alternative, but equivalent formulation of the SRG, where α = λ−4 is
used as flow parameter. The 3N potential is taken as the leading 3N forces from chiral
EFT with a momentum cutoff Λ3N = 2.0 fm−1 ≈ 395 MeV—hence the second label in
the name of these interactions—and is not SRG-evolved. Based on the assumption that
the long-range part of the interaction remains approximately unchanged under the SRG
transformation, only the low-energy constants of the short-range part of the 3N forces
are refitted to reproduce the binding energy of 3H and the radius of 4He, following
[NBS04]. Particularly the 1.8/2.0(EM) interaction describes binding energies, two-neutron
separation energies, and the energy of the first 2+ states in nuclei up to the tin region
successfully, while charge radii are too small [HJP16; Sim+17; Mor+18].

For practical calculations, we use matrix elements of the Hamiltonian provided in a JT-
coupled basis of harmonic-oscillator (HO) single-particle states with some truncation. We
cut the two-body matrix elements at a certain HO single-particle energy emax, in conformity
with the truncation of the single-particle basis. If necessary, we introduce an additional
truncation on the single-particle orbital angular momentum lmax. The three-body matrix
elements are further limited to orbits with a maximum HO single-particle energy e3max,
and, additionally, with a maximum total energy E3max i.e., e1 + e2 + e3 ≤ E3max ≤ 3emax.
Here, e1, e2, and e3 denote the HO single-particle energies of the nucleon orbits.

2.2. Similarity Renormalization Group

Nuclear interactions induce short-range correlations, which can only be accommodated
in extremely large model spaces, thus slowing down the convergence behavior in the
many-body calculations. In order to overcome this difficulty, we use the SRG [BFP07;
HR07; BFS10; RNF10; Rot+14] to decouple low- and high-momentum modes in the
chiral Hamiltonians via a continuous unitary transformation. The resulting Hamiltonian
exhibits better convergence properties with respect to the model-space size than the bare
Hamiltonian. This transformation of the Hamiltonian HHH and any operator OOO can be
formally written as

HHHα = UUU†
αHHHUUUα, OOOα = UUU†

αOOOUUUα. (2.2)

The unitary operator UUUα depends on a continuous parameter α, with the initial condition
UUUα=0 = 111. Accordingly, the initial nuclear Hamiltonian and the initial operator fulfill
HHHα=0 = HHH and OOOα=0 = OOO. By taking the derivative of (2.2) with respect to α, we obtain a
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first-order differential equation for the evolved Hamiltonian and operator:

d
dα

HHHα = [ηηηα, HHHα],
d

dα
OOOα = [ηηηα,OOOα]. (2.3)

This equation represents the so-called SRG flow equation. At the heart of the flow equation,
there is the anti-Hermitian generator ηηηα, which governs the physics of the flow. In
principle, several choices are possible [Weg94; BFP07; And+08; DON14], however, we
typically define

ηηηα = m2[TTTint, HHHα]. (2.4)

This generator drives the Hamiltonian toward a diagonal form in the basis of eigenstates
of the intrinsic kinetic energy. Note that any operator of relevance must be transformed
simultaneously with the Hamiltonian for a consistent description of both, energies and
other observables, because the generator depends on HHHα.

The major disadvantage of the SRG is that induced many-body contributions beyond
the particle rank of the initial Hamiltonian emerge. In order to guarantee unitarity of the
transformation, we need to keep all induced terms up to the A-body level. However, in
practice, we have to truncate the transformation at a smaller particle rank—typically at
the three-body level—and, thus, unitarity is formally violated. We can monitor the depen-
dence of eigenvalues on the flow parameter α as a measure for the impact of discarded
higher-order terms. A detailed study on the properties of SRG-evolved Hamiltonians is
provided in [Rot+14].

In this thesis, we use the following variants of SRG-evolved Hamiltonians: By default,
we employ the chiral Hamiltonians with initial two- and three-body interactions, SRG-
evolved in three-body space. However, for benchmark purposes of the models developed,
we occasionally use the chiral Hamiltonians evolved in two-body space only, i.e., neither
initial nor induced three- and multi-particle interactions are taken into account. In order
to assess the importance of initial 3N interactions, we also restrict the initial Hamiltonian
to 2N interactions but carry out the SRG in three-body space.

2.3. Normal-Ordered Two-Body Approximation

The need for 3N interactions is evident from a series of applications, see, e.g., [ME11;
EHM09; Ber+08; Ber+11; Epe+02]. However, for many large-scale many-body approaches,
the computational cost increases tremendously by including 3N interactions explicitly.
Often, these render calculations impractical which are routinely feasible using NN interac-
tions only. By normal ordering a nuclear Hamiltonian with respect to a nucleus-specific
reference state, a systematic lower-rank approximation of the 3N interaction is constructed,
where some contributions of the 3N interaction are transferred to lower-particle ranks.
The NO2B approximation [Rot+12]—obtained from this nucleus-specific Hamiltonian
by omitting the remaining 3N term—represents a compromise between including 3N
interactions explicitly while keeping the computational cost at the level of a calculation
with NN interactions only. It has been found that the NO2B approximation works very
well for energies of ground and excited states beyond the lightest nuclei and with the
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exception of particularly fragile states [Rot+12; GCR16]. Energies typically deviate by less
than 1% from the results obtained when including full 3N interactions.

A final technical remark: Although the initial Hamiltonian is translationally invari-
ant, the NO2B approximation breaks this invariance explicitly because it couples the
Hamiltonian to a localized density.
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3. Electromagnetic Moments and Transitions

Electromagnetic moments and transitions are very sensitive to the detailed form of the nu-
clear wave function. Therefore, they play an important role in experimental and theoretical
investigations of nuclei, and the possibility to directly compare these observables provides
an excellent testing ground for ab initio theories. We introduce the fundamentals of elec-
tromagnetic moments and transitions following the discussion of [RS80]. Derivations of
many of the following quantities can be found in appendix A.

3.1. Hamiltonian of a Nucleus in an Electromagnetic Field

A nucleus exposed to an external electromagnetic field is described by the Hamiltonian

HHH = HHHnucl + HHHfield + HHHint (3.1)

composed of the Hamiltonians of the nucleus, the electromagnetic field, and the interaction
between the two.

The nuclear Hamiltonian HHHnucl defines the eigenstates of the nucleus. In our calculations,
it is given by one of the input Hamiltonians introduced in chapter 2, and we obtain its
eigenstates by solving the many-body Schrödinger equation using one of the available
many-body methods of chapters 4 and 5.

The electromagnetic radiation field can be expanded in multipoles and is quantized in
terms of photons. In practice, we derive the vector potential

~AAA(~r, t) = ∑
σkλµ

(
~Aσkλµ(~r)e−iωktaaa†

σkλµ + ~A∗σkλµ(~r)e
iωktaaaσkλµ

)
(3.2)

in transverse gauge, cf. appendix A.2, from which we can deduce the electric and magnetic
fields. The operators aaa†

σkλµ and aaaσkλµ create and annihilate a photon of electric (σ = E) or
magnetic (σ = M) character with energy Ek = h̄ωk, angular momentum λ, and projection
µ, respectively. The coefficients contain all characteristics of the electromagnetic field and
are given by

~AMkλµ(~r) = N jλ(kr)~Yλλµ(Ω)

=
N√

λ(λ + 1)
1
i
(
~r× ~∇

)(
jλ(kr)Yλµ(Ω)

)
(3.3)

and

~AEkλµ(~r) =
i
k
(
~∇× ~AMkλµ(~r)

)
=

−N√
λ(λ + 1)

1
k

[
~∇
(

Yλµ(Ω)
∂

∂r
(
rjλ(kr)

))
+ k2~rjλ(kr)Yλµ(Ω)

]
. (3.4)
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The quantity ~Yλλµ(Ω) denotes the vector spherical harmonics of angular momentum
l = λ, total angular momentum λ, and projection µ. The coefficients (3.3) and (3.4) depend
on the spherical harmonics Yλµ(Ω), the spherical Bessel function jλ(kr), and the absolute
value of the photon momentum~k. The normalization constant

N =

√
4πh̄ωk

R
(3.5)

results from requiring the proper boundary conditions of an electromagnetic field at a
perfectly conducting sphere with a large radius R compared to the nuclear radius. The
Hamiltonian of the radiation field,

HHHfield =
1

8π

∫
d3r
(
~EEE2(~r, t) +~BBB2(~r, t)

)
, (3.6)

can be rewritten in transverse gauge and in absence of radiation sources as

HHHfield =
1

8π

∫
d3r
( 1

c2
~̇AAA2 + (~∇× ~AAA)2

)
= ∑

σkλµ

h̄ωk

(
aaa†

σkλµaaaσkλµ +
1
2

)
. (3.7)

Its eigenstates in occupation-number representation are |. . . nσkλµ . . .〉.
The electromagnetic field couples to the nuclear charge density ρρρ(~r, t) and nuclear

current density~jjj(~r, t) via

HHHint =
∫

d3r
(

ρρρ(~r, t)ΦΦΦ(~r, t)− 1
c
~jjj(~r, t) · ~AAA(~r, t)

)
, (3.8)

where ΦΦΦ(~r, t) is the scalar potential of the field. This interaction can be treated perturba-
tively. In the definition of the nuclear charge density,

ρρρ(~r, t) =
A

∑
i=1

e
(1

2
+ τττi

)
· δ(~r−~rrri(t)), (3.9)

we consider the nucleons as point-like particles for simplicity. The finite extension of
the nucleons could, in principle, be taken into account by a form factor. The projector
(1/2 + τττ) ensures that only the protons contribute to the nuclear charge density. In our
convention, protons have an isospin projection τ = +1/2, neutrons have τ = −1/2.
The current density~jjj(~r, t) originates from the moving charges of protons and the spin
magnetism of protons and neutrons. It is related to the density of the magnetic dipole
moment~µµµ(~r, t) by

~jjj(~r, t) = c~∇×~µµµ(~r, t). (3.10)

The orbit part is given by

~jjjo(~r, t) =
A

∑
i=1

e
(1

2
+ τττi

)1
2
(
~vvviδ(~r−~rrri(t)) + h.c.

)
. (3.11)
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Here,~vvvi = i[HHH,~rrri]/h̄ is the nucleon velocity, which, according to (3.1), has contributions
from the nuclear as well as from the interaction Hamiltonian. The spin part of the current
density can be calculated from (3.10) and

~µµµ(~r, t) =
A

∑
i=1

δ(~r−~rrri(t))µN

[(1
2
+ τττi

)
gp +

(1
2
− τττi

)
gn

]
~sssi (3.12)

with the nuclear magneton µN = eh̄/(2mc). The g factors for free protons and neutrons
are gp = 5.5856 and gn = −3.8263, respectively. In transverse gauge and for regions far
from the sources of electromagnetic radiation, we obtain the interaction Hamiltonian

HHHint = −
1
c ∑

σkλµ

[
aaa†

σkλµ

∫
d3r~jjj(~r, t) · ~Aσkλµ(~r)e−iωkt + h.c.

]
. (3.13)

We note that the expressions (3.9) and (3.11) represent approximations because only
one-body exchange terms are taken into account, and all other terms, e.g., the two-
body currents describing pion exchange processes, are neglected. This approximation
affects the form of the electromagnetic multipole operators as they are derived below and
commonly employed in practical applications. However, we expect that the operators
will be improved in future calculations. First efforts in this regard are made, in particular,
two-body currents are subject to present investigations [Pas+13; Bar+16; KEM17].

3.2. Static Multipole Moments

The static multipole moments characterize specific configurations of the nucleus’ protons
and neutrons and are time independent. They are probed by exposing a nucleus to an
external static electromagnetic field, e.g., created by the charged particles surrounding the
nucleus or by some experimental setup in the laboratory.

In order to derive the static electric and magnetic multipole moments, we rewrite the
interaction Hamiltonian (3.8) by using relation (3.10) and introducing the magnetic flux

~BBB(~r) = ~∇× ~AAA(~r). (3.14)

In this way, we obtain

HHHint =
∫

d3r
(

ρρρ(~r)ΦΦΦ(~r)−~µµµ(~r) ·~BBB(~r)
)

. (3.15)

We assume that the sources of the electromagnetic field are far from the nucleus. Since the
electromagnetic field exhibits no time dependence, the homogeneous Maxwell equations
apply. Thus, both, the electric and magnetic field, can be written as gradients of scalar
potentials:

~EEE(~r) = −~∇ΦΦΦ(~r), ~BBB(~r) = −~∇ΞΞΞ(~r). (3.16)
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3. Electromagnetic Moments and Transitions

By inserting these expressions into the homogeneous Maxwell equations, we obtain the
Laplace equations

∆ΦΦΦ(~r) = 0, ∆ΞΞΞ(~r) = 0. (3.17)

The most general solutions for these in spherical coordinates are

ΦΦΦ(~r) = ∑
λµ

aaaλµrλYλµ(Ω), (3.18a)

ΞΞΞ(~r) = ∑
λµ

bbbλµrλYλµ(Ω), (3.18b)

and, thus, the interaction Hamiltonian is given by

HHHint = ∑
λµ

(
aaaλµQQQλµ + bbbλµMMMλµ

)
, (3.19)

with the electric and magnetic multipole operators

QQQλµ =
∫

d3r ρρρ(~r)rλYλµ(Ω), (3.20)

MMMλµ =
∫

d3r ~µµµ(~r) · ~∇
(
rλYλµ(Ω)

)
. (3.21)

Inserting the expressions for the nuclear density and currents (3.9) to (3.12) into (3.20)
and (3.21) yields the final expressions for the static electric and magnetic multipole opera-
tors

QQQλµ = e
A

∑
i=1

(1
2
+ τττi

)
rrrλ

i Yλµ(ΩΩΩi), (3.22)

MMMλµ = µN

A

∑
i=1

[
g(i)s ~sssi +

2
λ + 1

g(i)l
~llli

]
·
(
~∇irrrλ

i Yλµ(ΩΩΩi)
)
. (3.23)

The gyromagnetic ratios for proton and neutron spin are g(i)s = gp and g(i)s = gn, respec-

tively. The orbital factors are g(i)l = 1 for protons and g(i)l = 0 for neutrons. The derivation
of (3.22) and (3.23) is sketched in appendix A.3.

The static electromagnetic moments of multipolarity λ and projection µ can be calculated
from the expectation values of the operators (3.22) and (3.23) in a nuclear state |Ψn〉 =
|ξ JM〉, where the index ξ collects all quantum numbers of the eigenstate except the total
angular momentum J and its projection M:

Qλµ = 〈Ψn|QQQλµ|Ψn〉 , (3.24)

Mλµ = 〈Ψn|MMMλµ|Ψn〉 . (3.25)

Typically, the static multipole moments are calculated for the maximum value of the
projected total angular momentum M = J. We note that, since the relevant quantities—the
eigenstates as well as the operators QQQλµ and MMMλµ—represent spherical tensors, it is easily
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3.3. Multipole Transitions

possible to obtain the static electromagnetic moments for arbitrary projection quantum
numbers M 6= J by applying the Wigner-Eckart theorem (A.10).

Typical examples of multipole moments addressed in nuclear structure theory are the
magnetic dipole and electric quadrupole moments

µ =

√
4π

3
〈ξ J J|MMM10|ξ J J〉 , (3.26)

Q =

√
16π

5
〈ξ J J|QQQ20|ξ J J〉 . (3.27)

The prefactor of the electric multipole moment is defined to correct for the normalization
of the spherical harmonics in (3.20) so that it matches the expression of its classical analog.
For consistency, it is also introduced for the magnetic multipole moments.

Since the strong and electromagnetic interactions conserve parity, we can choose the
nuclear eigenstate |Ψn〉 to be an eigenstate of the parity operator. By considering the
behavior of (3.22) and (3.23) under parity transformations, we can deduce that the electric
multipole operator has parity (−1)λ and the magnetic multipole operator has parity
(−1)λ+1. Therefore, the electric and magnetic moments vanish for λ = 1, 3, 5, . . . and
λ = 0, 2, 4, . . ., respectively.

3.3. Multipole Transitions

Nuclear radiative processes involve, in general, the absorption or emission of real photons.
The eigenstates {|Ψn〉} of the nuclear Hamiltonian HHHnucl and the eigenstates

{|. . . nσkλµ . . .〉}

of the Hamiltonian of the electromagnetic field HHHfield define a complete set of eigenstates
of the unperturbed Hamiltonian

HHH0 = HHHnucl + HHHfield. (3.28)

The interaction HHHint (3.13) does neither commute with the nuclear nor with the field
Hamiltonian and, therefore, mediates transitions between the nuclear states |Ψi〉 and |Ψ f 〉
and the corresponding field eigenstates through absorption and emission of photons. We
restrict ourselves to one-photon absorption processes

|i〉 = |Ψi〉 |. . . nσkλµ . . .〉 −→ | f 〉 = |Ψ f 〉 |. . . nσkλµ − 1 . . .〉 . (3.29)

One-photon emission processes can be treated analogously.
According to Fermi’s golden rule [Fer50], the transition probability of an initial state of

the system of nucleus plus electromagnetic field to a final state is given by

Tf i =
2π

h̄
|〈 f |HHHint|i〉|2 g(E f ). (3.30)
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3. Electromagnetic Moments and Transitions

The factor g(E f ) is the density of final states with energy E f = Ei + h̄ωk. Inserting the
interaction Hamiltonian (3.13) into (3.30) yields

Tf i(σ, kλµ) =
8π(λ + 1)

h̄λ
(
(2λ + 1)!!

)2

(
Ek

h̄c

)2λ+1 ∣∣〈Ψ f |OOO(σ, kλµ)|Ψi〉
∣∣2 , (3.31)

with the electric and magnetic multipole transition operators

OOO(E, kλµ) =
(2λ + 1)!!
kλ(λ + 1)

∫
d3r
(

ρρρ(~r, t)Yλµ(Ω)
∂

∂r
rjλ(kr)

+ i
k
c
~jjj(~r, t) ·~r Yλµ(Ω)jλ(kr)

)
, (3.32)

OOO(M, kλµ) =
−(2λ + 1)!!
ckλ(λ + 1)

∫
d3r~jjj(~r, t) ·

(
~r× ~∇

)(
jλ(kr)Yλµ(Ω)

)
. (3.33)

The derivation is illustrated in appendix A.4.
We work in the long-wavelength limit, where we assume that the wavelength of the

radiation Λ ∝ 1/k is large compared to the extension R0 of the nucleus, i.e.,

kR0 � 1. (3.34)

This allows us to expand the spherical Bessel functions for small arguments:

jλ(kr) ≈ (kr)λ

(2λ + 1)!!

(
1− 1

2
(kr)2

2λ + 3
+ . . .

)
. (3.35)

Substituting the leading term into (3.32), yields

OOO(E, kλµ) =
∫

d3r ρρρ(~r, t)rλYλµ(Ω) +
ik

λ + 1

∫
d3r
(
~r×~µµµ(~r, t)

)
~∇rλYλµ(Ω) (3.36)

≈
∫

d3r ρρρ(~r, t)rλYλµ(Ω) = QQQλµ (3.37)

for the electric multipole operator. The first term of (3.36) does not depend on k and can
be identified with the static electric multipole operator QQQλµ (3.20). Since the integral in
(3.36) is confined to the interior of the nucleus, the second term is of the order of kR0 and
is usually neglected.

This approximation can be used for all electric multipoles except for the electric mono-
pole and isoscalar dipole operator. Regarding the electric monopole transition operator,
the first term in (3.36) is constant—it is proportional to the charge of the nucleus—and the
second term vanishes. In particular, the operator (3.36) cannot mediate intrinsic nuclear
excitations for λ = 0. Therefore, we resort to the second-order term of (3.35) to derive an
expression for the electric monopole transition operator:

QQQ00 = e
A

∑
i=1

(1
2
+ τττi

)
rrr2

i Y00(ΩΩΩi). (3.38)
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3.4. Single-Particle Matrix Elements of the Reduced Electromagnetic Multipole Operators

For a discussion of the electric isoscalar dipole operator, we refer the reader to section 3.5.
An analogous procedure for the magnetic multipole operator results in

OOO(M, kλµ) =
1

c(λ + 1)

∫
d3r
(
~r×~jjj(~r, t)

)
· ~∇
(
rλYλµ

)
= MMMλµ, (3.39)

which is equivalent to the expression for the static magnetic multipole operator (3.21) (cf.
(A.40)).

In general, the orientations of the angular momenta are not known in experiments
except for polarization experiments. Therefore, we average over the initial projections Mi
of the angular momenta and sum up all final projections M f . In this way, we obtain the
total transition probability

Tf i(σ, λ) =
1

2Ji + 1 ∑
MiµM f

Tf i(σ, kλµ)

=
8π(λ + 1)

h̄λ
(
(2λ + 1)!!

)2

(
Ek

h̄c

)2λ+1

B(σλ, Ji → J f ), (3.40)

where we have used the definition of the reduced transition probability

B(σλ, Ji → J f ) =
1

2Ji + 1

∣∣〈Ψ f ‖OOOλ‖Ψi〉
∣∣2 . (3.41)

Here, OOOλ represents a placeholder for the electric or magnetic multipole operator. The
reduced transition probability contains all relevant information about the nuclear wave
function. Everything else is absorbed into kinematical factors.

Since real photons carry off at least one unit of angular momentum, no monopole
transitions exist with real photons. For magnetic transitions, this is rooted fundamentally
in the absence of magnetic monopoles. Electric monopole transitions are only possible
with virtual photons, e.g., in internal conversion or electron-hadron scattering processes.
Further selection rules are dictated by the structure of the multipole operators (3.37)
and (3.39):

|Ji − J f | ≤ λ ≤ Ji + J f , (3.42a)

M f −Mi = µ, (3.42b)

πiπσλµπ f = 1. (3.42c)

The parities of the transitions are given by πEλµ = (−1)λ and πMλµ = (−1)λ+1. Usually,
magnetic dipole and electric quadrupole radiation are of comparable importance, higher
multipolarities are suppressed.

3.4. Single-Particle Matrix Elements of the Reduced
Electromagnetic Multipole Operators

The matrix elements of the multipole operators can be evaluated, e.g., in a spherical
single-particle basis defined by the HO potential. In the following, we exploit that we are
dealing with nucleons, which have spin s = 1/2.
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3. Electromagnetic Moments and Transitions

The reduced single-particle matrix elements of the electric multipole operators can be
calculated via

〈ψ f ‖QQQλ‖ψi〉 = 〈n′s′l′ j′‖errrλYλ(ΩΩΩ)‖nslj〉

= e
1 + (−1)l′+λ+l

2
〈n′l′|rλ|nl〉 ĵλ̂ ĵ′√

4π
(−1)j′− 1

2

(
j′ λ j
− 1

2 0 1
2

)
, (3.43)

where we have introduced the shorthand notation

ĵ ≡
√

2j + 1. (3.44)

The derivation of (3.43) is shown in appendix A.5.
The magnetic equivalent is given by

〈ψ f ‖MMMλ‖ψi〉 = 〈n′s′l′ j′‖µN

(
gs~sss +

2
λ + 1

gl
~lll
)
·
(
~∇rrrλYλ(ΩΩΩ)

)
‖nslj〉

= µN
1− (−1)l′+λ+l

2
〈n′l′|rλ−1|nl〉 ĵλ̂ ĵ′√

4π

× (−1)j′− 1
2

(
j′ λ j
− 1

2 0 1
2

)
(λ− κ)

[
1
2

gs − gl

(
1 +

κ

λ + 1

)]
, (3.45)

with

κ =
(

j +
1
2

)
(−1)l+j+ 1

2 +
(

j′ +
1
2

)
(−1)l′+j′+ 1

2 . (3.46)

The radial integrals are defined as

〈n′l′|rλ|nl〉 =
∫

dr r2Rn′ l′(r)rλRnl(r). (3.47)

The radial wave functions Rnl(r) and Rn′ l′(r) of the initial and final single-particle states
must be evaluated in the respective basis, e.g., the HO or Hartree-Fock (HF) single-particle
basis.

In CI calculations, we typically calculate the matrix elements of the electromagnetic
operators on the fly using the above expressions. We note that a consistent description
of both, spectra and electromagnetic observables, in the IT-NCSM, where we use SRG-
evolved Hamiltonians, requires also the SRG evolution for the electromagnetic operator
[RNF10; Sch+14; Sch+15]. Since the effect of the consistently evolved operators has been
found to be small, their use is important in precision calculations only.

3.5. Isosopin Decomposition

In isospin formalism, the electric multipole operator (3.22) reads

QQQλµ =
1
2

e
A

∑
i=1

rrrλ
i Yλµ(ΩΩΩi) + e

A

∑
i=1

τττirrrλ
i Yλµ(ΩΩΩi), (3.48)
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3.5. Isosopin Decomposition

where the first term has no dependence on the isospin. Consequently, it can only lead to
isoscalar excitations, which do not change the isospin T of the nuclear state, i.e., ∆T = 0.
The second term is proportional to the z-projection of the isospin and gives rise to isovector
transitions with ∆T = 1.

We define the electric multipole operator as the sum of its isoscalar and isovector part,

QQQλµ ≡ QQQIS
λµ +QQQIV

λµ, (3.49)

with

QQQIS
λµ =

1
2

e
Z

∑
π=1

rrrλ
πYλµ(ΩΩΩπ) +

1
2

e
N

∑
ν=1

rrrλ
ν Yλµ(ΩΩΩν), (3.50)

QQQIV
λµ =

1
2

e
Z

∑
π=1

rrrλ
πYλµ(ΩΩΩπ)−

1
2

e
N

∑
ν=1

rrrλ
ν Yλµ(ΩΩΩν). (3.51)

In this definition, we carry out the sums over protons and neutrons separately. We have,
furthermore, introduced the electric charge e for both, protons and neutrons, in accordance
with the macroscopic picture of protons and neutrons contributing equally to oscillations
in and out of phase, see discussion below.

We point out one peculiarity: The isoscalar dipole operator is proportional to the center-
of-mass coordinate; thus, it causes translations of the nucleus as a whole but cannot
induce intrinsic excitations. This is similar to the electric monopole operator, for which the
leading term in the expansion of the spherical Bessel function (3.35) leads to an operator
proportional to the charge of the nucleus. Again, higher-order contributions of (3.35) are
required to allow for intrinsic nuclear transitions. We define the isoscalar dipole transition
operator as

QQQIS
1µ =

1
4

e
A

∑
i=1

rrr3
i Y1µ(ΩΩΩi). (3.52)

The magnetic multipole operator can be separated into isoscalar and isovector operators
analogously. To this aim, we substitute g(i)s and g(i)l in (3.23) by their respective values in
terms of isospin:

MMMλµ = µN

A

∑
i=1

[
1
2
(gp + gn)~sssi +

1
λ + 1

~llli

]
·
(
~∇irrrλ

i Yλµ(ΩΩΩi)
)

+ µN

A

∑
i=1

[
τττi(gp − gn)~sssi +

2
λ + 1

τττi~llli

]
·
(
~∇irrrλ

i Yλµ(ΩΩΩi)
)
. (3.53)

The first term corresponds to the isoscalar magnetic multipole operator and the second
term to the isovector magnetic multipole operator. The isoscalar and isovector components
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3. Electromagnetic Moments and Transitions

are

MMMIS
λµ = µN

Z

∑
π=1

[
1
2
(gp + gn)~sssπ +

1
λ + 1

~lllπ

]
·
(
~∇πrrrλ

πYλµ(ΩΩΩπ)
)

+ µN

N

∑
ν=1

[
1
2
(gp + gn)~sssν +

1
λ + 1

~lllν

]
·
(
~∇νrrrλ

ν Yλµ(ΩΩΩν)
)
, (3.54)

MMMIV
λµ = µN

Z

∑
π=1

[
1
2
(gp − gn)~sssπ +

1
λ + 1

~lllπ

]
·
(
~∇πrrrλ

πYλµ(ΩΩΩπ)
)

− µN

N

∑
ν=1

[
1
2
(gp − gn)~sssν +

1
λ + 1

~lllν

]
·
(
~∇νrrrλ

ν Yλµ(ΩΩΩν)
)
. (3.55)

Here, we have used the bare values for the gyromagnetic ratios and orbit g factors.

Collective excitations typically involve many or all nucleons. In the macroscopic picture
of isoscalar and isovector electric transitions, protons and neutrons oscillate in and out of
phase, respectively, according to a specific multipole pattern defined by λ. The isoscalar
electric monopole mode, e.g., corresponds to a radial oscillation of the nucleus as a
whole and is, therefore, often referred to as a “breathing” or “compressional” mode. The
isovector electric dipole mode, in contrast, is characterized by a one-dimensional collective
oscillation of all neutrons against all protons, which results in a separation of the center of
mass and center of charge of the nucleus. In the isoscalar electric quadrupole mode, the
nucleus is deformed alternately into an oblate and prolate shape by in-phase oscillations
of the nucleons. The isoscalar magnetic dipole mode can be interpreted macroscopically
as the oscillation of spin-up nucleons against spin-down nucleons, whereas the isovector
magnetic dipole mode is understood as the out-of-phase oscillation of spin-up (spin-down)
neutrons against spin-down (spin-up) protons. More details on electromagnetic transitions
and their macroscopic picture can be found, e.g., in [HW01] and references therein.

We remark that, in general, isovector modes for the same multipolarity are at higher
energies compared to their isoscalar partners, because extra energy is required to separate
protons and neutrons.

3.6. Translational Invariance

We point out that all expressions for the electromagnetic operators are derived in the
reference system of the nucleus, i.e., the coordinates of the electromagnetic operators are
defined relative to the center of mass of the nucleus. In principle, we need to substitute~rrr
by~rrr−~RRRcm at the operator level for practical calculations to ensure translational invariance.
Consequently, the operators are not one-body but A-body operators.

The translationally invariant expressions for the electric monopole, dipole, and quadru-
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3.6. Translational Invariance

pole operators are

QQQ00 = e
A

∑
i=1

(1
2
+ τττi

)(
~rrri −~RRRcm

)2Y00(ω̄ωωi) (3.56)

=
1√
4π

e
1
A

A

∑
i>j=1

(
ΠΠΠπ

i +ΠΠΠν
j −

Z
A

)
~rrr2

ij, (3.57)

QQQ10 = e
A

∑
i=1

(1
2
+ τττi

)∣∣~rrri −~RRRcm
∣∣Y10(ω̄ωωi) (3.58)

= e
2
A

A

∑
i>j=1

(
ΠΠΠπ

i ΠΠΠπ
j +ΠΠΠπ

i ΠΠΠν
j

)∣∣~rrrij
∣∣Y10(ω̄ωωij), (3.59)

QQQ20 = e
A

∑
i=1

(1
2
+ τττi

)(
~rrri −~RRRcm

)2Y20(ω̄ωωi) (3.60)

= e
1
A

A

∑
i>j=1

(
ΠΠΠπ

i +ΠΠΠν
j −

Z
A

)
~rrr2

ijY20(ω̄ωωij). (3.61)

Here, we have introduced the angle ω̄ defined in the reference frame of the nucleus’ center
of mass and the relative coordinate~rij =~ri −~rj. We have further used the shorthands

ΠΠΠπ
i =

1
2
+ τττi,

ΠΠΠν
i =

1
2
− τττi

for the projection operators for protons and neutrons. Note that we could use the expres-
sions for the single-particle matrix elements of the reduced electric multipole operators of
section 3.4 without need for modifications to evaluate the matrix elements of the reduced
electric multipole operators in a relative basis, e.g., the relative HO basis.

In the following, we will often consider the isoscalar electric monopole, isovector electric
dipole, and isoscalar electric quadrupole mode. The respective operators are obtained
by applying the prescription for the isospin decomposition given in section 3.5 to (3.56),
(3.58) and (3.60):

QQQIS
00 =

1√
4π

e
1

2A

A

∑
i>j=1

~rrr2
ij, (3.62)

QQQIV
10 = e

1
A

A

∑
i>j=1

(
ΠΠΠπ

i ΠΠΠπ
j −ΠΠΠν

i ΠΠΠν
j +ΠΠΠπ

i ΠΠΠν
j −ΠΠΠν

i ΠΠΠπ
j

) ∣∣~rrrij
∣∣Y10(ω̄ωωij), (3.63)

QQQIS
20 = e

1
2A

A

∑
i>j=1

~rrr2
ijY20(ω̄ωωij). (3.64)

In present applications, the operators are commonly used in the one-body form, where
the coordinates in (3.22) and (3.23) are interpreted as single-particle coordinates in the
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3. Electromagnetic Moments and Transitions

laboratory frame. As indicated in [Ste+05] and shown in appendix A.6, this approximation,
however, yields correct results for the electric dipole and quadrupole operators if the
basis used in the calculations factorizes exactly into relative and center-of-mass parts
and if the center-of-mass component is in its ground state. This is guaranteed in the
NCSM if the HO basis is used in combination with the Nmax truncation.We have further
checked the error of using the isoscalar electric monopole operators in one-body form
by comparing the B(E0 : 0+1 → 0+2 ) transition strengths in 16O to results where the
electromagnetic multipole operators have been treated correctly. The respective transition
strengths, 0.585 e2fm4 and 0.520 e2fm4, have been calculated in the IT-NCSM with HO
basis using the EMN400 interaction, SRG-evolved up to α = 0.08 fm4, for Nmax = 8
and h̄Ω = 16 MeV. Here, this approximation affects the result by about 10%, which
is significant if one is interested in precision calculations. Therefore, the latter require,
besides the inclusion of currents and a consistent treatment of the operators in the SRG,
the use of the translationally invariant form of the electric monopole operator. In this
thesis, we calculate electromagnetic observables from the respective operators in one-body
form as we are mainly interested in strength distributions, where the absolute strength of
the transitions is of minor importance.
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4. Configuration-Interaction Methods

In a first approximation, the atomic nucleus can be described by its nucleons moving
independently in an average potential. This picture is, however, too simplistic; correlations
between the nucleons must be taken into account for a correct description of the nucleus.
Therefore, a variety of CI methods has been developed, which have proven of value in the
solution of the nuclear many-body eigenvalue problem. They all share the same simple
concept but differ formally in the choice of the single-particle potential that defines the
reference basis and the different truncation schemes applied. Particularly, the truncation
scheme confines the applicability of the different variants to specific mass ranges of nuclei.

We first present the general concept of the CI method. We then restrict a detailed
introduction to the CI approaches employed in this thesis, the VSSM and the NCSM. The
VSSM assumes that a few valence nucleons on top of a fully-occupied closed shell are the
only active degrees of freedom needed to obtain reasonable approximations for nuclear
observables. This basis restriction allows for applications to medium-mass nuclei. The
NCSM, in contrast, is an exact ab initio method that treats all nucleons as active degrees of
freedom, and applications are limited to light nuclei.

4.1. General Concept

All CI approaches are based on the expansion of the eigenstates of the Hamiltonian HHH in a
basis of A-body Slater determinants {|Φj〉} spanning the Hilbert space:

|Ψn〉 = ∑
j

c(n)j |Φj〉 = ∑
j
〈Φj|Ψn〉 |Φj〉 . (4.1)

The Slater determinants are constructed from single-particle states in some reference basis,
e.g., the HO, HF, or natural-orbitals basis. These single-particle states have a spatial, spin,
and isospin component. With (4.1), the eigenvalue problem

HHH |Ψn〉 = En |Ψn〉 (4.2)

can be written as

∑
j
〈Φi|HHH|Φj〉 〈Φj|Ψn〉 = En 〈Φi|Ψn〉 , (4.3)

and the eigenvalues En and the coefficients c(n)j of the energy eigenstates (4.1) are obtained
by numerically calculating the eigenvalues and eigenvectors of the A-body Hamilton
matrix with matrix elements 〈Φi|HHH|Φj〉. One major advantage of CI methods is that ener-
gies of ground and excited states are treated on equal footing and that other observables
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4. Configuration-Interaction Methods

can be calculated consistently. Once the eigenstates are determined, any observable of
the nucleus under consideration can be computed by evaluating expectation values and
matrix elements of the corresponding operator.

We can express the basis states |Φj〉 as particle-hole excitations with respect to some
reference determinant |Φ〉 such that the expansion of the eigenstates (4.1) can alternatively
be written as

|Ψn〉 = cn |Φ〉+ ∑
a,p

c p
n,a |Φ

p
a 〉+ ∑

a<b
p<q

c pq
n,ab |Φ

pq
ab 〉+ ∑

a<b<c
p<q<r

c pqr
n,abc |Φ

pqr
abc 〉+ . . . . (4.4)

Here, the singly-excited basis states |Φp
a 〉 are generated by replacing the single-particle

(hole) state a in the reference determinant |Φ〉 by the single-particle (particle) state p not
occupied in |Φ〉. Basis states of higher particle-hole rank with respect to |Φ〉 can be formed
analogously. We remark that the restrictions on the summation indices ensure that each
basis state is included in the sum only once. The reference determinant |Φ〉 is usually
chosen to be any of the lowest-possible configurations of the nucleus under consideration
obtained in a mean-field picture and is, therefore, often referred to as unperturbed Slater
determinant. For closed-shell nuclei, there is only one such configuration, the ground
state.

In practice, we have to resort to finite bases by introducing truncations. To this aim, we
typically restrict the number of HO single-particle orbits used to construct the many-body
basis by introducing a maximum HO principal quantum number emax = (2n + l)max, and,
optionally, an additional truncation lmax on the single-particle orbital angular momentum.
Such a truncated basis spans the model spaceM. The energies obtained by diagonalizing
the Hamilton matrix in a truncated space are no longer exact. They represent approxima-
tions to the exact energies, and we can check their quality by a systematic variation of the
truncation.

One can show that the solution of the Schrödinger equation is equivalent to the determi-
nation of the stationary points in the method of linear variations [Rit09]. Consequently,
the variational principle applies, and it is guaranteed that the energies represent upper
bounds to the exact energies. The inclusion of more and more basis states in the model
space, thus, causes the energy eigenvalues to drop monotonically. We expect convergence
of energies and other observables for sufficiently large model spaces. We note that the
variational principle is only fulfilled for the energies and that not all observables converge
at the same rate as the energies with respect to model-space size.

However, even finite single-particle bases often render the CI method impractical be-
cause of the vast number of A-body basis states that can be constructed combinatorially
from the single-particle states. Furthermore, numerical eigenvalue solutions of the Hamil-
ton matrix are limited to linear dimensions of about 1010 when only a few low-lying
eigenstates are calculated using sophisticated algorithms, e.g., the Lanczos algorithm
[Lan50]. Consequently, additional truncation schemes need to be introduced that, in
combination with the choice of single-particle basis, define the particular variants of CI
suited for application to different nuclear mass regions.

As all many-body methods in nuclear structure theory, CI faces the challenge to properly
describe a finite, self-bound system. Since the nucleus is not located in an external potential,
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4.1. General Concept

no natural reference point for the single-particle coordinates of the nucleons is available.
The eigenstates |Ψn〉 depend on the coordinates and momenta of the A nucleons. For the
description of the intrinsic properties of a nucleus, one needs the relative positions and
momenta of the nucleons, i.e., 3A− 3 coordinates and 3A− 3 momenta. The redundant
coordinates and momenta account for the motion of the center of mass. Since any intrinsic
operator OOO exhibits translational and Galilean invariance, it commutes with the center-
of-mass momentum operator ~PPP and the center-of-mass coordinate ~RRR. Thus, any physical
operator OOO, in particular the intrinsic nuclear Hamiltonian HHHnucl, and any operator acting
solely on the center of mass of the nucleus possess a common eigenbasis, and the many-
body eigenstate factorizes:

|Ψn〉 = |Ψn,int〉 ⊗ |Ψn,cm〉 . (4.5)

The components |Ψn,int〉 and |Ψn,cm〉 depend only on relative and center-of-mass coor-
dinates and momenta, respectively. When solving the eigenvalue problem for HHHnucl,
eigenstates with the same intrinsic component |Ψn,int〉 but different center-of-mass compo-
nent |Ψn,cm〉 are degenerate.

If the model space allows for the decoupling of intrinsic and center-of-mass components
as in (4.5), the appearance of eigenstates with an excited center-of-mass component in the
spectra can be avoided by solving the nuclear eigenvalue problem for the Hamiltonian

HHH = HHHnucl + βHHHcm (4.6)

composed of the intrinsic nuclear Hamiltonian HHHnucl and a Hamiltonian HHHcm acting
exclusively on the nucleus’ center of mass. The use of this modified Hamiltonian dates
back to Gloeckner and Lawson [GL74], however, unlike initially proposed, we choose
finite values for the control parameter β. This procedure leaves the intrinsic properties
of the eigenstates unchanged but confines the center-of-mass components to a specific
state. When using the HO single-particle basis, the center-of-mass Hamiltonian is an HO
potential:

HHHcm =
PPP2

2Am
+

mΩ2A
2

RRR2 − 3
2

h̄Ω. (4.7)

Here, m and h̄Ω denote the nucleon mass and HO frequency, respectively. The last term
shifts the ground-state energy of HHHcm to zero. By solving the eigenvalue problem using
the Hamiltonian (4.6) with β > 0, the degeneracy of the intrinsic states with respect to
their center-of-mass component is lifted. Center-of-mass excitations are pushed upward
in energy and are removed from the relevant part of the spectrum.

We remark that truncated model spaces allow for an exact decoupling of intrinsic and
center-of-mass components only if the HO basis is used in combination with the Nmax
truncation, cf. section 4.3. In all other cases, the eigenstates may contain mixtures of
intrinsic and center-of-mass components. Such eigenstates are denoted as spurious or
center-of-mass contaminated states, and the above prescription can be applied only as an
approximation.

The starting point of CI calculations is the nuclear Hamiltonian

HHHnucl = HHH0B + HHH1B + HHH2B + HHH3B, (4.8)
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4. Configuration-Interaction Methods

where we consider zero-, one-, two-, and three-body operators at most. Depending on the
CI variant, some of them vanish from the outset or are neglected.

4.2. Valence-Space Shell Model

The VSSM [KB66; Cau+05; Cor+14] is the pioneering CI method in nuclear physics.
Recently, it has gained renewed interest as methods have become available that derive
effective valence-space Hamiltonians and operators in an ab initio framework [TBS12;
Bog+14; Jan+14; Dik+15; Jan+16; Str+16; Str+17; Par+17; Sim+17].

Originally, the VSSM has been motivated by the success of the naive shell model, which
approximates the nucleus by a system of A nucleons confined in a single-particle potential
in combination with a spin-orbit term [May49; HJS49]. The single-particle orbits 0s1⁄2,
0p3⁄2, 0p1⁄2, . . . are grouped in shells according to their single-particle energy in such a way
that energy differences between orbits within one shell are much smaller than energy
differences between orbits of two different shells. The spin-orbit term causes a lowering
in energy of orbits with large coupled total angular momentum j = l + 1/2, e.g., 0 f 7⁄2
and 0g9⁄2 in figure 4.1, and gives rise to shell closures that reproduce the experimentally
observed magic numbers 2, 8, 20, 28, 50, 82, and 126. Nuclei with magic neutron and
proton numbers are especially stable. In absence of the mutual interaction, all nucleons
occupy the lowest single-particle orbits allowed according to the Pauli principle up to a
shell gap at a magic number, and excitations are only possible if one or more nucleons are
excited to a higher shell.

The VSSM is based on the classification of a core, valence, and excluded space, often
separated by a shell gap. The core is composed of fully-occupied shells, which can be
different for protons and neutrons, and has total angular momentum and parity Jπ = 0+.
The nucleons of the core are considered to be inert; they are not considered explicitly in
VSSM calculations. The only active degrees of freedom are the valence nucleons, which
are restricted to one or a few (sub-)shells above the core. The explicit form of their wave
functions is not known. We identify the ls-coupled single-particle states of the valence
nucleons by the set of quantum numbers (n, l, j, m, τ), where we omit the trivial quantum
numbers spin s = 1/2 and isospin t = 1/2. The quantum numbers m and τ represent the
z-projection of the total angular momentum and the isospin, respectively. Single-particle
orbits with higher single-particle energy than the valence orbits belong to the excluded
space.

The restrictions assumed in the single-particle basis, i.e., the omission of excitations of
core nucleons to arbitrary orbits or excitations of valence nucleons to the excluded space, as
well as interactions between core and valence nucleons, are accounted for implicitly by the
effective valence-space Hamiltonian. This Hamiltonian is, thus, a crucial input for VSSM
calculations and has, generally, the form (4.8). The zero-body term represents the energy of
the core. When using phenomenological interactions, it is typically set to the experimental
binding energy of the corresponding nucleus. For valence-space Hamiltonians derived
in an ab initio approach, the zero-body term is determined consistently along with the
interaction matrix elements. All observables calculated in the VSSM are defined relative
to the core. The operators HHH1B and HHH2B provide the single-particle energies and the
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Figure 4.1.: Schematic representation of single-particle orbits and magic numbers for
protons and neutrons in a shell-model potential. The basis generation from
the unperturbed Slater determinant is illustrated for 60Zn in a valence space
comprising the orbits 0 f 7⁄2, 1p3⁄2, 0 f 5⁄2, 1p1⁄2, and 0g9⁄2. See text for details.

effective one- and two-body interaction of the valence nucleons. At present, shell-model
calculations including explicit three-body terms in the Hamiltonian are not available.

The model space is spanned by m-scheme Slater determinants {|Φj,val〉} built from the
single-particle states of the Av valence nucleons. We can write the corresponding A-body
basis state as

|Φj〉 = |Φj,core〉 ⊗ |Φj,val〉 , (4.9)

where the core component |Φj,core〉 is identical for all configurations. As it is not taken
into account explicitly in shell-model calculations, we only consider the valence-space
component |Φj,val〉 of the Slater determinants and define the VSSM results relative to
the core. In the following, we drop the subscript ‘val’. Furthermore, since the nuclear
Hamiltonian is not sensitive to the z-projection of the single-particle states, we restrict
the model space to basis states with conserved quantum numbers M = ∑Av

j=1 mj, parity

π and MT = ∑Av
j=1 τj. Working in the m-scheme allows for a straightforward definition
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4. Configuration-Interaction Methods

of many-body operators in terms of second quantization, which makes the evaluation of
matrix elements convenient.

Model-space dimensions increase rapidly when heavier nuclei are considered or more
single-particle orbits are included in the valence space, and shell-model calculations
become intractable. In standard shell-model calculations, the so-called Tmax truncation is
introduced to cope with this problem. Each configuration has an assigned value t which
denotes the number of nucleons in previously unoccupied orbits. In the Tmax-truncated
model space, we only include basis states with t ≤ Tmax.

In figure 4.1, we illustrate the core, valence, and excluded space for a single-particle
potential that is different for protons and neutrons. In this example, we consider 60Zn,
where 20 protons and 20 neutrons form the 40Ca core and 10 protons and 10 neutrons
occupy the valence orbits 0 f 7⁄2, 1p3⁄2, 0 f 5⁄2, 1p1⁄2 and 0g9⁄2. The basis states can be generated
from the unperturbed Slater determinant by particle-hole excitations. The configuration
resulting from the unperturbed Slater determinant by replacing single-particle states as
indicated by the arrows represents a t = 2 configuration. One proton and one neutron are
excited to valence orbits which are not occupied in the unperturbed configuration, each
contributing with t = 1. Arbitrary redistributions of nucleons within the orbits occupied
by the reference determinant do not change t.

The structure of the basis states (4.9) implies that the eigenstates do not factorize into
relative and center-of-mass parts whenever more than one major HO shell is employed
as valence space. Only if an Nmax = 0 model space is used, where all nucleons occupy
the lowest possible HO levels, the nucleus’ center of mass is guaranteed to be in its
ground state and a decoupling of relative and center-of-mass components is achieved.
Furthermore, the nuclear Hamiltonian is not translationally invariant. Thus, the action
of the nuclear Hamiltonian on an eigenstate of the nucleus also affects the center-of-
mass component, which, in return, can cause a change in the energies. There is no
exact solution for the decoupling of relative and center-of-mass components in the VSSM.
Nevertheless, we solve the eigenvalue problem for the Hamiltonian (4.6), where we choose
fairly small values for β, e.g., β = 1 [Whi+77]. In this way, eigenstates with large spurious
component are artificially shifted to higher energies while non-spurious ones are left
relatively unchanged. It is expected that most of the mixing of relative and center-of-mass
components can be removed in this way.

The center-of-mass Hamiltonian (4.7) can be expressed in terms of core and valence
nucleons for the use in the VSSM:

HHHcm =
Nc

A

(
1

2Ncm
~PPP2

c +
1
2

mΩ2Nc~RRR2
c

)
+

A

∑
v=Nc+1

(
ppp2

v
2m

+
mΩ2

2
rrr2

v

)

+
Av

A

Nc

∑
c=1

(
~ppp2

c
2m

+
mΩ2

2
~rrr2

c

)
− 1

A

Nc

∑
c=1

A

∑
v=Nc+1

(
1

2m
(~pppc −~pppv)

2 +
mΩ2

2
(~rrrc −~rrrv)

2
)
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− 1
A

A

∑
v>v′=Nc+1

(
1

2m
(~pppv −~pppv′)

2 +
mΩ2

2
(~rrrv −~rrrv′)

2
)

− 3
2

h̄Ω. (4.10)

Here, the indices c, c′ and v, v′ refer to core and valence nucleons, respectively. The sum
over core indices is over the Nc core nucleons and the sum over valence nucleons is over
the remaining Av = A − Nc nucleons. The first term of (4.10) corresponds to the HO
potential. The third term is a sum over HO potentials of the single-particle states of the
core nucleons. These terms and the last term of (4.10) can be classified as zero-body terms
because they involve no or only core nucleons and are constant. The second and fourth
term represent one-body operators, where the latter can be identified with an effective
interaction of the valence nucleons with the core. The fifth term constitutes a two-body
operator acting between the valence nucleons.

4.3. No-Core Shell Model

The NCSM [NVB00a; NVB00b; NKB00; NO02; NO03; Nav+09; BNV13] has been intro-
duced as a method for the exact solution of the nuclear many-body problem, where all A
nucleons are treated as active degrees of freedom. Two equivalent formulations exist; one
uses antisymmetrized HO Jacobi states and the other Slater determinants as many-body
basis states. The latter has proven to be more efficient for nuclear systems with A & 4.
Possible choices for the reference basis are, e.g., the HO, HF, Woods-Saxon, or natural-
orbital single-particle basis. The combination of choice of reference basis and truncation
scheme gives rise to a variety of NCSM approaches. Their performance differs, e.g., in the
convergence behavior with respect to model-space size.

The starting point of the NCSM is a Hamiltonian of the form (4.8) containing the
kinetic energy and the interactions between the nucleons up to the three-body level. In
order to remove states with excited center-of-mass component from the relevant part of
the spectrum, we use the modified Hamiltonian (4.6) for the solution of the eigenvalue
problem. We recall that this approach is exact in the NCSM with HO basis and Nmax
truncation, which allows for a factorization of relative and center-of-mass components,
and it is used as an approximation otherwise.

In this thesis, we mainly employ the NCSM using the HO and HF basis. In the following,
we present the two variants and discuss some differences.

No-Core Shell Model with Harmonic Oscillator Basis

Traditionally, the NCSM employs the HO single-particle basis {|nljmτ〉} as reference basis,
where the angular momentum and spin is coupled to total angular momentum j with
projection m. The energy of the single-particle states is given by

ε(n, l) =
(

2n + l +
3
2

)
h̄Ω, (4.11)
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and the convention for the quantum numbers is

n = 0, 1, 2, . . . , (4.12a)
e = 2n + l = 0, 1, 2, . . . . (4.12b)

From these single-particle states, we build A-body m-scheme Slater determinants with
conserved quantum numbers M = ∑A

j=1 mj, parity π, and MT = ∑A
j=1 τj. This allows us

to apply the powerful second-quantization technique to many-body operators for the
evaluation of matrix elements.

In order to restrict the model space to a manageable size, we introduce the Nmax trunca-
tion and include only those many-body basis states in the model space with a maximum
HO excitation energy above the unperturbed Slater determinant:

A

∑
j=1

(εj − ε0,j) =
A

∑
j=1

(ej − e0,j)h̄Ω ≤ Nmaxh̄Ω. (4.13)

Here, the sum is over the single-particle energies of the A nucleons defining a basis Slater
determinant relative to the unperturbed Slater determinant with energy ∑A

j=1 ε0,j.
In figure 4.2, we show the single-particle orbits of the HO potential with principal

quantum number e. The stiffness of the HO potential is controlled by the basis parameter
h̄Ω. We consider the basis generation for 18O starting from a reference determinant, where
the neutrons are in one of the degenerate lowest possible configurations. By promoting
protons and neutrons from this unperturbed configuration to other single-particle states,
the model space can be built systematically. The excitation of, e.g., one proton from the
e = 1 orbit to the e = 5 orbit as indicated by the arrow, yields a new basis state with 4h̄Ω
excitation energy compared to the unperturbed configuration. If we additionally consider
one proton from the e = 0 orbit and one neutron from the e = 1 orbit to be excited to the
e = 3 and e = 4 orbit, respectively, the resulting basis state has a total excitation energy of
10h̄Ω compared to the unperturbed configuration. Such a basis state is contained in the
model space for truncation parameters Nmax ≥ 10.

The combination of Slater determinants constructed from HO single-particle states
with the Nmax truncation is a very convenient choice of many-body basis as it retains the
translational invariance of the Hamiltonian and, thus, ensures the exact factorization of the
eigenstates (4.5). Consequently, the use of (4.6) for finite values of β removes eigenstates
with excited center-of-mass components from the relevant low-lying part of the spectrum.
We remark that, in general, the oscillator frequency of the center-of-mass Hamiltonian and
the HO single-particle potential must not necessarily be chosen equal.

In practice, convergence of observables with respect to model-space size is often not
reached due to computational limitations. Therefore, we carry out NCSM calculations for
a series of Nmax values and use extrapolations to obtain estimates for the observables in the
infinite model space. Various extrapolation techniques [Coo+12; FHP12; Mor+13; Rot+14]
are available that yield robust approximations. In particular for absolute energies, where
the variational principle applies, we typically use decreasing exponential functions to
extrapolate to Nmax → ∞. Furthermore, converged results for observables are independent
of the oscillator frequency h̄Ω. In order to obtain the best approximation to the exact result,
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Figure 4.2.: Single-particle orbits of the HO potential. The basis generation in the NCSM
from the unperturbed Slater determinant is illustrated for 18O. See text for
details.

we need to increase Nmax until the observable shows a flat trend as a function of h̄Ω. In
practice, we often choose an optimal value for h̄Ω such that the energy in minimized.

We remark that the HO single-particle states exhibit a Gaussian fall-off. This wrong
asymptotic behavior causes long-range observables to converge extremely slowly. There-
fore, the description of loosely bound systems, such as halo nuclei, is problematic. A
possible remedy is the use of a different basis set which is better suited for the description
of long-range observables, e.g., the HF or Woods-Saxon basis.

Furthermore, the NCSM does not include continuum degrees of freedom, which are
essential for the description of resonances and continuum states. Improvements regard-
ing this issue are possible via extensions of the NCSM, e.g., by an explicit inclusion of
continuum physics in the NCSM, as implemented in the NCSM with continuum (NC-
SMC) [BNQ13; Cal+16], or by resorting to another reference basis that implicitly includes
continuum degrees of freedom, e.g., the Berggren basis [Ber68; Pap+13].

No-Core Shell Model with Hartree-Fock Basis

More recently, the HF basis has been employed in the context of the NCSM [Geb+17].
The motivation for using the HF basis as reference basis is that the HF potential already
incorporates a part of the relevant physics for the given nucleus and that the correct
asymptotic behavior of the single-particle wave functions, which fall off exponentially,
improves convergence of long-range observables.

We start from a nucleus-dependent single-particle potential generated in an HF calcu-
lation in equal-filling approximation [PR08]. The ls-coupled single-particle states carry
quantum numbers (n, l, j, m, τ). An overview of the HF method is given in appendix B.
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Figure 4.3.: Schematic representation of single-particle orbits of an HF potential for 18O.
The basis generation from the unperturbed Slater determinant is illustrated.
See text for details.

Although a finite HF basis breaks translational invariance (4.8), we add the Lawson-
type term βHHHcm to the nuclear Hamiltonian for the numerical solution of the eigenvalue
problem as an approximate remedy to the center-of-mass problem. In practice, we often
apply the NO2B approximation to the Hamiltonian (4.8), which further introduces an
explicit dependence on center-of-mass coordinates.

The many-body basis is constructed in the same way as in the NCSM with HO basis,
however, we employ two many-body truncation schemes. We routinely use the Nmax
truncation (4.13) as introduced for the NCSM. To this aim, we associate each HF orbit with
quantum numbers (n, l, j) with the HO orbit with e = 2n + l. The example in figure 4.3
for 18O illustrates the basis generation from the unperturbed Slater determinant. The
configuration shown in the example is contained in the Nmax-truncated model space for
Nmax ≥ 4.

For some benchmark calculations, we restrict the number of particle-hole excitations
from the unperturbed HF Slater determinant. We use the Tmax truncation as introduced
in the VSSM and allow at most Tmax nucleons to be excited to previously unoccupied
orbits. Redistributions of nucleons within the orbits populated by the unperturbed Slater
determinant contribute with t = 0. Therefore, the example for 18O shown in figure 4.3
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yields, in total, a t = 2 configuration driven by the protons only.
Although the convergence of absolute energies with Nmax seems to be worse in the

NCSM when an HF basis is used, excitation energies are stable and practically independent
of h̄Ω.

Recently, a similar approach, where a natural-orbital single-particle basis derived to
better match the physical structure of the many-body wave function was used in the
NCSM. It has been applied successfully to the halo nucleus 6He and has demonstrated
improved convergence properties compared to the NCSM using the HO basis [Con+17].

4.4. Computational Limitation

From a computational point of view, the nuclear eigenvalue problem represents a large-
scale eigenvalue problem of a sparse matrix. It is particularly challenging because of the
strong interaction, where many-nucleon forces are important. Furthermore, collective
phenomena play a crucial role in nuclear physics. Therefore, results close to converged
with respect to model-space truncations—prerequisite for reliable extrapolations—are, in
general, only obtained for extremely large model spaces.

If we start from an emax-truncated single-particle basis, the m-scheme model-space
dimension d of a nucleus is proportional to(

nN

N

)(
nZ

Z

)
,

where N (Z) denotes the number of neutrons (protons) that can be distributed among
nN (nZ) neutron (proton) single-particle states. This dimension is reduced by about one
order of magnitude by imposing constraints on the quantum numbers of the eigenstates.
Furthermore, the many-body truncation parameters Tmax and Nmax are applied and control
the model-space dimensions. In the VSSM, the number of neutron and proton single-
particle states is relatively small, e.g., nN = nZ = 32 in the sdp f shell, and the model-space
dimension becomes maximal at mid-shell, where Nv = nN/2 and Zv = nZ/2. In contrary,
the NCSM with single-particle truncation emax = 12 provides already 910 neutron and 910
proton single-particle states to construct the many-body basis from. This illustrates why
heavy nuclei, such as 208Pb, will remain unfeasible in the NCSM also in the future, albeit
the additional many-body truncations.

Figure 4.4 shows model-space dimensions of VSSM calculations in the sdp f shell for
several silicon isotopes and of NCSM calculations for even-A oxygen isotopes as a function
of the truncation parameters Tmax and Nmax, respectively. In the VSSM, the model-space
dimension of a nucleus typically saturates for Tmax & 8 for isotopes not too close to the shell
closures limiting the valence space and reaches its maximum for isotopes around mid-shell.
The NCSM exhibits a factorial growth of the basis dimension with Nmax and mass number
A = N + Z. Considering that we, typically, need to choose the model-space truncation
parameter Nmax not smaller than 8 to 10 [BNV13] to reasonably extrapolate the energies,
figure 4.4 illustrates why heavier systems rapidly reach the present computational limits
and, thus, become prohibitive. The most challenging diagonalizations have been carried
out for nuclei in model spaces comprising around 1010 basis states [Len+10; BNV13]. We
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Figure 4.4.: Model-space dimensions of the silicon isotopes 22Si (l) , 24Si (H), 26Si (�), 28Si ( ),
and 30Si ( �) in the VSSM (sdp f shell) as a function of Tmax and of the oxygen
isotopes 16O (l), 18O (H), 20O (�), 22O ( ), and 24O ( �) in the NCSM as a function
of Nmax.

routinely carry out CI calculations with model-space dimensions of the order of 108 using
two-body interactions or 107 when also three-body interactions are taken into account.

The bottle neck of CI calculations is the number of non-zero matrix elements of the
A-body Hamilton matrix, which governs the computational cost of their calculation and
storage, as well as the numerical solution of the eigenvalue problem. Even though we are
dealing with sparse matrices and only store non-zero matrix elements, we typically need
terabytes of memory for the Hamilton matrix. We remark that the inclusion of three-body
interactions significantly increases the number of non-zero matrix elements compared to
CI calculations using only two-body interactions, and, thus, pushes storage demands. In
practice, we use massively parallelized codes capable of distributing the matrix elements
on several nodes and, potentially, on disc. We employ the sophisticated implicitly restarted
Arnoldi algorithm [LSY98] for the matrix diagonalization, which requires some additional
memory for the vectors. We note that an alternative to keeping all matrix elements in
memory is their on-the-fly recalculation [JOK13], which, however, tremendously increases
computing times. Although enormous advances in computer technology have been
made (see [BNV13, appendix] for a brief overview) and further development is ongoing,
many nuclei remain out of reach of present and future investigations using standard CI
approaches.

34



5. Importance-Truncated
Configuration-Interaction Methods

In order to overcome the limitations of the CI methods of chapter 4, we propose an
importance-truncation scheme, which has been applied successfully to the NCSM [RN07;
Rot09] for some time, and recently to the VSSM [SBR16]. The importance truncation is a
physics-driven, adaptive truncation criterion for the many-body model space based on a
measure for the importance of individual basis states for the description of a few target
eigenstates of a given Hamiltonian. We impose a threshold on this importance measure to
define the importance-truncated model space tailored to the specific set of eigenstates and
the Hamiltonian. Variations of the importance threshold can be used to extract observables
in the limit of the full model space. Together, importance truncation and extrapolation
provide an accurate and efficient tool for nuclei and model spaces beyond the reach of
standard CI calculations.

We first introduce the concept of importance truncation and define the importance
measure. Then, we present the implementation of the importance-truncation selection
procedure via an iterative scheme. Sections 5.2 and 5.3 are devoted to extrapolation
methods that correct the observables for effects of excluded basis states and approximate
the results in the limit of vanishing thresholds.

5.1. Importance Truncation

For the solution of the nuclear eigenvalue problem (4.2) of a Hamiltonian HHH in large-scale
model spaces, CI methods are routinely used. Systematic model-space truncation schemes
exist, both, on the single-particle and many-body level (see chapter 4 for details); however,
they are not motivated by the physical features of the specific system provided by the
Hamiltonian. We refer to such globally truncated model spaces as full model spaces. The
importance truncation is based on the observation that—if one is interested in only a
few eigenstates of a Hamiltonian—a large fraction of the basis states {|Φj〉} contributes

only with very small or vanishing amplitudes c(n)j to the basis expansion of the target
eigenstates

|Ψn〉 =
d

∑
j=1

c(n)j |Φj〉 . (5.1)

Here, d denotes the full m-scheme dimension of the model space. The idea of the impor-
tance truncation is to identify and select the important basis states for the basis expansion
(5.1) without solving the eigenvalue problem in the full model space. For this purpose, we
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5. Importance-Truncated Configuration-Interaction Methods

introduce an importance measure derived in multi-configurational perturbation theory
(MCPT) [SO96] to assess the relevance of the individual basis states for the description
of a target eigenstate using the information provided by the Hamiltonian: We estimate
the amplitudes c(n)j in (5.1) by means of the first-order perturbative correction to an initial
approximation of the respective target state. We impose an importance threshold to decide
whether or not a basis state is included in the importance-truncated model space based
on its importance measure. The thus constructed model space is, therefore, tailored to
the description of a set of target eigenstates. The solution of the eigenvalue problem in
the importance-truncated model space requires the calculation and diagonalization of
the Hamilton matrix in a model space with typically much smaller dimension than the
full model space, while the observables calculated from the eigenstates remain almost
unchanged. The quality of the eigenstates can be controlled by variation of the importance
threshold. In the limit of vanishing importance threshold, the results in the full model
space are recovered.

Importance Measure

The construction of the importance-truncated model space is based on a set of reference
states

|Ψ(n)
ref 〉 = ∑

j∈Mref

c(n)j,ref |Φj〉 , (5.2)

which represent initial approximations of the target eigenstates carrying the correct quan-
tum numbers. They are obtained from a previous diagonalization in a small space. The
basis states that contribute to the reference states span the reference space Mref. We
estimate the importance of basis states outsideMref for the target eigenstates by means of
the amplitudes

κ
(n)
j = −

〈Φj|HHH|Ψ(n)
ref 〉

∆εj

= ∑
i∈Mref

c(n)i,ref
〈Φj|HHH|Φi〉

∆εj
(5.3)

of the first-order perturbative correction to |Ψ(n)
ref 〉. We use the simple Møller-Plesset-type

formulation of MCPT, where the energy denominator ∆εj corresponds to the excitation
energy of the basis state |Φj〉 calculated from the unperturbed single-particle energies of
the nucleons. A brief overview of MCPT and the derivation of the importance measure is
given in appendix C. Only basis states with an absolute value of the importance measure
larger than a given importance threshold, i.e.,

|κ(n)j | ≥ κmin,

for at least one reference state |Ψ(n)
ref 〉 are included in the importance-truncated model

spaceMIT. As a result, we obtain an importance-truncated model space tailored to the
simultaneous description of all target eigenstates.
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5.1. Importance Truncation

We note that an importance measure defined in this way assesses the relevance of basis
states for the basis expansion of the eigenstates, which, in turn, can be used to calculate
any observable. This choice of importance measure is not biased with respect to a specific
observable; however, some observables might be more sensitive to small components
of the wave function. This manifests itself in a slow convergence behavior with the
model-space truncation.

Alternative importance measures can be derived, e.g., from the second-order energy
correction in MCPT:

ξ j = −

∣∣∣〈Φj|HHH|Ψ(n)
ref 〉
∣∣∣2

∆εj
. (5.4)

This definition of importance measure assesses the relevance of the basis states outside
Mref for the computation of the energy.

Both importance measures yield similar results for the energies [Rot09]. Since we are
interested in an optimum description of the eigenstates, we employ the simple first-order
importance measure (5.3) in standard applications.

We note that this importance measure cannot probe basis states that differ by more than
two-particle two-hole (2p2h) (three-particle three-hole (3p3h)) excitations from any state in
Mref if the Hamiltonian consists of up to two-body (three-body) operators. One possibility
to access particle-hole excitations of higher particle rank is to consider amplitudes of
perturbative state corrections of higher order. Fortunately, it is possible to avoid their
computationally demanding evaluation by embedding the construction of the importance-
truncated model space into an iterative scheme.

Iterative Model-Space Construction

We adopt a universal iterative scheme to extend the reference space to arbitrary npnh
excitations. In the NCSM, we can, e.g., start from a model space truncated at Nmax = 0.
All Slater determinants with nucleons distributed in the lowest accessible orbits are in
this model space. For Nmax = 2, up to two nucleons are promoted to higher-lying
orbits—this model space can be generated through one-particle one-hole (1p1h) and 2p2h
excitations on top of the Nmax = 0 space. In the same way, a Tmax = 2 model space
can be generated in the VSSM or NCSM by systematically creating all 1p1h and 2p2h
excitations on top of a Tmax = 0 space. It is, thus, possible to combine a sequential increase
of the truncation parameter with the importance-selection procedure [Rot09; SBR16]. This
scheme is general and can be applied to the CI methods introduced in chapter 4 with
Tmax or Nmax truncations. In the following, we explain the procedure exemplarily for the
IT-NCSM with Nmax truncation.

A complete IT-NCSM calculation typically proceeds as follows: We start with a con-
ventional NCSM calculation for small Nmax, e.g., Nmax = 2, and select a set of target
eigenstates. We define the reference states by filtering the important components of these
eigenstates through a so-called reference threshold Cmin with respect to the amplitudes

37



5. Importance-Truncated Configuration-Interaction Methods

from the NCSM calculation:

|Ψ(n)
ref 〉 = N

(n)
ref

|c(n)j,ref|≥Cmin

∑
j∈Mref

c(n)j,ref |Φj〉 . (5.5)

Here, the factor N (n)
ref ensures the norm of the reference states. We note that the reference

threshold is of pure technical purpose. It can typically be chosen an order of magnitude
larger than the importance measure without affecting the results; however, it accelerates
the evaluation of the importance measure significantly. Starting from these reference
states, we construct importance-truncated model spaces with Nmax = 4 for a sequence of
importance thresholds by generating 1p1h and 2p2h excitations on top of the reference
space and probing them against the importance thresholds. In each spaceMIT(κmin), we
solve the eigenvalue problem and compute the relevant observables. The eigenvectors
for the largest importance-truncated model space define the new reference states, again
imposing the reference threshold Cmin, for constructing the importance-truncated model
spaces with Nmax = 6. The previous steps are repeated until the desired Nmax is reached.
The basis states are reassessed in each iteration with respect to their relevance for the
description of the target eigenstates using the most recent reference states. In this way,
the coupling of basis states with few npnh excitations to basis states with higher orders
of npnh excitations is established in the importance-truncated model space. In the limit
(κmin, Cmin)→ 0, the algorithm is guaranteed to reproduce the results corresponding to
the full model space at each Nmax. This provides the possibility to carry out extrapolations
to vanishing thresholds.

Analogously, we can apply the Tmax truncation instead of the Nmax truncation in the
IT-NCSM, or we can transfer the procedure to the IT-VSSM, where the iteration can be
carried out until Tmax reaches the number of valence nucleons.

In practice, we always generate importance-truncated model spaces for various im-
portance thresholds. In order to minimize the computational cost, we employ a filtering
method: We constructMIT for the smallest importance threshold of the sequence and
solve the eigenvalue problem in this space. The importance-truncated model space cor-
responding to the next-larger importance threshold is obtained from the previous one
by removing the basis states with importance measure smaller than the new importance
threshold. After deleting the rows and columns of the Hamilton matrix associated with
these discarded basis states, the eigenvalue problem is solved again. This procedure is
repeated until the eigenvalue problem has been solved in the importance-truncated model
space corresponding to the largest importance threshold of the sequence. In this way,
we carry out the computationally demanding and time-consuming construction of the
importance-truncated model space and Hamilton matrix only once per κmin sequence.

5.2. Threshold Dependence and Threshold Extrapolation

The variation of the importance threshold probes the quality of the importance truncation,
and it provides the basis for extrapolations, which approximately correct the observables
for effects of excluded basis states. We note that the importance truncation represents
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5.2. Threshold Dependence and Threshold Extrapolation

a strictly variational approach. The energies are determined by solving the eigenvalue
problem in a reduced model space, where, for each eigenstate, the smallest eigenvalue
provides an upper bound for the exact energy. Furthermore, the Hylleraas-Undheim
theorem [HU30] applies, i.e., the energies of all states are guaranteed to drop monotonically
with decreasing κmin and reach their exact values in the limit of the full model space:

En,exact ≤ En(κmin) ≤ En(κ
′
min) for κmin < κ′min. (5.6)

Since the full model space is recovered in the limit of vanishing thresholds, i.e., κmin → 0
and Cmin → 0, extrapolations to κmin → 0 are used to approximate the result in the full
model space. We note that no such rule exists for other observables. In the following, we
illustrate the threshold dependence and extrapolation in the IT-NCSM and IT-VSSM for
energies and electromagnetic observables.

For the benchmark of the IT-NCSM, we consider 12C in an Nmax = 8 model space,
for which full NCSM results are available [Mar+14]. We employ the chiral two- and
three-body interaction EMN500, SRG-evolved up to α = 0.0625 fm4, and an HO frequency
h̄Ω = 20 MeV. The full m-scheme dimension of the model space is 5.94 · 108. Such
an NCSM calculation is computationally demanding, in particular, when three-body
interactions are included. Note that an HO single-particle basis is used in the IT-NCSM
here.

As test case of the IT-VSSM, we consider 56Ni in a p f valence space using the phe-
nomenological GXPF1A Hamiltonian [Hon+05]. The full m-scheme dimension is 1.09 · 109,
which is at the limit of routine VSSM calculations.

Figure 5.1 shows the energy eigenvalues of the ground and first excited state and
the model-space dimensions of 12C and 56Ni as a function of κmin for a set of reference
thresholds Cmin. We remark that the energy axis in panel (b) is extremely magnified and
spans only 80 keV. The dimensions of the importance-truncated model spaces are reduced
drastically as compared to the full m-scheme dimensions, by more than one order of
magnitude in the test case for the IT-NCSM and by about two orders of magnitude in
the test case for the IT-VSSM. For decreasing κmin, the energies decrease monotonically
and approach the exact results. In the IT-NCSM, the energies and dimensions of the
importance-truncated spaces are approximately independent of Cmin for the smallest κmin
data points. It is, however, peculiar that for the smallest Cmin, the larger κmin values
yield smaller model spaces and higher energies as compared to the respective results
with larger Cmin. The absolute ground-state energies corresponding to the smallest κmin
threshold differ by only about 1 MeV from the result in the full model space, i.e., the
IT-NCSM without extrapolation determines the energy within 1% of the exact energy.
Note the expanded energy axis in panel (c) compared to panel (a)—excitation energies
in the IT-NCSM typically show a smaller dependence on κmin than absolute energies.
Here, the energy of the first excited state for the smallest κmin value deviates by less than
100 keV from the result in the full model space. In the IT-VSSM, the variation of Cmin
results in a small, but constant offset of the κmin sequence for the dimensions and energies.
The absolute energies in the largest importance-truncated model spaces, corresponding
to the smallest κmin and Cmin thresholds, differ by only about 10 keV from the results
in the full model space. The agreement with the exact result is further improved for
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Figure 5.1.: Energy of the ground and first excited state of 12C in the IT-NCSM ((a) and
(c)) and of 56Ni in the IT-VSSM ((b) and (d)) as a function of the importance
threshold for the reference thresholds Cmin = {1(l), 2(H), 3(�)} · 10−4. In the
IT-NCSM, the EMN500 interaction, SRG-evolved up to α = 0.0625 fm4, is used.
The oscillator frequency is h̄Ω = 20 MeV, and the model-space truncation
parameter is Nmax = 8. In the IT-VSSM, the model space is constructed up
to Tmax = 16 for a p f valence space using the GXPF1A Hamiltonian. Also
shown are the respective dimensions d of the IT model spaces ((e) and (f)). The
horizontal lines denote the energies (taken from [Mar+14] and extracted from
[Hor+06]) and the dimensions of the full model spaces.
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Figure 5.2.: Threshold dependence and extrapolation of the quadrupole moment of the
2+1 state and the B(E2 : 2+1 → 0+1 ) transition strength of 12C ((a) and (c)) in
the IT-NCSM and of 56Ni in the IT-VSSM ((b) and (d)) for a set of reference
thresholds Cmin = {1(l), 2(H), 3(�)} · 10−4. In the IT-NCSM, the EMN500 inter-
action, SRG-evolved up to α = 0.0625 fm4, is used. The oscillator frequency
is h̄Ω = 20 MeV, and the model-space truncation parameter is Nmax = 8. In
the IT-VSSM, the model space is constructed for Tmax = 8 using the GXPF1A
Hamiltonian. The horizontal lines denote the results obtained for the full
model spaces. The NCSM results are taken from [Mar+14], the VSSM results
have been obtained in a calculation using the ANTOINE code [Cau+05; CN99].

the excitation energy of the first excited state. This demonstrates the efficiency of the
importance truncation—it identifies the 107 basis states that determine the bulk of energy
among the approximately 109 basis states in the full space that are responsible for the
residual 1 MeV and accordingly 10 keV, with improved results for excitation energies.

We recover the effects of basis configurations excluded from the importance-truncated
model spaces by a simple extrapolation of the observables based on the importance
threshold κmin. The energy eigenvalues depend smoothly on κmin and we can fit simple
functions to the set of energies obtained for different importance thresholds and extract
the energies for κmin → 0. Since we do not have a theoretical model for the functional
dependence on the importance thresholds, we use simple polynomials, typically of order
two to four. Varying the order of the polynomials gives an estimate for the uncertainty of
this threshold extrapolation.

Figure 5.1 includes examples for fits with second- and third-order polynomials for
the IT-NCSM and IT-VSSM energies of 12C and 56Ni, respectively. In the IT-NCSM, the
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5. Importance-Truncated Configuration-Interaction Methods

extrapolated energies using the two polynomials as fit functions span the same energy
range for all reference thresholds Cmin. This proves the efficiency of the reference threshold;
it accelerates the evaluation of the importance measure for basis states outside the reference
space, while the threshold-extrapolated results are independent of its particular value. In
the IT-VSSM, a small residual dependence of the extrapolated energies on Cmin is found.
Note that the uncertainty of the κmin extrapolation is small compared to the dependence
on Cmin.

Since the IT-NCSM and IT-VSSM provide the eigenstates in the importance-truncated
model spaces, we have access to all other observables, particularly to electromagnetic
moments and transition strengths relevant for spectroscopy. For each κmin, we compute
the observable of interest using the respective eigenvector.

Figure 5.2 illustrates the threshold dependence of the quadrupole moment of the first
excited 2+1 state of 12C and 56Ni and the B(E2) transition strength from this state to the
ground state. Also these observables show a smooth dependence on κmin, allowing for sim-
ple polynomial extrapolations to vanishing importance threshold. The κmin-extrapolated
results show a mild dependence on Cmin for the test cases considered here, which is of
the same magnitude as the uncertainty of the threshold extrapolation. For 12C, the ex-
trapolated quadrupole moment and B(E2) transition strength agree well with the results
obtained in a full NCSM calculation. In the IT-VSSM, the agreement with the results in the
full model space is excellent. This proves that the importance truncation provides also
direct access to spectroscopic observables.

5.3. Energy-Variance Extrapolation

The simple threshold extrapolation does not require additional computations and can
be applied to all observables on equal footing. However, it exclusively addresses the
importance threshold κmin, and uncertainties of the polynomial extrapolations can be
sizable. The description of deformed nuclei is particularly challenging in the importance
truncation because many basis states contribute with small amplitudes, which in sum are
important. This can result in a stronger bending of the energy eigenvalues as a function of
κmin, making the threshold extrapolation less precise. In these cases, it is possible to reduce
the extrapolation uncertainties by including additional information on the excluded basis
states in the fitting procedure, e.g., through a second-order perturbative estimate of their
contribution to the energy, as done successfully in the IT-NCSM [Rot09].

We propose an alternative approach and consider a more elaborate extrapolation scheme
based on the energy variance

∆E2
n = 〈Ψn|HHH2|Ψn〉 − 〈Ψn|HHH|Ψn〉2 , (5.7)

which was used in the NCSM and VSSM context before [Zha+04; Miz04; Shi+10; Shi+12].
By construction, the energy variance (5.7) vanishes for the exact eigenstates in the full
model space. This is seen explicitly by assuming that |Ψn〉 is an exact eigenstate of HHH
and exploiting the eigenvalue relation. Therefore, for approximate eigenstates obtained
in a truncated subspace, the energy variance serves as a measure for the distance of this
state from the energy eigenstate in the full space. Based on a perturbative expansion, the
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functional dependence of approximate energy eigenvalues on the energy variance has
been shown to be predominantly linear with sub-leading quadratic terms [MI03]. We
thus have a simple model, predicting the behavior of the energies in the extrapolated
region, and a robust two- or three-parameter fit function at hand that provide reliable and
accurate extrapolations.

The calculation of the energy variance implies the explicit evaluation of the expectation
value 〈Ψn|HHH2|Ψn〉. If we start from a Hamiltonian of the form

HHH = HHH0B + HHH1B + HHH2B

= h0 + ∑
ij

hi
jAAA

i
j +

1
4 ∑

ijkl
hij

klAAA
ij
kl , (5.8)

where we have introduced the shorthand notation

AAAi
j = aaa†

i aaaj, (5.9a)

AAAij
kl = aaa†

i aaa†
j aaalaaak, (5.9b)

AAAij...
kl... = aaa†

i aaa†
j . . . aaalaaak (5.9c)

for the product of creation and annihilation operators and h0, hi
j, and hij

kl for the cor-
responding zero-, one-, and two-body matrix elements, we can write the operator HHH2

as

HHH2 = h2
0 + 2h0 ∑

ij
AAAi

j hi
j + ∑

ijk
AAAi

j hi
khk

j

+ 2h0 ∑
i<j
k<l

AAAij
kl hij

kl + ∑
i<j
k<l

AAAij
kl

[
2hi

khj
l − hj

khi
l − hi

lh
j
k

]
+ ∑

m
i<j
k<l

AAAij
kl

[
hi

mhmj
kl − hj

mhmi
kl − hm

l hij
mk − hm

k hij
lm

]

+ ∑
i<j
k<l

m<n

AAAij
kl hij

mnhmn
kl

+ 2 ∑
i<j<k

l<m<n

AAAijk
lmn

[
hi

lh
jk
mn − hj

lh
ik
mn + hk

l hij
mn − hi

mhjk
ln + hj

mhik
ln

− hk
mhij

ln + hi
nhjk

lm − hj
nhik

lm + hk
nhij

lm

]
+ ∑

o
i<j<k

l<m<n

AAAijk
lmn

[
hij

olh
ko
mn + hkj

olh
io
mn − hik

olh
jo
mn − hij

omhko
ln − hkj

omhio
ln

+ hik
omhjo

ln + hij
onhko

ml + hkj
onhio

ml − hik
onhjo

ml

]
+ ∑

i<j<k<l
m<n<o<p

AAAijkl
mnop

[
hij

mnhkl
op − hik

mnhjl
op + hil

mnhjk
op − hkj

mnhil
op + hl j

mnhik
op + hkl

mnhij
op
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− hij
mohkl

np + hik
mohjl

np − hil
mohjk

np + hkj
mohil

np − hl j
mohik

np − hkl
mohij

np

+ hij
mphkl

no − hik
mphjl

no + hil
mphjk

no − hkj
mphil

no + hl j
mphik

no + hkl
mphij

no

+ hij
nohkl

mp − hik
nohjl

mp + hil
nohjk

mp − hkj
nohil

mp + hl j
nohik

mp + hkl
nohij

mp

− hij
pohkl

mn + hik
pohjl

mn − hil
pohjk

mn + hkj
pohil

mn − hl j
pohik

mn − hkl
pohij

mn

− hij
nphkl

mo + hik
nphjl

mo − hil
nphjk

mo + hkj
nphil

mo − hl j
nphik

mo − hkl
nphij

mo
]
, (5.10)

obtaining zero- to four-body contributions. Note that the above expression can be obtained
by either using the anti-commutation relations of creation and annihilation operators or,
more elegantly, by using normal-ordering techniques.

The energy variance captures nontrivial information on the full model space through
the expectation value 〈Ψn|HHH2|Ψn〉. This is seen explicitly by inserting the identity operator

111 = ∑
|Φj〉∈Mfull

|Φj〉 〈Φj| (5.11)

represented in the full model space in between the product of the two Hamiltonians—the
variance probes the coupling to basis states outside of the truncated subspace.

In the IT-VSSM, this allows to extrapolate to the full model space defined by the valence
orbits without any additional truncation. In this way, the variance extrapolation remedies
all truncations used in the IT-VSSM, i.e., the κmin, Cmin, and Tmax truncations. In this
respect, the variance extrapolation is much more powerful than the simple threshold
extrapolation. However, other target spaces are possible using an alternative implementa-
tion for the calculation of the energy variance. By choosing a specific identity operator
(5.11), e.g., for a Tmax-truncated many-body space, for insertion in between the product of
the two Hamiltonians, we can circumvent the evaluation of up to four-body contributions
and evaluate products of two-body matrix elements instead. In this case, the variance
extrapolation will only account for the κmin and Cmin truncations. We usually compute
the HHH2 operator to correct the approximate energy eigenvalues for all truncations applied
in the IT-VSSM. The individual contributions of (5.10) are calculated on the fly, where
the four-body part is the costliest. The limiting factor for the calculation of the energy
variance is not memory but computing time, which, for typical applications, is an order of
magnitude larger than the computing time of the corresponding IT-VSSM calculation.

The expression (5.10) illustrates why the evaluation of the expectation value of HHH2

becomes prohibitive for large model spaces, in particular if 3N interactions are included
additionally, resulting in up to six-body contributions. In the (IT-)VSSM, the full model
space is always finite because the valence orbits naturally restrict the number of many-
body basis states. No such constraint exists in the (IT-)NCSM, rendering the full model
space infinite. Furthermore, the energy variance is not sensitive to the model-space trun-
cation parameter. This poses a conceptual problem for the applicability of the variance
extrapolation in the IT-NCSM. We have tried to overcome this difficulty using the alterna-
tive implementation based on the identity operator in a full model space defined by Nmax.
However, the computing time scales approximately linearly with the size of the full model
space, and can, thus, become immense. Therefore, we employ the variance extrapolation
only in the context of the IT-VSSM.
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Figure 5.3.: Energy-variance extrapolation of the ground-state energy relative to the core
for 56Ni obtained in the IT-VSSM using the GXPF1A Hamiltonian. Panel (a)
shows results for different reference thresholds Cmin = {1(l), 2(H), 3(�)} · 10−4

for Tmax = 16. In panel (b), calculations for different truncations Tmax =
{4(l), 6(H), 8(�), 10( )} with Cmin = 1 · 10−4 are depicted. The horizontal lines
denote the results of the full model spaces obtained in a calculation using the
ANTOINE code [Cau+05; CN99].

In figure 5.3, the ground-state energy of 56Ni is illustrated as a function of the energy
variance. Panel (a) shows κmin sequences for Tmax = 16 and different reference thresholds
Cmin, while panel (b) displays κmin sequences for different Tmax and fixed Cmin. The first
remarkable observation is that the κmin sequences for different Cmin fall onto one curve.
Consequently, the respective variance extrapolations yield the same result. The variance-
extrapolated energy is in excellent agreement with the result for the full space reported
in [Hor+06]. Even with an additional Tmax truncation, as shown in panel (b), the results
beyond Tmax = 6 fall onto the same line. For severe truncations, e.g., Tmax = 4, we observe
larger energy variances that cannot be extrapolated reliably.

The advantages of the variance extrapolation are that a simple and robust fit model is
available and that the extrapolation remedies all truncations inherent to an IT-VSSM calcu-
lation. The disadvantage is that substantial computational effort goes into the evaluation
of the energy variance. Typically, the computation of the variance needs more computing
time than the complete IT-VSSM calculation.

Based on the success of the variance extrapolation for energies, we tentatively apply
the same approach to other observables. Figure 5.4 illustrates the dependence of the
quadrupole moment of the first 2+ state in 56Ni and the B(E2) transition strength to
the ground state on the energy variance. We find that the variance extrapolation using
linear and quadratic fit functions do not improve the results obtained by the threshold
extrapolation, cf. figure 5.2. The variance extrapolation for electromagnetic observables
is lacking the rigorous formal foundation that it has for energies and a simple linear
dependence is neither guaranteed nor observed. Moreover, for electromagnetic transitions,
the energy variances of two states need to be combined into one control parameter for the
extrapolation in a heuristic way. As in [Miz04], we use the mean of the energy variances
of the two states as control parameter. It is evident from figure 5.4 that the sequences for
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Figure 5.4.: Energy-variance extrapolation of the quadrupole moment (a) and the B(E2 :
2+1 → 0+1 ) transition strength (b) of 56Ni using linear and quadratic fit func-
tions. The wave functions have been obtained in an IT-VSSM calculation
using the GXPF1A Hamiltonian for Tmax = 8 and the reference thresholds
Cmin = {1(l), 2(H), 3(�)} · 10−4. For the transition strength, the mean energy
variance of the states considered is used. The horizontal lines denote the
results of the full model spaces obtained in a VSSM calculation using the
ANTOINE code [Cau+05; CN99].

different Cmin approximately collapse onto one line; however, the systematic deviations
are larger than for the energies. A linear fit does not yield an adequate reproduction of the
points and clearly misses the exact result. The quadratic fit reveals a strong dependence
on Cmin for the quadrupole moment and also overestimates the result. Therefore, we
conclude that the variance extrapolation for electromagnetic observables is less robust and
accurate than the simple threshold extrapolation. Since it is also computationally more
expensive, we restrict ourselves to using the threshold extrapolation for observables other
than energies.
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6. Lanczos Strength Functions from the
IT-NCSM

We present a new approach for the ab initio description of collective excitations and
nuclear response functions. We combine the IT-NCSM with the Lanczos strength-func-
tion method proposed by Whitehead [Whi80] for the efficient computation of transition
strengths and their distributions. This enables direct ab initio calculations of all relevant
strength distributions for all nuclei that are feasible in the IT-NCSM. The method is
based on the Lanczos algorithm [Lan50; Pai71] in its simplest form. We first introduce
the Lanczos algorithm in exact arithmetic. Since practical calculations are carried out
with finite precision, we further discuss effects of round-off errors on the performance of
the algorithm. We then present the Lanczos strength-function method, which emerges
from the Lanczos method by choosing a specific start vector and allows for the efficient
computation of strength distributions in the IT-NCSM. Finally, we apply this new approach
to electromagnetic strength distributions and investigate their convergence behavior.

6.1. The Simple Lanczos Algorithm

The Lanczos algorithm is an iterative method for the computation of extreme eigenpairs
of a Hermitian matrix A. It transforms the matrix A into tridiagonal form, making a
subsequent diagonalization an easy task using standard diagonalization techniques, e.g.,
the QR algorithm. The Lanczos algorithm [Lan50] was originally introduced in 1950
as a method for the solution of the eigenvalue problem of a d× d symmetric matrix A
via the construction of a convergent expansion for the eigenvectors, yielding the exact
eigenvectors after at most d iterations. At that time, however, the common perception was
that this method could be used for the reduction of a whole matrix to tridiagonal form. This
is, in practice, hampered by effects of finite precision arithmetic unless computationally
demanding modifications are incorporated. Later, C. C. Paige demonstrated that the
algorithm in its simplest form can be used for the efficient calculation of a few extreme
eigenpairs of a symmetric matrix, despite its sensitivity to round-off errors [Pai71].

We present two approaches to the algorithm in the ideal case of exact arithmetic and
discuss how the results are affected by finite precision arithmetic afterward. Note that we
are interested in diagonalizing Hamilton matrices, which are real Hermitian and, thus,
real symmetric. In the overview of the formalism, we restrict the notation to the relevant
case of real symmetric matrices. We remark, however, that generalizations of the Lanczos
algorithm to complex and non-Hermitian matrices exist [Saa11].
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6. Lanczos Strength Functions from the IT-NCSM

Approach via Krylov Spaces

Formally, the simple Lanczos algorithm is based on orthogonal projections onto Krylov
spaces K [Pai71; Par98; Saa11]. Here, we give a brief outline to motivate why the Lanczos
algorithm transforms a symmetric d× d matrix A into tridiagonal form. For more details
on projection methods and Krylov spaces, we refer the reader to the literature, e.g., [Par98;
Saa11].

The Krylov space Kp can be constructed recursively by repeated multiplication of the
matrix A with a d-dimensional start vector~k, i.e., it is spanned by the basis vectors Kp =

(~k, A~k, . . . , Ap−1~k) written in matrix representation, where each column corresponds to one
basis vector. By applying the Gram-Schmidt orthonormalization procedure to the columns
of the Krylov matrix Kp in natural order, an orthonormal basis Vp = (~v1,~v2, . . . ,~vp) of Kp,
which we denote Lanczos basis in the following, is obtained. We assume that the matrix
Kp has full rank p ≤ d, i.e., its p basis vectors are linearly independent. In this case, the
matrix A can be transformed into tridiagonal form via

VT
p AVp = Tp. (6.1)

This becomes evident from the following considerations [Par98]: A characteristic property
of Krylov spaces, rooted in their recursive setup, is AKj ⊆ Kj+1 for all j ≤ p. In particular,
~vi⊥Ki−1 and A~vj ∈ Kj+1. By combining this with the symmetry of A, we conclude that
~vT

i A~vj = ~vT
j A~vi = 0 for all i > j + 1. This demonstrates that Tp must have tridiagonal

form. Furthermore, if Kp has full rank and j < p, then A~vj and ~vj+1 cannot be orthogonal,
i.e., ~vT

j+1A~vj 6= 0.

Instead of orthonormalizing a given set of p Krylov vectors, it is more efficient to embed
the construction of the Lanczos basis into an iterative scheme. At iteration step j, the
Lanczos algorithm can be summarized by the two equations:

AVj −VjTj = ~vj+1β j~eT
j , (6.2a)

VT
j Vj = 1. (6.2b)

Here, we have introduced β j = ~vT
j+1A~vj and added the subscript j to indicate the current

number of Lanczos vectors and the dimension of the matrix Tj. The vector ~ej is a unit
vector with entry 1 at position j, and 1 is the identity matrix. Due to the symmetry of
A, a newly generated Lanczos vector has to be orthonormalized only against the two
preceding ones.

Since the columns of Vp are orthonormal, the transformation (6.1) resembles a simi-
larity transformation, and, thus, the diagonalization of Tp yields approximations for the
eigenpairs of A, which become the exact ones for p = d.
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6.1. The Simple Lanczos Algorithm

Approach via Matrix Reduction to Tridiagonal Form

It is evident from the above discussion that, after p iterative steps, the Lanczos method
yields a tridiagonal matrix

Tp =


α1 β1
β1 α2 β2

. . . . . . . . .
βp−1

βp−1 αp

 (6.3)

starting from a symmetric d× d matrix A. Therefore, the method can be translated into an
iterative algorithm for the matrix reduction of a symmetric matrix to tridiagonal form via
the three-term recurrence:

~vj+1 = (A~vj − β j−1~vj−1 − αj~vj)/β j. (6.4)

Here, we have defined

αj = ~vT
j A~vj, (6.5a)

β j = ‖A~vj − β j−1~vj−1 − αj~vj‖. (6.5b)

There are several equivalent formulations of the algorithm in accordance with this recur-
rence. We employ the version denoted by “A2” in [Pai71], which has been found to be the
most reliable because it best maintains orthogonality of consecutive Lanczos vectors ~vj in
finite precision. An outline of the algorithm is:

Start: Choose ~v1 with ||~v1|| = 1,
set β0 = 0, ~v0 =~0.

Iterate: For j = 1, 2, ..., p, do:

~wj ← A~vj − β j−1~vj−1

αj ← ~wT
j ~vj

~wj ← ~wj − αj~vj

β j ← ||~wj||

~vj+1 ← ~wj/β j

The algorithm requires as input a symmetric matrix A, a non-zero, normalized pivot vector
~v1, and the number of iterations p. Note that, in general,~v1 can be chosen arbitrarily. It may,
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6. Lanczos Strength Functions from the IT-NCSM

however, be convenient to choose the pivot vector to embody any available knowledge
about the target eigenvectors. In each iteration, the matrix elements αj and β j of the
tridiagonal matrix Tp are computed. Since the Lanczos vectors are not needed if we are not
interested in the approximate eigenvectors of A, only the two most recent Lanczos vectors
and the temporary vector ~wj have to be kept in storage. The algorithm is particularly
suited for large sparse matrices because the matrix A appears only once per iteration step
in a matrix-vector multiplication, where one can take advantage of the sparsity. All other
operations involve only simple vector arithmetic.

Besides its simplicity and memory efficiency, the Lanczos algorithm generates a tridi-
agonal matrix Tp whose extreme eigenvalues converge rapidly with p to the extreme
eigenvalues of A. If the approximate eigenvectors of A are needed, also the storage of the
Lanczos vectors is required. The former are obtained from the eigenvectors of Tp, repre-
sented in the Lanczos basis, by transformation into the original basis using the unitary
matrix Vp, where each column corresponds to a Lanczos vector.

Orthogonality Loss of the Lanczos Basis

In practice, calculations are carried out with finite precision, and the results are affected by
round-off errors. The simple Lanczos algorithm, thus, yields in each iteration the matrix
elements αj and β j and a new Lanczos vector ~vj+1, which carry some error. Eventually,
this results in a loss of orthogonality among the Lanczos vectors, manifesting itself in the
appearance of degeneracies in the eigenvalue spectrum of Tp. We note that the matrix
VT

p AVp is not tridiagonal when round-off errors are present. However, the algorithm still
computes a tridiagonal matrix Tp, which is not the projection of A onto the Krylov space,
and, thus, the matrix Tp is not guaranteed to be similar to A for p = d.

C. C. Paige has proven a close relationship between the loss of orthogonality in the Lanc-
zos basis and the convergence of an approximate eigenpair [Pai71]. He demonstrated that
a new Lanczos vector remains almost orthogonal to all approximate eigenvectors that are
not yet fully converged, but that orthogonality is lost with those approximate eigenvectors
whose corresponding approximate eigenvalues have converged to an exact eigenvalue of
A. Consequently, the simple Lanczos algorithm provides accurate approximations of the
eigenvalues of A.

Nevertheless, the loss of orthogonality was commonly interpreted as a severe drawback
of the Lanczos method. Therefore, full Gram-Schmidt reorthogonalization procedures
were typically incorporated into the algorithm. This represents a straight-forward, but
computationally expensive cure to this issue, because the complete Lanczos basis needs to
be kept in store.

Many cheaper reorthogonalization schemes were proposed in the following years,
e.g., the Lanczos algorithm with selective or partial reorthogonalization, see, e.g., [PS79;
Sim84]. In contrast, Cullum and Willoughby [CW81] advocated to use the simple Lanczos
algorithm without any reorthogonalization technique to obtain a required number of
distinct eigenvalues by increasing the number of iterations—in many cases, the number
of iterations significantly exceeds the dimensionality of the problem. We note that, in
general applications, it may be difficult to distinguish between situations where several
close eigenvalues correspond to degenerate exact eigenvalues of A or to copies of one
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Figure 6.1.: Convergence behavior of the lowest 15 energy eigenvalues in the Lanczos
algorithm with full reorthogonalization (Full RO) and without reorthogonal-
ization (No RO). The Hamilton matrix has been calculated in the NCSM with
HO basis for 12C using the EM interaction, SRG-evolved up to α = 0.08 fm4 in
the two-body space, for Nmax = 4 and h̄Ω = 20 MeV. The gray lines denote
the exact eigenvalues.
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6. Lanczos Strength Functions from the IT-NCSM

eigenvalue due to orthogonality loss. Nowadays, the trend is to use restarted methods for
matrix diagonalizations, e.g., the implicitly restarted Arnoldi algorithm [LSY98].

More details on effects of finite-precision arithmetic in the Lanczos algorithm can be
found in [Pai71; Par98; Meu06].

Figure 6.1 illustrates the convergence behavior of the low-lying part of the eigenvalue
spectrum of a symmetric matrix calculated using the Lanczos algorithm with full and
without reorthogonalization of the Lanczos basis. The matrix is the Hamilton matrix of
12C calculated in the NCSM with HO basis using the EM interaction, SRG-evolved up to
α = 0.08 fm4 in the two-body space, for Nmax = 4 and h̄Ω = 20 MeV.

The upper panel of figure 6.1 shows results for the 15 lowest energy eigenvalues obtained
with the Lanczos algorithm with full reorthogonalization of the Lanczos basis. As expected,
the extreme eigenvalues—here the ground state and the first few excited states—converge
fast to the exact values indicated by the gray lines. We find that the ground state is
determined to very good accuracy after less than 30 Lanczos iterations, and that the
excited states follow the same pattern but require more iterations. Note that it is possible
that the energies of some states first seem to converge to the energies of some higher-lying
states before collapsing on the exact energies, as observed, e.g., for the ground state.

The results displayed in the lower panel illustrate the convergence behavior of the
Lanczos algorithm when used in its simplest form. During the first iterative steps, the
convergence pattern is indistinguishable from the process where the orthogonality of
the Lanczos basis is enforced. However, at some point—after about 90 iterations—the
algorithm starts to produce copies of approximate eigenvalues that have been computed
previously. This becomes evident when eigenvalues collapse onto already existing lower
eigenvalues.

6.2. Lanczos Strength-Function Method

The Lanczos strength-function method, proposed by R. R. Whitehead [Whi80], allows the
construction of fast-converging approximations of transition strength distributions for
any observable using the Lanczos algorithm in its simplest form. This method has been
used successfully for the calculation of electromagnetic or weak responses in the VSSM
for some time [Cau+05; CPZ90; EHV92; Cau+94; CPZ95; GDJ00; SJ03; HNZ05; Loe+12;
SMY18].

We follow a similar approach and present a new method for the ab initio description
of the nuclear response by combining the IT-NCSM with the Lanczos strength-function
method [SWR17]. The calculation involves two steps: First, we solve the eigenvalue
problem of the Hamiltonian using the IT-NCSM within a certain many-body model space.
One of the eigenstates—typically the ground state |Ψ0〉—serves as input for the next step
of the calculation.

We note that, unlike in section 6.1, where we have used the matrix-vector formalism as
a natural way to describe the Lanczos algorithm, we use the more general Dirac notation
in the following for convenience. Since practical applications are always restricted to finite
basis representations, both notations are equivalent.

We construct a normalized pivot vector |v1〉 by applying the transition operator OOOλ, e.g.,
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6.2. Lanczos Strength-Function Method

an electromagnetic multipole operator of type σ (electric or magnetic) with multipolarity λ
and projection µ (suppressed for brevity in the following), to the ground-state eigenvector
|Ψ0〉 obtained in the first step:

|v1〉 =
1√
S

OOOλ |Ψ0〉 . (6.6)

The normalization factor

S = 〈Ψ0|OOO†
λOOOλ|Ψ0〉 (6.7)

corresponds to the total transition strength from the ground state |Ψ0〉 to any excited state.
This is seen explicitly by inserting a completeness relation in between the two operators:

S = ∑
n
〈Ψ0|OOO†

λ|Ψn〉 〈Ψn|OOOλ|Ψ0〉

= ∑
n
| 〈Ψn|OOOλ|Ψ0〉 |2. (6.8)

Starting from |v1〉, we use the simple Lanczos algorithm with the Hamiltonian to reduce
the Hamilton matrix to tridiagonal form in p iterations. By diagonalizing this tridiagonal
matrix Tp, we obtain its eigenvalues En and the coefficients c(n)j , which define its eigen-
vectors |En〉. The latter represent approximations for p eigenstates of the Hamiltonian
via

|En〉 =
p

∑
j=1

c(n)j |vj〉 . (6.9)

In standard applications, we would continue the iterations until the eigenvalues and
eigenstates of interest are converged.

For evaluating transition strengths, the first coefficient in each eigenvector of the matrix
Tp plays an important role. Due to the special definition of |v1〉 in (6.6), we obtain

c(n)1 = 〈En|v1〉

=
1√
S
〈En|OOOλ|Ψ0〉 . (6.10)

We can thus calculate the transition matrix element 〈En|OOOλ|Ψ0〉 from the coefficients
c(n)1 —a product of the simple Lanczos algorithm—and the total strength S of the pivot
state.

We are mainly interested in distributions of reduced transition strengths

R(E∗; σλ) = ∑
n
| 〈En||OOOλ||Ψ0〉 |2 δ(E∗ − (En − E0)), (6.11)

where the reduced transition matrix element 〈En||OOOλ||Ψ0〉 needs to be computed from
〈En|OOOλ|Ψ0〉 using the Wigner-Eckart theorem. In this thesis, we only consider transitions
between a J0 = 0 ground state |Ψ0〉 and the Lanczos approximation for an excited state
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Figure 6.2.: Convergence of discrete isoscalar E2 strength distributions with the number
of Lanczos vectors (LV) for 16O obtained in the NCSM with HO basis, using
the EM interaction, SRG-evolved in two-body space up to α = 0.08 fm4. The
oscillator frequency is h̄Ω = 20 MeV, the center-of-mass control parameter is
β = 1, and the model space is truncated at Nmax = 4. The Lanczos basis has
been fully reorthogonalized.

|En〉, for which then follows Jn = λ. The reduced transition matrix element is simply
given by

〈En||OOOλ||Ψ0〉 =
√
(2λ + 1)S c(n)1 . (6.12)

The fact that we obtain a discrete excitation spectrum results from the use of a bound-
state method, the IT-NCSM. The coupling to the continuum and the resulting escape
width are not captured, however, all correlation effects are explicitly taken into account.
In practical applications, we are often interested in smoothed-out distributions, lending
themselves to an easy comparison with experimental data. Therefore, we mainly discuss
continuous strength functions obtained by folding R(E∗; σλ) with a Lorentzian:

R̃(E∗; σλ) = ∑
n

Γ
π

| 〈En||OOOλ||Ψ0〉 |2(
E∗ − (En − E0)

)2
+ Γ2

. (6.13)
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Figure 6.3.: Convergence of smoothed-out isoscalar E2 strength distributions with the
number of Lanczos vectors LV = {50 ( ), 200 ( ), 400 ( ), and 1000 ( )}
for 16O obtained in the NCSM with HO basis, using the EM interaction, SRG-
evolved in two-body space up to α = 0.08 fm4. The oscillator frequency
is h̄Ω = 20 MeV, the center-of-mass control parameter is β = 1, and the
model space is truncated at Nmax = 4. The Lanczos basis has been fully
reorthogonalized.

The parameter Γ denotes the width of the Lorentzian function, which we choose Γ = 1 MeV
if not stated otherwise. Since a clear distinction between discrete and convolved strength
functions is always possible from the context, both variants are denoted by R(E∗; σλ) in
the following.

Figures 6.2 and 6.3 illustrate the convergence behavior of discrete and smoothed-out
strength functions with the number of Lanczos iterations. As a test case, we consider
isoscalar E2 strength distributions of 16O. The strength functions are obtained in the
NCSM with an HO basis, using the EM interaction, SRG-evolved up to α = 0.08 fm4 in
two-body space, for a model space truncated at Nmax = 4. The strength functions have
been obtained with the Lanczos strength-function method with full reorthogonalization.
We observe fast convergence of the discrete strength functions with the number of Lanczos
iterations, as shown in figure 6.2. Note that convergence takes place gradually, as expected
from the Lanczos algorithm, with individual transition strengths to low-lying excited
states converging first. The overall shape of the strength distribution—particularly in
the relevant energy region up to 60 MeV—is evident already for a few hundred Lanczos
iterations. No obvious changes in the discrete strength distributions obtained after 800
and 1000 Lanczos iterations are visible to the naked eye. For smoothed-out strength
functions, the convergence behavior is even more remarkable. Figure 6.3 shows the
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Figure 6.4.: Discrete and smoothed-out isoscalar E2 strength distributions for 16O obtained
in the NCSM with HO basis, using the EM interaction, SRG-evolved in two-
body space up to α = 0.08 fm4. The oscillator frequency is h̄Ω = 20 MeV, the
center-of-mass control parameter is β = 1, and the model space is truncated at
Nmax = 4. Panels (a) and (b) contrast the discrete strength functions obtained
by using the Lanczos algorithm with full and without reorthogonalization of
the Lanczos basis. Panel (c) shows the corresponding smoothed-out strength
functions (( ) and ( ), respectively).
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strength functions of figure 6.2 for 50, 200, 400, and 1000 Lanczos iterations, convolved
with a Lorentzian of width 1 MeV. The strength distributions are all on top of each other,
with negligible deviations only for the one obtained after 50 Lanczos iterations. We
conclude that a few hundred Lanczos iterations are generally sufficient to fully converge
the strength functions.

This underlines the efficiency of the calculation of strength distributions using the
IT-NCSM in combination with the Lanczos strength-function method. Generally, if the IT-
NCSM calculation for the ground state is feasible, then we can also compute the strength
distribution. Since we work with the simplest possible version of the Lanczos algorithm,
where only three Lanczos vectors need to be stored, memory requirements are no limiting
factor.

As already discussed in the previous section, a disadvantage of the simple Lanczos
algorithm is the loss of orthogonality of the Lanczos basis due to round-off errors for
finite precision. However, the resulting duplicates in the energy spectrum do not affect
the strength distributions, as (6.11) implies a summation of strength corresponding to
the same energy. Figure 6.4 shows that discrete and smoothed-out strength functions for
the test case obtained with full and without reorthogonalization of the Lanczos basis are
identical. The summation of strength to the same energy is indicated in panel (b), where
the plot markers represent the individual contributions.

6.3. Model-Space Convergence of Strength Distributions

We study the robustness of the isoscalar electric monopole (E0), isovector electric dipole
(E1), and isoscalar electric quadrupole (E2) strength distributions of 16O and 24O obtained
in the IT-NCSM by varying the different model-space parameters and truncations. All
strength functions are completely converged with respect to the size of the Lanczos basis.
Throughout this thesis, we show results obtained for at least 400 Lanczos iterations.

For the following benchmark, we use the SRG-evolved EMN400 interaction with α =
0.08 fm4 in NO2B approximation if not stated otherwise. We always employ the HF basis
for the calculation of strength functions because of the superior convergence and reduced
frequency dependence. We demonstrate this in a direct comparison of the convergence
of energy eigenvalues for selected states and strength functions for the IT-NCSM with
HF and HO basis. Furthermore, we use a standard set of model-space parameters and
truncations, which we vary one by one. The single-particle basis is truncated at emax =
12 with an additional cut on the orbital angular momentum lmax = 10. We use the
importance-truncation scheme with reference threshold Cmin = 2 · 10−4 and default
importance threshold κmin = 3 · 10−5. The model space is truncated at Nmax = 8 and
Nmax = 9 for natural- and unnatural-parity states, respectively. The oscillator frequency is
h̄Ω = 20 MeV, and the center-of-mass control parameter is β = 0.5.

Note that we restrict the following discussion to the study of the model-space conver-
gence and refer the reader to chapter 8 for applications.
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Figure 6.5.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 16O and 24O for
the importance thresholds κmin = {3 · 10−5( ), 4 · 10−5( ), 5 · 10−5( )}.
See text for more details.

Importance Threshold

Since most applications in this thesis rely on the use of the importance-truncation scheme
in the NCSM, we investigate the dependence of strength functions on the importance
threshold. Figure 6.5 shows isoscalar E0, isovector E1, and isoscalar E2 strength functions
of 16O and 24O for the importance thresholds κmin = 3 · 10−5, 4 · 10−5, and 5 · 10−5. The
overall dependence of the strength functions on the importance threshold is small. In all
cases, the variation of the importance threshold does not affect the shape of the strength
distributions, it merely shifts the peaks to slightly lower excitation energies for smaller val-
ues of κmin. In particular for 16O and the energy region below 25 MeV in 24O, the strength
functions are remarkably stable. We conclude that the importance truncation has only
minor effects on the strength distributions, which are less significant than the dependence
on the other model-space parameters and truncations as shown below. Consequently,
there is no need for an extrapolation of the strength functions to vanishing importance
threshold.

Model-Space Truncation Nmax

We study the convergence of isoscalar E0, isovector E1, and isoscalar E2 strength functions
of 16O and 24O as a function of the model-space truncation Nmax. Since we employ an
HF single-particle basis and a Hamiltonian in NO2B approximation, both breaking the
translational invariance in the many-body basis, we expect the strength functions and their
convergence behavior to depend on the center-of-mass control parameter β. Therefore,
we compare the convergence of the strength functions for β = 0, where center-of-mass
contaminations are not considered, and for β = 0.5, which we use as default parameter,
in figures 6.6 and 6.7. For 16O, we find that already for moderate model-space sizes,
the results are remarkably stable, both, for the prominent giant resonance features and
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Figure 6.6.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 16O and 24O
for the model-space truncations Nmax = {4/5( ), 6/7( ), 8/9( )}. The
center-of-mass control parameter is β = 0. See text for more details.
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Figure 6.7.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 16O and 24O
for the model-space truncations Nmax = {4/5( ), 6/7( ), 8/9( )}. The
center-of-mass control parameter is β = 0.5. See text for more details.
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Figure 6.8.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 16O and 24O
for the frequencies h̄Ω = 20 MeV( ) and h̄Ω = 24 MeV( ). See text for
more details.

for the smaller structures. The largest systematic dependence on Nmax appears for the
isovector E1 transitions that connect the Jπ = 0+ ground state to 1− unnatural-parity
states, which are known to exhibit slowly converging excitation energies in the IT-NCSM.
The low-lying strength around 7-8 MeV in the isoscalar E0 and E2 strength distributions
is due to center-of-mass contaminations and vanishes if a Lawson-type center-of-mass
term βHHHcm is added, as discussed in chapter 4 and shown in figure 6.7. However, the
center-of-mass Hamiltonian induces a small dependence of the strength functions on
Nmax, and, thus, affects the convergence behavior observed in figure 6.6. In practice, we
choose small values for β as a compromise between the removal of strength resulting
from center-of-mass contaminated states and the favorable convergence with respect
to Nmax observed for β = 0. Both, the dependence on Nmax as well as on β, are more
pronounced in the strength functions of 24O. Also here, the isoscalar E0 and E2 strength
around 17 MeV and the isovector E1 strength below 10 MeV found in figure 6.6 disappear
for β = 0.5. Furthermore, the strength functions vary in magnitude for the two values of
β, in particular for the isoscalar E2 strength.

We note that no dependence on β is expected for strength functions calculated in
the (IT-)NCSM with HO basis because it allows for an (almost) exact factorization of
intrinsic and center-of-mass components, providing a possibility to remove center-of-mass
contaminations.

Frequency Dependence

For sufficiently large model spaces, the results are expected to be independent of the
HO frequency h̄Ω. We investigate the dependence of the isoscalar E0, isovector E1, and
isoscalar E2 strength functions, calculated in the IT-NCSM using an HF basis, on h̄Ω as a
further indicator of model-space convergence. In figure 6.8, we compare strength functions
of 16O and 24O obtained for h̄Ω = 20 MeV and 24 MeV. We observe a shift of strength in

60



6.3. Model-Space Convergence of Strength Distributions

0.5

1.0
16O

isoscalar E0

0.2

0.4

0.6

isovector E1

2

4

6

isoscalar E2

0 10 20 30 40 50 60
E∗ [MeV]

0.5

1.0

1.5

2.0 24O

0 10 20 30 40 50 60
E∗ [MeV]

0.2

0.4

0.6

0 10 20 30 40 50 60
E∗ [MeV]

5

10

15

R
(E

0)
[e

2 fm
4 M

eV
−1

]

R
(E

1)
[e

2 fm
2 M

eV
−1

]

R
(E

2)
[e

2 fm
4 M

eV
−1

]

Figure 6.9.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 16O and
24O for the single-particle basis truncations emax = 12, lmax = 10 ( ) and
emax = 10 ( ). See text for more details.

the strength distributions for the two frequencies, which is small for 16O and amounts
up to 5 MeV for 24O. Additionally, the strength is slightly increased for h̄Ω = 24 MeV.
We note that the low-lying part of the isoscalar E2 strength distributions represents an
exception as it remains stable for varying h̄Ω.

Single-Particle Truncation emax

Ideally, the strength functions should not depend on the truncations of the single-particle
basis. When using the HO basis, this is guaranteed provided that the maximum single-
particle energy emax is chosen sufficiently large such that this truncation is not resolved by
the Nmax truncation. However, we use the HF single-particle basis by default, which is
specific not only for any nucleus but also for any single-particle truncation. Therefore, we
assess the effect of different single-particle truncations in figure 6.9, where we compare
results for the isoscalar E0, isovector E1, and isoscalar E2 strength distributions of 16O
and 24O for single-particle bases truncated at emax = 12 with additional orbital angular
momentum cut lmax = 10 and emax = 10. The overall structure of the strength distributions
remains the same, with robust results in the case of 16O and small effects on the peak
positions for 24O. The strength functions obtained in the larger single-particle truncated
model space exhibit strength at slightly lower energies, consistent with an improved
convergence. We note that the dependence on emax is of similar magnitude as for the
variation of the frequency, as illustrated in figure 6.8.

We note that we should be able to remove all dependencies on h̄Ω, emax, and Nmax once
more computing power becomes available.
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Figure 6.10.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 16O and 24O
obtained in the IT-NCSM using the EMN400 interaction, SRG-evolved up to
α = 0.08 fm4 ( ) and α = 0.04 fm4 ( ). See text for more details.
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Figure 6.11.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 16O and 24O
obtained in the IT-NCSM using the N2LOsat interaction, SRG-evolved up to
α = 0.08 fm4 ( ) and α = 0.04 fm4 ( ). See text for more details.
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SRG Dependence

In order to enhance the convergence in the IT-NCSM, we use SRG-evolved Hamiltoni-
ans. Induced many-body forces are included consistently up to the three-body level,
contributions beyond that level are neglected. In order to assess their significance, we
study the dependence of the isoscalar E0, isovector E1, and isoscalar E2 strength functions
of 16O and 24O on the SRG flow parameter α for the EMN400 and N2LOsat interactions,
see figures 6.10 and 6.11, respectively. We find robust results for the flow parameters
α = 0.04 fm4 and α = 0.08 fm4. The isoscalar E0 and E2 strength functions are shifted to
slightly lower energies for α = 0.08 fm4, indicating an improved model-space convergence
behavior due to the softer Hamiltonian. Only the isovector E1 strengths are moved to
somewhat higher energies because of the different convergence rates of the unnatural-
parity states with respect to the natural-parity ground state. We note that the dependence
of the strength functions on the SRG flow parameter is of the same magnitude for both
interactions and comparable to the effects observed in the variation of the single-particle
basis truncation emax and the frequency h̄Ω, cf. figures 6.8 and 6.9.

Choice of Single-Particle Basis

In the following, we demonstrate that the convergence of strength distributions is en-
hanced when an HF single-particle basis is used instead of the HO single-particle basis.
Figures 6.12 and 6.13 display the Nmax convergence of strength functions of 16O obtained
in the IT-NCSM with HF and HO single-particle basis, respectively, using the SRG-evolved
EMN400 interaction for two frequencies. Note that the 3N interaction has been included
explicitly in the case of the IT-NCSM with HO basis, and the center-of-mass control pa-
rameter is set to β = 1. We have already seen in the previous discussion that the strength
distributions obtained in the IT-NCSM with HF single-particle basis are remarkably robust
with respect to variation of Nmax and h̄Ω. This is seen even more clearly in figure 6.12,
where each row shows the Nmax convergence of the strength functions for one of the
frequencies, allowing for a direct comparison of their shape and location. However, when
using the HO single-particle basis, the convergence of the strength functions with respect
to Nmax is significantly worse, see figure 6.13. Although the structure of the strength
distributions is already present for the smaller model spaces, their positions exhibit a
sizable dependence on the model-space truncation, in particular for the isoscalar E0 and
E2 transition strengths. Moreover, the results depend notably on h̄Ω.

As an outlook to possible future applications, we additionally show strength functions
obtained in the IT-NCSM with a natural-orbital single-particle basis in figure 6.14 employ-
ing the EMN400 interaction, SRG-evolved up to α = 0.08 fm4, in NO2B approximation.
The center-of-mass control parameter is chosen β = 0.5. Only recently, the IT-NCSM
has been extended to using this basis [Tic+18], which is generated from an HF basis by
including perturbative corrections for the one-body density matrix. First applications in
the conventional IT-NCSM have proven that this basis yields fast converging absolute
energies, similar to that obtained in the IT-NCSM with HO basis, but the frequency depen-
dence is completely removed. This behavior is also observed in the strength distributions:
The Nmax dependence of the strength functions resembles the one of figure 6.13, with
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Figure 6.12.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 16O obtained
in the IT-NCSM with HF basis for Nmax = {4/5( ), 6/7( ), 8/9( )}.
The two rows correspond to the frequencies h̄Ω = 20 MeV and h̄Ω = 24 MeV.
See text for more details.
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Figure 6.13.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 16O obtained
in the IT-NCSM with HO basis for Nmax = {4/5( ), 6/7( ), 8/9( )}
using the SRG-evolved EMN400 interaction with explicitly included 3N
interaction. The center-of-mass control parameter is β = 1. The two rows
correspond to the frequencies h̄Ω = 16 MeV and h̄Ω = 20 MeV. See text for
more details.
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Figure 6.14.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of
16O obtained in the IT-NCSM with natural-orbital basis for Nmax =
{4/5( ), 6/7( ), 8/9( )} using the SRG-evolved EMN400 interaction.
The center-of-mass control parameter is β = 0.5. The two rows correspond to
the frequencies h̄Ω = 20 MeV and h̄Ω = 24 MeV. See text for more details.

improved convergence in case of the isoscalar E0 and isovector E1 strength and slightly
worse convergence in case of the isoscalar E2 strength. However, the strength distributions
are located at the same energies for the two frequencies.

The convergence pattern of the strength functions obtained in the IT-NCSM with HF and
HO basis can be understood from the corresponding convergence of the excitation energies,
which are shown along with the absolute energies for the 0+ ground state and the lowest
1− and 2+ states in figures 6.15 and 6.16. In the IT-NCSM with HF basis, the absolute
energies of the ground state and the low-lying excited states decrease by a certain constant
value in each Nmax step and, thus, show no signs of convergence nor allow for a reliable
extrapolation to an infinite model space. This behavior is observed for the two frequencies
considered and is characteristic for the IT-NCSM with HF basis, where convergence
with respect to Nmax is only reached for Nmax large enough to resolve the limits on the
available matrix elements. However, this particular dependence of the absolute energies
on Nmax results in stable excitation energies, which are also approximately independent
of h̄Ω. Since the convergence behavior of the strength functions is driven primarily by
the convergence of the excitation energies, the HF basis represents an excellent choice for
the calculation of strength functions in the IT-NCSM. In contrast, the absolute energies of
the ground and low-lying excited states in the IT-NCSM with HO basis show improved
convergence, allowing for an Nmax extrapolation using exponential functions. However,
ground and excited states do not converge at the same rate, resulting in a significant
dependence of the excitation energies on Nmax and also on h̄Ω, manifesting itself in the
disadvantageous convergence pattern of the strength functions.
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Figure 6.15.: Nmax convergence of absolute and excitation energies of the 0+ ground state
and the first excited 1− and 2+ states in 16O obtained in the IT-NCSM with
HF basis. The columns correspond to the frequencies h̄Ω = 20 MeV ((a) and
(c)) and h̄Ω = 24 MeV ((b) and (d)). See text for more details.
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Figure 6.16.: Nmax convergence of absolute and excitation energies of the 0+ ground state
and the first excited 1− and 2+ states in 16O obtained in the IT-NCSM with
HO basis using the SRG-evolved EMN400 interaction with explicitly included
3N interaction. The columns correspond to the frequencies h̄Ω = 16 MeV ((a)
and (c)) and h̄Ω = 20 MeV ((b) and (d)), the center-of-mass control parameter
is β = 1. See text for more details.
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7. Applications of the IT-VSSM

Using the IT-VSSM with importance-threshold and energy-variance extrapolation, we
discuss spectra of several medium-mass nuclei. The effective valence-space interactions
employed are presented in section 7.1. In section 7.2, we benchmark the IT-VSSM by
comparing energies of ground and excited states of p f -shell nuclei to available results
from exact diagonalizations and the Monte-Carlo shell model (MCSM). Section 7.3 is
dedicated to a study of the performance of effective valence-space Hamiltonians derived
in the IM-SRG for single- and multi-shell valence spaces. These new developments offer
unique perspectives for detailed nuclear-structure investigations beyond the reach of the
conventional VSSM as they allow for the description of any open-shell medium-mass
nucleus in extended valence spaces based on chiral Hamiltonians, which are constrained
by few-body data only. Finally, we study the structure of neutron-deficient tin isotopes as a
first application of the IT-VSSM in a large-scale valence space, the gds shell, in conjunction
with these modern effective Hamiltonians. The importance-truncation scheme allows us
to obtain converged results. In contrast, previous VSSM calculations were restricted to
using phenomenological interactions and severe particle-hole truncations.

7.1. Effective Valence-Space Hamiltonians

The IT-VSSM requires effective Hamiltonians tailored to the specific valence spaces as
input. The ones we use are either of phenomenological origin—these allow for a bench-
mark of the IT-VSSM against available results—or are derived in the IM-SRG starting
from SRG-evolved chiral Hamiltonians. This section overviews the phenomenological
valence-space Hamiltonians used and how the IM-SRG can be adapted to produce such
effective Hamiltonians.

Traditionally, effective valence-space interactions are constructed using renormalized
NN interactions combined with phenomenological fits of matrix elements to nuclei within
the valence space [Cau+05; Cor+09; KB66; HKO95]. Though this phenomenological
approach allows for a rather accurate description, it lacks a rigorous connection to the
underlying nuclear interaction and does not provide a consistent framework for the
treatment of observables other than the energy.

Recently, a set of novel approaches to systematically derive valence-space Hamiltonians
and operators has been proposed [TBS12; Bog+14; Jan+14; Dik+15]. They offer new
insights into valence-space Hamiltonians and can be linked to ab initio calculations.

In the following, we provide an overview of the phenomenological valence-space
interactions we use in this thesis for benchmark purposes of the IT-VSSM. Then, we
outline the IM-SRG and how this ab initio approach can be used for the construction of
effective valence-space Hamiltonians.
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Phenomenological Interactions

For the description of some p f -shell nuclei in the IT-VSSM, we use the effective interaction
“GXPF1A” [Hon+05]. It has been derived from a realistic G-matrix interaction with core-
polarization corrections based on the Bonn-C potential [HKO95] by adjusting both, single-
particle and two-body matrix elements to energy data of a wide range of p f -shell nuclei
in a refined fitting procedure. The latter implies a successive variation of the interaction
parameters followed by the numerical solution of the nuclear eigenvalue problem, using
the most recent Hamiltonian resulting from the variation. These steps are repeated until
the total squared deviation of the calculated eigenvalues from the experimental set of
energy data is minimized. The GXPF1A interaction successfully reproduces spectra of
nuclei almost all over the entire p f shell, with difficulties only close to the borders of the
valence space. These nuclei require an extension of the valence space out of the p f shell.

Such an extension is realized in the “PFG9B3” interaction [Ots; Hon+], which is built
on the GXPF1A interaction with additional G-matrix elements describing the interaction
between the p f orbits and the g9⁄2 orbit. Additionally, the single-particle energy of the g9⁄2
orbit has been modified. This interaction has been used before for the description of 64Ge
in the MCSM [Shi+10; Shi+12].

Valence-Space Interactions from the In-Medium Similarity Renormalization Group

The IM-SRG [TBS11; Her+13; Her+16] is an ab initio approach for the calculation of nuclear
ground states, where the Hamiltonian is at the heart of the method. As the free-space SRG,
the IM-SRG is based on a flow equation (2.3), but, in contrast, is solved directly in the
A-body system of interest. To this aim, all operators are normal ordered with respect to a
given reference, e.g., the HF ground state. Then, a continuous unitary transformation is
performed for the normal-ordered nuclear many-body Hamiltonian that decouples the
reference state from all particle-hole excitations. Typically, the reference state becomes the
ground state once the Hamiltonian is fully evolved, and the ground-state energy of the
nucleus under consideration can be extracted. Note that the flow parameter in the IM-SRG
is typically denoted by s. In principle, the IM-SRG needs to be carried out in A-body space
because higher-order contributions appear as the commutator on the right-hand side of
(2.3) is evaluated. For practical purposes, the IM-SRG needs to be truncated at a given
rank of normal-ordered operators n ≤ A, presently at n = 2, and unitarity is therefore
formally violated. Induced many-body contributions are, however, taken into account
partly by the normal-ordered zero-, one-, and two-body terms.

In its basic formulation, the IM-SRG is restricted to the description of closed-shell nuclei
only. One possible, straight-forward extension is to generate non-empirical valence-space
Hamiltonians and operators, which can then be fed as input into subsequent VSSM
calculations [TBS11; TBS12; Bog+14; Str+16; Her+16; Str+17; Par+17; Her17], providing
access to energies of ground and excited states of both, open- and closed-shell nuclei,
as well as other observables, such as transitions. Here, the valence space is decoupled
simultaneously from the inert core and the excluded space. This is accomplished by
defining a reference state for the inert core and dividing the single-particle basis into hole,
valence, and non-valence states. Treating all nucleons, i.e., core and valence nucleons,
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as active degrees of freedom, we suppress all matrix elements that couple the reference
state to excitations, and, additionally, matrix elements that connect states consisting of the
reference state plus Aval particles in the valence space from states containing non-valence
states.

Since the nuclear Hamiltonian is, in the simplest formulation, a normal-ordered two-
body operator, effects of 3N forces between the valence nucleons are not taken into account.
They are, however, vital to obtain satisfactory agreement with experiment and ab initio
calculations that are performed directly for the nucleus under consideration. As a remedy,
targeted [Str+16] and ensemble [Str+17] normal-ordering techniques have been introduced.
Targeted normal ordering uses a reference state that is normal ordered with respect to
the nearest closed subshell, whereas ensemble normal ordering employs an ensemble
reference built from fractionally filled orbitals. In both cases, the IM-SRG decoupling is
carried out with respect to the specific reference state and the interaction is re-normal
ordered afterward with respect to the core for use in the (IT-)VSSM.

7.2. IT-VSSM Benchmark with Phenomenological Interactions

We aim to validate the IT-VSSM by comparing spectra of p f -shell nuclei at the limit of
routine VSSM calculations and beyond against results from exact diagonalizations and the
MCSM [Ots+01]. As a first test case, we consider 56Ni in a valence space comprising the p f
shell, using the GXPF1A Hamiltonian [SBR16]. The full m-scheme dimension amounts to
1.09 · 109 and is feasible in large-scale VSSM calculations. The same nucleus, valence space,
and Hamiltonian has been considered in [Hor+06], where the convergence of the first three
0+, 2+, 4+, and 6+ states has been studied as a function of the model-space truncation
parameter Tmax using exact diagonalizations carried out with the ANTOINE [Cau04;
CN99] and CMICHSM [HBZ03] codes. These results provide an excellent reference for
benchmarking the IT-VSSM. We note that the lowest excitation energies found in [Hor+06]
agree very well with experiment. This is not surprising because the fitting procedure in
the derivation of this Hamiltonian includes some states of 56Ni.

Figure 7.1 shows the absolute energies of the lowest six natural-parity states of 56Ni
relative to the 40Ca core for three reference thresholds Cmin as a function of the impor-
tance threshold κmin and the energy variance ∆E2. Note that the κmin axis is reversed.
Compared to typical excitation energies, which are of the order of 1 MeV, the κmin and
Cmin dependence—spanning typically about 100 keV—is very weak. Both, the threshold-
and variance-extrapolated energies, are in excellent agreement with results of the full
VSSM, where available. The second 0+ state, however, shows a quite distinct behavior. Its
dependence on κmin and Cmin is stronger than for all other states and the energy variances
are significantly larger. This indicates a particularly complicated structure, in this case
due to deformation, resulting in many small components in the basis expansion of the
eigenstate and, thus, a less accurate approximation in the IT model space. The simple
threshold extrapolation does not capture the contribution of all these small components
and cannot correct for the sizable Cmin dependence. The variance extrapolation, how-
ever, yields a reliable result—independent of Cmin—and even restores the correct level
ordering in excellent agreement with the full VSSM. This demonstrates that the variance
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Figure 7.1.: Threshold (a) and energy-variance (b) extrapolation of the energies of the six
lowest natural-parity states of 56Ni relative to the 40Ca core obtained in the
IT-VSSM for the reference thresholds Cmin = {1(l), 2(H), 3(�)} · 10−4. We use
the GXPF1A valence-space Hamiltonian for the p f shell and Tmax = 16. For
the threshold and variance extrapolations, polynomials of order three and two
have been employed, respectively. The horizontal lines denote the results of
the full model spaces extracted from [Hor+06].

extrapolation offers significant advantages, particularly for the description of these fragile
states.

Figure 7.2 summarizes the extrapolated energies for the lowest six natural-parity states
of 56Ni relative to the 40Ca core. The threshold-extrapolated results for a sequence of Tmax-
truncated calculations are shown in the main part of the plot, followed by the spectrum
obtained from the variance extrapolation for Tmax = 8 and the full VSSM result. Starting
from Tmax = 8, the spectrum is rather stable and in good agreement with the full VSSM
results, except for the second 0+ state discussed above. The energy-variance extrapolation
for Tmax = 8 yields excellent agreement with the full VSSM for all states.

A first application of the IT-VSSM in a valence space covering more than one major
shell was also published in [SBR16]. We consider a p f g9⁄2 valence space using the effective
PFG9B3 Hamiltonian and study 60Zn and 64Ge. The full m-scheme dimensions are 2.2 · 1013

and 1.7 · 1014, respectively. These extended model spaces are susceptible to center-of-mass
spuriosities. Therefore, we use the Lawson-type prescription to diagnose center-of-mass
contaminations, i.e., we use the Hamiltonian (4.6) in combination with (4.10) for the
solution of the eigenvalue problem. Particularly, 64Ge has been studied before in the
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Figure 7.2.: Natural-parity spectrum of 56Ni as a function of Tmax in terms of absolute
energies relative to the 40Ca core computed in the IT-VSSM with Cmin =
1 · 10−4 using the GXPF1A valence-space Hamiltonian for the p f shell. The
right-hand columns show the results of an energy-variance extrapolation (∆E2)
and the full VSSM energies extracted from [Hor+06].

MCSM using the same interaction [Shi+10; Shi+12]. The MCSM follows a different
approach to extend the conventional VSSM to larger model spaces. By generating a
deformed many-body basis in a refined stochastic-sampling procedure with subsequent
symmetry restoration, extremely reduced basis dimensions—of the order of ten to 100—
are sufficient to obtain good approximations of the exact energy eigenvalues. Recently, a
study using the density-matrix renormalization group with the VSSM targeted the same
nucleus and valence space [Leg+15]. These competing approaches highlight the difficulty
of these calculations.

Figure 7.3 shows the absolute energies of the few lowest states of 60Zn and 64Ge relative
to the 40Ca core as a function of the importance threshold and the energy variance as well
as the respective extrapolations, for which we employ polynomials of order three and two.
The results for the κmin and ∆E2 sequences are obtained in IT-VSSM calculations using the
reference threshold Cmin = 2 · 10−4 and truncations Tmax = 10 and Tmax = 6, respectively.
The first excited state of 64Ge exhibits an ill-behaved dependence on the energy variance
and is not shown. The dependence of the energies on the importance threshold and
the energy variance is very smooth for 60Zn, and the extrapolations yield similar results.
However, for 64Ge, we observe a distinct bending toward lower energies around κmin =
4 · 10−5 for the two states considered, indicating that basis states contributing with small
absolute amplitudes to the basis expansion of the eigenstates significantly affect the
energies. Evidently, a variation of the polynomial degree—we show extrapolations using
polynomials of order two and three here—or the omission of selected data points (not
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Figure 7.3.: Threshold ((a) and (c)) and energy-variance ((b) and (d)) extrapolation of the
energies of the lowest natural-parity states of 60Zn and 64Ge relative to the
40Ca core obtained in the IT-VSSM with Cmin = 2 · 10−4. We use the PFG9B3
Hamiltonian for the p f g9⁄2 valence space. The results in panels (a) and (c)
have been determined for Tmax = 10, and the results in panels (b) and (d) for
Tmax = 6. For the threshold extrapolations, polynomials of order two and
three have been employed, while a polynomial of order two has been used
for the variance extrapolation. For 64Ge, the energy-variance extrapolation is
shown for the ground state only.

74



7.2. IT-VSSM Benchmark with Phenomenological Interactions

2 4 6 8 10
Tmax

−256

−255

−254

−253

−252

−251

−250

E
[M

eV
]

0+

4+

2+

∆
E

260Zn

2 4 6 8 10
Tmax

−307

−306

−305

−304

−303

−302

−301

−300

−299

−298

0+

2+

∆
E

2

M
C

SM

64Ge

Figure 7.4.: Energies of the lowest natural-parity states of 60Zn and 64Ge relative to the
40Ca core computed in the IT-VSSM with Cmin = 2 · 10−4 using the PFG9B3
valence-space Hamiltonian as a function of Tmax. The right-hand columns
show the results from the energy-variance extrapolation (∆E2) of the Tmax = 6
results. The dashed bar shows an approximation for the energy of the 2+ state
calculated from the excitation energy obtained in the IT-VSSM for Tmax = 10
and the ∆E2-extrapolated ground-state energy. For 64Ge, the MCSM results
[Shi+10; Shi+12] are shown for comparison.

shown) would notably impact the threshold extrapolation and its uncertainties. The
variance extrapolation for the ground state yields an energy of about 0.5 MeV lower than
the threshold-extrapolated result, due to effects of the Cmin and Tmax truncations not
captured in the threshold extrapolation.

The absolute energies of the lowest states in 60Zn and 64Ge extracted from the above
threshold extrapolation for a sequence of Tmax-truncated spaces and from the energy-
variance extrapolation for Tmax = 6 are summarized in figure 7.4. Whereas the spectra
seem converged at Tmax = 8 for 60Zn and agree well with the variance-extrapolated
results, there is still some dependence on Tmax for 64Ge. The variance extrapolation
efficiently corrects for the missing 0.5 MeV in the ground-state energy obtained in the
simple threshold extrapolation, yielding agreement with the MCSM result. The dashed
bar indicates an approximation for the energy of the first excited state in 64Ge, determined
from the variance-extrapolated result for the ground-state energy and the threshold-
extrapolated excitation energy for Tmax = 10. The sensitivity of the threshold-extrapo-
lated energies on the various truncations, i.e., Cmin, κmin, and Tmax, is due to the strong
deformation of 64Ge, whose description requires many small components in the basis
expansion. The variance extrapolation captures these subtle effects and yields excellent
agreement with the MCSM results, where the very small remaining deviation is due to the
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treatment of center-of-mass contaminations, not taken into account in the MCSM.
These applications demonstrate the robustness of the IT-VSSM and its ability to deal

with extremely large valence spaces.

7.3. Benchmark of Valence-Space Interactions from the IM-SRG

Based on the reliability of the IT-VSSM for the description of nuclei in large-scale valence
spaces, we study effective valence-space Hamiltonians derived in the IM-SRG. Alternative
approaches to derive effective valence-space Hamiltonians in an ab initio framework, e.g.,
within the CC method, have been proposed recently [Jan+14; Jan+16; Dik+15]. In a first
step, we employ an sd-shell valence space and demonstrate the robustness of the IM-SRG
approach to valence spaces comprising a single major HO shell. Then, we illustrate
problems arising for multi-shell valence spaces.

We note that, up to now, all energies calculated in the IT-VSSM were determined using
phenomenological valence-space Hamiltonians, which are adjusted to experimental data
of the nuclei they are built to describe, and are given relative to the core. In contrast, the
IM-SRG computes the valence-space Hamiltonian from a realistic nucleonic potential that
is fitted to few-body data only. It also provides the core energy, allowing for the calculation
of energies without need for empirical adjustments.

Single-Shell Valence Spaces

In a first step, we benchmark effective valence-space Hamiltonians from the IM-SRG
in a single HO major shell. Such valence spaces and Hamiltonians have already been
used successfully to calculate spectra of light and medium-mass nuclei, and the results
agreed well with those from the NCSM and other many-body methods, the VSSM using
established phenomenological Hamiltonians, and experiment [TBS12; Bog+14; Str+16;
Str+17]. By monitoring the eigenstates as a function of the IM-SRG flow parameter
and comparing to exact calculations, where all nucleons are treated as active degrees of
freedom, we validate the decoupling of the valence space from the core and excluded
space. As a test case, we consider 18O in a valence space comprising the orbits of the sd
shell. The effective valence-space Hamiltonian is calculated in the IM-SRG using the White
generator [TBS11; Whi02; Her+16] from the free-space SRG-evolved EMN400 interaction
with flow parameter α = 0.08 fm4 [VR16].

As a first indicator of the robustness of the IM-SRG flow, we show the 16O core energy
for the effective valence-space Hamiltonian for A = 18 nuclei in the sd shell in figure 7.5.
The core energy corresponds to the expectation value of the A-dependent IM-SRG-evolved
Hamiltonian with respect to the Slater determinant of the core. It is typically different
from the ground-state energy of the core nucleus because the intrinsic kinetic energy in
the initial Hamiltonian is adjusted to the particle number of the target nucleus. The core
energy displayed in figure 7.5 exhibits a fast and monotonous convergence behavior as a
function of the IM-SRG flow parameter s, and the results are stable from s ≈ 0.1 on.

The left column of figure 7.6 shows the absolute and excitation energies of the lowest six
natural-parity states of 18O obtained in the VSSM using this effective sd-shell Hamiltonian.
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Figure 7.5.: Energy of the 16O core of an sd-shell valence-space Hamiltonian for A = 18
nuclei obtained in the IM-SRG with the White generator as a function of
the flow parameter s. The initial Hamiltonian uses the EMN400 interaction,
SRG-evolved up to α = 0.08 fm4.

As for the core energy, we observe stable results for all states for IM-SRG flow parameters
s & 0.1. The convergence pattern of the absolute energies with respect to s is similar to
that of the core energy. The middle and right columns illustrate the respective energies
obtained in the IT-NCSM using the same IM-SRG-evolved Hamiltonian in emax = 2 and
emax = 3 model spaces. We have used Cmin = 2 · 10−4 and have ensured that all energies
are converged with respect to Nmax. Note that we show the dependence of the IT-NCSM
results on the IM-SRG flow parameter only for the calculations in the emax = 2 model
space, and limit the results in the emax = 3 model space to the results for s = 0.21.

The comparison of the VSSM results to these calculations allows for a direct validation of
the decoupling of the valence space from the core and excluded space. Figure 7.7 sketches
the matrix representation in an ideal situation, where the matrix elements coupling the
core, valence, and excluded space vanish. The IT-NCSM model space for emax = 2 just
comprises all core and valence orbits but treats all nucleons as active degrees of freedom.
Thus, a comparison of these results against those obtained in the VSSM provides a direct
test of the decoupling of the valence space from the core. Including higher orbits in the
IT-NCSM model space additionally probes the decoupling of the valence space from the
excluded space. We observe a very similar convergence behavior of both, absolute and
excitation energies obtained in the VSSM and IT-NCSM in the emax = 2 model space, as a
function of s. A slight difference is visible for small values of s, where, e.g., the absolute
energies obtained in the IT-NCSM are about 5 MeV lower than in the VSSM, reflecting
the larger IT-NCSM model space, where the nucleons are not subject to restrictions on
particle-hole excitations. The results are, furthermore, in excellent agreement with those
obtained in the larger IT-NCSM model space. Since the flow-parameter dependence is very
similar, we only show the spectrum for the largest value of s. Altogether, we conclude that

77



7. Applications of the IT-VSSM

−140

−130

−120

−110

E
[M

eV
]

18O

VSSM
sd shell

IT-NCSM
emax = 3

IT-NCSM
emax = 2

10−3 10−2 10−1

s

0

2

4

6

E
∗ [

M
eV

]

0+

2+

4+

2+
3+

0+

10−310−210−1

s

Figure 7.6.: Absolute and excitation energies of the lowest six natural-parity states of
18O obtained in the VSSM and IT-NCSM using the same IM-SRG-evolved
Hamiltonian as a function of the flow parameter s. The IM-SRG employs the
White generator and the initial Hamiltonian contains the EMN400 interaction,
SRG-evolved up to α = 0.08 fm4. The left and right columns show the flow-
parameter dependence of the energies in the VSSM using the sd shell as
valence space and in the IT-NCSM with emax = 2 truncation. The middle
column shows IT-NCSM results for emax = 3 for s = 0.21.
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Figure 7.7.: Schematic matrix representation of the core, sd-shell valence, and excluded
space in comparison to emax-truncated model spaces. The simply-hatched
square denotes the core space, the black square the valence space, and the
cross-hatched square the excluded space. A decoupled valence space requires
vanishing off-diagonal blocks.

the IM-SRG successfully decouples single-shell valence spaces from core and excluded
spaces as demonstrated here for the sd shell.

Multi-Shell Valence Spaces

Based on the observation that the IT-NCSM results remain unchanged when going from
an emax = 2 to an emax = 3 model space in figure 7.6, we expect that a VSSM calculation
in an extended valence space, comprising the sdp f shell, should not affect the low-lying
part of the natural-parity spectrum of 18O. We employ an effective Hamiltonian for the
sdp f valence space [VR16] computed in the IM-SRG from the same SRG-evolved EMN400
interaction as for the sd shell, but using the imaginary-time generator [Her+14; Her+16].
This generator has proven to be advantageous with respect to numerical stability in the
IM-SRG flow compared to the White generator.

Again, we first study the flow-parameter dependence of the 16O core energy in figure 7.8.
The core energy evolves over a larger range of s values during the IM-SRG flow than when
using the White generator, but also stabilizes around s & 0.1 MeV−1. After convergence
is obtained, the core energy is lower than the 16O ground-state energy, and we expect a
repulsive contribution from the effective one- and two-body matrix elements.

In figure 7.9, the energies of the lowest two 0+ and the lowest 6+ states of 18O obtained
in the VSSM are shown as a function of the flow parameter s. This lowest 6+ state is a
mixture of ( f7⁄2)

2 and ( f7⁄2)
1( f5⁄2)

1 neutron configurations, where the neutron orbits f7⁄2 and
f5⁄2 come down as intruders during the IM-SRG flow, making it an erroneous ground state.

79



7. Applications of the IT-VSSM

10−5 10−4 10−3 10−2 10−1

s [MeV−1]

−170

−160

−150

−140

−130

E
co

re
[M

eV
]

Figure 7.8.: Energy of the 16O core of an sdp f -shell valence-space Hamiltonian for A =
18 nuclei obtained in the IM-SRG with the imaginary-time generator as a
function of the flow parameter s. The initial Hamiltonian employs the EMN400
interaction, SRG-evolved up to α = 0.08 fm4.
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Figure 7.9.: Energies of the lowest two 0+ and the lowest 6+ states in 18O obtained in the
VSSM using an effective interaction from the IM-SRG with the imaginary-
time generator for the sdp f shell as a function of the flow parameter s. The
initial Hamiltonian contains the EMN400 interaction, SRG-evolved up to
α = 0.08 fm4. The left and right columns compare the IM-SRG flow of the
energies for the center-of-mass control parameters β = 0 and β = 1.
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Since this extended valence space can give rise to center-of-mass spuriosities, we compare
the IM-SRG flows of the energies calculated without and with Lawson-type center-of-mass
Hamiltonian for β = 1. In the left panel of figure 7.9, where we have set β = 0, we observe
an extreme drop of the energies of the two 0+ states starting around s ≈ 0.07 MeV−1. We
note that several other low-lying states with different Jπ quantum numbers are found in
between these two states, all exhibiting a similar behavior. Furthermore, the 6+ state—also
here, we show only the lowest of a group of states with a similar behavior—shows a
peculiar dependence on s. This initially high-lying state dives down during the IM-SRG
flow and even passes the low-lying states, thus becoming an erroneous ground state. Our
first suspicion, based on the large expectation value of the center-of-mass Hamiltonian
with respect to this state, was that center-of-mass contaminations cause the IM-SRG flow
to fail. An attempt to remedy this by adding a Lawson-type center-of-mass Hamiltonian
to the valence-space Hamiltonian for the solution of the eigenvalue problem in the VSSM
is illustrated in the right panel of figure 7.9. The general picture improves only slightly:
The failure of the IM-SRG flow is delayed and the nonphysical fall-off of the energies of
the 0+ states sets in at larger values of s. However, the dependence of the 6+ state on the
flow parameter remains the same. Consequently, the approximate removal of intruding
spurious states by setting β = 1 is not sufficient to remedy the IM-SRG Hamiltonians for
extended valence spaces such as the sdp f shell. One possible reason is the truncation of the
IM-SRG at the level of normal-ordered two-body operators, which cannot accommodate
for a simultaneous suppression of all off-diagonal parts of the Hamiltonian as they are
feeding into each other during the decoupling process, thus inducing significant higher-
order terms, which eventually destroy the IM-SRG flow. This problem seems to be
connected with intruder states, which can appear in valence spaces comprising multiple
major shells. The details are not yet fully understood, and no remedy is presently available.
We note that these problems persist also for different choices of IM-SRG generators. Thus,
such multi-shell valence spaces remain subject to future investigations.

We add a final remark: Work is not only ongoing regarding the construction of valence-
space Hamiltonians in the IM-SRG, but also other observables have been considered
[Par+17], e.g., for the description of electromagnetic transitions.

Comparison to the In-Medium No-Core Shell Model

Recently, a new approach has been developed that shares some similarities with the use of
IM-SRG effective Hamiltonians in the VSSM: By merging the multi-reference IM-SRG with
the NCSM, a new ab initio method, the in-medium no-core shell model (IM-NCSM) has
been implemented for the description of light to medium-heavy nuclei with even mass
number [Geb+17; Geb17]. The method starts from a reference state for the target nucleus
with the appropriate quantum numbers obtained in a previous NCSM calculation in a
small model space, typically for Nmax = 0. During the multi-reference IM-SRG flow, the
Hamiltonian, normal-ordered with respect to this reference state, is evolved. Thereby, the
reference state is decoupled from all particle-hole excitations. The eigenvalue problem of
the evolved Hamiltonian is solved in the NCSM afterward. Thus, remaining couplings
within the reference space, remnants of the IM-SRG truncations, are handled, and ground
and excited states as well as their energies are obtained. The IM-SRG decoupling of the
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Hamiltonian dramatically enhances the convergence properties in the NCSM, extending
its applicability to an unprecedented range of nuclei. One advantage of this method over
the use of effective Hamiltonians from the IM-SRG in the IT-VSSM results from the choice
of a multi-determinantal reference state, which avoids the artificial definition of ensemble
references for the construction of valence-space Hamiltonians for nuclei with increasing
nucleon number in the valence spaces. Additionally, the IM-NCSM naturally captures
intruder physics in the model spaces typically used. These interesting phenomena cannot
be addressed when single-shell valence spaces are employed. Still, many nuclei remain
out of reach of the IM-NCSM, e.g., if the computation of the reference state in the NCSM
is already prohibitive for Nmax = 0. Therefore, the need to pursue investigations for the
derivation of multi-shell valence-space interactions for use in the IT-VSSM in ab initio
approaches remains.

7.4. Structure of Neutron-Deficient Tin Isotopes

We study neutron-deficient tin isotopes in the IT-VSSM using effective valence-space
Hamiltonians derived in the IM-SRG from chiral potentials. The tin isotopic chain provides
an excellent playground for theoretical and experimental shell-structure investigations be-
cause it comprises many isotopes, including the two doubly-magic nuclei 100Sn [Hin+12]
and 132Sn [Bjö+80; Jon+10]. Particularly the neutron-deficient tin isotopes, i.e., 100Sn and
neighbors, have received recent attention in experimental and theoretical investigations,
see [FGG13] for a review. To date, no excited states of 100Sn, the heaviest N = Z nucleus
stable against ground-state proton decay [Lew+94], have been measured, and the nuclear
spins of the first excited states of 101,103,105Sn have not yet been assigned definitely, while
their excitation energies are known. In the near future, laser-spectroscopy measurements
will help to shed light on these controversies [Gar+16]. Theoretical predictions on the
spectroscopy of 100Sn and some of its neighbors were obtained in large-scale VSSM calcu-
lations using a phenomenological interaction for the gds valence space [Now02; FGG13].
However, severe particle-hole truncations were necessary to make these calculations com-
putationally feasible. Furthermore, compared to other phenomenological Hamiltonians,
e.g., for the sd or p f shell, which are adjusted to a wealth of experimental data and al-
low for an accurate description of nuclear spectra, the quality of the phenomenological
Hamiltonian for the gds shell is uncertain as only scarce data is available to constrain it.

We present first converged results for the ground and first excited states of all tin isotopes
in the mass range 100 to 114 obtained in the IT-VSSM using the gds shell on top of a 80Zr
core as valence space. We employ two effective Hamiltonians, both constructed in the
IM-SRG from the chiral interactions 1.8/2.0(EM) and 2.0/2.0(EM). All calculations exploit
the importance truncation and are carried out for a reference threshold Cmin = 2 · 10−4.
The results are extrapolated using the simple threshold extrapolation. Figures 7.10 to 7.12
show the Tmax dependence of the absolute energies of the ground and first excited states
of 100Sn to 114Sn. If not shown, no state with corresponding quantum numbers is among
the calculated lowest natural-parity eigenstates. Typically, these states appear only for
higher Tmax values, e.g., the 2+ state obtained for 100Sn using the 1.8/2.0(EM) interaction
for Tmax ≥ 6. Note that we have carried out most IT-VSSM calculations up to Tmax = 12,
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Figure 7.10.: Energies of the ground and first excited states of 100−104Sn as a function
of Tmax obtained in the IT-VSSM for Cmin = 2 · 10−4 using effective gds
valence-space Hamiltonians derived in the IM-SRG from the 1.8/2.0(EM)
and 2.0/2.0(EM) interactions. The light-colored rectangles represent the
uncertainty of the κmin extrapolations.
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Figure 7.11.: Energies of the ground and first excited states of 105−109Sn as a function
of Tmax obtained in the IT-VSSM for Cmin = 2 · 10−4 using effective gds
valence-space Hamiltonians derived in the IM-SRG from the 1.8/2.0(EM)
and 2.0/2.0(EM) interactions. The light-colored rectangles represent the
uncertainty of the κmin extrapolations.
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Figure 7.12.: Energies of the ground and first excited states of 110−114Sn as a function
of Tmax obtained in the IT-VSSM for Cmin = 2 · 10−4 using effective gds
valence-space Hamiltonians derived in the IM-SRG from the 1.8/2.0(EM)
and 2.0/2.0(EM) interactions. The light-colored rectangles represent the
uncertainty of the κmin extrapolations.
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Figure 7.13.: Ground-state energies of 100−114Sn obtained in the IT-VSSM for Cmin = 2 ·
10−4 using effective gds valence-space Hamiltonians derived in the IM-SRG
from the 1.8/2.0(EM) (l) and 2.0/2.0(EM) (H) interactions. The black bars
show the experimental ground-state energies [NNDC].

with some exceptions using the 2.0/2.0(EM) potential, where results are available only
up to Tmax = 10. Besides for the 112Sn results obtained for the 2.0/2.0(EM) Hamiltonian,
convergence with Tmax is evident for all energies of the ground and first excited states. We
note that the energies obtained for 107Sn using the 1.8/2.0(EM) interaction increase slightly
from Tmax = 10 to Tmax = 12 as a consequence of truncation effects from the importance
truncation. In principle, a more precise result, which avoids this problem, could be
obtained by reducing the reference threshold. However, compared to the difference in
the energies resulting from the specific choice of Hamiltonian, this effect is small. The
uncertainties resulting from the threshold extrapolations, indicated in figures 7.10 to 7.12
as rectangles of the respective heights in the same color but a lighter tone, are also small
for all tin isotopes and interactions, with a maximum deviation of about 100 keV. We
conclude that the main source of uncertainty in the results is due to the Hamiltonians used.
Typically, the ground and first excited states of even-A tin isotopes carry the quantum
numbers 0+ and 2+, respectively, in agreement with the experimentally observed nuclear
spins. Only for 100Sn, where no experimental data on excited states is available, the
2.0/2.0(EM) predicts a first excited 8+ state. This is unexpected and indicates that this
interaction is not suited for the spectroscopy of 100Sn. The ground and first excited states
of odd-A tin isotopes are degenerate. In many cases, any of the states is consistent with
the ground state within the threshold-extrapolation uncertainty, impeding a statement on
their level ordering. Up to 111Sn, the two lowest states carry the quantum numbers 5/2+

and 7/2+, whereas for 113Sn, a 7/2+ and a 1/2+ state is predicted. We remark, however,
that a 5/2+ state—not shown here—is in their close vicinity.

In figure 7.13, we compare our results for the ground-state energies of 100−114Sn with
experiment. Both interactions reproduce the trend of the experimental energies, but the
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Figure 7.14.: Excitation energies of the first 2+ state of even-A tin isotopes obtained in the
IT-VSSM for Cmin = 2 · 10−4 using effective gds valence-space Hamiltonians
derived in the IM-SRG from the 1.8/2.0(EM) (l) and 2.0/2.0(EM) (H) inter-
actions. For 100Sn, results from the EOM-CCSD ( ) and EOM-CCSD(T) ( )
employing the 1.8/2.0(EM) interaction are shown [Mor+18]. The black bars
denote the experimental data [NNDC].

1.8/2.0(EM) interaction is superior in the description of the absolute ground-state energies.
It is, however, not clear what distinguishes this interaction, which yields a surprising
agreement with experimental binding energies, from other interactions that are derived in
a similar way. Thus, the discrepancies in the results can be interpreted conservatively in
terms of uncertainties of the nuclear Hamiltonians.

We investigate the systematics of the excitation energy of the first 2+ state in the even-
A tin isotopes 100−114Sn obtained in the IT-VSSM and from experiment in figure 7.14
[Mor+18]. The trend of the computed 2+ energies in the tin isotopes suggests that 100Sn is
doubly magic. We predict an excitation energy of 5.67 MeV for the first 2+ state in 100Sn,
which is large compared to the excitation energies of about 2 MeV calculated for the first
2+ states of the neighboring tin isotopes. Both interactions used predict approximately the
same excitation energies for all tin isotopes considered. We recall that no 2+ state is found
for 100Sn in the IT-VSSM calculation using the 2.0/2.0(EM) interaction. In comparison
with data, our results slightly overestimate the 2+ excitation energies. Additionally, we
compare our results for 100Sn to those obtained in an equation-of-motion method on top of
a CC with singles and doubles solution (EOM-CCSD), which yield a 2+ excitation energy
of 5.51 MeV [Mor+18]. An analog calculation using the recent equation-of-motion method
with triples corrections on top of a CC with singles and doubles solution (EOM-CCSD(T))
predicts this 2+ state at 4.19 MeV. Since the EOM-CCSD and IM-SRG are related regarding
their particle-hole content in the model spaces, it is not surprising that our result for the
2+ excitation energy of 100Sn agrees well with that of the EOM-CCSD method. Since the
result from the EOM-CCSD(T) includes corrections of 3p3h excitations, which are not
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Figure 7.15.: Energy splitting between the lowest 7/2+ and 5/2+ states in light odd-A
tin isotopes obtained in the IT-VSSM for Cmin = 2 · 10−4 using effective gds
valence-space Hamiltonians derived in the IM-SRG from the 1.8/2.0(EM) (l)
and 2.0/2.0(EM) (H) interactions. Experimental data [Dar+10; NNDC] are
shown for definite ( ) and tentative ( ) spin assignments.

accounted for in the IM-SRG and EOM-CCSD, they provide an estimate for the quality
of the truncation of the normal-ordered operators at the two-body level. We expect the
inclusion of 3p3h excitations in the IM-SRG formalism to slightly reduce the energy of
the first 2+ state, bringing it into agreement with the EOM-CCSD(T) result. The thus
calculated 2+ excitation energy is of a similar magnitude as the experimental excitation
energy of 4.04 MeV of the doubly-magic nucleus 132Sn [Bjö+80; Jon+10]. Based on the
behavior of the 2+ excitation energy of 100Sn observed when including 3p3h excitations in
the CC model space, we expect that such an extension in the IM-SRG will also lower the
2+ excitation energies of all isotopes and improve agreement with experiment. However,
the observed pattern of 2+ excitation energies alone is no evidence for magicity, and for
a definite proof we would need to consider other properties as well, such as changes in
pairing strengths.

We can use our results to study the level-ordering in the lowest odd-A tin isotopes, for
which controversial data exist. In the naive independent-particle picture, we expect that
101,103,105Sn should have identical ground-state spins determined by the single unpaired
neutron in the lowest-energy single-particle orbit on top of the N = 50 shell closure, i.e.,
either the d5⁄2 or g7⁄2 orbit. No experimental data for the known semi-magic isotopic and
isotonic chains indicate an exception to this rule, at least in the vicinity of shell closures
[Dar+10]. In accordance with this observation, the ground-state spins of 101,103,105Sn have
been tentatively assigned to be 5/2+ [NNDC]. However, a coincidence measurement of α
and γ decays from 105Te to 101Sn indicates that the 101Sn ground state has spin 7/2+ and
the first excited state 5/2+ [Dar+10], in contrast to the previously proposed level ordering
[Lid+06]. Figure 7.15 compares the level ordering of the lowest 7/2+ and 5/2+ states of the
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odd-A tin isotopes considered using the most recent experimental data and our theoretical
predictions for the energy splitting [Mor+18]. The IT-VSSM results for both interactions
used are in agreement with the small energy splittings observed in experiment, but differ
in their precise size and sign. Both interactions predict a 7/2+ ground state for 101Sn, in
accordance with the most recent experiment. Contrary to that, we obtain the ground-state
spins 5/2+ and 7/2+ using the 1.8/2.0(EM) and 2.0/2.0(EM) interaction, respectively, for
103Sn and 105Sn. Also, our calculations do not reproduce the experimentally observed
crossing between the 5/2+ and 7/2+ ground states of 109Sn and 111Sn. Keeping in mind
that the uncertainty of the input Hamiltonians alone is larger than the experimental energy
splittings of about 200 keV, we conclude that theory is presently not sufficiently precise to
make a definite prediction for the ground-state spin of 101Sn and its next neighbors.
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8. Applications of IT-NCSM Strength
Functions

We use the IT-NCSM in combination with the Lanczos strength-function method for the
efficient computation of electric transition strengths and their distributions for nuclei up
into the lower sd shell. This provides a unique possibility to compare strength functions
from approximate methods, such as the RPA and second-order RPA (SRPA), to ab initio
results. In section 8.1, we test the validity of these methods and elucidate some of their
deficiencies. Then, we study the electric monopole, dipole, and quadrupole response
of even-mass oxygen, carbon, and helium isotopes and the systematics throughout the
isotopic chains in section 8.2.

8.1. Validation of Strength Functions from RPA-Type Methods

RPA-type methods are based on the definition of operators creating excited states by
acting on the ground state, which is typically approximated by the HF ground state. Given
these excitation operators, one can derive and solve equations of motion. For the most
general excitation operators, the equations of motion are equivalent to the Schrödinger
equation. In practice, the definition of the excitation operators always involves some
truncation, but extending them allows for systematic improvements of the theory. Both,
the Tamm-Dancoff Approximation (TDA) and the RPA, describe excited states as 1p1h
excitations on top of the ground state. In the TDA, the excitation operators are linear
combinations of particle-hole excitations, while hole-particle excitations are additionally
included in the RPA. The SRPA further extends the method to 2p2h (de)excitations with
respect to the ground state. An introduction to the TDA and RPA can be found in [RS80],
and we refer to [Pro65; Yan87; Dro+90] for details on the SRPA. Practical applications
usually rely on the quasi-boson approximation, i.e., one approximates the RPA and SRPA
ground states by the HF Slater determinant for the evaluation of certain expressions.
Traditionally, effective interactions adjusted at the mean-field level—implicitly accounting
for some correlations—are used in RPA calculations, yielding results in good agreement
with experimental data for collective excitations. We note that a consistent calculation of
ground states in the RPA is possible and includes beyond-mean-field correlations. When
using these adjusted interactions in RPA ground-state calculations, some of the correlations
are taken into account twice—by the method per se and by the interaction—and, thus,
result in overbound ground states. The same problem occurs also for the calculation of
excited states, when these interactions are used in the SRPA. In this case, the excited states
are moved to nonphysically low energies. Recently, a subtraction scheme [Tse07; Tse13]
has been introduced which successfully avoids such double counting of correlations in the
SRPA for the calculation of excited states [GGE15; Gam+16; GG16; GGV18]. Another path

91



8. Applications of IT-NCSM Strength Functions

0.5

1.0 16O

isoscalar E0

0.2
0.4
0.6

isovector E1
Nmax

4/5
6/7
8/9 5

10

isoscalar E2

0.5

1.0

0.2
0.4
0.6 Tmax

1
2
3
4

5

10

0 10 20 30 40 50 60
E∗ [MeV]

0.5

1.0

0 10 20 30 40 50 60
E∗ [MeV]

0.2
0.4
0.6 TDA

RPA
SRPA
SRPA’

0 10 20 30 40 50 60
E∗ [MeV]

5

10

R
(E

0)
[e

2 fm
4 M

eV
−1

]

R
(E

1)
[e

2 fm
2 M

eV
−1

]

R
(E

2)
[e

2 fm
4 M

eV
−1

]

Figure 8.1.: Convergence behavior of isoscalar E0, isovector E1, and isoscalar E2 strength
functions of 16O obtained in the IT-NCSM with Nmax truncation (upper row),
IT-NCSM with Tmax truncation (middle row), and the TDA, RPA, and SRPA
(bottom row). SRPA’ refers to the SRPA strength shifted by the second-order
perturbative energy correction. All calculations use the SRG-evolved EMN400
interaction with α = 0.08 fm4 and frequency h̄Ω = 24 MeV. The matrix
elements are truncated by emax = 12, lmax = 10, and E3max = 14. No Lawson-
type Hamiltonian is used here.

of development has been the use of realistic interactions in RPA methods [PR10; Pap14;
Tri16], where the same Hamiltonian is employed in the calculation of the HF ground state
and in the RPA method. In these applications, the importance of including ground-state
correlations in RPA-type methods has been demonstrated.

Figure 8.1 shows isoscalar E0, isovector E1, and isoscalar E2 strength functions obtained
in the IT-NCSM with Nmax truncation, IT-NCSM with Tmax truncation, and the TDA,
RPA, and SRPA [SWR17]. All calculations have been carried out using the EMN400
interaction, SRG-evolved up to α = 0.08 fm4, and h̄Ω = 24 MeV. The single-particle basis
is truncated at emax = 12 and lmax = 10, and we employ an additional cut of E3max = 14
on the 3N matrix elements. In order to allow for a comparison of strength functions
from the IT-NCSM with results from the RPA-type methods, we do not use a Lawson-
type Hamiltonian here. The top row of figure 8.1 shows the convergence of the strength
functions with respect to Nmax as a reference, see section 6.3 for a detailed discussion.

An interesting alternative to the Nmax truncation of the many-body basis is the Tmax
truncation, which provides a natural link to traditional RPA-type methods. The middle
row of figure 8.1 shows the dependence of the strength distributions on Tmax. The effects
are quite dramatic: Whereas the giant resonances for Tmax = 1, i.e., in a 1p1h space, appear
at reasonable energies, the Tmax = 2 strength is shifted to higher energies by about 20 MeV.
For Tmax = 3, the resonance energies are shifted back into the neighborhood of their origi-
nal position. The strength distribution for Tmax = 3 agrees very well with the converged
result for Nmax-truncated spaces for the E0 and E1 modes. For E2, some fragmentation is
still missing. It appears only after including Tmax = 4 configurations, bringing the strength
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functions into agreement with those obtained using the Nmax truncation. Note that we
show the results for Tmax = 4 only in case of the isoscalar E2 distribution. The strong
impact of Tmax = 3 configurations was also found in VSSM calculations for the Gamow-
Teller strength distribution [Cau+94]. This behavior can be explained quite intuitively:
Since we start from an HF basis and by means of Brillouin’s theorem, the HF ground state
does not couple to 1p1h configurations. Thus, for Tmax = 1, only the excited states are
built from 1p1h excitations. Including 2p2h configurations for Tmax = 2 into the model
space causes a large shift of the ground-state energy by about −25 MeV due to important
correlations. In contrast, the excited states are still mainly built of 1p1h excitations and are
less affected by the 2p2h configurations in the model space. This is manifested in smaller
shifts of about−5 MeV. Therefore, resonances are shifted to unrealistically large excitation
energies, which is clearly an artifact of the Tmax = 2 truncation. At Tmax = 3, this problem
is remedied and both, ground state and 1p1h dominated excitations, acquire the important
2p2h corrections such that excitation energies move back to realistic values. Note that
this imbalance of correlation content in ground and excited states does not appear in
Nmax-truncated model spaces.

In the bottom row of figure 8.1, we present results of conventional RPA and SRPA
calculations using the same interaction and single-particle space as in the IT-NCSM
calculations. The Tmax = 1 calculations are formally equivalent to the TDA, and the results
are in perfect numerical agreement. Compared to TDA, the strengths obtained from a
self-consistent RPA calculation differ only slightly, i.e., the impact of the deexcitations is
small. Going from RPA to SRPA, i.e., including 2p2h degrees of freedom into the excitation
operator, shifts the strength to lower energies. This shift is a well-known problem of SRPA,
which has received quite some attention in the recent literature [PR10; PR09; GGC10;
GGC11b; GGC11a; Gam+12; Tse13; Pap14; GGE15; Gam+16; GGV18]. In contrast to
the above mentioned issues with double counting of correlations in density-functional
based calculations [Tse13; GGE15], the shift we observe is associated with an inconsistency
of using the HF ground state when constructing the SRPA equations, which include
explicit 2p2h excitations [PR10; Pap14]. Effectively, a standard SRPA calculation yields the
energies of the excited modes relative to the HF ground-state energy and not relative to the
correlated SRPA ground state. We can mimic the effect of 2p2h ground-state correlations
by shifting the SRPA excitation energies by the second-order perturbative correction to the
ground-state energy, which is a simple means to quantify the effect of 2p2h admixtures to
the ground state. The resulting strength distribution is denoted SRPA’ in figure 8.1 and
agrees well with the Tmax = 2-truncated IT-NCSM result, as expected on the basis of the
particle-hole content of the model space. Then, however, SRPA’ suffers from the same
problem as the Tmax = 2-truncated model space that we discussed above. This comparison
provides a different perspective on the consistency issues of SRPA and confirms that the
use of correlated ground states is essential to improve the results, as already pointed out
in [PR10; Pap14]. Recently, the RPA and SRPA have been extended to correlated ground
states [Tri16]. One of the approaches of this thesis was the use of IM-SRG-transformed
Hamiltonians in RPA-type methods. Such Hamiltonians include correlations in the ground
states while decoupling them from excited states. Consequently, the particle-hole content
of the model spaces does not affect the reference state, but the excited states only. It has
been found that the strength is shifted to higher energies than in SRPA without ground-
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Figure 8.2.: Discrete isoscalar E0, isovector E1, and isoscalar E2 strength distributions for
16O obtained in the IT-NCSM for Nmax = 8/9, RPA, and SRPA. All calculations
use the SRG-evolved EMN400 interaction with α = 0.08 fm4 and frequency
h̄Ω = 24 MeV. The matrix elements are truncated by emax = 12, lmax = 10, and
E3max = 14. No Lawson-type Hamiltonian is used here.

state correlations, and that no problematic instabilities occur as in standard SRPA. It is
desirable to confirm the validity of the IM-SRPA strength functions in a direct comparison
with the IT-NCSM.

One of the main motivations to use SRPA is the description of fragmentation and
fine structure of resonances, which is observed in experiment [Lac+00; She+04; She+08;
Usm+11; Pol+14; Sav+08; Ton+10]. Here, we do not elaborate on this interesting topic,
but rather show that the strength distributions from the IT-NCSM predict substantial fine
structure. In figure 8.2, we compare the discrete strength distributions from IT-NCSM,
RPA, and SRPA on a logarithmic scale. Evidently, the IT-NCSM strength shows more
fragmentation and fine structure than even SRPA, particularly in the energy region of
the giant resonance. We note that all methods considered here lack the coupling to
the continuum and cannot accommodate for the escape width. The description of the
spreading width due to correlations is improved with increasing particle-hole content in
the model spaces, demonstrating that the inclusion of complex configurations, mainly of
2p2h and higher-particle rank, are essential for the description of collective modes.

8.2. Electric Strength Functions of Selected Isotopes

In the following, we study electric strength functions of oxygen, carbon, and helium
isotopes from the IT-NCSM with HF basis. We use potentials from chiral EFT, SRG-
evolved with α = 0.08 fm4, in NO2B approximation and the model-space truncations and
parameters emax = 12 and lmax = 10, h̄Ω = 20 MeV, and β = 0.5. We use an additional
cut of E3max = 14 on the 3N matrix elements. The importance truncation employs the
reference threshold Cmin = 2 · 10−4 and the importance threshold κmin = 3 · 10−5. If not
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Figure 8.3.: Model-space convergence of the isoscalar E0, isovector E1, and isoscalar E2

strength functions of the even-A oxygen isotopes 16−24O using the EMN400
interaction, SRG-evolved up to α = 0.08 fm4. The oscillator frequency is
h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model spaces are truncated at
Nmax = {4/5( ), 6/7( ), 8/9( )}.

stated otherwise, the model space is truncated at Nmax = 8 and Nmax = 9 for natural- and
unnatural-parity states, respectively.

8.2.1. Oxygen Isotopes

A particularly interesting region for applications of the IT-NCSM to strength distributions
is the oxygen isotopic chain. It is easily within the reach of the method and the collective
response of the neutron-rich oxygen isotopes has been and continues to be a focus of
research [Lei+01; SS99]. Particularly, the neutron-rich isotopes 22,24O will be studied with
respect to their low-lying dipole response at GSI (FAIR Phase-0) [Aum17].

The robustness of electric strength distributions with respect to a variation of model-
space truncations and parameters was proven in chapter 6. Since the strength functions
are most sensitive to the Nmax truncation, while all other truncations and parameters have
only minor effects on the results, we validate the isoscalar E0, isovector E1, and isoscalar
E2 strength distributions of 16−24O only regarding their dependence on Nmax. As shown in
figures 8.3 and 8.4, the structure of the strength functions of all oxygen isotopes obtained
for the EMN400 and N2LOsat interactions is evident already for small values of Nmax. For
16O, we find only a weak dependence of their positions on Nmax, with more pronounced
effects for the neutron-rich isotopes. Particularly for these nuclei, a further improvement
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Figure 8.4.: As figure 8.3 but for the N2LOsat interaction.

of convergence by increasing Nmax would be desirable, but is computationally difficult.
In a first step, we study the impact of including initial 3N interactions on the strength

distributions. Figure 8.5 compares the strength distributions obtained with the EM and
EMN400 interactions, SRG-evolved up to α = 0.08 fm4 in three-body space. We note that
the former takes into account only NN forces, while the latter includes also initial 3N forces.
The shape of the isoscalar E0 and E2 strength distributions remains relatively unchanged
whether initial 3N forces are included or not. However, the strength functions are shifted
to higher or lower energies, where the direction of the shift depends on the specific isotope.
Interestingly, the direction of the shift changes at 22O, which has a sub-shell closure.
Therefore, we assume that this change is related to an angular-momentum dependence
of the interaction. Furthermore, the picture becomes even more complicated in case of
the isovector E1 strength functions. When moving away from the shell closures, e.g., for
20O, also the structure of the strength distributions is affected notably. This underlines
the importance of taking into account initial 3N interactions. We include them in all our
applications.

In figure 8.6, we present the isoscalar E0, isovector E1, and isoscalar E2 strength func-
tions for the even-mass oxygen isotopes from 16O to 24O for the EMN400 and the N2LOsat
interactions. The corresponding discrete strength distributions, illustrating the fragmenta-
tion and fine structure, are shown in figure 8.7. We remind the reader that the difference
between the two chiral interactions is that the EMN400 interaction underestimates the
ground-state radii of the oxygen isotopes by about 10%, while N2LOsat is constructed to
reproduce the experimental radii well.
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Figure 8.5.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of the even-A

oxygen isotopes 16−24O using the EM ( ) and EMN400 ( ) interactions,
both SRG-evolved in three-body space up to α = 0.08 fm4. The oscillator
frequency is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model spaces are
truncated at Nmax = 8/9.

Generally, the structure of the response is very similar for the two interactions. For the
isoscalar E0 strength, the main difference is a relative shift of the strength distribution,
with the N2LOsat interaction producing about 4 MeV higher resonance energies. This
is surprising since, in a naive mean-field picture, one would expect lower resonance
energies for an interaction that produces larger ground-state radii and, thus, produces a
wider potential well. The comparison of the N2LOsat response for 16O to the experimen-
tal centroid energy for the isoscalar giant monopole resonance is also surprising. Our
predicted monopole resonance appears at too high energies although the interaction is
known to predict a nuclear matter incompressibility within the empirical range [Eks+15;
SSM14]. This indicates that other aspects of the interaction, e.g., momentum dependence
or non-locality, play an important role for the transition strength that is not probed by
static properties. The overestimation of the resonance energies compared to experiment
is also evident for the E1 and E2 strength distributions. The N2LOsat interaction tends
to predict a lower resonance energy than the EMN400 interaction for these modes, thus
improving agreement with experiment here.

The strength distributions exhibit interesting systematics throughout the isotopic chain.
The isovector E1 distribution undergoes severe fragmentation and broadens as one moves
toward mid-shell at 20O, as observed experimentally [Lei+01]. It narrows again as the
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Figure 8.6.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of the even-A

oxygen isotopes 16−24O using the SRG-evolved EMN400 ( ) and N2LOsat
( ) interactions with α = 0.08 fm4. The oscillator frequency is h̄Ω = 20 MeV
and β = 0.5. The IT-NCSM model spaces are truncated at Nmax = 8/9. The
arrows indicate the experimental centroid energies for 16O from [LCY01], the
gray area shows experimental data from [Ahr+75] in arbitrary units.

next closed neutron shell is approached. At the same time, more and more low-energy
strength appears, which is compatible with the emergence of pygmy dipole excitations
[SAZ13; Cha+94; SIS90]. Our calculations also provide access to a related quantity, the
electric dipole polarizability [Pie11; Bac+14; Roc+15; Mio+16], a key ingredient to, e.g.,
draw conclusions on the neutron-skin thickness of neutron-rich nuclei. In discretized
form, it is defined as

αD =
8π

9 ∑
n

∣∣〈En||QQQIV
10 ||Ψ0〉

∣∣2
En − E0

. (8.1)

Since the dipole polarizability is proportional to the inverse excitation energy, it is very
sensitive to the low-lying dipole strength. Our results for the dipole polarizabilities are
listed in table 8.1 and compared to the experimental value available for 16O [Ahr+75]. The
uncertainties of the theoretical values are taken as the difference of the dipole polarizabil-
ities obtained for Nmax = 6/7 and Nmax = 8/9. We note that our calculations take into
account all transitions over the complete energy range. However, experiments provide
data only up to a certain energy, typically around 40 MeV, and the dipole polarizability is
computed from the transitions up to this maximum energy. Since the calculated strength
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Figure 8.7.: Discrete isoscalar E0, isovector E1, and isoscalar E2 strength functions of the
even-A oxygen isotopes 16−24O using the SRG-evolved EMN400 and N2LOsat
interactions with α = 0.08 fm4. The oscillator frequency is h̄Ω = 20 MeV and
β = 0.5. The IT-NCSM model spaces are truncated at Nmax = 8/9.
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Nucleus EMN400 N2LOsat Exp
16O 0.372(15) 0.481(31) 0.585(9)
18O 0.505(48) 0.576(63)
20O 0.612(52) 0.660(69)
22O 0.727(52) 0.792(59)
24O 0.996(64) 1.087(87)

Table 8.1.: Electric dipole polarizability for the even-A oxygen isotopes 16−24O obtained
for the SRG-evolved EMN400 and N2LOsat interactions with α = 0.08 fm4. The
experimental value for 16O has been taken from [Ahr+75]. All values are given
in units of fm3. The theoretical uncertainties are given by the difference of the
dipole polarizabilities for Nmax = 6/7 and Nmax = 8/9.
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Figure 8.8.: Comparison of the total E1 and E2 responses ( ) of 16−24O with their isovector
and isoscalar analog ( ), respectively. The strength functions are obtained in
the IT-NCSM using the SRG-evolved EMN400 interaction with α = 0.08 fm4.
The oscillator frequency is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model
spaces are truncated at Nmax = 8/9.
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functions are located at too high energies, the dipole polarizabilities are expected to be
too small in comparison with experiment, as confirmed for 16O. The N2LOsat interaction
yields larger dipole polarizabilities than the EMN400 interaction throughout the oxygen
isotopic chain, in better agreement with experiment. Since the dipole response is located at
approximately the same energies for the two interactions, the larger dipole polarizabilities
result from the larger transition strengths obtained for the N2LOsat interaction. With
adding more and more neutrons, our predictions for the dipole polarizabilities obtained
for the EMN400 and N2LOsat interactions increase systematically, from 0.372 fm3 and
0.481 fm3 for 16O reaching 0.996 fm3 and 1.087 fm3 for 24O, respectively.

The isoscalar E2 distribution starting from 18O shows strong contributions from low-
lying neutron-dominated 2+ excitations, which hardly contribute to the total E2 strength
without isospin decomposition, see the discussion below. This low-lying quadrupole
strength can be interpreted as a pygmy quadrupole resonance, predicted in [TL11] and
recently observed in 124Sn [Spi+16].

We study the isospin decomposition of the E1 and E2 strength distributions in more
detail for the EMN400 interaction. Figure 8.8 shows the total E1 and E2 as well as
the isovector E1 and isoscalar E2 strength functions for the even-mass oxygen isotopes.
For 16O, the total and isovector E1 strength distributions are identical except for one
pronounced peak, which can be attributed to the excitation of the nucleus’ center of mass.
This is because the total E1 operator can be decomposed into an intrinsic and center-of-
mass part, where the former is identical to the isovector E1 operator for N = Z nuclei. If
no effective charges are introduced, the isovector E1 operator differs more and more from
the intrinsic E1 operator with increasing or decreasing neutron-proton ratio. This is also
manifested in the total and isovector E1 strength distributions. For the E2 transitions, we
find that the strong individual transitions found at low energies result from the neutrons
only. No comparable peaks are found in the total E2 strength distributions. Furthermore,
the isoscalar E2 strength is enhanced in the giant-resonance region compared to the total
E2 strength for the heavier oxygen isotopes. These observations indicate the appearance
of strong cancellations between proton and neutron contributions in the total E2 strength.

8.2.2. Carbon Isotopes

We turn our attention toward the ab initio description of the electric response of the carbon
isotopic chain. A first theoretical study of the systematics of the electric dipole strength
functions throughout this isotopic chain has been carried out in the VSSM [SSH03], and
the photonuclear cross sections for 12C and 14C have been measured [Ahr+75; Pyw+85].

Again, we first benchmark the model-space convergence of the strength distributions
with respect to the model-space truncation Nmax in figures 8.9 and 8.10 for the EMN400
and N2LOsat interactions. In both cases, the strength functions are remarkably stable
for varying Nmax, with improved convergence compared to the oxygen isotopes for all
isotopes and multipoles, except for the isovector E1 distributions of 16C and 18C. Here,
the Nmax dependence is significant, and even more pronounced than for the isovector
E1 distributions of 18O and 20O shown in figures 8.3 and 8.4. The strength functions
obtained with the EMN400 and N2LOsat interactions are compared in figure 8.11. They
are very similar in their structure, position, and magnitude of the individual transitions.
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Figure 8.9.: Model-space convergence of the isoscalar E0, isovector E1, and isoscalar E2

strength functions of the even-A carbon isotopes 10−18C using the EMN400
interaction, SRG-evolved up to α = 0.08 fm4. The oscillator frequency is
h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model spaces are truncated at
Nmax = {4/5( ), 6/7( ), 8/9( )}.

Only the isovector E1 distributions of 16C and 18C differ notably due to their incomplete
convergence. This is expected to be improved by increasing the model-space size. Also
here, the E0 distribution calculated with the N2LOsat interaction is located at slightly
higher energies than the one obtained with the EMN400 interaction, contrary to what is
expected from an interaction that yields larger nuclear radii.

The E1 distributions reveal an interesting systematics throughout the isotopic chain:
For 10C, two resonance regions are observed, with the one at lower energies—between 10
and 20 MeV—exceeding the strength located in the giant-resonance region. We interpret
this low-lying strength as the analog of the pygmy dipole resonance driven by the excess
protons. Also, the giant resonance is relatively broad compared to the single-peak structure
for 12C, which agrees well with experiment. With adding more and more neutrons, the
giant resonances broaden again, and a pygmy dipole resonance emerges at lower energies.
For 14C, the calculated strength distributions reproduce well the two-resonance structure
observed in experiment, however, they are located at too high energies. We also provide
the dipole polarizabilities in table 8.2. The theoretical uncertainties correspond to the
difference between the values obtained for Nmax = 6/7 and Nmax = 8/9. Note that the
uncertainties for 16C and 18C are significant due to the incomplete convergence of their
E1 responses. The two interactions yield dipole polarizabilities that differ by 10% to

102



8.2. Electric Strength Functions of Selected Isotopes

0.2
0.4
0.6
0.8 10C N2LOsat

isoscalar E0

0.05
0.10
0.15

isovector E1

2
4
6
8

isoscalar E2

0.2
0.4
0.6
0.8 12C

0.1
0.2
0.3

2
4
6
8

0.2
0.4
0.6 14C

0.1

0.2

2

4

0.5

1.0 16C
0.1

0.2

5
10
15
20

0 10 20 30 40 50 60
E∗ [MeV]

0.5
1.0
1.5 18C

0 10 20 30 40 50 60
E∗ [MeV]

0.1
0.2
0.3

0 10 20 30 40 50 60
E∗ [MeV]

10

20

R
(E

0)
[e

2 fm
4 M

eV
−1

]

R
(E

1)
[e

2 fm
2 M

eV
−1

]

R
(E

2)
[e

2 fm
4 M

eV
−1

]
Figure 8.10.: As figure 8.9 but for the N2LOsat interaction.

15%. The value obtained with the N2LOsat interaction is in reasonable agreement with
experiment for 12C. Starting from this N = Z nucleus, the dipole polarizabilities increase
when neutrons are removed or added successively.

The isoscalar E2 strength functions agree perfectly for the two interactions and consis-
tently exhibit large strength at energies below the giant-resonance region. We note that
the large peaks at low energies can be attributed to transitions between the ground state
and the first excited 2+ state.

We compare the isovector E1 and isoscalar E2 responses with the total responses in
figure 8.12. The latter has not been considered so far in the analysis. The total E1 response
is, in general, similar to the isovector response, but exhibits a pronounced peak around
12 MeV for 10,12,14C, which can be attributed to the isoscalar E1 mode and is related to
the excitation of the nucleus’ center of mass. Thus, it does not affect the isovector E1
distributions. For 16C and 18C, however, this peak moves to energies in the region of the
isovector E1 mode and can affect the strength functions.

The total E2 distribution resembles the isoscalar E2 distribution only for 10C and 12C,
and the distributions differ more and more with increasing mass number. This underlines
that the isoscalar E2 strength is particularly driven by the neutrons.

In order to shed more light on the nature of the different resonance peaks, we investigate
the radial transition densities of some discrete levels with prominent isovector E1 and
isoscalar E2 strength in the pygmy- and giant-resonance regions for some isotopes. The
radial transition density is defined as the function ρms,τ

0 f (r) in

ρms,τ
0 f (~r) = ρms,τ

0 f (r)YJM(Ω)
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Figure 8.11.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of the even-A

carbon isotopes 10−18C using the SRG-evolved EMN400 ( ) and N2LOsat
( ) interactions with α = 0.08 fm4. The oscillator frequency is h̄Ω = 20 MeV
and β = 0.5. The IT-NCSM model spaces are truncated at Nmax = 8/9. The
gray areas show experimental data in arbitrary units for 12C and 14C from
[Ahr+75] and [Pyw+85], respectively.

Nucleus EMN400 N2LOsat Exp
10C 0.412(17) 0.376(14)
12C 0.281(11) 0.326(12) 0.316(5)
14C 0.393(18) 0.454(25)
16C 0.695(55) 0.582(100)
18C 0.755(103) 0.664(133)

Table 8.2.: Electric dipole polarizability for the even-A carbon isotopes 10−18C obtained
for the SRG-evolved EMN400 and N2LOsat interactions with α = 0.08 fm4. The
experimental value for 16O has been taken from [Ahr+75]. All values are given
in units of fm3. The theoretical uncertainties are given by the difference of the
dipole polarizabilities for Nmax = 6/7 and Nmax = 8/9.
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Figure 8.12.: Comparison of the total E1 and E2 responses ( ) of 10−18C with their isovec-
tor and isoscalar analog ( ). The strength functions are obtained in the
IT-NCSM using the SRG-evolved EMN400 interaction. The oscillator fre-
quency is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model spaces are
truncated at Nmax = 8/9.

= 〈Ψ0|ΨΨΨ†
ms,τ(~r)ΨΨΨms,τ(~r)|Ψ f 〉 . (8.2)

The field operators ΨΨΨ†
ms,τ(~r) and ΨΨΨms,τ(~r) create and annihilate a nucleon with spin projec-

tion ms and isospin projection τ at position~r. By projecting onto the spherical coordinate
and by summing over ms, we obtain the radial transition density

ρτ
0 f (r) = ∑

ms

〈Ψ0|
∫

dΩ Y∗JM(Ω)ΨΨΨ†
ms,τ(~r)ΨΨΨms,τ(~r)|Ψ f 〉 , (8.3)

where we keep the isospin projection as parameter so that the transition densities for
protons and neutrons can be calculated separately. More details and the derivation of
the final expressions in a general ls-coupled basis are provided in appendix D. Since
the structure of the strength functions is already evident for small Nmax, we restrict
the calculation of the natural-parity and unnatural-parity eigenstates in the IT-NCSM
to Nmax = 4 and 5. Figure 8.13 shows the discrete and folded isovector E1 strength
functions of 10C and 14C obtained for the SRG-evolved EMN400 interaction. We consider
the eigenstates contributing with prominent peaks to the strength distributions, marked
by the red arrows, and draw the corresponding radial transition densities in figures 8.14
and 8.15.
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Figure 8.13.: Discrete and folded isovector E1 strength functions of 10C and 14C obtained in
the IT-NCSM using the SRG-evolved EMN400 interaction with α = 0.08 fm4.
The oscillator frequency is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model
spaces are truncated at Nmax = 4/5. The red arrows point at the resonance
peaks for which radial transition densities are calculated.

For 10C, all transitions except for the one at 11.89 MeV are represented by bulk protons
and neutrons oscillating in phase in the nucleus’ interior and out of phase at the nuclear
surface. With increasing energies, the isovector oscillation of the protons and neutrons
becomes more and more significant, i.e., the isoscalar region in the inner part of the nucleus
becomes smaller. The proton excess in this nucleus manifests itself in the prolonged tail in
the proton transition density, visible in all transition densities. Only the dipole transition
at 11.89 MeV is purely isoscalar, indicating its origin from the motion of the center of
mass. This is confirmed by both, a significant expectation value of the center-of-mass
Hamiltonian in this state and a sizable dependence of this transition on variations of the
center-of-mass control parameter β. We note that the impact of center-of-mass spuriosities
might be particularly powered in the model spaces used here, where Nmax = 4/5 only, and
should be reduced for increasing Nmax. We attribute the first four transitions studied here
to the pygmy dipole resonance. The transitions in the region of the giant resonance are
typically isovector. This is not found here; however, we have only considered transitions
in the low-energy tail of the giant resonance, and the trend observed with increasing
excitation energies is consistent with this expectation.

For 14C, the transitions at lower energies are of isoscalar character, while the transitions
in the resonance region at intermediate energies are mainly isovector with some isoscalar
admixtures in the nucleus’ interior. Again, the transition at 11.32 MeV exhibits a simple
in-phase oscillation pattern, which in combination with the sizable expectation value of
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response. The transition densities are obtained in the IT-NCSM using the
SRG-evolved EMN400 interaction with α = 0.08 fm4. The oscillator frequency
is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model spaces are truncated at
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Figure 8.15.: As figure 8.14 but for 14C.
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Figure 8.16.: Discrete and folded isoscalar E2 strength functions of 10,14,16C obtained in
the IT-NCSM using the SRG-evolved EMN400 interaction with α = 0.08 fm4.
The oscillator frequency is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model
spaces are truncated at Nmax = 4. The red arrows point at the resonance
peaks for which radial transition densities are calculated.

the center-of-mass Hamiltonian in this 1− state confirms its spurious nature. As expected,
the transitions in the giant dipole-resonance region are purely isovector.

We proceed in the same way to analyze the dominant transitions in the isoscalar E2
distributions of 10,14,16C. The respective peaks are marked by the red arrows in figure 8.16.
Note that for 16C, the calculation of many eigenstates is challenging, and we were able
to study only four dominant transitions up into the low-energy tail of the giant reso-
nance. For the interpretation of the transition densities, we need to keep in mind the
angular distribution of quadrupole excitations. The radial transition densities are shown
in figures 8.17 to 8.19. The two lowest peaks in 10C at E∗ = 3.44 MeV and 5.13 MeV are
close to the experimental proton-separation energy of about 4 MeV and represent the
dominant strength for the strength distribution. These and the transition at 8.72 MeV
are part of a region of enhanced low-lying quadrupole strength. Their radial transition
densities are either of isoscalar or isovector nature, i.e., the bulk protons and neutrons
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Figure 8.17.: Radial proton ( ) and neutron ( ) transition densities from the 0+ ground
state of 10C to 2+ states with dominant contributions to the isoscalar E2
response. The transition densities are obtained in the IT-NCSM using the
SRG-evolved EMN400 interaction with α = 0.08 fm4. The oscillator frequency
is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model spaces are truncated at
Nmax = 4.
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Figure 8.18.: As figure 8.17 but for 14C.
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Figure 8.19.: As figure 8.17 but for 16C.

perform a quadrupole oscillation in or out of phase. Interestingly, the radial densities of
transitions at higher energies exhibit more structure and show signatures of both, isoscalar
and isovector transitions. For example, the transitions at E∗ = 19.90 MeV and 35.75 MeV
are characterized by protons and neutrons oscillating in phase in a quadrupole pattern in
the interior of the nucleus, while they move out of phase at the surface. A reverse situation
is found for the transition at E∗ = 26.11 MeV. Here, the transition is isovector in the inner
part of the nucleus and isoscalar at the surface.

The transitions studied for 14C are mainly isoscalar in the complete energy range consid-
ered, with small isovector admixtures in the inner part of the nucleus for the transitions
at E∗ = 30.38 MeV and 32.21 MeV. The results are in line with the expected dominant
isoscalar character of the transitions in the region of the isoscalar giant-quadrupole reso-
nance.

Figure 8.16 shows that the lowest two peaks found in the isoscalar E2 distribution of 16C,
giving rise to the enhanced low-lying quadrupole strength, consist of single transitions,
one to the first excited 2+ state and the other one to a resonance state at about 8 MeV. The
transition densities reveal that these transitions are predominantly of isoscalar character,
with small isovector contributions in the interior for the first 2+ state. The transitions in
the low-energy tail of the giant quadrupole resonance exhibit more complicated structures,
and are dominated by the neutrons. For all transitions considered, the neutron excess of
16C results in a remarkable extension of the neutron transition densities to large distances.

These investigations allow us to provide an illustrative picture on the nature of tran-
sitions in the different energy regions of the strength distributions. An analog study of
the transition densities of neutron-rich oxygen isotopes, for which we have postulated a
pygmy quadrupole resonance, would be particularly interesting.
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Figure 8.20.: Model-space convergence of the isoscalar E0, isovector E1, and isoscalar
E2 strength functions of the helium isotopes 4,6,8He using the EMN400 in-
teraction, SRG-evolved up to α = 0.08 fm4. The oscillator frequency is
h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model spaces are truncated
at Nmax = {4/5( ), 6/7( ), 8/9( )}.

8.2.3. Helium Isotopes

The helium isotopic chain is perfectly suited for the validation of nuclear theories because
it comprises nuclei which probe very different aspects of the nuclear interaction, e.g.,
the very stable doubly-magic nucleus 4He as well as the two halo nuclei 6He and 8He.
We note that a wealth of data is available for 4He, albeit the photonuclear cross sections
are controversial [Shi+05]. For this nucleus, a variety of few- and many-body methods
in combination with the LIT has been used to calculate the photonuclear cross section
[Bar+01; Gaz+06; QN07; Bac+14], providing a basis for comparisons among these methods.
Experiments on the exotic nuclei 6He and 8He have become possible only recently, e.g., the
charge radius of 8He has been first measured a decade ago [Mue+07]. In the near future,
also the dipole response of 6He will be studied at GSI (FAIR Phase-0) [Aum17].

We provide predictions on the isoscalar E0, isovector E1, and isoscalar E2 distributions
of the helium isotopes 4,6,8He. We compare results obtained with the EMN400, N2LOsat,
and EMN500 interactions. Note that we do not calculate the E2 distributions for 4He
because the lowest 2+ state lies so high in energy that it is unbound.

Figures 8.20 to 8.22 depict the model-space convergence of the strength functions.
The three interactions exhibit a very similar behavior with respect to increasing Nmax.
Some dependence of the strength distributions on Nmax persists, particularly for 4He.
Convergence is improved with increasing mass number, and is best for the isovector E1
strength functions.

When comparing the results for Nmax = 8/9 obtained with the three interactions in
figure 8.23, we find excellent agreement of the strength functions for all isotopes and
multipoles. For comparison, figure 8.24 shows the discrete strength functions for the
EMN500 interaction. For 4He, the dominant peaks are governed by single transitions. This
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Figure 8.21.: As figure 8.20 but for the N2LOsat interaction.
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Figure 8.22.: As figure 8.20 but for the EMN500 interaction.

is also found for the lowest peaks in the response of in 6He and 8He, however, the regions
of the giant monopole, dipole, and quadrupole resonances exhibit more fragmentation.

The systematics of the strength functions throughout the isotopic chain is as follows: The
monopole strength at about 24 MeV in 4He is shifted to lower energies when additional
neutrons are added. This is consistent with what is expected from nuclei with larger radii
based on a naive mean-field picture.

The dipole response of 4He exhibits strength at too high energies compared to data
[Ark+80]. The two pronounced peaks in the calculated strength function are not visible in
the data. We remark, however, that the data is very controversial, and various experiments
yield significant discrepancies, see [Shi+05] for an overview. The availability of precise
data is desirable to allow definite conclusions on the quality of theoretical interactions
and many-body methods. We note that good agreement with some of the data was found
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Figure 8.23.: Isoscalar E0, isovector E1, and isoscalar E2 strength functions of 4,6,8He using
the SRG-evolved EMN400 ( ), N2LOsat ( ), and EMN500 ( ) interac-
tions with α = 0.08 fm4. The oscillator frequency is h̄Ω = 20 MeV and β = 0.5.
The IT-NCSM model spaces are truncated at Nmax = 8/9. The gray areas
show experimental data in arbitrary units for 4He from [Ark+80].
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Figure 8.24.: Discrete isoscalar E0, isovector E1, and isoscalar E2 strength functions of
4,6,8He using the SRG-evolved EMN500 interaction with α = 0.08 fm4. The
oscillator frequency is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model
spaces are truncated at Nmax = 8/9.
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Nucleus EMN400 N2LOsat EMN500 Exp
4He 0.0743(10) 0.0820(3) 0.0782(3) 0.074(9)
6He 0.4710(393) 0.3989(189) 0.4453(285)
8He 0.5950(1) 0.4454(19) 0.5287(50)

Table 8.3.: Electric dipole polarizability for 4,6,8He obtained for the SRG-evolved EMN400,
N2LOsat, and EMN500 interactions with α = 0.08 fm4. The experimental value
for 4He is taken from [Mio+16]. All values are given in units of fm3. The
theoretical uncertainties are given by the difference of the dipole polarizabilities
for Nmax = 6/7 and Nmax = 8/9.

in various few- and many-body methods employing the LIT for the calculation of the
cross sections [Bar+01; Gaz+06; QN07; Bac+14]. However, these calculations provide
only very gross and smeared-out structures. By increasing the width of the Lorentzian
curve employed to fold the discrete transition strengths, we obtain strength functions that
resemble these.

When considering 6He and 8He, the dominant strength is pushed toward lower energies,
indicating the emergence of pygmy dipole resonances. We note that—unlike suggested
by the name “pygmy”—these resonances are not small at all; they have been found to be
significant also in theoretical predictions from the LIT method using three different semire-
alistic models of the nuclear force for 6He [Bac+02; Bac+04]. The dipole polarizabilities
are listed in table 8.3. Given the discrepancies between the theoretical and experimental
strength functions, the excellent agreement of our theoretical dipole polarizabilities for 4He
for all interactions with experiment seems to be a lucky coincidence. This underlines that
the dipole polarizability cannot be used reliably as a measure for the quality of theoretical
models. As expected from the large strength at low energies observed for 6He and 8He,
the dipole polarizabilities are significantly larger than for 4He.

The isoscalar E2 distributions for 6He and 8He exhibit two resonance regions. The one
at lower energies corresponds to a pygmy resonance driven by the halo neutrons. Its
strength is comparable in magnitude to the strength found in the giant-resonance region.

We study the nature of the enhanced dipole transition strengths by computing the radial
transition densities. The respective peaks are marked by the red arrows in figure 8.25.
Figure 8.26 shows that all transition strengths considered in 4He are of purely isovector
character. The dipole transition at E∗ = 26.52 MeV and 28.04 MeV can be interpreted as a
simple out-of-phase oscillation of the bulk protons and neutrons. All the other transition
densities exhibit more complex structures, where the bulk and surface nucleons exhibit
different out-of-phase oscillation patterns. We note that the respective transitions are
located at energies where 4He is unbound, i.e., we should not overrate these results. In all
cases, the proton and neutron transition densities are almost perfectly symmetric.

The radial transition densities of 6He and 8He, shown in figures 8.27 and 8.28, share
similar features. Most of the transitions are of a mixed character, i.e., they are partly
isoscalar and partly isovector. For example, in the lowest transitions considered, i.e.,
at E∗ = 7.34 MeV and 6.30 MeV, respectively, the bulk protons and neutrons oscillate
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Figure 8.25.: Discrete and folded isovector E1 strength functions of 4,6,8He obtained in
the IT-NCSM using the SRG-evolved EMN500 interaction with α = 0.08 fm4.
The oscillator frequency is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model
spaces are truncated at Nmax = 4/5. The red arrows point at the resonance
peaks for which radial transition densities are calculated.

in phase, while they move against each other at the nuclear surface, with the neutrons
extending further out. In contrast to that, the most dominant peak in each distribution, at
around 11.5 MeV, driving the pygmy dipole response, is purely isoscalar, and is caused by
the motion of the center of mass. The transitions in the region of the giant dipole resonance
are predominantly of isovector character, as expected.
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Figure 8.26.: Radial proton ( ) and neutron ( ) transition densities from the 0+ ground
state of 4He to 1− states with dominant contributions to the isovector E1
response. The transition densities are obtained in the IT-NCSM using the
SRG-evolved EMN500 interaction with α = 0.08 fm4. The oscillator frequency
is h̄Ω = 20 MeV and β = 0.5. The IT-NCSM model spaces are truncated at
Nmax = 4/5.
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Figure 8.27.: As figure 8.26 but for 6He.
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Figure 8.28.: As figure 8.26 but for 8He.
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9. Conclusions

This work covers two major projects, one in the framework of the VSSM and the other one
in the framework of the NCSM. The two projects share the common goal to extend the
respective many-body method to new domains of applications.

The first project addresses the well established phenomenological VSSM and comprises
several developments that are essential cornerstones toward its implementation as an ab
initio method. On the one hand, this requires that all truncations are controllable, with
the possibility to improve on them in a systematic manner. In the case of the VSSM, this
implies an extension of the valence space. On the other hand, we wish to describe nuclei
using realistic interactions that are derived in a rigorous theoretical framework rather than
interactions that are determined in a phenomenological way by constraining the matrix
elements by fits to experimental data of nuclei in the region of interest.

In a first step, we have applied the importance-truncation scheme to the VSSM, thus
introducing the IT-VSSM. This approach is based on the definition of an a priori importance
measure for the basis states, which, by imposing a threshold on this measure, allows for the
construction of a model space with significantly smaller dimension than the model space in
the conventional VSSM. This importance-truncated model space is tailored specifically to
the set of target eigenstates and the Hamiltonian, and reduces the computational cost of the
calculation and diagonalization of the Hamilton matrix. We have demonstrated that the IT-
VSSM extends the reach of VSSM calculations to large valence spaces, which can comprise
more than a single major shell, and to mid-shell nuclei. In addition to the threshold
extrapolation, routinely used in the IT-NCSM, we have adopted an extrapolation in terms
of the energy variance for the first time in the importance-truncation context. Generally,
the threshold extrapolation provides sufficiently accurate energies and electromagnetic
observables at no extra computational cost. In specific cases, however, the energy-variance
extrapolation provides a better accuracy for energies at significant extra cost, e.g., for
states governed by deformation.

Next, we have studied the performance of effective valence-space Hamiltonians derived
in the IM-SRG. The IM-SRG is one of several ab initio approaches that have become
available recently and that provide a consistent framework for the systematic construction
of valence-space Hamiltonians and operators starting from realistic interactions, thus
providing a connection to the underlying nuclear interaction. By treating all nucleons as
active degrees of freedom, the IM-SRG performs a decoupling of the target valence space
from the core and excluded space. We have monitored this decoupling procedure in the
IM-SRG flow for the sd-shell valence space by means of a series of VSSM calculations for
18O and compared it to a series of IT-NCSM calculations using the same IM-SRG-evolved
Hamiltonians. The excellent agreement of the results obtained with both methods, which is
maintained when the IT-NCSM model space is increased, confirms a successful decoupling
of the valence space from the core and excluded space. However, an analog analysis of
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the IM-SRG flow for an extended valence space, comprising two major shells, shows that
the decoupling fails. The reasons are not yet fully understood, but we assume that this
failure is related to the truncation of the IM-SRG at the level of normal-ordered two-body
operators as well as the appearance of intruder states. It would be very interesting to see if
an extension of the IM-SRG to normal-ordered three-body operators and beyond improves
on this and, thus, allows for the construction of effective Hamiltonians for multi-shell
valence spaces.

Restricting ourselves to single-shell valence spaces, we apply the IT-VSSM to the study
of nuclei that are accessible only within this method. We use effective Hamiltonians
derived from realistic interactions that are adjusted exclusively to few-body data. We in-
vestigate the ground and first excited states of the neutron-deficient tin isotopes 100−114Sn
in the gds valence space employing two interactions, 1.8/2.0(EM) and 2.0/2.0(EM), as
starting point. These interactions are constructed in a similar way, and there is no a priori
criterion why one of these interactions should be superior. Although they perform well in
the reproduction of the systematic trend of the experimental ground-state energies, the
1.8/2.0(EM) yields results that are impressively close to these data, while the 2.0/2.0(EM)
underestimates the ground-state energies. Also, the 2.0/2.0(EM) does not produce a
2+ first-excited state within the lowest four states calculated, while the 1.8/2.0(EM) in-
teraction yields such a state with an excitation energy of comparable magnitude to the
one observed in 132Sn, thus indicating the doubly magic nature of this nucleus. If we
conservatively interpret the discrepancies in the energies in terms of uncertainties inherent
in the Hamiltonians, these outweigh the uncertainties resulting from the IM-SRG and
the importance-threshold extrapolation, and underline the need for a more systematic
approach to nuclear interactions. We have also studied the level orderings and energy
splittings of the ground and first excited states in the odd-mass tin isotopes considered.
We reproduce well the experimentally found near-degeneracy of these states; however, the
large uncertainties of the initial Hamiltonians and the uncertainties from the IM-SRG and
importance-threshold extrapolation prevent us from making definite spin assignments.

Since other observables are sensitive to other aspects of the nuclear interaction, it would
also be interesting to study, e.g, electromagnetic moments and transitions in the framework
of the IT-VSSM using consistently evolved operators from the IM-SRG. First steps along
these lines have already been done, but indicate the necessity to extend the IM-SRG
beyond the truncation of normal-ordered two-body operators [Par+17].

Within the second project, we have formulated an ab initio approach for the description
of transition strength distributions by combining the IT-NCSM with the Lanczos strength-
function method. We have found that the loss of orthogonality in the Lanczos basis—
resulting in duplicates in the energy spectrum—does not affect the strength distributions.
This allows us to use the simplest possible version of the Lanczos algorithm, rendering the
method extremely efficient regarding both, computing time and memory requirements.
We have analyzed the sensitivity of the strength distributions on the different model-space
parameters and truncations, as well as on the choice of single-particle basis. We have
considered the HF, HO, and the newly established natural-orbital basis. Among these, the
HF basis performs best for the simultaneous description of all electric multipole transitions
considered regarding model-space convergence and frequency dependence. Particularly
for the description of the dipole response, the natural-orbital basis has great potential
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for forthcoming investigations, as this basis yields frequency-independent results and,
additionally, exhibits the best convergence of absolute energies separately for the natural-
and unnatural-parity bases. Our approach provides access to the low-energy strength
and the giant-resonance region including fragmentation and fine structure. Only the
explicit coupling to the continuum, e.g., to describe the escape width above the relevant
particle threshold, is not included. In this respect, our method is complementary to
the LIT approaches, which formally include continuum physics but cannot address the
(sub-)threshold region as well as fragmentation and fine structure.

As a first application, we have compared strength functions from the widely used
approximate RPA and SRPA to our ab initio results and have focused on the systematics
in the model-space convergence. We could demonstrate that a consistent use of model
spaces for the calculation of ground and excited states, allowing for the same correlation
content, is essential to bring in line the SRPA strength functions with our IT-NCSM
strength functions in an analog model space. Furthermore, we have shown that the
inclusion of particle-hole excitations up to the four-body level are crucial to capture all
the fragmentation necessary for the description of the spreading width, particularly for
quadrupole responses.

Then, we have investigated the systematics of electric monopole, dipole, and quadrupole
strength functions throughout the oxygen, carbon, and helium isotopic chains using differ-
ent chiral interactions, with a focus on the emergence and evolution of pygmy and giant
resonances. In general, our strength distributions reproduce the expected trends observed
in experiments, with a broadening of the resonances when moving away from closed shells;
however, the strength is located at too high energies. Particularly surprising is the fact
that the N2LOsat interaction, which is known to predict a nuclear matter incompressibility
within the empirical range, produces a monopole resonance at even higher energies than
the EMN400 interaction, which is known to predict too small nuclear radii. These findings
indicate that other aspects of the nuclear interaction, e.g., momentum dependence and
non-locality, play an important role for the description of these dynamic observables and
highlight the significance of collective modes for constraining nuclear interactions. Also,
we find prominent strength in the isoscalar quadrupole response at low energies, which,
in case of the neutron-rich oxygen isotopes, can be interpreted as a pygmy quadrupole
resonance. Furthermore, we have provided the dipole polarizabilities for all isotopes and
interactions considered. They increase when more and more neutrons are added to an
isotope, as expected. Additionally, we can use the eigenstates from IT-NCSM calculations
to investigate the nature of the dominant contributions in the strength distributions by
means of their transition densities. These provide an illustrative picture on the nuclear dy-
namics. Our results indicate that pygmy dipole resonances are typically mixtures of both,
isoscalar and isovector transitions, while the transitions in the giant-resonance regions
are mainly isovector for dipole and mainly isoscalar for quadrupole modes. It would
be particularly interesting to investigate the low-lying strength found in the isoscalar
E2 distributions of neutron-rich oxygen isotopes, for which we have predicted a pygmy
quadrupole resonance, and shed light on their characteristics.

In the future, we aim at an application of the framework also to electroweak transitions,
e.g., to the study of Gamow-Teller responses. Furthermore, an interesting path of develop-
ment could be the use of IM-SRG-evolved Hamiltonians and operators for the calculation
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9. Conclusions

of strength distributions. Since these Hamiltonians provide a ground state decoupled from
all excitations, the remaining dependence of the strength functions is solely connected to
the convergence of the excited states.
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A. Derivation of Electromagnetic Quantities

A.1. Relevant Definitions and Notations

In this section, we introduce the quantities and angular-momentum coupling symbols rel-
evant for the derivations in the following sections. We restrict ourselves to the definitions
and refer to standard text books for more details and specific properties of the quantities,
see, e.g., [Suh07]. We note that several notations may exist in the literature.

Clebsch-Gordan Coefficients and 3j Symbols

We consider a system of two angular momenta and its projections, (~j1, m1) and (~j2, m2).
Such a system can be realized by the angular momenta of two different subsystems or two
different angular momenta of a single system. A state of such a system in the uncoupled
basis is given by |j1m1, j2m2〉. For many applications, it is convenient to couple the two
angular momenta to a total angular momentum (~J, M):

|j1 j2 JM〉 = ∑
m1m2

|j1m1, j2m2〉 〈j1m1, j2m2|j1 j2 JM〉

≡ ∑
m1m2

(
j1 j2 J

m1 m2 M

)
|j1m1, j2m2〉 . (A.1)

The overlap between an uncoupled and a coupled state—denoted by the brackets—
represents a so-called Clebsch-Gordan coefficient. Analogously, it is possible to express an
uncoupled state in the coupled basis:

|j1m1, j2m2〉 = ∑
JM

(
j1 j2 J

m1 m2 M

)
|j1 j2 JM〉 . (A.2)

We refer to quantum-mechanics text books for the useful properties and symmetry rela-
tions of Clebsch-Gordan coefficients.

It is often convenient to resort to 3j symbols, which can be obtained from the Clebsch-
Gordan coefficients by the following definition:(

j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3 ĵ−1

3

(
j1 j2 j3

m1 m2 −m3

)
. (A.3)

Here, we have introduced the notation

ĵ ≡
√

2j + 1. (A.4)

We note that the symmetry relations for 3j symbols have more symmetric phase factors
than the corresponding ones of the Clebsch-Gordan coefficients, see the literature for more
details.
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A. Derivation of Electromagnetic Quantities

6j and 9j Symbols

The angular-momentum coupling machinery can be extended to three or four angular
momenta. We note that there are different ways to couple three or four angular momenta,
wich depend on the order of coupling. The related coupling coefficients are called Wigner
nj symbols. If one wants to expand, e.g., a state |j1, j2 j3(j23); JM〉, where the angular mo-
menta j2 and j3 are coupled to j23 before coupling j1 with j23 to a total angular momentum
J, in the basis {|j1 j2(j12), j3; JM〉}, where j1 and j2 are first coupled to j12 before coupling
the latter with j3, this can be accomplished using the following relation:

|j1, j2 j3(j23); JM〉 = ∑
j12

|j1 j2(j12), j3; JM〉 〈j1 j2(j12), j3; JM|j1, j2 j3(j23); JM〉

≡∑
j12

(−1)j1+j2+j3+J ĵ12 ĵ23

{
j1 j2 j12
j3 J j23

}
|j1 j2(j12), j3; JM〉 . (A.5)

The array with braces is called 6j symbol. There is an explicit expression for the 6j symbol
in terms of 3j symbols, which can be particularly useful to summarize sums over products
of 3j symbols [VMK88, p. 296 (13)].

Analogously, a 9j symbol can be introduced for the coupling of four angular momen-
tum vectors to a given total angular momentum. The state |j1 j3(j13)j2 j4(j24); JM〉 can be
expressed in the basis {|j1 j2(j12)j3 j4(j34); JM〉} using the relation

|j1 j3(j13)j2 j4(j24); JM〉 = ∑
j12 j34

|j1 j2(j12)j3 j4(j34); JM〉 ×

〈j1 j2(j12)j3 j4(j34); JM|j1 j3(j13)j2 j4(j24); JM〉

≡ ∑
j12 j34

ĵ12 ĵ34 ĵ13 ĵ24


j1 j2 j12
j3 j4 j34
j13 j24 J

 |j1 j2(j12)j3 j4(j34); JM〉 , (A.6)

where the array with braces denotes the 9j symbol. A 9j symbol can be written in terms
of 6j symbols [VMK88, p. 340 (20)], and several special cases exist, where it reduces to
simple expressions involving 3j symbols [VMK88, p. 339 (17)].

Spherical Tensor Operators

A spherical tensor operator TTT JM with rank J and projection M is defined via its trans-
formation behavior under rotations. In particular, it is required to fulfill the following
commutation relations with the z-projection JJJz and the ladder operators JJJ± of the angular
momentum operator JJJ:

[JJJz, TTT JM] = Mh̄TTT JM, (A.7)

[JJJ±, TTT JM] = h̄
√
(J ±M + 1)(J ∓M)TTT J,M±1. (A.8)

We note that the angular momentum operator JJJ itself is a tensor operator of rank 1, and its
z-projection JJJz and the ladder operators JJJ± define its components in the spherical basis.
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A.2. Vector Potential and Hamiltonian of the Electromagnetic Field

Wigner-Eckart Theorem

The Wigner-Eckart theorem simplifies the calculation of matrix elements for spherical ten-
sor operators. It allows for the definition of a reduced matrix element that is independent
of all projection quantum numbers. All dependencies on the latter are absorbed into a
factor:

〈ξ ′ j′m′|TTT JM|ξ jm〉 = (−1)j′−m′
(

j′ J j
−m′ M m

)
〈ξ ′ j′‖TTT J‖ξ j〉 (A.9)

= (−1)2J ĵ′−1
(

j J j′

m M m′

)
〈ξ ′ j′‖TTT J‖ξ j〉 . (A.10)

The relevant quantum numbers of a given state are (j, m), and all other quantum numbers
are contained in ξ. In the literature, there are several conventions of the Wigner-Eckart
theorem. We use Edmond’s convention [Edm64; VMK88].

A.2. Vector Potential and Hamiltonian of the Electromagnetic
Field

To derive the vector potential and Hamiltonian of the electromagnetic field, we start from
the homogeneous Maxwell equations for a matter- and source-free region:

~∇ ·~EEE(~r, t) = 0, (A.11a)

~∇×~BBB(~r, t) =
1
c
~̇EEE(~r, t), (A.11b)

~∇×~EEE(~r, t) = −1
c
~̇BBB(~r, t), (A.11c)

~∇ ·~BBB(~r, t) = 0. (A.11d)

The general procedure to determine the electric and magnetic fields ~EEE(~r, t) and ~BBB(~r, t)
is to introduce a scalar potential ΦΦΦ(~r, t) and a vector potential ~AAA(~r, t) that automatically
embody the limitations that the Maxwell equations pose on the six field components. The
vector potential ~AAA(~r, t) can be defined via

~BBB(~r, t) = ~∇× ~AAA(~r, t) (A.12)

and, therefore, the fourth Maxwell equation, (A.11d), is always satisfied. By inserting this
relation into (A.11c), the third Maxwell equation reads

~∇×
(
~EEE(~r, t) +

1
c
~̇AAA(~r, t)

)
= 0. (A.13)

It is satisfied if the expression in brackets is written as the gradient of a scalar field. We,
thus, introduce a scalar potential so that

~EEE(~r, t) = −~∇ΦΦΦ(~r, t)− 1
c
~̇AAA(~r, t). (A.14)
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A. Derivation of Electromagnetic Quantities

Substituting expressions (A.12) and (A.14) into (A.11a) and (A.11b) yields the field equa-
tions (

∆− 1
c2

∂2

∂t2

)
ΦΦΦ(~r, t) +

1
c

∂

∂t

(
~∇ · ~AAA(~r, t) +

1
c

∂

∂t
ΦΦΦ(~r, t)

)
= 0, (A.15)(

∆− 1
c2

∂2

∂t2

)
~AAA(~r, t)− ~∇

(
~∇ · ~AAA(~r, t) +

1
c

∂

∂t
ΦΦΦ(~r, t)

)
= 0, (A.16)

which are equivalent to the Maxwell equations. The potentials ΦΦΦ(~r, t) and ~AAA(~r, t) behave
like the components of a four-vector under Lorentz transformations, where ΦΦΦ(~r, t) corre-
sponds to the time-like component. The field equations (A.15) and (A.16) are invariant
under gauge transformations of the form

ΦΦΦ′(~r, t) = ΦΦΦ(~r, t) +
1
c

∂

∂t
fff (~r, t), (A.17)

~AAA′(~r, t) = ~AAA(~r, t)− ~∇ fff (~r, t). (A.18)

One possible choice for the scalar potential ΦΦΦ(~r, t) and the vector potential ~AAA(~r, t) that
describe the same given physical situation can be obtained when working in transverse
gauge by imposing the conditions

ΦΦΦ(~r, t) = 0 and ~∇ · ~AAA(~r, t) = 0. (A.19)

With this, (A.15) and (A.16) reduce to

∆~AAA(~r, t)− 1
c2

∂2

∂t2
~AAA(~r, t) = 0, (A.20)

and we obtain for the field Hamiltonian

HHHfield =
1

8π

∫
d3r
(
~EEE2(~r, t) +~BBB2(~r, t)

)
=

1
8π

∫
d3r
[(
− ~∇ΦΦΦ(~r, t)− 1

c
∂

∂t
~AAA(~r, t)

)2
+
(
~∇× ~AAA(~r, t)

)2
]

=
1

8π

∫
d3r
( 1

c2

(
~̇AAA(~r, t)

)2
+
(
~∇× ~AAA(~r, t)

)2
)

. (A.21)

The most general vector potential that fulfills both, field equation (A.20) and the transver-
sality conditions (A.19), is given by

~AAA(~r, t) = ∑
α

∫
d3k

1

(2π)
3
2

NNN~kα
~ε~kα

ei(~k~r−ωkt), (A.22)

where the sum is over the two independent polarizations. The transversality condition is
satisfied when the normalized polarization vectors~ε~kα

are chosen such that~ε~kα
·~k = 0. By

absorbing the time dependence into a factor via

~AAA(~r, t) = ~AAA(~r)e−iωkt, (A.23)
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A.2. Vector Potential and Hamiltonian of the Electromagnetic Field

(A.20) can be transformed into the Helmholtz equation(
∆ + k2)~AAA(~r, t) = 0. (A.24)

Since the nuclear Hamiltonian is spherically symmetric, the solutions ~AAA(~r, t) are eigen-
functions of the orbital angular-momentum operators ~LLL2 and LLL3. This is the case for
solutions of the form jl(kr)Ylml (Ω), where the spherical Bessel functions ensure regularity
at the origin. Besides, the photon has spin s = 1, and, therefore, the solutions must also be
eigenfunctions of the spin operators~SSS2 and SSS3 given by~ems . The total angular momentum
of the photon is~λ =~l +~s. The corresponding eigenfunctions of~LLL2,~SSS2,~ΛΛΛ2 and ΛΛΛ3 are the
vector spherical harmonics

~Yλlµ = ∑
msml

(
l 1 λ

ml ms µ

)
Ylml (Ω)~ems . (A.25)

For fixed λ, the orbital angular momentum l can be λ − 1, λ, λ + 1, which yields, in
principle, three independent solutions of (A.24). However, only two independent solutions
are found for each combination of λ and µ that satisfy the transversality condition. They
can be characterized as electric (σ = E) and magnetic (σ = M) radiation:

~AMkλµ(~r) = N jλ(kr)~Yλλµ(Ω)

=
N√

λ(λ + 1)
1
i
(
~r× ~∇

)(
jλ(kr)Yλµ(Ω)

)
, (A.26)

~AEkλµ(~r) =
i
k
(
~∇× ~AMkλµ(~r)

)
=

−N√
λ(λ + 1)

1
k

[
~∇
(

Yλµ(Ω)
∂

∂r
(rjλ(kr))

)
+ k2~rjλ(kr)Yλµ(Ω)

]
. (A.27)

A detailed derivation of these is given in [EG76, chapter 3.2 and 3.3].
The quantum number k is quantized by imposing the proper boundary conditions at

a perfectly conducting sphere with radius R, which is assumed to be much larger than
the nuclear radius. The electric field component parallel to the surface of the sphere is
required to vanish; the same holds for the magnetic field component perpendicular to
the surface of the sphere. This is fulfilled only for a discrete set of k-values, which are
determined in the magnetic case by

jλ(knR) = 0 (A.28)

and in the electric case by

∂

∂r
(
rjλ(knr)

)∣∣
r=R = 0. (A.29)

We use the normalization constant

N =

√
4πh̄ωk

R
(A.30)

127



A. Derivation of Electromagnetic Quantities

in the limit of large R and for both radiation types σ, so that the orthogonality relation∫ R

0
drr2

∫
4π

dΩ~A∗σ′k′λ′µ′(~r) · ~Aσkλµ(~r) =
2πh̄c

k
δσσ′δkk′δλλ′δµµ′ (A.31)

holds. Thus, we obtain as most general solution for the vector potential

~AAA(~r, t) = ∑
σkλµ

(
ααα∗σkλµ

~Aσkλµ(~r)e−iωkt + c.c.
)
, (A.32)

where the coefficients ααασkλµ are independent variables that describe the electromagnetic
field.

In our notation, we have indicated all fields, potentials, and the coefficients ααασkλµ as
operators. This will be legitimatized in the following. Inserting (A.32) into (A.21) yields

HHHfield = ∑
σkλµ

1
2

h̄ωk
(
ααα∗σkλµααασkλµ + c.c.

)
. (A.33)

Since HHHfield has the form of a HO Hamiltonian, the variables ααασkλµ are replaced by the
creation and annihilation operators for photons of type σ with energy h̄ωk. Employing the
boson commutation relations for the creation and annihilation operators, we can rewrite
the field Hamiltonian as

HHHfield = ∑
σkλµ

h̄ωk

(
aaa†

σkλµaaaσkλµ +
1
2

)
. (A.34)

Analogously, we obtain for the vector potential

~AAA = ∑
σkλµ

(
~Aσkλµ(~r)e−iωktaaa†

σkλµ + ~A∗σkλµ(~r)e
iωktaaaσkλµ

)
. (A.35)

We remark that the electric and magnetic fields ~EEE(~r, t) and ~BBB(~r, t) can be determined by
substituting (A.35) into (A.12) and (A.14).

A.3. Static Multipole Operators

The static electric multipole operator (3.22) can be derived by inserting the density (3.9)
into (3.20):

QQQλµ =
∫

d3r ρρρ(~r)rλYλµ(Ω)

=
A

∑
i=1

∫
d3r e

(1
2
+ ttt(i)3

)
δ
(
~r−~rrri(t)

)
rλYλµ(Ω)

= e
A

∑
i=1

(1
2
+ ttt(i)3

)
rrrλ

i Yλµ(ΩΩΩi). (A.36)
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For the derivation of the static magnetic multipole operator (3.23), we use relation [RS80,
(B.20)],

~∇
(
rλYλµ(Ω)

)
=

1
λ + 1

~∇×
(
~∇×~r

)
rλYλµ(Ω), (A.37)

to develop an alternative expression for (3.21):

MMMλµ =
∫

d3r ~µµµ(~r) · ~∇
(
rλYλµ(Ω)

)
=

1
λ + 1

∫
d3r ~µµµ(~r) · ~∇×

(
~∇×~r

)
rλYλµ(Ω)

=
1

λ + 1

∫
d3r µµµi(~r)~ei · εlmnεjkm∂l∂j rk~enrλYλµ(Ω)

=
1

λ + 1

∫
d3r µµµi(~r)εlmiεjkm∂l∂j rkrλYλµ(Ω). (A.38)

We carry out the second derivative and then perform an integration by parts. Since the
nuclear spin density is located in the nucleus, the surface term vanishes:

MMMλµ =
1

λ + 1

∫
d3r µµµi(~r)εlmiεjkm∂l

(
δjkrλYλµ(Ω) + rk∂jrλYλµ(Ω)

)
=

1
λ + 1

∫
d3r µµµi(~r)εlmiεjkm∂l rk∂jrλYλµ(Ω)

= − 1
λ + 1

∫
d3r ∂l

(
µµµi(~r)

)
εlmiεjkmrk∂j rλYλµ(Ω)

=
1

λ + 1

∫
d3r rkεkmjεlim∂l

(
µµµi(~r)

)
∂j rλYλµ(Ω)

=
1

λ + 1

∫
d3r rkεkmj

(
~∇×~µµµ(~r)

)
m ∂j rλYλµ(Ω)

=
1

λ + 1

∫
d3r
(
~r× (~∇×~µµµ(~r))

)
j ∂j rλYλµ(Ω)

=
1

λ + 1

∫
d3r
[
~r×

(
~∇×~µµµ(~r)

)]
· ~∇
(
rλYλµ(Ω)

)
=

1
c(λ + 1)

∫
d3r
(
~r×~jjj(~r)

)
· ~∇
(
rλYλµ(Ω)

)
. (A.39)

We split the magnetic multipole operator into spin and orbit part, and use the most suitable
start expression for each:

MMMλµ =
1

c(λ + 1)

∫
d3r
(
~r×~jjj(~r)

)
· ~∇
(
rλYλµ(Ω)

)
=

1
c(λ + 1)

∫
d3r
(
~r×~jjjo(~r)

)
· ~∇
(
rλYλµ(Ω)

)
+

1
c(λ + 1)

∫
d3r
(
~r×~jjjs(~r)

)
· ~∇
(
rλYλµ(Ω)

)
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=
1

c(λ + 1)

∫
d3r
(
~r×~jjjo(~r)

)
· ~∇
(
rλYλµ(Ω)

)
+
∫

d3r ~µµµs(~r) · ~∇
(
rλYλµ(Ω)

)
. (A.40)

We insert the orbit current density (3.10) into the first term and use an approximation
for velocity-independent potentials, where~vvvi = ~pppi/m. In this way, we obtain

1
c(λ + 1)

∫
d3r
(
~r×~jjjo(~r)

)
· ~∇
(
rλYλµ(Ω)

)
=

1
c(λ + 1)

e
A

∑
i=1

∫
d3r
[
~r×

(1
2
+ ttt(i)3

)~pppi
m

δ(~r−~rrri)
]
· ~∇
(
rλYλµ(Ω)

)
=

2µN

λ + 1

A

∑
i=1

g(i)l
~llli · ~∇i

(
rrrλ

i Yλµ(ΩΩΩi)
)

(A.41)

with the orbit g factors g(i)l = 1 for protons and g(i)l = 0 for neutrons.
The second term yields∫

d3r ~µµµs(~r) · ~∇
(
rλYλµ(Ω)

)
= µN

A

∑
i=1

∫
d3r δ(~r−~rrri(t))

[(1
2
+ ttt(i)3

)
gp +

(1
2
− ttt(i)3

)
gn

]
~sssi · ~∇

(
rλYλµ(Ω)

)
= µN

A

∑
i=1

g(i)s ~sssi · ~∇i
(
rrrλ

i Yλµ(ΩΩΩi)
)

(A.42)

with the current spin density (3.12). Here, we have introduced the definitions g(i)s = gp for

protons and g(i)s = gn for neutrons.
The sum of (A.41) and (A.42) yields expression (3.23) for the static magnetic multipole

operator

MMMλµ = µN

A

∑
i=1

[
g(i)s ~sssi +

2
λ + 1

g(i)l
~llli

]
·
(
~∇irrrλ

i Yλµ(ΩΩΩi)
)
. (A.43)

A.4. Electromagnetic Multipole Transition Operators

In order to derive the electromagnetic multipole transition operators, we start from Fermi’s
golden rule (3.30) and use an expression for the density of final states from the continuity
conditions of an electromagnetic field at the surface of a perfectly conducting sphere. In
the limit of large R, this yields

g(E f ) =
1
h̄c

R
π

. (A.44)
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We first derive expression (3.31) for the electric multipole transition operator (3.32). We
insert the electric component of HHHint in transverse gauge (3.13) and exploit that we are
considering one-photon absorption processes:

Tf i(E, kλµ) =
2π

h̄
|〈 f |HHHint|i〉|2 g(E f )

=
2π

h̄
1
h̄c

R
π

∣∣ 〈Ψ f | −
1
c

∫
d3r~jjj(~r, t) · ~AEkλµ(~r)eiωkt|Ψi〉

∣∣2
=

2π

h̄
1
h̄c

R
π

4πh̄ck
R

∣∣ 〈Ψ f |
1
c

i
k

∫
d3r~jjj(~r, t) · ~∇× jλ(kr)~Yλλµ(Ω)|Ψi〉

∣∣2
=

8πk
h̄
∣∣ 〈Ψ f |

1
ck

∫
d3r~jjj(~r, t) · ~∇× jλ(kr)~Yλλµ(Ω)|Ψi〉

∣∣2. (A.45)

We use relation [Edm64, (5.9.14)] to rewrite the vector spherical harmonics and exploit
that the spherical Bessel function commutes with~r× ~∇:

Tf i(E, kλµ) =
8πk

h̄
∣∣ 〈Ψ f |

1
ck

∫
d3r~jjj(~r, t) · ~∇× jλ(kr)

1
i
√

λ(λ + 1)

(
~r× ~∇

)
Yλµ(Ω)|Ψi〉

∣∣2
=

8πk
h̄

1
(ck)2

1
λ(λ + 1)

×
∣∣ 〈Ψ f |i

∫
d3r~jjj(~r, t) · ~∇×

(
~∇×~r

)(
jλ(kr)Yλµ(Ω)

)
|Ψi〉

∣∣2. (A.46)

The expression within the absolute value bars, including some additional factors, can
be defined as the electric multipole transition operator OOO(E, kλµ). We further substitute
Ek = h̄kc and obtain

Tf i(E, kλµ) =
8π

h̄
λ + 1

λ[(2λ + 1)!!]2

(
Ek

h̄c

)2λ+1 ∣∣〈Ψ f |OOO(E, kλµ)|Ψi〉
∣∣2 (A.47)

with

OOO(E, kλµ) =
i(2λ + 1)!!

ckλ+1(λ + 1)

∫
d3r~jjj(~r, t) · ~∇×

(
~∇×~r

)(
jλ(kr)Yλµ(Ω)

)
. (A.48)

Equation (A.47) corresponds to (3.31) in the electric case, which we wanted to derive.
The electric multipole transition operator (A.48) can be written in a more convenient

way. To this aim, we partly rewrite the integrand:

~∇×
(
~∇×~r

)(
jλ(kr)Yλµ(Ω)

)
= ~∇

(
~∇ · r~er jλ(kr)Yλµ(Ω)

)
−~r∆

(
jλ(kr)Yλµ(Ω)

)
= ~∇

(
Yλµ(Ω)

∂

∂r
(rjλ(kr))

)
+ k2~rjλ(kr)Yλµ(Ω). (A.49)

Here, we have exploited that the divergence in the first term contributes only in~er direction,
and we have applied the Helmholtz equation to the second term. We substitute (A.49)
into (A.48) and obtain (3.32),

OOO(E, kλµ) =
(2λ + 1)!!
kλ(λ + 1)

∫
d3r
(

ρρρ(~r, t)Yλµ(Ω)
∂

∂r
rjλ(kr)

+ i
k
c
~jjj(~r, t) ·~r Yλµ(Ω)jλ(kr)

)
, (A.50)
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after integrating the first term by parts and exploiting the continuity equation

~∇ ·~jjj(~r, t) = − ∂

∂t
ρρρ(~r, t) = iωkρρρ(~r, t). (A.51)

In the magnetic case, we proceed analogously starting from Fermi’s golden rule and
inserting the magnetic component of HHHint in transverse gauge (3.13):

Tf i(M, kλµ) =
2π

h̄
|〈 f |HHHint|i〉|2 g(E f )

=
2π

h̄
1
h̄c

R
π

4πh̄ck
R

∣∣ 〈Ψ f | −
1
c

∫
d3r~jjj(~r, t) · jλ(kr)~Yλλµ(Ω)|Ψi〉

∣∣2. (A.52)

Again, we substitute the vector spherical harmonics using [Edm64, (5.9.14)] and commute
the spherical Bessel function with the orbital angular-momentum operator. We absorb the
expression within the absolute value bars into the magnetic multipole operator, where we
introduce some additional factors. In this way, we obtain the transition probability in the
magnetic case (3.31),

Tf i(M, kλµ) =
8πk

h̄
1

λ(λ + 1)

∣∣ 〈Ψ f |
1
c

∫
d3r~jjj(~r, t) · i

(
~r× ~∇

)
Yλµ(Ω)|Ψi〉

∣∣2
=

8π

h̄
λ + 1

λ[(2λ + 1)!!]2

(
Ek

h̄c

)2λ+1 ∣∣〈Ψ f |OOO(M, kλµ)|Ψi〉
∣∣2 , (A.53)

with the magnetic multipole operator (3.33)

OOO(M, kλµ) =
−(2λ + 1)!!
ckλ(λ + 1)

∫
d3r~jjj(~r, t) ·

(
~r× ~∇

)(
jλ(kr)Yλµ(Ω)

)
. (A.54)

A.5. Single-Particle Matrix Elements of the Reduced Electric
Multipole Operator

We use single-particle states obtained from the HO potential and derive (3.43) for the
reduced single-particle matrix elements of the electric multipole operator

〈ψ f ‖QQQλ‖ψi〉 = 〈n′s′l′ j′‖errrλYλ(ΩΩΩ)‖nslj〉 . (A.55)

We note that the application in a many-body calculation using a different reference ba-
sis, e.g., the HF basis, requires the transformation of the radial component in the final
expression into the reference basis.

In order to decouple the spin and spatial part of the operator and the states, we employ
the reduced version of [VMK88, p. 479 (28)]. The spin part of the operator is given by the
unit operator:

〈ψ f ‖QQQλ‖ψi〉 = eλ̂ ĵ ĵ′


0 λ λ
s′ l′ j′

s l j

 〈s′‖111‖s〉 〈n′l′‖rrrλYλ(ΩΩΩ)‖nl〉

= eλ̂ ĵ ĵ′


0 λ λ
s′ l′ j′

s l j

 δs′s ŝ 〈n′l′‖rrrλYλ(ΩΩΩ)‖nl〉 . (A.56)
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In the following, we exploit that we consider fermions with s = s′ = 1/2, and we,
therefore, omit the factor δs′s. We unreduce the matrix element in (A.56) and insert an
identity in position space to evaluate the eigenvalue relations for rrrλYλ(ΩΩΩ). In this way, we
obtain

〈n′l′‖rrrλYλ(ΩΩΩ)‖nl〉

= (−1)l′−m′l

(
l′ λ l
−m′l µ ml

)−1

〈n′l′m′l |rrrλYλ(ΩΩΩ)|nlml〉

= (−1)l′−m′l

(
l′ λ l
−m′l µ ml

)−1 ∫
dr r2

∫
dΩ 〈n′l′m′l |rΩ〉 rλYλµ(Ω) 〈rΩ|nlml〉

= (−1)l′−m′l

(
l′ λ l
−m′l µ ml

)−1 ∫
dr r2Rn′ l′(r)rλRnl(r)

×
∫

dΩ (−1)−m′l Yl′−m′l
(Ω)Yλµ(Ω)Ylml (Ω). (A.57)

We use the definition of the radial integrals (3.47) and exploit relation [VMK88, p. 148 (5)]

〈n′l′‖rrrλYλ(ΩΩΩ)‖nl〉

= (−1)l′
(

l′ λ l
−m′l µ ml

)−1

〈n′l′|rλ|nl〉 l̂′λ̂l̂√
4π

(
l′ λ l
0 0 0

)(
l′ λ l
−m′l µ ml

)
= (−1)l′ 〈n′l′|rλ|nl〉 l̂′λ̂l̂√

4π

(
l′ λ l
0 0 0

)
. (A.58)

By employing the explicit form of the 9j symbol given in [VMK88, p. 357 (2)], (A.56)
yields

〈ψ f ‖QQQλ‖ψi〉

= eλ̂ ĵ ĵ′(−1)j′+l+λ+sλ̂−1ŝ−1
{

j j′ λ
l′ l s

}
ŝ(−1)l′ 〈n′l′|rλ|nl〉 l̂′λ̂l̂√

4π

(
l′ λ l
0 0 0

)
= e

ĵĵ′ l̂′λ̂l̂√
4π

(−1)j′+l+λ+s+l′
{

j j′ λ
l′ l s

}
〈n′l′|rλ|nl〉

(
l′ λ l
0 0 0

)
= e

ĵĵ′ l̂′λ̂l̂√
4π

(−1)j′+l+λ+s+l′
{

l′ λ l
j s j′

}
〈n′l′|rλ|nl〉

(
l′ λ l
0 0 0

)
. (A.59)

In the last step, we have used symmetry relations of the 6j symbols, so that [VMK88, p. 454
(6)] can be employed to further evaluate the 6j and 3j symbols in (A.59). We also exploit
symmetry relations of the 3j symbols or convert them into Clebsch-Gordan coefficients to
obtain a convenient form for (A.59) and summarize or cancel the phase factors whenever
possible. For this purpose, we require integer values for λ, l, l′ and half-integer values for
s, j, j′:

〈ψ f ‖QQQλ‖ψi〉

= e
ĵĵ′ l̂′λ̂l̂√

4π
(−1)j′+l+λ+s+l′ 〈n′l′|rλ|nl〉∑

ς

(−1)s−3ς+j′+j
(

s l′ j′

ς 0 −ς

)(
j′ λ j
ς 0 −ς

)(
j l s
ς 0−ς

)

133



A. Derivation of Electromagnetic Quantities

= e
ĵĵ′ l̂′λ̂l̂√

4π
(−1)2j′+l+λ+2s+l′+j 〈n′l′|rλ|nl〉

×∑
ς

(−1)−3ς(−1)s+l′+j′
(

l′ s j′

0 ς−ς

)(
j′ λ j
ς 0 −ς

)
(−1)j+l+s

(
j s l
ς−ς 0

)
= e

ĵĵ′ l̂′λ̂l̂√
4π

(−1)3j′+2l+λ+2l′+2j 〈n′l′|rλ|nl〉

×∑
ς

(−1)−3ς

(
l′ s j′

0 ς−ς

)(
j′ λ j
ς 0 −ς

)(
j s l
ς−ς 0

)
= e

ĵĵ′ l̂′λ̂l̂√
4π

(−1)3j′+2l+λ+2l′+2j 〈n′l′|rλ|nl〉

×∑
ς

(−1)−3ς(−1)l′−s+ς ĵ′−1
(

l′ s j′

0 ς ς

)
(−1)j′+λ+j

(
j′ λ j
−ς 0 ς

)
(−1)j−s l̂−1

(
j s l
ς−ς 0

)
= e

ĵl̂′λ̂√
4π

(−1)l′ 〈n′l′|rλ|nl〉∑
ς

(−1)−2(s+ς)

(
l′ s j′

0 ς ς

)(
j′ λ j
−ς 0 ς

)(
j s l
ς−ς 0

)
. (A.60)

At this point, we set ς = ±1/2 as it represents the spin projection of s = 1/2:

〈ψ f ‖QQQλ‖ψi〉

= e
ĵl̂′λ̂√

4π
(−1)l′ 〈n′l′|rλ|nl〉

(
j′ λ j
− 1

2 0 1
2

)
×
[(

l′ 1
2 j′

0 1
2

1
2

)(
j 1

2 l
1
2 −

1
2 0

)
+ (−1)j′+λ+j

(
l′ 1

2 j′

0 − 1
2 −

1
2

)(
j 1

2 l
− 1

2
1
2 0

)]
. (A.61)

We evaluate the expression in the brackets by inserting algebraic formulas for the Clebsch-
Gordan coefficients, e.g., provided in [VMK88, p. 271], and by considering the four possible
combinations for j′ = l′ ± 1/2 and j = l ± 1/2. All combinations yield the same result.

For illustration purposes, we explicitly show the evaluation for j′ = l′ + 1/2 and
j = l + 1/2:

(−1)l′
[(

l′ 1
2 j′

0 1
2

1
2

)(
j 1

2 l
1
2 −

1
2 0

)
+ (−1)j′+λ+j

(
l′ 1

2 j′

0 − 1
2 −

1
2

)(
j 1

2 l
− 1

2
1
2 0

)]

= (−1)j′− 1
2

[√
j′ + 1

2
2j′

√
j + 1

2

2(j + 1
2 )

+ (−1)j′+λ+j

√
j′ + 1

2

2(l′ + 1
2 )
(−1)

√
j + 1

2

2(j + 1
2 )

]

= (−1)j′− 1
2

1
2

ĵ′ l̂′−1(1− (−1)j′+λ+j)
= (−1)j′− 1

2
1
2

ĵ′ l̂′−1(1 + (−1)l′+λ+l). (A.62)

With this, we can summarize the expression for the reduced single-particle matrix
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elements of the electric multipole operators:

〈ψ f ‖QQQλ‖ψi〉 = e
ĵl̂′λ̂√

4π
〈n′l′|rλ|nl〉

(
j′ λ j
− 1

2 0 1
2

)
(−1)j′− 1

2
1
2

ĵ′ l̂′−1(1 + (−1)l′+λ+l)
= e

1 + (−1)l′+λ+l

2
〈n′l′|rλ|nl〉 ĵλ̂ ĵ′√

4π
(−1)j′− 1

2

(
j′ λ j
− 1

2 0 1
2

)
. (A.63)

A.6. Translational Invariance of Electric Multipole Operators

Translationally Invariant Form of the Electric Monopole Operator

We derive the translationally invariant form of the electric monopole operator (3.57) by
inserting the intrinsic coordinate~r− ~Rcm into (3.22) and exploiting the definition of the
center-of-mass coordinate ~Rcm = ∑i~ri/A:

QQQ00 = e
A

∑
i=1

ΠΠΠπ
i
(
~rrri −~RRRcm

)2Y00(ω̄ωωi)

=
1√
4π

e
( A

∑
i=1

ΠΠΠπ
i ~rrr

2
i −

2
A

A

∑
i,j=1

ΠΠΠπ
i ~rrri ·~rrrj +

1
A2

A

∑
i=1

ΠΠΠπ
i

A

∑
j,k=1

~rrrj ·~rrrk

)
. (A.64)

Note that the angle ω̄ωωi is defined in the reference frame of the nucleus’ center of mass.
We use~rrri ·~rrrj = (~rrr2

i +~rrr2
j −~rrr2

ij)/2 with~rrr2
ij = (~rrri −~rrrj)

2. Whenever possible, we rename the
indices for convenience. In this way, we obtain a translationally invariant form of QQQ00:

QQQ00 =
1√
4π

e
( A

∑
i=1

ΠΠΠπ
i ~rrr

2
i −

1
A

A

∑
i,j=1

ΠΠΠπ
i
(
~rrr2

i +~rrr2
j −~rrr2

ij
)
+

Z
2A2

A

∑
i,j=1

(
~rrr2

i +~rrr2
j −~rrr2

ij
))

=
1√
4π

e
( A

∑
i=1

ΠΠΠπ
i ~rrr

2
i −

A

∑
i=1

ΠΠΠπ
i ~rrr

2
i −

Z
A

A

∑
i=1

~rrr2
i +

1
A

A

∑
i,j=1

ΠΠΠπ
i ~rrr

2
ij

+
Z

2A

A

∑
i=1

~rrr2
i +

Z
2A

A

∑
i=1

~rrr2
i −

Z
2A2

A

∑
i,j=1

~rrr2
ij

)
=

1√
4π

e
1
A

A

∑
i,j=1

(
ΠΠΠπ

i −
Z

2A

)
~rrr2

ij

=
1√
4π

e
2
A

A

∑
i>j=1

(
ΠΠΠπ

i −
Z

2A

)
~rrr2

ij. (A.65)

Index symmetrization yields (3.57):

QQQ00 =
1√
4π

e
1
A

A

∑
i>j=1

(
ΠΠΠπ

i +ΠΠΠν
j −

Z
A

)
~rrr2

ij. (A.66)
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Translationally Invariant Form of the Electric Dipole Operator

In order to derive the translationally invariant form of the electric dipole operator (3.59),
we resort to the cartesian representation of the spherical harmonics:

QQQ10 = e
A

∑
i=1

ΠΠΠπ
i
∣∣~rrri −~RRRcm

∣∣Y10(ω̄ωωi)

= e
A

∑
i=1

ΠΠΠπ
i
∣∣~rrri −~RRRcm

∣∣√ 3
4π

(zzzi −ZZZcm)∣∣~rrri −~RRRcm
∣∣

=

√
3

4π
e

A

∑
i=1

ΠΠΠπ
i
(
zzzi −ZZZcm

)
. (A.67)

We exploit Zcm = ∑i zi/A and ΠΠΠπ
i +ΠΠΠν

i = 1 to express the dipole operator in two-body
form:

QQQ10 =

√
3

4π
e
( 1

A

A

∑
i,j=1

ΠΠΠπ
i
(
ΠΠΠπ

j +ΠΠΠν
j
)
zzzi −

1
A

A

∑
i,j=1

ΠΠΠπ
i
(
ΠΠΠπ

j +ΠΠΠν
j
)
zzzj

)
=

√
3

4π
e

1
A

A

∑
i,j=1

(
ΠΠΠπ

i ΠΠΠπ
j +ΠΠΠπ

i ΠΠΠν
j

)
zzzij. (A.68)

Here, we have introduced the relative z-component zij of~rij. The final expression (3.59) is
obtained by reinserting the spherical harmonics:

QQQ10 = e
2
A

A

∑
i>j=1

(
ΠΠΠπ

i ΠΠΠπ
j +ΠΠΠπ

i ΠΠΠν
j

)∣∣~rrrij
∣∣Y10(ω̄ωωij). (A.69)

We remark that we can make use of (3.43) for the calculation of the reduced matrix
elements if we work in a relative HO basis. The corresponding two-body matrix elements
can be obtained by applying the Talmi-Moshinsky transformation [Tal52; Mos59], which
separates HO matrix elements into relative and center-of-mass components and vice versa.

Translationally Invariant Form of the Electric Quadrupole Operator

The translationally invariant form of the electric quadrupole operator (3.61) can be derived
in cartesian coordinates:

QQQ20 = e
A

∑
i=1

ΠΠΠπ
i
(
~rrri −~RRRcm

)2Y20(ω̄ωωi)

= e
A

∑
i=1

ΠΠΠπ
i
(
~rrri −~RRRcm

)2
√

5
16π

2(zzzi −ZZZcm)2 − (xxxi −XXXcm)2 − (yyyi −YYYcm)2(
~rrri −~RRRcm

)2

=

√
5

16π
e

A

∑
i=1

ΠΠΠπ
i

(
2
(
zzzi −ZZZcm

)2 −
(
xxxi −XXXcm

)2 −
(
yyyi −YYYcm

)2
)

. (A.70)
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Each term can be rewritten in the following way:

A

∑
i=1

ΠΠΠπ
i
(
zzzi −ZZZcm

)2
=

A

∑
i=1

ΠΠΠπ
i zzz2

i −
2
A

A

∑
i,j=1

ΠΠΠπ
i zzzizzzj +

1
A2

A

∑
i=1

ΠΠΠπ
i

A

∑
j,k=1

zzzjzzzk

=
A

∑
i=1

ΠΠΠπ
i zzz2

i −
1
A

A

∑
i,j=1

ΠΠΠπ
i
(
zzz2

i + zzz2
j − zzz2

ij
)
+

Z
2A2

A

∑
i,j=1

(
zzz2

i + zzz2
j − zzz2

ij
)

=
1
A

A

∑
i,j=1

(
ΠΠΠπ

i −
Z

2A

)
zzz2

ij. (A.71)

Index symmetrization yields

A

∑
i=1

ΠΠΠπ
i
(
zzzi −ZZZcm

)2
=

1
A

A

∑
i>j=1

(
ΠΠΠπ

i +ΠΠΠπ
j −

Z
A

)
zzz2

ij. (A.72)

By inserting this into (A.70) and combining the three terms to a spherical harmonics, we
obtain

QQQ20 =

√
5

16π
e

1
A

A

∑
i>j=1

(
ΠΠΠπ

i +ΠΠΠπ
j −

Z
A
)(

2zzz2
ij − xxx2

ij − yyy2
ij
)

= e
1
A

A

∑
i>j=1

(
ΠΠΠπ

i +ΠΠΠπ
j −

Z
A

)
~rrr2

ijY20(ω̄ωωij). (A.73)

As for the translationally invariant electric dipole operator, we can calculate the reduced
matrix elements in a relative HO basis using (3.43) and transform them into a two-body
HO basis via Talmi-Moshinsky transformation [Tal52; Mos59] afterward.

One-Body Electric Dipole and Quadrupole Operators in the NCSM

The translationally invariant form of the electric isovector dipole operator can be rewritten
using [VMK88, p. 167 (35)] as

QQQIV
10 = e

A

∑
i=1

τττi
∣∣~rrri −~RRRcm

∣∣Y10(ω̄ωωi)

= e
A

∑
i=1

τττi
√

4π 3!
[

rrri

3!
{

Y1(ΩΩΩi)⊗Y0(ΩΩΩcm)
}

10 −
RRRcm

3!
{

Y0(ΩΩΩi)⊗Y1(ΩΩΩcm)
}

10

]
= e

A

∑
i=1

τττi [rrriY10(ΩΩΩi)−RRRcmY10(ΩΩΩcm)]

= e
A

∑
i=1

τττirrriY10(ΩΩΩi)− e
Z− N

2
RRRcmY10(ΩΩΩcm), (A.74)

where we have used [VMK88, p. 160 (1)] and the explicit form of the spherical harmonics
Y00(Ω).
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In order to reformulate the expression for the translationally invariant electric isoscalar
quadrupole operator, we artificially write the one-body operator in a two-body form. For
shortness, we introduce O(~rrri) = rrr2

i Y20(ΩΩΩi) and obtain

QQQIS
20 =

e
2

A

∑
i=1

O(~rrri)

=
e

2(A− 1)

A

∑
i>j=1

[
O(~rrri) + O(~rrrj)

]
. (A.75)

To further utilize the expression in brackets, we exploit [VMK88, p. 167 (35)] for spherical
waves with r = |~r1−~r2| and R = |~r1 +~r2| and rewrite O(~rrrij) = O(~rrri −~rrrj) and O(~RRRij,cm) =
O(~rrri +~rrrj)/4 as

O(~rrrij) =
√

4π 5!

[
rrr2

j√
5!

{
Y0(ΩΩΩi)⊗Y2(ΩΩΩj)

}
20 +

rrr2
i√
5!

{
Y2(ΩΩΩi)⊗Y0(ΩΩΩj)

}
20

−
rrrirrrj

3!
{

Y1(ΩΩΩi)⊗Y1(ΩΩΩj)
}

20

]
(A.76)

= O(~rrri) + O(~rrrj)−
√

4π 5!
3!

rrrirrrj
{

Y1(ΩΩΩi)⊗Y1(ΩΩΩj)
}

20

]
, (A.77)

O(~RRRij,cm) =
1
4

√
4π 5!

[
rrr2

j√
5!

{
Y0(ΩΩΩi)⊗Y2(ΩΩΩj)

}
20 +

rrr2
i√
5!

{
Y2(ΩΩΩi)⊗Y0(ΩΩΩj)

}
20

+
rrrirrrj

3!
{

Y1(ΩΩΩi)⊗Y1(ΩΩΩj)
}

20

]
(A.78)

=
1
4

[
O(~rrri) + O(~rrrj) +

√
4π 5!
3!

rrrirrrj
{

Y1(ΩΩΩi)⊗Y1(ΩΩΩj),
}

20

]
, (A.79)

where we have evaluated the first two terms in (A.76) and (A.78) using [VMK88, p. 160
(1)] and the explicit form of the spherical harmonics Y00(Ω). A combination of (A.77)
and (A.79) yields

O(~rrri) + O(~rrrj) =
1
2

O(~rrrij) + 2O(~RRRij,cm). (A.80)

The translationally invariant analog of (A.75) is given by

QQQIS
20 =

e
2

A

∑
i=1

O(~rrri −~RRRcm)

=
e

2(A− 1)

A

∑
i>j=1

[
O(~rrri −~RRRcm) + O(~rrrj −~RRRcm)

]
, (A.81)
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A.6. Translational Invariance of Electric Multipole Operators

which we can reformulate using (A.80):

QQQIS
20 =

e
2(A− 1)

A

∑
i>j=1

[
1
2

O(~rrrij) + 2O(~RRRij,cm −~RRRcm)

]
. (A.82)

With [VMK88, p. 167 (35)], we can rewrite the last term and obtain

QQQIS
20 =

e
4(A− 1)

A

∑
i 6=j

[
1
2

O(~rrrij) + 2O(~RRRcm) + 2O(~RRRij,cm)

−
√

4π 5!
3

RRRij,cmRRRcm
{

Y1(ΩΩΩij,cm)⊗Y1(ΩΩΩcm)
}

20

]
. (A.83)

The first and third term of (A.83) can be combined using (A.80):

A

∑
i 6=j

[
1
2

O(~rrrij) + 2O(~RRRij,cm)

]
=

A

∑
i 6=j

[
O(~rrri) + O(~rrrj)

]
= 2(A− 1)

A

∑
i=1

O(~rrri). (A.84)

Regarding the second term of (A.83), we only need to carry out the sums:

A

∑
i 6=j

2O(~RRRcm) = 2A(A− 1)O(~RRRcm). (A.85)

In order to rewrite the last term of (A.83), we exploit the bilinearity of the bipolar spherical
harmonics and use the definition of the center-of-mass coordinate. In this way, we obtain

A

∑
i 6=j

RRRij,cmRRRcm
{

Y1(ΩΩΩij,cm)⊗Y1(ΩΩΩcm)
}

20

= RRRcm

A

∑
i 6=j

{
RRRij,cmY1(ΩΩΩij,cm)⊗Y1(ΩΩΩcm)

}
20

= RRRcm

A

∑
i 6=j

{
~RRRij,cm ⊗Y1(ΩΩΩcm)

}
20

=
RRRcm

2

A

∑
i 6=j

{(
~rrri +~rrrj

)
⊗Y1(ΩΩΩcm)

}
20

=
RRRcm

2
(A− 1)

[
A

∑
i=1

{
~rrri ⊗Y1(ΩΩΩcm)

}
20 +

A

∑
j=1

{
~rrrj ⊗Y1(ΩΩΩcm)

}
20

]
= RRR2

cmA(A− 1)
{

Y1(ΩΩΩcm)⊗Y1(ΩΩΩcm)
}

20. (A.86)
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Finally, we can write the translationally invariant electric isoscalar quadrupole operator as

QQQIS
20 =

e
2

[
A

∑
i=1

O(~rrri) + AO(~RRRcm)−
√

4π 5!
3

A
2

RRR2
cm
{

Y1(ΩΩΩcm)⊗Y1(ΩΩΩcm)
}

20

]
. (A.87)

The eigenstates obtained in the NCSM with HO basis and Nmax truncation factorize
exactly into a component depending only on relative coordinates and a component depend-
ing only on center-of-mass coordinates, |Ψ〉 = |ψint〉 ⊗ |ψcm〉. Since we usually employ
a modified Hamiltonian, HHHint + βHHHcm with finite β, for the solution of the eigenvalue
problem, the center-of-mass component of the eigenstates is always in its 0h̄Ω ground
state with L = 0, cf. chapter 4.

The translationally invariant form of both, the electric isovector dipole and isoscalar
quadrupole operator, depend on the respective one-body operator and additional terms
with spherical harmonics of multipolarity λ = 1 or λ = 2 that act exclusively on the
center-of-mass component. Since transitions with initial Li = 0 and final L f = 0 cannot
be mediated via operators with λ > 0, the center-of-mass parts of (A.74) and (A.87)
cannot contribute, and, thus, the use of the one-body electric isovector dipole and isoscalar
quadrupole operators does not induce spuriosities in the results.
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B. Hartree-Fock Method

The HF method is an approximate method for the solution of the nuclear A-body eigen-
value problem derived from the variational principle. It is motivated by the success of
the naive shell model where the nucleus is considered as a system of nucleons moving
independently in an average potential generated by all of them. Starting point of a HF
calculation is a nuclear Hamiltonian HHHnucl comprising, in general, a zero-, one-, two-,
and three-body part. From this Hamiltonian, we construct a self-consistent one-body
Hamiltonian in such a way that the Slater determinant constructed from its A energeti-
cally lowest single-particle states represents the best approximation to the ground state
possible if the only degrees of freedom for variation are the single-particle states. The
purpose of the HF method in this work is the construction of a single-particle potential
that incorporates a part of the physics relevant for the description of the nucleus under
consideration. Its single-particle states and energies are then used as reference basis in
a subsequent CI calculation, which hopefully exhibits improved convergence properties
compared to calculations using generic single-particle potentials as, e.g., the HO potential.

We aim at the determination of a single-particle basis {|αi〉} with |αi〉 = aaa†
i |0〉 so that

the Slater determinant

|Φ〉 = aaa†
1aaa†

2 . . . aaa†
A |0〉 (B.1)

minimizes the energy functional E[Φ] = 〈Φ|HHHnucl|Φ〉. A convenient working basis is the
HO basis with ls-coupled single-particle states

|γi〉 = |nili jimiτi〉 = ccc†
i |0〉 . (B.2)

We apply the procedure outlined below to determine the coefficients D(i)
k of the basis

expansion of the HF single-particle states in the HO basis, i.e.,

|αi〉 = ∑
k

D(i)
k |γk〉 , or equivalently, aaa†

i = ∑
k

D(i)
k ccc†

k . (B.3)

The HO single-particle basis is truncated and includes only states up to a maximum
quantum number emax = (2n + l)max. An additional truncation is possible by imposing a
maximum angular momentum lmax. Since Slater determinants are, besides an irrelevant
phase factor, invariant under unitary transformations within the occupied single-particle
states, the minimization of the energy functional E[Φ] does not yield unique coefficients
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D(i)
k . Therefore, it is convenient to resort to single-particle densities

ρkk′ = 〈Φ|ccc†
k′ccck|Φ〉

= ∑
i,i′

D(i′)∗
k′ D(i)

k 〈Φ|aaa
†
i′aaai|Φ〉

=
occ.

∑
i

D(i)∗
k′ D(i)

k (B.4)

for the variation of the energy functional, which provide a one-to-one correspondence to
Slater determinants [RS80, App. D.2]. Instead of varying the single-particle states of |Φ〉,
we vary the matrix elements ρkk′ of the density operator. The hermiticity and idempotence
of the density operator enters the variation as a constraint.

We start by constructing the energy functional of a Hamiltonian with up to three-body
terms. The Hamiltonian in second quantization reads

HHHnucl = HHH0B + HHH1B + HHH2B + HHH3B

= E0 + ∑
i,i′

h(1B)
i,i′ ccc†

i ccci′ +
1
4 ∑

ij,i′ j′
h(2B)

ij,i′ j′ccc
†
i ccc†

j cccj′ccci′

+
1
36 ∑

ijk,i′ j′k′
h(3B)

ijk,i′ j′k′ccc
†
i ccc†

j ccc†
kccck′cccj′ccci′ . (B.5)

The summation indices run over the single-particle basis and E0, h(1B)
i,i′ , h(2B)

ij,i′ j′ and h(3B)
ijk,i′ j′k′

denote the antisymmetrized matrix elements of the individual parts of the Hamiltonian.
The expectation value of the Hamilton operator

E[Φ] = 〈Φ|HHHnucl|Φ〉

= E0 + ∑
i,i′

h(1B)
i,i′ 〈Φ|ccc

†
i ccci′ |Φ〉+

1
4 ∑

ij,i′ j′
h(2B)

ij,i′ j′ 〈Φ|ccc
†
i ccc†

j cccj′ccci′ |Φ〉

+
1
36 ∑

ijk,i′ j′k′
h(3B)

ijk,i′ j′k′ 〈Φ|ccc
†
i ccc†

j ccc†
kccck′cccj′ccci′ |Φ〉 (B.6)

can be expressed via density matrices. We can further apply Slater-Condon rules [Sla29;
Con30; SO96] or Wick´s theorem (see (A.10)) to write the two- and three-body density
matrices as products of one-body densities:

E[ρ] = E0 + ∑
i,i′

h(1B)
i,i′ ρi′,i +

1
2 ∑

ij,i′ j′
h(2B)

ij,i′ j′ρj′,jρi′,i +
1
6 ∑

ijk,i′ j′k′
h(3B)

ijk,i′ j′k′ρk′,kρj′,jρi′,i. (B.7)

The variation of the energy with respect to the one-body density yields

δE[ρ] = E[ρ + δρ]− E[ρ]

= ∑
i,i′

h(1B)
i,i′ δρi′,i + ∑

ij,i′ j′
h(2B)

ij,i′ j′δρj′,jρi′,i +
1
2 ∑

ijk,i′ j′k′
h(3B)

ijk,i′ j′k′δρk′,kρj′,jρi′,i, (B.8)
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where we have included variations of ρ only up to linear order. By renaming the indices,
we can rewrite (B.8) as

δE[ρ] = ∑
i,i′

hi,i′ [ρ]δρi′,i (B.9)

with the matrix elements of the density-dependent Hamiltonian

hi,i′ [ρ] = h(1B)
i,i′ + ∑

j,j′
h(2B)

ij,i′ j′ρj′,j +
1
2 ∑

jk,j′k′
h(3B)

ijk,i′ j′k′ρk′,kρj′,j. (B.10)

Since the density matrix is constrained to the space of Slater determinants, its variation δρ
is limited. In the HF basis, the density matrix ρ is required to be diagonal with entries 1 for
the A occupied single-particle states and entries 0 for the unoccupied single-particle states.
In order to guarantee idempotence by requiring (ρ + δρ)2 = ρ + δρ, the variation δρ is
only allowed to connect occupied with unoccupied states, i.e., hole with particle states.
Consequently, the density matrix may only have non-vanishing entries in the off-diagonal
blocks of the matrix that neither belong to hole-hole nor particle-particle states, and the
variation is only between occupied and unoccupied states. Additionally, if the one-body
Hamilton matrix h[ρ] in HF basis had block-diagonal structure, the stationary condition
for (B.9) would be guaranteed for arbitrary δρ. A block-diagonal structure of h[ρ] and an
off-diagonal structure of δρ, however, imply that the commutator of the two quantities
vanishes:

[h[ρ], ρ] = 0. (B.11)

We transfer this reasoning to operators and conclude that the density operator ρρρ and
the one-body Hamilton operator hhh[ρρρ] have a simultaneous eigenbasis, i.e., the eigenstates
of hhh[ρρρ] define a single-particle basis {|αi〉} in which the density operator is diagonal—the
stationary condition is fulfilled and the single-particle states that minimize the energy are
uniquely determined. Therefore, the HF method consists of the solution of the eigenvalue
problem

hhh[ρρρ] |αi〉 = εi |αi〉 (B.12)

of the mean-field Hamiltonian hhh[ρρρ]. The eigenvalue problem (B.12) is non-linear because
the Hamiltonian depends on the density, which, in turn, depends on the solution of (B.12).
In practice, we employ an iterative procedure to determine the self-consistent solution: We
expand the eigenstates in the basis {|γi〉} and diagonalize the resulting Hamilton matrix.
In this way, we obtain the coefficients D(i)

k . From these, we calculate the new density
matrix and solve the eigenvalue problem again. The previous steps are repeated until
convergence is obtained.

The mean-field Hamilton matrix in HF basis reduces to

hi,i′ [ρ] = h(1B)
i,i′ +

occ.

∑
j

h(2B)
ij,i′ j +

1
2

occ.

∑
jk

h(3B)
ijk,i′ jk, (B.13)
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where the sum runs over occupied (occ.) states only, and its eigenenergies are given by

εi = h(1B)
i,i +

occ.

∑
j

h(2B)
ij,ij +

1
2

occ.

∑
jk

h(3B)
ijk,ijk. (B.14)

The Slater determinant constructed from the A single-particle states with lowest εi is the
HF Slater determinant |Φ〉 with ground-state energy

E[Φ] = 〈Φ|HHHnucl|Φ〉

=
occ.

∑
i

h(1B)
i,i +

1
2

occ.

∑
ij

h(2B)
ij,ij +

1
6

occ.

∑
ijk

h(3B)
ijk,ijk

=
occ.

∑
i

εi −
1
2

occ.

∑
ij

h(2B)
ij,ij −

1
3

occ.

∑
ijk

h(3B)
ijk,ijk. (B.15)

Note that the ground-state energy is different from the sum of the single-particle energies
of the ground state.

The HF method as described above can only be applied to closed-shell nuclei. For
all other nuclei, we use the equal-filling approximation [PR08], where we assume that
occupation numbers on the diagonal of the density matrix ρ are fractional. If we want
to calculate the ground-state energy of an open-shell nucleus using the HF method, we
assume that the entries of the density matrix of a given single-particle state are x/(2j + 1),
where x is the number of particles in the (partially) occupied orbit and j its total angular
momentum quantum number.
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C. Multiconfigurational Perturbation Theory

We aim at finding an approximate solution of the nuclear eigenvalue problem in a given
full model space Mfull spanned by a set of many-body basis states {|Φj〉}, e.g., Slater
determinants constructed from the HO or an HF single-particle basis, with some model-
space truncation. We start from a reference state |Ψref〉, representing a zeroth-order
approximation for a target eigenstate. In general, the reference state can be an arbitrary
superposition of basis states from a subspaceMref of the full model space,

|Ψref〉 = ∑
j∈Mref

cj,ref |Φj〉 , (C.1)

and is typically chosen to be an eigenstate of the Hamiltonian HHH in a manageable reference
space. We employ low-order MCPT to estimate the leading corrections to |Ψref〉 resulting
from basis states outside the reference space.

We split the Hamiltonian HHH into an unperturbed part HHH0 and a perturbation WWW:

HHH = HHH0 +WWW. (C.2)

The eigenvalue problem of the unperturbed Hamiltonian is

HHH0 |Ψref〉 = εref |Ψref〉 , (C.3a)
εref = 〈Ψref|HHH|Ψref〉 , (C.3b)

where the eigenvalue is given by the expectation value of the full Hamiltonian with respect
to the reference state. Formally, we can define the unperturbed Hamiltonian as

HHH0 = εref |Ψref〉 〈Ψref|+ ∑
j/∈Mref

εj |Φj〉 〈Φj| , (C.4)

so that it fulfills the eigenvalue relation (C.3). It can be shown that eigenstates of HHH0
withinMref which are orthogonal to |Ψref〉 do not contribute to the perturbative energy
and state corrections [Stu13] and can be omitted for simplicity. Since the partitioning of
the Hamiltonian is arbitrary, there are different choices for the unperturbed energies εj of
the basis states outsideMref. A computationally efficient possibility is to use the simple
Møller-Plesset-type formulation of MCPT [Sur+04], where these unperturbed energies are
defined relative to the reference state:

εj = εref + ∆εj. (C.5)

The excitation energy ∆εj is computed from the single-particle energies of the underlying
basis. If we use, e.g., the HO single-particle basis, the single-particle energies are given by
e = (2n + l + 3/2). When using an HF basis, they are the HF single-particle energies, and
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C. Multiconfigurational Perturbation Theory

in the VSSM, they are the effective single-particle energies. The choice of the unperturbed
Hamiltonian defines the perturbation

WWW = HHH −HHH0. (C.6)

In the following, we derive the lowest-order corrections to the unperturbed eigenvalue
εref and eigenstate |Ψref〉. In order to set up the perturbation series, we introduce a
parameter λ to control the perturbation WWW:

HHH = HHH0 + λWWW. (C.7)

We further expand the target eigenvalue E and eigenstate |Ψ〉 in terms of a power series in
this parameter:

E = εref + λE(1) + λ2E(2) + · · · , (C.8a)

|Ψ〉 = |Ψref〉+ λ |Ψ(1)〉+ λ2 |Ψ(2)〉+ · · · . (C.8b)

By inserting the Equations (C.7) and (C.8) into the full eigenvalue problem, we obtain

(HHH0 + λWWW)
(
|Ψref〉+ λ |Ψ(1)〉+ λ2 |Ψ(2)〉+ · · ·

)
=
(

εref + λE(1) + λ2E(2) + · · ·
) (
|Ψref〉+ λ |Ψ(1)〉+ λ2 |Ψ(2)〉+ · · ·

)
, (C.9)

which yields the unperturbed eigenvalue problem in the limit of vanishing λ and the exact
one if evaluated at λ = 1. We expand (C.9) and arrange the terms according to the power
of λ. The zeroth order of the expansion reproduces the unperturbed eigenvalue problem
(C.3). The first-order terms yield

HHH0 |Ψ(1)〉+WWW |Ψref〉 = εref |Ψ(1)〉+ E(1) |Ψref〉 . (C.10)

We derive the first-order energy correction by multiplying (C.10) by 〈Ψref|:

〈Ψref|HHH0|Ψ(1)〉+ 〈Ψref|WWW|Ψref〉 = εref 〈Ψref|Ψ(1)〉+ E(1) 〈Ψref|Ψref〉 . (C.11)

It is convenient to use the intermediate normalization

〈Ψref|Ψ〉 = 1, (C.12)

from which follows

〈Ψref|Ψ(p>0)〉 = 0. (C.13)

The order of the perturbative correction is denoted by p. On the left-hand side of (C.11),
we can exploit the eigenvalue relation for the unperturbed Hamiltonian. Then, the first
term on each side of the equation vanishes because of the intermediate normalization
(C.12). The first-order correction to the energy is then given by

E(1) = 〈Ψref|WWW|Ψref〉 = 0 (C.14)

146



and vanishes due to the specific choice of the unperturbed Hamiltonian. We note that

〈Φj|WWW|Ψref〉 = 〈Φj|HHH|Ψref〉 − 〈Φj|HHH0|Ψref〉
= εref 〈Φj|Ψref〉 − εref 〈Φj|Ψref〉
= 0 (C.15)

holds for all |Φj〉 ∈ Mref. Here, we have used that matrix elements of HHH between arbitrary
states of Mref are identical to the corresponding matrix elements of the unperturbed
Hamiltonian HHH0. By taking into account the coefficients of second order in λ of (C.9) and
proceeding analogously, we obtain the second-order energy correction

E(2) = 〈Ψref|WWW|Ψ(1)〉 . (C.16)

For the computation of E(2), we need to know the first-order correction |Ψ(1)〉 for the
eigenstate. We can expand |Ψ(1)〉 in terms of the basis states of the full model space:

|Ψ(1)〉 = ∑
j∈Mfull

|Φj〉 〈Φj|Ψ(1)〉 . (C.17)

The coefficient 〈Φj|Ψ(1)〉 can be determined by multiplying (C.10) by 〈Φj|:

〈Φj|HHH0|Ψ(1)〉+ 〈Φj|WWW|Ψref〉 = εref 〈Φj|Ψ(1)〉 . (C.18)

In the following, we consider basis states |Φj〉 inside and outside the reference space
separately:

• |Φj〉 ∈ Mref:
We show that the first term of (C.18) vanishes by inserting the explicit form of the
unperturbed Hamiltonian (C.4):

〈Φj|HHH0|Ψ(1)〉 = εref 〈Φj|Ψref〉 〈Ψref|Ψ(1)〉+ ∑
i/∈Mref

εµ 〈Φj|Φi〉 〈Φi|Ψ(1)〉 = 0. (C.19)

We have used the intermediate normalization (C.12) and the fact that basis states of
orthogonal spaces do not overlap. The second term of (C.18) also vanishes because
of (C.15), and, therefore, we find

〈Φj|Ψ(1)〉 = 0 ∀ |Φj〉 ∈ Mref. (C.20)

Hence, basis states of the reference space do not contribute to the basis expansion of
the first-order correction to the eigenstate.

• |Φj〉 /∈ Mref:
The first term of (C.18) yields

〈Φj|HHH0|Ψ(1)〉 = εref 〈Φj|Ψref〉 〈Ψref|Ψ(1)〉+ ∑
i/∈Mref

εi 〈Φj|Φi〉 〈Φi|Ψ(1)〉

= ∑
i/∈Mref

εi 〈Φj|Φi〉 〈Φi|Ψ(1)〉

= εj 〈Φj|Ψ(1)〉 , (C.21)
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and, thus, (C.18) reduces to

εj 〈Φj|Ψ(1)〉+ 〈Φj|WWW|Ψref〉 = εref 〈Φj|Ψ(1)〉 . (C.22)

We rewrite this relation and obtain the coefficient 〈Φj|Ψ(1)〉 for basis states |Φj〉
outside the reference space:

〈Φj|Ψ(1)〉 = −
〈Φj|WWW|Ψref〉

εj − εref
∀ |Φj〉 /∈ Mref. (C.23)

In summary, the first-order correction to the state is then given by

|Ψ(1)〉 = ∑
j/∈Mref

−
〈Φj|WWW|Ψref〉

εj − εref
|Φj〉

= ∑
j/∈Mref

−
〈Φj|HHH|Ψref〉

εj − εref
|Φj〉 , (C.24)

where we have exploited that matrix elements of the unperturbed Hamiltonian between
|Ψref〉 and basis states outside the reference space vanish by construction. Inserting the
basis expansion of |Ψ(1)〉 into (C.16), we obtain

E(2) = − ∑
j/∈Mref

∣∣〈Φj|WWW|Ψref〉
∣∣2

εj − εref

= − ∑
j/∈Mref

∣∣〈Φj|HHH|Ψref〉
∣∣2

εj − εref
. (C.25)
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D. Transition Density

Transition densities 〈Ψ0|aaa†
ξaaaξ ′ |Ψ f 〉 characterize the relationship between two nuclear eigen-

states |Ψ0〉 and |Ψ f 〉. Here, ξ and ξ ′ denote the quantum numbers of a single-particle
state of a given reference basis, e.g., the ls-coupled HO or HF basis. Their calculation
is straightforward; however, their interpretation requires to go to a representation in
coordinate space.

We restrict the following discussion to cases where the state |Ψ0〉 has quantum numbers
Ji = 0, Mi = 0, and we typically choose this state to be the ground state of the system. The
radial transition density is the function ρms,τ

0 f (r) defined by

ρms,τ
0 f (~r) = ρms,τ

0 f (r)YJM(Ω)

= 〈Ψ0|ΨΨΨ†
ms,τ(~r)ΨΨΨms,τ(~r)|Ψ f 〉 . (D.1)

Note that the constraint regarding the quantum numbers of the initial state implies that the
spherical harmonics have rank J = J f and projection M = M f according to the quantum
numbers of the final state. The operator ΨΨΨ†

ms,τ(~r)ΨΨΨms,τ(~r) is the nucleon density operator
for spin s = 1/2 with projection ms and isospin t = 1/2 with projection τ evaluated at
the point~r. Since nucleons always carry the quantum numbers s = 1/2 and t = 1/2, we
neglect them in our notation for brevity. Furthermore, we do not discriminate between the
two spin projections, i.e., we sum over ms, but we keep the isospin projection as degree of
freedom. In this way, we can calculate proton and neutron transition densities separately.

To derive an expression for the radial transition density, we project (D.1) onto the
spherical component:

ρτ
0 f (r) = ∑

ms

〈Ψ0|
∫

dΩ Y∗JM(Ω)ΨΨΨ†
ms,τ(~r)ΨΨΨms,τ(~r)|Ψ f 〉 . (D.2)

In a next step, we write the field operators ΨΨΨ†
ms,τ(~r) and ΨΨΨms,τ(~r) in terms of creators and

annihilators of a general ls-coupled basis:

ΨΨΨ†
ms,τ(~r) = ∑

nlml jm
Rnl(r)Y∗lml

(Ω)

(
l 1

2 j
ml ms m

)
aaa†

nljmτ, (D.3a)

ΨΨΨms,τ(~r) = ∑
nlml jm

Rnl(r)Ylml (Ω)

(
l 1

2 j
ml ms m

)
aaanljmτ. (D.3b)

Here, we have used that the radial functions Rnl(r) are real.
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We insert the field operators into (D.2) and rewrite the complex conjugate of the spherical
harmonics using Y∗lm(Ω) = (−1)mYl−m(Ω):

ρτ
0 f (r) = ∑

ms

∑
nlml jm

∑
n′ l′m′l j

′m′

∫
dΩ Y∗JM(Ω)Rnl(r)Y∗lml

(Ω)

(
l 1

2 j
ml ms m

)

× Rn′ l′(r)Yl′m′l
(Ω)

(
l′ 1

2 j′

m′l ms m′

)
〈Ψ0|aaa†

nljmτaaan′ l′ j′m′τ|Ψ f 〉

= ∑
ms

∑
nlml jm

∑
n′ l′m′l j

′m′

∫
dΩ (−1)M+ml YJ−M(Ω)Yl−ml (Ω)Yl′m′l

(Ω)

× Rnl(r)Rn′ l′(r)
(

l 1
2 j

ml ms m

)(
l′ 1

2 j′

m′l ms m′

)
〈Ψ0|aaa†

nljmτaaan′ l′ j′m′τ|Ψ f 〉 . (D.4)

We carry out the integration over the full solid angle and obtain:

ρτ
0 f (r) =

Ĵ l̂ l̂′√
4π

∑
ms

∑
nlml jm

∑
n′ l′m′l j

′m′
(−1)M+ml

(
J l l′

0 0 0

)(
J l l′

−M−ml m′l

)

× Rnl(r)Rn′ l′(r)
(

l 1
2 j

ml ms m

)(
l′ 1

2 j′

m′l ms m′

)
〈Ψ0|aaa†

nljmτaaan′ l′ j′m′τ|Ψ f 〉 . (D.5)

This expression can be evaluated using the radial wave functions and the transition-density
matrix elements in the underlying single-particle basis.

The quantity ρτ
0 f (r) can be used to decide whether a transition is of mainly isoscalar or

isovector character. In an ideal case of a purely isoscalar transition, we expect that both,
the proton and neutron transition densities, scale in the same way and have the same sign.
Contrary, a purely isovector transition is expected to give proton and neutron transition
densities that scale with the number of protons and neutrons, respectively, and have oppo-
site sign [Roc+12]. Since isospin is only an approximate symmetry, transition densities
between two eigenstates typically exhibit a mixture of isoscalarity and isovectoriality.

Analogously to the definition of isospin-decomposed electromagnetic transition opera-
tors, we define isoscalar and isovector transition densities via:

ρIS
0 f (r) =

1
2

(
ρπ

0 f (r) + ρν
0 f (r)

)
, (D.6a)

ρIV
0 f (r) =

1
2

(
ρπ

0 f (r)− ρν
0 f (r)

)
. (D.6b)

We note that a direct connection exists between the transition densities and the transition
matrix elements. For example, for electric multipole transitions, the following relation
holds:

〈Ψ0|QQQλµ|Ψ f 〉 = ∑
τ

∫
dr r2rλρτ

0 f (r). (D.7)

We recall that for the monopole transition, the exponent of the radial coordinate is chosen
λ = 2.
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