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Four-Nucleon Forces in Ab Initio Nuclear Structure

ABSTRACT

In recent years, there has been tremendous progress in the construction and application of nuclear inter-
actions from chiral effective field theory (EFT). Today, two- and three-nucleon interactions are routinely
used in many-body calculations, reaching unprecedented quality in the ab initio description of nuclei. Al-
though four-nucleon (4N) forces have been constructed from chiral EFT, they have never been investigated
systematically in finite nuclei.

This works aims at the inclusion of explicit 4N forces in many-body nuclear structure calculations. We
investigate two different interactions, a simple 4N contact interaction and the complete leading order of the
chiral 4N interaction. To include these interactions, we develop a partial-wave decomposition (PWD) and
represent the 4N interactions in a basis of harmonic oscillator states using Jacobi coordinates. Especially
the PWD for the chiral 4N interaction requires significant effort, much more than its three-nucleon coun-
terpart, and constitutes the main part of this work. However, the endeavor is worthwhile, as it makes the
consistent inclusion of 4N interaction in many-body calculations possible.

The inclusion of the 4N contact interaction and its PWD is simpler than in the chiral case. It, neverthe-
less, yields valuable insights into the effect of 4N interactions in nuclear structure calculations. Two- and
three- body interactions from chiral EFT often predict an overbinding of nuclei, and root-mean-square radii
are much smaller than the experimental results. We, therefore, focus on ground-state energies and charge
radii with the contact interaction. Our results clearly show that the employed contact interaction is not able
to mitigate this effect. It does have a sizable effect on radii, but improving the agreement of charge radii
with experiment yields unphysical binding energies. Furthermore, the contact interaction is compared to
the effect of neglected many-body contributions, which are induced by transforming the two-and three-
body interactions using the similarity renormalization group. These neglected contributions scale strongly
with the number of nucleons, and we find the contact interaction to have a far gentler scaling.

For the first time, we present ground-state energies calculated using a partial-wave decomposed repre-
sentation of the chiral 4N interaction. Although we cannot achieve model-space convergence due to the
computational cost of the PWD, our analysis strongly indicates that the order of magnitude of the effect
of the 4N force is correctly reflected even in small model spaces. Overall, we find the effect of the chiral 4N
interaction to be extremely small in all investigated nuclei, yielding contributions below 1 % of the binding
energy in all cases and even smaller effects in light nuclei. We conclude that, in the foreseeable future, the

chiral 4N interaction has no relevance for ab initio descriptions of nuclei based on typical chiral interactions.
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Vierteilchenkrdfte in der Ab Initio Kernstrukturtheorie

ZUSAMMENFASSUNG

In den vergangenen Jahren gab es erhebliche Fortschritte bei der Konstruktion und Anwendung von Kern-
kriften, die aus der chiralen effektiven Feldtheorie (EFT) hergeleitet werden. Unter anderem werden heutzu-
tage Zwei- und Drei-Teilchen-Krifte routinemifig in Vielteilchenrechnungen verwendet und die ab initio
Beschreibung von Kerneigenschaften ist wesentlich priziser geworden. Obwohl eine Vier-Nukleonen-Wech-
selwirkung (4N-Wechselwirkung) im Rahmen der chiralen EFT konstruiert wurde, gibt es bis heute keine
systematische Untersuchung von endlichen Kernen, welche diese Krifte miteinbezieht.

Diese Arbeit hat die Verwendung von expliziten 4N-Wechselwirkung in Kernstrukturrechnungen zum
Ziel, insbesondere die Anwendung in Vielteilchensystemen. Zum einen verwenden wir eine simple 4N-
Kontaktwechselwirkung, zum anderen die komplette fiihrende Ordnung der chiralen 4N-Wechselwirkung.
In beiden Fillen wird eine Partialwellenzerlegung (PWZ) entwickelt. Der zentrale Aspekt dieser Arbeit ist
die PWZ der chiralen 4N-Wechselwirkung, welche duflerst aufwendig ist, insbesondere im Vergleich mit der
PWZ von Drei-Teilchen-Kriften. Der hohe Aufwand ist aber lohnenswert, da es konsistente Vielteilchen-
rechnungen unter Einbezichung der 4N-Wechselwirkung tiberhaupt erst erméglichte.

Fur die 4N-Kontaktwechselwirkung ist die PWZ erheblich einfacher als fur die chiralen Krifte. Nichts-
destotrotz erhilt man mit dieser einfachen Kraft niitzliche Einsichten in den Effekt von 4N-Wechselwirkung
in Kernstrukturrechnungen. Wir untersuchen vor allem den Effekt auf Grundzustandsenergien und La-
dungsradien. Diesen vergleichen wir mit dem Effekt vernachlissigter Vielteilchenbeitrige, die durch die Ver-
wendung der Similarity Renormalization Group induziert werden. Die Beitrige dieser induzierten Wech-
selwirkung skalieren aber sehr stark mit der Anzahl der Nukleonen, ganz im Gegensatz zur verwendeten
Kontaktwechselwirkung, fiir die wir ein deutlich schwicheres Skalierungsverhalten finden. Auflerdem zei-
gen schon Berechnungen, die auf chiralen Zwei- und Drei-Teilchen-Kriften beruhen, oft eine Uberbindung
der Atomkerne, also zu kleine Radien und Energien im Vergleich mit experimentellen Daten. Die verwen-
dete Kontaktwechselwirkung fiihrt aber zu unphysikalisch kleinen Bindungsenergien, wenn die Kraft stark
genug sein soll um deutlich gréflere Radien vorherzusagen.

Im Rahmen dieser Arbeit wurden zum ersten Mal Grundzustandsenergien von Kernen mit Hilfe ei-
ner chiralen 4N-Wechselwirkung berechnet, die vorher in einzelne Partialwellen zerlegt wurde. Obwohl
wir aufgrund des hohen Rechenaufwandes der PWZ keine Konvergenz beziiglich des 4N-Modellraums er-
halten, zeigt die Analyse sehr deutlich, dass auch kleine Modellriume die Gréflenordnung des Effekts der
4N-Wechselwirkung gut wiedergeben. Insgesamt finden wir nur einen sehr kleinen Effeke der chiralen 4N-
Wechselwirkung, mit Beitrigen die immer unterhalb von 1 % der Bindungsenergie liegen, wobei die Beitrige
in leichten Kernen noch deutlich kleiner sind. Deshalb wird die chirale 4N-Wechselwirkung in absehbarer

Zukunft keine Relevanz fiir typische ab initio Kernstrukturrechnungen haben.
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Der Mensch muf§ bei dem Glanben verbarren,
dafS das Unbegreifliche begreiflich sei; er wiirde

sonst nicht forschen.

JW. von Goethe, Wilhelm Meisters Wanderjahre

Introduction

The ab initio description of nuclei has made tremendous progress in the past decade, solving multiple pre-
viously insurmountable problems in the process. We only interpret calculations as ab initio, if they are
microscopic and all introduced approximations are controllable, that is, they are systematically improvable.
A microscopic description of nuclei, modeling them as a collection of protons and neutrons, began after the
seminal experiments by Chadwick that discovered the neutron [1]. Moreover, the microscopic description
requires an interaction between nucleons. The first approach towards the modern understanding of nu-
clear interactions is the work by Yukawa [2], formulating an interaction based on the exchange of a massive
boson. From the properties of the nuclear interaction, Yukawa also estimated the mass of these bosons to
be about 100 MeV, predicting the pions that were discovered in 19477 [3]. This idea lead to the development
of increasingly complex and accurate meson exchange models, see ref. [4] and references therein. These
models reached an unprecedented precision, for instance, the CD-Bonn potential 5] allows the description
of the world nucleon-nucleon (NN) scattering data of 2000 with a . */datum =~ 1. The potential is still used
frequently today [6-8]. However, it is not necessary to use a meson exchange model to obtain interactions
at this level of precision, in fact, multiple more phenomenological NN interactions have been constructed.
Well-known examples include the JISP16 [9] and Argonne v;4 [10] interactions. These high-precision inter-
actions, including the CD-Bonn potential, are known as realistic interactions.

Calculations based on these interactions soon revealed that three-nucleon (3N) interactions are necessary

for the description of many-body systems, in fact, Fujita and Miyazawa already proposed a 3N interaction



CHAPTER 1. INTRODUCTION

based on a two-pion exchange with an intermediate J-excitation in 1957 [11]. Over the years, multiple 3N
forces have been developed [12], most of them using meson exchange and additional phenomenological
contributions, but fail to provide a deeper understanding of the nuclear interaction. Nevertheless, they
allow accurate calculations of binding energies for light nuclei [13].

Taking theidea of an ab initio description seriously, the actual microscopic description of nuclei should be
based on quantum chromodynamics (QCD), which describes the fundamental interaction between quarks
and gluons. Although QCD-based nuclear structure approaches exist [14-16], they do not yet allow for a
quantitative description of nuclei. Quarks are confined to hadrons in the low-momentum regime of nu-
clear structure, and a description in terms of nucleons and mesons as effective degrees of freedom should
be possible. However, a direct derivation of the force between the nucleons is hindered by the nonper-
turbative nature of QCD at low momenta, and calculations with that goal are currently far away from a
high-precision description, although this option is investigated [17]. Due to pioneering work by Weinberg
[18, 19], we are able to construct a low momentum expansion, which is known as chiral effective field the-
ory (EFT). It uses a separation of scales to limit the effective degrees of freedom to nucleons and pions. At
the low momenta relevant for nuclear structure, other contributions, like heavier mesons, can be excluded.
It is based on the symmetries of QCD, promoting the use of chiral symmetry and providing a clear con-
nection to the underlying theory. In accord with the ab initio idea, it allows systematic improvement by
increasing the chiral order, and it allows the consistent construction of multi-nucleon forces in the same
framework. Furthermore, chiral EFT directly yields a hierachy of many-body forces, as four-nucleon (4N)
forces only contribute at a higher chiral order than 3N ones, which in turn require a higher order than NN
ones. However, currently the low-energy constants (LECs) that are introduced by chiral EFT are fit to data.
In the future, these parameters may be calculated using QCD [20, 21], which would enable the construction
of the nuclear interactions completely from the fundamental theory.

The construction of chiral interactions has made a tremendous progress over the last years, with multiple
NN forces available at the fifth order of the chiral expansion or even beyond [22-26]. Calculations were
often limited to the three-body contributions at next-to-next-to-leading order (N*LO), however, the three-
body force has been derived up to N°LO in 2011 [27, 28], and recently a computationally efficient approach
for the partial-wave decomposition (PWD) of the three-body forces at N°LO became available [29]. At the
level of N’LO we also have four-body forces, which have been derived over ten years ago [30, 31]. Recently
the research focus shifted to calculations with consistent chiral interactions, which take all contributions at
a fixed order into account, and a reliable uncertainty quantification of the chiral expansion, which requires
calculations at different chiral orders. These goals warrant the inclusion of the chiral 4N interaction in
many-body calculations, and so far, the calculations that include the 4N forces are limited to neutron and
symmetric nuclear matter [32-35], or estimates for “He [36]. We aim at a PWD of the chiral 4N interaction
at N°LO in this work.

Along with the development of nuclear interactions, we also require methods to efficiently solve the

many-body problem. The first methods that allowed to solve the Schrédinger equation exactly can be ap-



plied to few-nucleon systems only, a well-known example dating back to 1960 for three- and later four-body
systems is the Faddeev method, see ref. [37] and references therein. With the increase of available compu-
tational resources, methods that are able to handle more nucleons became available. In the 1980s Monte
Carlo based approaches were introduced in nuclear structure, like variational Monte Carlo [38] and Green’s
function Monte Carlo (GFMC) [39]. The latter allows for an exact calculation of nuclear observables, and
it is routinely used for the calculation binding energies and radii [40]. Similarly, the no-core shell model
(NCSM) [41] allows the exact calculations of ground- and excited bound states. However, both GFMC and
NCSM are limited to p-shell nuclei. The importance-truncated no-core shell model (IT-NCSM) [42, 43]
extends the reach to lower sd-shell nuclei, but these (quasi-)exact methods all have at least an exponential
scaling with the number of nucleons.

For the ab initio description of heavier nuclei, systematically improvable approximations have to be in-
troduced. In doing so, the reach of many-body calculations has been tremendously expanded in the last two
decades. Prominent examples include coupled-cluster theory [ 44], self-consistent Green’s function [ 45, 46,
in-medium similarity renormalization group (IMSRG) 47, 48], and many-body perturbation theory [49].
A recent overview of modern methods can be found in [50]. Today, alarge number of ab initio methods for
a wide range of nuclei are available and new methods are developed frequently [s1, 52], increasing the range
of applicability.

This increasing number of many-body methods and their successful application can partly be linked to
advances in the treatment of nuclear interactions. For years the solution of the many-body problem was
hindered by the structure of the realistic nuclear interaction. All of these interactions feature a strong short-
range repulsion, which can be linked to the finite size of the nucleons. As nucleons are treated as point-like
particles, such effects are encoded in the interaction. Additionally, these interactions feature strong tensor
forces. Due to this, the description of nuclei requires highly correlated states, which is difficult for many-
body methods. For instance, methods that rely on the construction of a many-body basis from uncorrelated
states usually exhibit a poor convergence with the number of basis states. The use of chiral EFT typically
yields slightly softer interactions than other realistic interactions. However, the relevant improvement is the
use of efficient transformations of the Hamiltonian, for instance, reducing the strength of the repulsive core,
and thereby softening the interaction. After applying a unitary transformation, all observables are, in prin-
ciple, unchanged and the correlations of the wave function are shifted to the unitary operator. Such unitary
operators can be constructed explicitely as done in the unitary correlation operator method (UCOM) [53].
Today, the similarity renormalization group (SRG) [54—57] is in widespread use, which is based on the solu-
tion of a flow equation that softens the Hamiltonian. Its main advantages are its flexibility, as the so-called
generator of the flow equation can be tailored to the problem at hand, and it allows a straightforward ex-
tension to many-nucleon interactions. However, such unitary transformations induce many-body forces,
even when only applied to a two-body interaction. This is another source of four-body forces, which can
have significant impact when neglected [58—60]. Explicit inclusion of these forces is possible, but compu-

tationally expensive [60, 61]. The optimal solution would be an improved generator for the flow equation,



CHAPTER 1. INTRODUCTION

that reduces the induced contributions significantly. Despite searches for alternative generators [6o, 62—
67], currently no completely satisfying solution exists.

It might be possible to add a phenomenological 4N interaction that mimics the neglected induced con-
tributions. For this reason, and to test our methods on a simple interaction first, we investigate a four-body
contact interaction. This allows for a much simpler PWD than the full chiral interaction. Furthermore,
chiral interactions typically produce overbinding in heavier nuclei and predict a radius that is far too small.
We also investigate if the contact interaction can mitigate this effect.

The main goal of this work is the inclusion of initial 4N forces in (ab initio) many-body calculations and
the investigation of their effects. We discuss all steps necessary for the calculation of nuclear observables
using four-body forces, starting from the construction of the interaction from chiral EFT to selected many-
body methods. We start with an introduction to chiral EFT in chapter 2. All two- and three-body forces, as
well as the chiral 4N force employed throughout this work are based on chiral EFT. In chapter 3, we revisit
angular momentum theory and develop a diagrammatic notation for it. This is a necessary prerequisite
for the remainder of the work. Afterwards, we are able to use this knowledge to obtain interaction matrix
elements for the four-body interactions, which is presented in chapter 4. This is a nontrivial step, as the
initial interactions are in a single-particle representation. However, we want to obtain matrix elements in a
fully antisymmetrized Jacobi basis, which requires a coordinate change and a PWD. Especially for the chiral
4N interaction this requires an involved derivation, which is discussed in detail. However, we also introduce
a simple contact interaction, which is far easier to handle in a PWD. Afterwards, we want to perform many-
body calculations using the four-body force, and all remaining steps necessary for that goal are discussed in
chapter 5. This involves additional treatment of the matrix elements using the SRG evolution for two- and
three-body interactions, and an additional transformation to the JT-coupled scheme. We use two many-
body methods in this work, namely the Hartree-Fock (HF) method and the NCSM, or its extension, the
IT-NCSM. Employing these methods, we analyze the effect of the four-body interactions, starting with an
analysis of the changes to ground-state energies and radii when using the contact interaction in chapter 6.
Chapter 7, provides a detailed investigation of the chiral 4N interaction including the variation of relevant

parameters. Finally, we present conclusions and an outlook on future research opportunities in chapter 8.



The purpose of this work is not to im-
prove our detailed picture of nuclear
forces, which it is hardly likely could be
accomplished with these methods /... .

Steven Weinberg [19]

Chiral Effective Field Theory

The overall goal this work contributes to, is the ab initio description of nuclei. Starting from first principles,
all calculations should be based on quarks and gluons as degrees of freedom. This approach is hardly feasible,
however, there have been investigations aiming at a QCD description of light nuclei [14, 15]. Fortunately,
this approach is not necessary, nuclear structure can be explained quantitatively using nucleons as effective
degrees of freedom. Of course, this approach directly prompts the question, what the interaction between
nucleons is.

Constructing a realistic nuclear interaction directly from QCD is not yet possible, although there are
investigations with that goal [17]. Such a construction is impeded by the non-perturbative nature of QCD
at low momentum, which is the regime we are interested in for nuclear structure. To bridge this gap, chiral
EFT has been developed — pioneering work has been done by Weinberg [18, 19]. Constructing an effective
interaction for low momenta is made possible by a pecularity in the hadron spectrum. There exists a large
gap between the mass of the pions m,, ~ 135MeV and m_. ~ 140 MeV [68] and all other mesons, the
lightest of which is the ¢-meson with a mass of m, ~ 775 MeV [68]. The reason for this gap is tied to the
approximate chiral symmetry of QCD, in fact, chiral symmetry turns out to be crucial for the construction
of chiral EFT. The topic is discussed in more detail in section 2..1.

In case of nuclear structure, we are interested in low momenta. Therefore, we can ignore all heavier
mesons, which also defines the so-called break-down scale A, ~ m,, at momenta larger than A, our theory
is bound to fail, as we ignore relevant degrees of freedom. Due to their small mass, pions have to be included

explicitly. However, in case of phenomena that only probe extremely low momenta, it is possible to con-



CHAPTER 2. CHIRAL EFFECTIVE FIELD THEORY

struct a pionless EFT [69]. The final result is an expansion in Q/.1, , where Q is some low momentum or a
pion mass. Being an expansion, chiral EFT allows for systematic improvement.
Using only pions and nucleons as degrees of freedom and relying on chiral symmetry, we can construct

an effective Lagrangian. The general path has been laid out by Weinberg [70]:

1If one writes down the most general possible Lagrangian, including all terms consistent with
assumed symmetry principles, and then calculates matrix elements with this Lagrangian to any
given order of perturbation theory, the result will simply be the most general possible S-matrix
consistent with analyticity, perturbative unitarity, cluster decomposition and the assumed sym-

metry principles.

This approach allows to establish a clear connection between the effective and the underlying field theory
via the involved symmetries. Moreover, in the case of chiral EFT, we are able to consistently construct multi-
nucleon interactions in the same framework. More details on the construction of the Lagrangian are given
in section 2.2.

Up to this point, we have pions as degrees of freedom in the theory, however, it is possible to construct
a purely nucleonic effective interaction from chiral EFT, which is discussed in section 2.3. Finally, we dis-
cuss some aspects of regularization and renormalization in section 2.4 and give an overview on the chiral
interactions used in this work in section 2.s.

This chapter is only a very brief introduction to chiral EFT omitting many of the mathematical details.
For more details on the derivation of chiral interactions and their application, the reviews by Epelbaum ez
al. [71] and Machleidt ez al. [72] are good starting points. Furthermore, the pedagogical introductions by
Koch [73] and Phillips [74] are helpful and for those interested in the mathematical details, there exist very
thorough primers by Scherer ez 4l. [75] and Epelbaum [76] for chiral perturbation theory and chiral effective
field theory, respectively. Note that the construction of the chiral interactions is not unique, and we mainly

follow ref. [76] in this chapter.

2.1 CHIRAL SYMMETRY

As the name chiral EFT suggests, chiral symmetry plays a central role in the construction of an effective
Lagrangian. The name stems from the representation of fermions in a relativistic quantum field theory,
where the field can be separated in so-called left- and right-handed parts. In case of the quark field 4 we can

write

q=qr+gq, with gz=Prg and ¢, =P ¢, (2.1)



SECTION 2.1. CHIRAL SYMMETRY

where the projection operators on the left- and right-handed parts, P, and P, can be written as
1 1
P, = 5(1+'y5) and P, = 5(1_75)’ (2.2)

where 3, are the usual gamma matrices and 75 = —iyy7,7,7;. As expected from a chiral object, right- and
left-handed parts transform into each other under parity transformation. Generally, Dirac fields transform

as

Q(f’ x) g '}/09(3 _x) s (23>

therefore a right-handed field changes in the following way under a parity transformation,

gr(t;x) = Ppq(t, x) = Pryoq(t, —x) = v, Prq(t, —x) = yoq,(t, =) , (2.4)

as y, and y, anticommute.

Using these fields, we can write the Lagrangian for QCD,
- . - . - - 1 a 'Aa, Ly
ZLocp = q1ilq, + GuilPgr — G M qr — Gl g; — ZGWG , (2.5)

where D, is the covariant derivative, G, is the gluon field strength tensor and . is a diagonal matrix in
flavor space defining the masses of the different flavors. Note that we used the Feynman slash notation, that
is, ) = Y“D,. Throughout this chapter we are only interested in the two lightest quarks, up and down
quarks, we therefore have # = diag(m,,, m,).

We can already see that only the mass connects the right- and left-handed fields. For now, we assume that

the quark masses are zero. In this so-called chiral limit, we can perform the following two transformations,

q; = exp (—éeL-‘)') g, and g — exp <—§6R-1> Irs (2.6)
——— ———
=L =R

without changing the Lagrangian, which defines the chiral symmetry. The six angles, @, and 6, define a
rotation in flavor space. The Pauli matrices, 7 = (7, 7,,7,), act in isospin space, which is identical to the
flavor space in our case, as we only consider up and down quarks. Note that we can rotate left- and right-
handed fields independently from each other, aslong as we assume massless quarks. In case of non-vanishing
mass, the chiral symmetry is explicitly broken by the mass terms in the Lagrangian. However, the quark
masses are small compared to masses of hadrons, therefore chiral symmetry is still a good approximation.

We now represent the symmetry in a slightly different way, using the following angles,

1 1
9V=§(9R+9L) and 9A=5(6R—9L), (2.7)
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which are called the vector and axial-vector rotations, respectively, named after the transformation behavior
of their corresponding Noether currents.

These transformations lend themselves more easily to a physical interpretation. In case of a vector ro-
tation, we rotate both, left- and right-handed fields in exactly the same way. This yields isospin symmetry
in the two-flavor case. There is ample evidence from the hadron spectrum that this symmetry is realized in
the ground state. For instance, all Z-baryons have almost the same mass. Furthermore, the mass difference
between protons and neutrons is small, and the masses of the ¢-mesons are close to each other [68].

The axial-vector transformation, however, rotates left- and right-handed fields differently. Applying such
a transfromation can, for instance, change a state with positive parity to a negative one. If this symme-
try were realized in the ground state, we would expect pairs of mesons with opposite parity and similar
mass. Obviously, this is not the case. For instance, we do not find a counterpart with positive parity for
the ¢-meson, which has a mass of 775 MeV [68]. The best candidate would be the 4,-meson with a mass of
1230 MeV [68].

From that, we can conclude that chiral symmetry must be spontaneously broken, that s, the ground state
does not exhibit the symmetry, even though itis a symmetry of the Lagrangian. Continuous symmetries that
are spontaneously broken generate massless bosons [77], the so-called Goldstone bosons. In case of chiral
symmetry, we can identify the pions as Goldstone bosons. They are not massless, as the chiral symmetry is
only an approximation, but they are significantly lighter than other hadrons, which makes them so-called

pseudo-Goldstone bosons.

2.2 EFFECTIVE LAGRANGIAN

As QCD is nonperturbative in the low-energy regime, we now construct an effective Lagrangian that uses
the symmetries of the underlying theory. We also use chiral symmetry for the construction, but as it is ex-
plicitely broken, we have to correct for this approximation. In this sense, we are constructing a perturbative
expansion around the chiral limit.

For the effective description we use nucleons and pions as degrees of freedom. Here, it is crucial that
pions are pseudo-Goldstone bosons, as their low mass results in a separation of scales in the hadron spec-
trum. We start by constructing the pion Lagrangian, using all possible terms that fulfill the symmetries of
QCD, including chiral symmetry. Additionally, we add terms that break chiral symmetry, that is, we ex-
pand around the chiral limit. This whole approach is called chiral perturbation theory, and the resulting

pion Lagrangian can be written as [76]

L =L+ PO+ FP 4 . with (2.82)

Z =u(U'), (2.8b)

2

2
ZO = thr(aMU*a#U) + F—thr(ﬂ(U+ U')). (2.8¢)
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2
22 = Ltr(0,UT0*U)* + Lir(9,U0,U)tr (0 U'0'U) + %TBtr(%(U+ U))? (2.8d)

2
+ %rr(/ﬂ(U— U+,

where the trace is performed in flavor space and /,, F; and Bare so-called LECs. These have to be determined
to fix the theory. This is done by fitting to experimental data, as they cannot be determined from QCD
yet. The upper indices correspond to the exponent of the so-called soft scale, @, of the effective Lagrangian,
which is linked to the number of derivatives and pion-mass insertions. The unitary matrix in flavor space,

U, is constructed to transform as
U— LUR', (2.9)

which results in a representation in terms of pion fields as

_ i 1 2 io 2 8“ - 1 4 5
U—H+FT'W—ﬁﬂ—EWT‘W+Wﬂ' +@(ﬂ') (Z.IO)
Here we have the LEC F again, the Pauli matrices in isospin, 7, and the pion fields, . The additional pa-
rameter o indicates a freedom in choosing the unitary matrix, as only the first few terms are fixed due to

unitarity. No observable calculated using chiral EFT depends on the choice of « [76]. Typical choices for U

include,
U=ex <£1r4'> o a=1 (2.112)
p F 6 ’ '
U= %(\/Fz—rzﬂ+z’1r-7) & a=0. (2.1ub)

As U is unitary, the lowest-order contribution to the Lagrangian, £, is only a constant and can therefore
be removed.
Without the explicitly symmetry-breaking terms in eq. (2.8), we would have massless pion fields. Mass is
added as a perturbation, in the first order we have a term
FB t 2 B 2 4
Ttr(/%(U+ U )) =F B(mu + md) - E(V}’Zu + md)ﬂ' + @(77 ) , (2.12)
where we obtain a mass contribution for the pions with 44> = B(m, + m,). At this level all pions have the
same mass, but higher-order corrections break this isospin symmetry, for instance
Z7B2 2 1732 2
Ttr(%(U— U= F(m”_md) my + 0(w) . (2.13)
We now continue with the nucleonic fields. One could again start by constructing the most general

Lagrangian for nucleons and add all possible interactions with pions. However, this results in a description
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of the nucleons as completely active degrees of freedom, including the creation and annihilation of nucleons
and nucleon loops in Feynman diagrams. The nucleon, however, is heavier than the breakdown scale of our
effective theory, and we therefore want to exclude such effects. Instead, we use the so-called heavy-baryon
formalism, where we separate the four-momentum of the nucleons into a massive part, m,, and a small
additional momentum, k.,

Pu = mo, + ks (2.14)

with =1 and vk < m. We, thereby, constrain the nucleons in the theory to a small momentum on
the order of the soft scale, making a non-relativistic approximation. Creation and annihilation of nucleons
are not possible anymore, and we obtained the nucleon mass, 7, as a separate hard scale of the theory.

Furthermore, the nucleon field ¥can be separated into the so-called large and small component,
N = exp(imo ) 222 v and b= exp(imo ) =l v (2.15)
= exp ZmU‘“ 2 an = exp lmUP_ 5 . 2.1§

The small component 4 can be removed from the Lagrangian using the equation-of-motion or path-integral
formalism [78]. Note that for v, =(1,0,0,0) and Dirac representation, the large component is represented
using only the upper components of the spinor. Therefore, only the spin degree of freedom is left, as ex-
pected for a non-relativistic description.

The resulting effective Lagrangian reads [76]

o=+ L0+ L 4+ PO A PO A+ PO (2.162)
L=\ [iZ’MDy +gAu"SM]N, (2.16b)

O _ x5 2 ) 1
L= [Cltr(%+) +cz<v“u#> +£3u*‘u#+c4[S“,S]uMuy+cs<%+ - Etr(%Jr))]N, (2.16¢)
FO = —%CS( NN)(NN) +2C(NS“N) (NS#N> : (2.16d)
Lon = %D( VN) <NS}L”MN> , (2.16€)
7N —%E( VN)(N7N) - (NTN), (2.160)

where we used the covariant derivative of the nucleon field D, := 9, + ;(ﬂaw +u a#;ﬁ), the nucleon spin
operator S, = —1y; [')/M, yv] v, the chiral symmetry breaking contribution y, = 2B(«' M u" + utlu), the
conjugate nucleon field N := N7, and a set of LECs, g, ¢;, Cs, Cp, D, and E. The parameter g, is known
as the axial coupling. Pions fields are inserted using

3 (8o — 1
%=\/E=]]+21_FT'7T—$7T2—l(loécT)ﬂ'ZT'ﬂ'+@(ﬂ'4) (2.17)

and its covariant derivative

", = iuT<0#U>uT . (2.18)
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In case of the pure pion Lagrangian from eq. (2.8), we always have a trace over flavor space, but the
nucleon field includes protons and neutrons, and many of the operators in eq. (2.16) act in isospin space.

Superscripts of # indicate the soft scale, as in the pion case, and the exponent of the soft scale is given by
d:=d+§—2, (2.19)

where d is the sum of derivatives and pion mass insertions, and 7 is the number of nucleon fields.

2.3 EFFECTIVE INTERACTION

Once we have constructed the effective Lagrangian, we need to obtain an effective interaction from it. In
principle, we could start using perturbation theory at this point. This approach works well for the calcu-
lation of scattering observables with up to one nucleon. However, in the few-nucleon sector perturbation
theory is hindered by the strength of the interaction, which results in bound states that cannot be treated
perturbatively.

There exist various approaches to overcome this problem. The solution suggested by Weinberg [18, 19]
is the use of time-ordered perturbation theory. This approach does have a few drawbacks, namely an effec-
tive interaction that depends explicitely on the energy and non-orthonormal states [79]. To overcome these
difficulties, Epelbaum, Glockle, and Meifiner [79] proposed using the so-called method of unitary trans-
formation. Its basic idea is simply to construct a unitary operator that decouples nucleonic states from all
states that contain at least one pion. We can express the projected Hamiltonian as

H,. 0
H, =UHgU= 7o , (2.20)

proj ©
0 AH A

whith a unitary transformation of [80]

I E (2.21)

1 1
7(1+ATA) 2 —AT(1+AAT) 2

1

2 A(1+A4A47) 2

A(1+ATA)"

The operator » projects on a purely nucleonic state, while A projects on a state with at least one pion. The
operator A must fulfill A = AA. Constructing the Hamiltonian Hp. is done by simply transforming the
Lagrangian to a Hamiltonian density and integrating over space. Note that Hp; contains infinitely many
terms, just as the Lagrangian we constructed, and it contains pions as explicit degrees of freedom. Con-
sequently, it cannot be used for calculating observables directly. Therefore, we have to obtain an effective

interaction by solving the following decoupling equation, which follows from egs. (2.20) and (2.21),

A Hepr — [A, Hypy]l — AHprA)y = 0. (2.22)
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Figure 2.1: Diagrammatic depiction of the chiral force at different orders. Solid lines indicate nucleons and dashed

lines represent pions. Interactions are indicated by circles and squares, which correspond to 4 = 0 (e), 1 (@), 2 (),
and 4 (0). No reducible, disconnected or vertex correction diagrams are shown. Each diagram represents all different
time orderings.

Solving this equation can be done perturbatively, as shown in ref. [79]. For example, the first order yields,

0) (0) (0)
Ve = nHnn —1H, y

M
eff w

H2y, (223)

v

where H\ and H'), correspond to the interaction parts of the Hamiltonian Hypp at 4 = 0. We also used
w for the energy of the pion and A, for the projection operator on a state with exactly one pion and any
number of nucleons.

The first part of eq. (2.23) corresponds to the lowest-order contact interaction, while the second part
gives rise to the one-pion-exchange potential. The different contributions can be read from right to left.
In the first case, we start with a nucleonic state, two of the nucleons interact, and we end up in a purely
nucleonic state. This is obviously a contact interaction. The second part can be read as the creation, propa-
gation and annihilation of a pion. This gives rise to the one-pion-exchange potential, however, creation and
annihilation can also happen at the same nucleon.

Usually the different contributions are represented with Feynman-like diagrams, as shown in fig. 2.1. The
contributions from eq. (2.23) make up the leading order (LO) of chiral EFT. For assigning an order to each
contribution, the following power counting is used in case of the unitarity transformation method for fully

connected diagrams, as given by eq. (5.138) in ref. [76],

7.

1/:=2(N+L—2)+24 with 4=di+zl—2, (2.24)
where N is the number of nucleons, L the number of loops, 4, is the number of derivatives for the vertex 4,
and », is the number of nucleon lines at the vertex. The sum runs over all vertices.

Even though the diagrammatic representation is helpful to visualize the different contributions, in the
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case of the unitary transformation, the contributions cannot be constructed from the diagrams alone, one
has to solve eq. (2.22). Furthermore, there is no one-to-one correspondence between algebraic expressions
and the individual diagrams. We can easily see that in case of the following second-order contributions,

which give rise to multiple different diagrams,

A A A . -
© M 0 2 © M 4,0 Y I S I
—1H xn—H, N Ho—H, 7 = ¢71. 5] s e (2.252)
w w + w, @
1 oM 0 o0MN,0
E”HwNZHwN”HwNZHwN’Y -1 .1 yeer (2.25b)

In these diagrams, the vertices already have a time ordering. Note that both parts, egs. (2.252) and (2.25b),
contribute to the box diagram as depicted in fig. 2.1 at next-to-leading order.

The final expressions can be worked out from the above contributions by inserting the interaction Hamil-
tonian and a straightforward calculation. More details and resulting expressions for the effective interaction

are given in refs. [79, 81].

2.4 REGULARIZATION AND RENORMALIZATION

When constructing contributions at next-to-leading order (NLO), like the box diagram discussed in the
previous section, we encounter loops in the diagrams. Such loops always imply a momentum we have to in-
tegrate over and, in general, the resulting expressions are not finite. There are various ways to regularize such
integrals, for instance, simply cutting them off at a specific momentum or using dimensional regularization.
This approach separates the infinities and by separating the constants in the Lagrangian into a renormalized
partand counter terms, we can cancel the inifinite contributions and obrtain finite results. The renormalized
constants can then be fixed by fitting to experimental data. This is so far the usual quantum-field-theory
approach and details can be found in introductory literature, for instance in ref. [82].

However, when considering chiral EFT, we have an additional problem. The theory is not renormaliz-
able in the usual sense, we need an infinite number of counter terms to cancel all the infinities that arise in
this theory. This is not surprising for an effective theory, and, as it turns out, it does not pose a problem.
It is possible to renormalize the theory order-by-order, that is, we can cancel all arising infinities up to the
order we work at.

In principle the regularization of the loop integrals is sufficient to obtain finite expressions for the effec-
tive potential but this potential is still not physical. At this point arbitrary nucleon momenta are allowed
in contrast to the preconditions for the use of a low-energy expansion. Furthermore, additional infinities
would arise when inserting such a potential in a Lippmann-Schwinger equation. Therefore, external mo-
menta are cut off at some point, usually by multiplying the potential with a Gaussian-like function. Usually,
the function is chosen in such a way that a Taylor expansion of the regulator only introduces terms of order

( Q /,4) ’, where Qis some momentum thatis cut off, .7 # A, is the so-called cutoff momentum, and vis larger
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than the order one works at. In principle, the theory should not depend on any of the high-momentum,
that is, short-range contributions. In fact, a change of the coupling constants for the contact interactions
should absorb the short-range physics up to excluded higher-order contributions.

Note that the cutoft .7 should still be much larger than typical momenta and can be of the order of the
breakdown scale, thatis Q < 4 < A,. There is a practical advantage of choosing a smaller cutoff, as the
resulting interaction is softer’, that is, in a many-body calculation we need a smaller model space to achieve
convergence. Therefore, most chiral interactions have a cutoft that is lower than the breakdown scale.

One can also use this approach for the regularization of the loops and simply skip renormalization, as
done by Ordéniez et al. [83]. In this case, the neglected short-range physics is still captured in a redefinition
of the LECs of the contact interactions.

After fixing the regularization completely, one can fit the undetermined LECs to data. Any observable
calculated with such an interaction depends on .4, but the dependence should decrease when using higher
orders in chiral EFT. In fact, a reduced cutoff dependence is a necessary condition for a converging theory.

However, a small cutoff dependence on its own is not sufficient to establish a convergence.

2.5 CHIRAL FORCES

This section is an overview of the different chiral interactions that play a role throughout this thesis. Note
that there is a lot of freedom in the choice of regularization and fitting procedures, thus, a lot of different

variants exist. This is only a small selection.

NUCLEON-NUCLEON INTERACTION AT N°LO
The NN interaction we mainly use has been constructed by Entem and Machleidt [84]. It uses dimensional

regularization for loop momenta [85] and, in addition, external momenta are multiplied with the regulator

(%) (%)) =

where p and p’ are initial and final nucleon momenta in the center-of-mass frame. The cutoff used is 4, =
500 MeV and the exponents are chosen as to only generate contributions beyond ¢*, thatis, » > 3 for leading
orderand » > 2 for higher-order contributions. The exact values for 7 vary between different contributions.

Fixing the LECs is done by fitting to pion-nucleon (#N) scattering phase shifts first. Then LECs intro-
duced by contact terms, and a few additional LECs from the #N sector are fitted to NN scattering phase
shifts. As a final optimization step, these LECs are adjusted by fitting to the same experimental data as the

the CD-Bonn NN potential [5], however, only data up to a lab energy of 290 MeV is used.
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SEMILOCAL MOMENTUM-SPACE REGULARIZED TWO-NUCLEON INTERACTION UP TO N*LO
This force is a recent construction of a two-body interaction by Reinert, Krebs, and Epelbaum [26]. For
this interaction two different regularization approaches are combined. In case of the contact interactions, a

simple nonlocal regulator is employed, that is

pz +P/2
exp| — 7 , (2.27)
2B

where p and p’ are initial and final nucleon momenta in the center-of-mass frame. The long-range parts

of the interaction are regularized by modifying the pion propagator in momentum space, yielding a local
regularization, for details see ref. [26].

The interaction is constructed for every order up to N*LO, which allows to investigate the order-by-
order convergence of results obtained with a consistent set of interactions. Furthermore, for each order five
different cutofts are employed, namely 350, 400, 450, 500, and 550 MeV, allowing for a cutoff variation.

As in the previous case the LECs are first fitted to phase shifts and then optimized by fitting to #N and
NN scattering data. The chosen data is based on the so-called 2013 Granada database [86, 87], see ref. [26]
for details. Scattering data is included up to a lab energy of 260 MeV at N*LO, however, reduced datasets

are used for lower orders. For instance, scattering data is only included up to 125 MeV at N*LO.

LocaL THREE-NUCLEON INTERACTION AT N?LO
The 3N interaction by Navratil [88] is designed to be local. As it only includes the first non-vanishing
order of three-body interactions, there are no loops, and therefore no loop regularization is necessary. The

nucleon momenta are regulated using

ol (252 (552

where p, and p; are the initial and final momenta of the i-th nucleon.

When using the interaction alongside the NN interaction by Entem and Machleidt [84], the original fit
employs the same cutoff as the two-body interaction, that is .Z;; = 500 MeV. Two additional LECs appear
at N°LO, namely ¢, and ¢, they are fitted to the *H and *He binding energy, and to the triton half-life
[89]. We will refer to this combination of two- and three-body interactions as EM/N500. Note that the
two LECs are just a rescaling of the LECs from eqs. (2.16¢) and (2.16f), that is

¢ c;
= 2D and E = f )
P24, Fid,

(2.29)

However, Roth ez al. s8] found that an interaction with a reduced three-body cutoft of .2;; = 400 MeV,
fixed by refitting ¢, to the *He binding energy, is better suited when using the SRG to soften the interac-
tion, inducing weaker many-body forces. This combination of two- and three-body forces is denoted as

EM/N400 throughout this thesis.
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SEMILOCAL MOMENTUM-SPACE REGULARIZED THREE-NUCLEON INTERACTION AT N*LO
When using the recent NN interactions by Reinert, Krebs, and Epelbaum [26], we combine them consis-
tently with a three-body interaction. The PWD has been done by Hebeler [90], which is based on earlier
work [29]. For consistency, the NN interaction is only included up to N*LO as well. The regulator and
cutoft is chosen to match the semilocal one from the two-body interaction.

There is no complete fitting procedure for this interaction yet, there only exist fits to the triton bind-
ing energy by Hiither [91], which correlates ¢, and ¢, for calculations with this interaction we have to
choose a value for one of the LECs. We will refer to this combination of two- and three-body interactions

as SMS/HS00, where the number indicates the cutoff momentum.

FoUurR-NUCLEON INTERACTION AT N°LO

Theleading 4N interaction has been derived by Epelbaum [30, 31]. Asitdoes not contain any loop diagrams,
no regularization scheme is necessary. A possible regulator for the external momenta is chosen in this work,
and we perform the PWD, which is necessary to include the 4N contributions in a many-body calculation.

Details can be found in section 4.4.
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Angular Momentum

The main part of this thesis addresses the partial-wave decomposition of the chiral 4N interactions, an effort
that relies heavily on handling angular momenta and spherical tensors. In this chapter, the relevant relations
of angular momentum in quantum mechanics are reviewed. As handling a large number of couplings of
angular momenta is cumbersome in a purely algebraic fashion, this chapter also serves as an introduction to
a diagrammatic approach. Especially for more complicated expressions, the diagrammatic approach allows
a compact representation and it makes the structure clearly visible. All conventions used throughout this
chapter are based on the excellent reference work by Varshalovich ez 4l [92] and the reader should refer to
their work for a more thorough treatise on angular momentum in quantum mechanics. The diagrammatic

representation is discussed thoroughly on pages 412-451 of ref. [92].

3.1 BAsic CONCEPTS

We start by expressing the essential elements of angular momentum theory using a diagrammatic notation.
The diagrams are, in fact, graphs composed of different vertex and line types to distinguish the various
elements relevant for the theory. Employing such graphs, we can represent states, operators and matrix ele-
ments. In general, the lines carry an angular momentum quantum number or coordinate label and vertices
represent the different elements of the theory, which depend on the lines connected to them. Lines that

connect multiple vertices always imply a summation or integration, depending on the type of line.

17
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The most basic elements, bra and ket states are represented with one black dot and an attached line:

JM;

j_l ]M]>::O+, \/4_71—|f'>::r77i,,,’
M X
f—1<jM]|=:H>"—., Nl NI

where Jis an arbitrary angular momentum quantum number, 44, the corresponding projection quantum
number and #is the unit vector in the direction of vector . We also used the shorthand /= 1/2/ + 1, which
should not be confused with the previously established notation for a unit vector. All shown lines are so-
called external lines, as they do not have a vertex at both ends. Hence, the ket states feature outgoing lines
and the bra states incoming ones, which are denoted with a double arrow based on the convention from ref.
[92].

The additional factors yield a slightly unusual normalization, which simplifies the transformation of di-

agrams, resulting in the following expressions for scalar products,

JM; o JM CON St
o= 2 (1) 1217) = —jzf L (3.12)
e O - = d (7F) = 473 (7 - 7), (3.1b)

Vir

JM /> = TYL’ i, =1 Cp oy () (3.10)

LM,  \ir <A
2

A

L
LM ; 4
o= EW <fM/

PY = Gl () = (DG, (), (31d)

where we used L to indicate an orbital angular momentum, and we introduced C; ,, , which is a different
normalization of the spherical harmonics Y} ,, .

Coupled angular momenta are usually defined in terms of Clebsch-Gordan coefficients (CGCs),

.)
M/

however, for the diagrammatic approach 3j-symbols are better suited due to their symmetry properties.

y I
|Giio)724,) = 3 ( L
RS mfl mfz

jlmjl’jZm/2> ’ (3-2)

There are simple relations connecting these symbols,

jl j2 -] — j(_l)jl—[2+/[/1 jl j2 ] (333)
my my, | M m om;, =M, ’

It ]2
( nh 12 /3 ) _ ]43—1(_1)21‘1+/3+m/3< h 5 | > _ (3.3b)
m. m, m, A N
71 2 T3 i T2

The 3j-symbol is only non-zero if the sum of the projection quantum numbers is zero and the triangular
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relation is fulfilled, that is,
m; +m, +m; =0 and =il <js<j+j and j +j,+;isaninteger. (3.4)

These relations can be used to simplify and transform the phases in front of the 3j-symbols. Additionally,
its value does not change for any cyclic permutation of the columns, which allows us to use the following

diagrammatic notation,

(3.5)

where a black dot connected to three lines represents a 3j-symbol. The plus or minus signs indicate the order
of the lines, which is anti-clockwise and clockwise, respectively. If two of the lines are exchanged, the sign
must be changed as well to not alter the expression. Note that it is often necessary to exchange lines of a
3j-symbol to reduce line crossings, which makes the graphs clearer and easier to read.

Incoming lines indicate a minus sign in front of the projection quantum number and an additional phase,

(3.6)

The (=1)™ part of the phase ensures that the diagrammatic representation of a 3j-symbol behaves like a
spherical tensor, which will be discussed in detail in the next section, and the (1Y is chosen to ensure a real-
valued expression. Changing the sign of all projection quantum numbers or applying an odd permutation

yields an additional factor of (—1)"*2*, which yields the following transformations of the diagrams,

_ jl i2 /3 — (_1)f1+/2+/3 (373)
m/1 m/z m/z

(3.7b)

(3.7¢)

where we used the properties from eq. (3.4) to simplify the factors in front of the diagrams.

9
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We now return to the coupling expression from eq. (3.2) and express it using the diagrammatic approach,

Iy,
——p

> k=¥

7y,

|Gii) 724,

i J(=% (3-8)

Disconnected diagrams, as seen in the first line, are simply multiplied. In the case above we have two states
and a 3j-symbol, which implies a tensor product and normal multiplication.

In the last line we represent the sums over projection quantum numbers by connecting outgoing and
incoming lines. Note that the final expression is more than a simple 3j-symbol. The, and j, lines are internal
lines and end in a black dot. Also note that we removed the projection numbers from the internal lines, as
they are not free variables of the expression, similar to the way they are suppressed in the bra-ket notation
on the left-hand side.

In case we sum over both quantum numbers, the angular momentum and its projection, we indicate the

sum with a thick line,

DI I A (S Y g g B g A (59)
fom; j

where we represent subdiagrams with boxes. Note that we keep the j-label, as a single angular momentum
line can appear in multiple places of a diagram. In this case all of the lines are thick but as long as they carry
the same label, they still represent only one sum. Furthermore, non-diagrammatic parts of the formula may
be part of the sum and depend on the same angular momentum.

In case of coordinate lines, internal lines indicate an integration over the solid angle,

o

. m 7 Im, I'my Im,
J " ¢, ADC, 7= —>»—0»-0—>—=—>2—0—>—, (3.10)
a
Zlmll
N
‘¢ (HC, . (PC, . (#)= A N
; ll~mll(r) lzsmlz(r) 13,m13(r) - 1m17 ‘/,* =

L L Lok

000 m; m; m
1 2 3

, (3.11)

where we introduced a new vertex for the result of the second integral. Due to the properties of the 3j-symbol,
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we know that /, + [, + [, must be even for this vertex, otherwise it vanishes. Therefore no sign is necessary

for this vertex, as the order of the columns is irrelevant.

3.2 SPHERICAL TENSORS

A spherical tensor , of rank A is defined by the following commutator relation for its components .%,,,,

Withp € {-N\,=A+1,...,2\},

o) 1}

A
> My, (3.12)

u+v

where J, are the components of the angular momentum operator in spherical representation with v €

{-1,0,1}, thatis
1 .
Ju = i—(]x + z]y) and Jo=1.- (3.13)
Typically, the phase of the tensor is chosen to satisfy
My, = ()M, (3.14)

As the angular momentum vector operator [ is the generator of rotations, eq. (3.12) determines the be-
haviour of W, under rotations. It is, in fact, possible to separate matrix elements of the tensor into a part
that is invariant under rotations, the reduced matrix element, and a second part that captures the general

behavior of all spherical tensors, a 3j-symbol. This separation is known as the Wigner-Eckart theorem, see

eq. (2) on page 475 of ref. [92]:

<J’m/‘ M, |J"m/’.> = <j||‘%)\||j,>(—l)i_mf< PA ) |

T

which can be translated into diagrammatic notation, yielding

. jm;
Jm; .
«— ]
A _ A A
M —>—— = (=7 | M + - , (3.15)
j'm;
7 j/
. _/ ]'m/'

= (j|-,|;")

where we represented the spherical tensor with a box in the diagrams. Note that the diagrammatic repre-
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sentation of the reduced matrix element directly depicts how to calculate it. That is, the reduced matrix
element can be calculated from the matrix elements of the spherical tensor by multiplying with a 3j-symbol
and summing over the projection quantum numbers. From the Wigner-Eckart theorem it is obvious that
any 3j-symbol behaves like a spherical tensor matrix element as well, in fact, all diagrams can be interpreted
as spherical tensor matrix elements. This justifies the previous use of a box to depict subdiagrams, which
are always spherical tensors.

Applying the Wigner-Eckart theorem in a diagrammatic expression requires that the tensor or subdi-
agram ./ does have exactly three external lines and no open bra or ket states. Expressions for different
numbers of external lines are discussed in section 3.3.2.

We have already introduced the spherical harmonics, which fulfill eq. (3.12). Hence, they must fulfill the
Wigner-Eckart theorem, and indeed, when adding bra and ket states and integrating over the angle, one
obtains a 3j-symbol, as seen in eq. (3.11). All angular momentum operators are also spherical tensors of rank

one, with a reduced matrix element of J,

GLIN"Y =3,/ +1) (27 +1) .

Any coordinate or momentum vector is a spherical tensor, when represented in a spherical basis, for in-

stance,

1
7y = 1—(7 +ir ) = ’C1,i1(i’)’

>
Il
~
|

= 7 oM,

where 7 is the absolute value of 7. The scalar and vector products in this basis are easily expressed using the

diagrammatic representation,

rer = Zr/;* =7y - OO b -, (3.16)
f E—
e .
1 11 A
(rx7), = Z(—l)l_"“_”i 67,7, NS Ve 3 . (3.17)
“v M v ?/ 1
- ﬁ» —

It may seem unusual to represent a vector product using a 3j-symbol, but in this case it has the same proper-
ties as the Levi-Civita symbol, which is commonly used. Exchanging the rows in this specific 3j-symbol yields
a minus sign and it is only non-zero if the lower row has three different entries. The difference to the Levi-
Civita symbol is only a factor, and this approach allows us to incorporate vector products in diagrammatic
expressions elegantly.

Note that we use scalar and vector products from egs. (3.16) and (3.17) for all tensors of rank one, even if
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their components are operators. The scalar product can even be generalized to arbitrary rank,

My Ny= Y My N = DM D = P ] ], (3.18)
2 @

of course, both tensors must have the same rank.

3.3 TRANSFORMATIONS

When using the diagrammatic approach for evaluating quantum mechanical expressions, the main advan-
tage lies in the simple rules for transforming diagrams. Applying these rules iteratively allows to simplify
even extremely complicated expressions with relative ease, especially so, because their structure is clearly

visible and an optimal scheme for simplifying the expression is apparent.

3.3.1 BASIC TRANSFORMATIONS

We have already seen in eq. (3.7¢) that we can invert the sign of a 3j-symbol, when introducing a factor of
(=1y"2% In a similar fashion we can invert internal lines, which corresponds to renaming m, to —m; in the

summation,

7j

yielding a factor of (—1)”. These two transformations, changing signs and line direction, only resultin phase
factors. If we are only interested in the absolute value of an expression, we can safely omit all arrows and
signs. In case of an integer angular momentum, the (=1)% factor is one, therefore, we will omit arrows in
these cases. Special care has to be taken in the case of scalar products of half-integer angular momenta, in

this case both lines must be inverted and only one factor is introduced,

jo
O = Zﬂmaﬂam (= —1y " (3.20)
] mm
i+m
=]— Z( VAN ma\”a\m/m,/lflm/ (3.21)

7 /

.t

=(—1)2/ J o . (322)

We should especially consider that an inversion of only one of the lines yields scalar products with two in-
coming or two outgoing lines, which are ill-defined, as they correspond to two bra or two ket states. This
also applies to single bra or ket states, that is, black dots with only a single line, as these become scalar prod-

ucts when combining diagrams. In case of a spherical harmonic, the inversion of an external coordinate line
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corresponds to a parity transformation,

Py

lff:;i—:(—l)LJ«—. (3.23)

We can express the scalar product with a 3j-symbol, which ensures that we can change line directions

however we want,

jm; + ]’m/’ . jm; /'m; )
—»—I—F =] = a\j,/’a\m/-,m/’ s (3,2,4)
0

where we introduced a line with zero angular momentum. These lines have a few useful properties. As the
sum over the projection quantum number is only one element, there is no difference between an internal
and an external j = 0 line. Therefore, two external j = 0 lines can be joined together or an internal j = 0
line can be separated in two external ones without changing the expression. They can also be inserted and
removed from diagrams at any point, if the factors from eq. (3.24) are taken into account.

A tool that is helpful throughout all of quantum mechanics is the possibility to insert the identity oper-

ator in form of the completeness relation, which is done in diagrams by inserting a thick line,

- —O—b—(}—»—fzfilf(}*’”, (3.2,521)
jm; / j'm; 17 j'm
O O—— = —>—O—>—, (32‘Sb)
jlm/l jlm;l
——O—>——
=2 (3.25¢)
]2 T izm;z

One has to be very careful when using this relations to remove an identity from the diagram, in such a case
nothing else in the diagram should depend on the angular momentum to be removed and the line directions
and signs must be exactly as given in the diagrams above.

The above relations can, for instance, be used to combine two spherical harmonics,

o Lm, . .
7 l ;
O »_ 12, 127,
Oo—r—
a ol /1 ? [ ol b
= --4-0-4-« = - -4~ O=——a—(0- -4~ «
Al hmy ALy
a N Nt 1
7 VXN 0O > O—r—
e -
my,

fom,
where we inserted an integral and a delta distribution in the first step, which does not change the expression.

The integration has been performed using eq. (3.11).
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3.3.2 CUTTING DIAGRAMS

When simplifying angular momentum diagrams, one often starts with a large connected diagram, which
can then be cut into multiple simple parts. The main tool for this job is the Wigner-Eckart theorem (3.15).
The diagrams are constructed in such a way that eq. (3.15) also works for any subdiagram .Z, as they always
have the properties of a spherical tensor matrix element. Furthermore, the Wigner-Eckart theorem is not

constrained to external lines, it can just as well be applied for cutting internal ones,

h h

N =| M + - N . (3.27)

i
2 - 1'2 A
js

/3 /3

However, there are a few requirements for cutting diagrams: At least one of the subdiagrams must have
neither any external lines nor any unconnected bra or ket states. Furthermore, we have to cut all the lines
connecting the two diagrams.

When cutting diagrams with less lines, we can insert a j = 0 line in the diagram and remove it again.

Starting from two subdiagrams connected by two lines,

N \ VoA !
< [ ——t !
| | 3 | |
] — ! Jogr 2 14 )2 H—
M N =5 M P~ |
— 21 [
l ‘:\"/\/' l
I | 0 I
| | | |
| | | |

where we used eq. (3.24) to insert two 3j-symbols, which also adds a factor. The dashed boxes correspond

to the subdiagrams in eq. (3.27), and we use this equation to cut the diagram in the next step, yielding

h A
=;§(—1)2j‘ Y o + 12 ; + - E o+ 12 Vo
0 0

At this point we start removing 3j-symbols using eq. (3.24) again, which results in

j i |
5 A | L
= (%] + - VI
0 0

Note that we inverted two lines in the last step, the resulting factors cancel. We continue by removing the

remaining 3j-symbols,

25
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h
=| M } { Vel (3.28)
2

Note that a sign inversion was necessary to apply eq. (3.24) in the last step, which cancels the factor in front

of the diagram.
The same trick can be applied for a single connecting line, which directly proofs that the single angular

momentum must be zero,
j o v Jo4 o i 0 T
=7 [ s =7 |«
0 0
0 0
R =

As in the previous case we used eq. (3.24) to insert and remove 3j-symbols that contain a zero angular mo-
mentum line in the first and last step, respectively. We cut the diagram using eq. (3.28) in the second step.
In case of four or even more lines, we have to apply the completeness relation from eq. (3.25¢) to reduce

the number of lines,

] hyog o j h
7 — >——4—< — + - —
T bk — 2 > —
M| |\ = js N =l | TR v . (330)
] — < . /3 I3 —
Js ]i + -
T D Js i T

where we cut three lines using eq. (3.27) in the last step. This procedure can be extended to additional lines,
however, each additional line introduces another sum over an intermediate angular momentum, making the
resulting diagram more complicated. When cutting diagrams it is therefore beneficial to cut as few lines as
possible in each cut and only introduce additional sums when absolutely necessary. Note that all the cutting
relations have been given in a form that does not introduce additional factors. If any of the line directions

differ from the equations given above, the line has to be inverted before cutting.

3.3.3 COORDINATE CHANGES

One of the more involved tasks when using expressions in a spherical basis are coordinate changes. For this
work, we need to be able to represent some coordinate R in terms of two other coordinates, thatis R = r,+7,.

We start with the angular part, assuming we have only one spherical harmonic that depends on R. In case
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of multiple spherical harmonics, they need to be combined into one by using eq. (3.26) first.

Ll R=r+r,
% DL 172 . h ( )
Wh gr QL+ 1 331

b = e\ Qi)

This formula is a diagrammatic representation of eq. (35) on page 167 of ref. [92], that s,

Js
M, )

Note that the right-hand side of eq. (3.31) depends on the abolute value of R, thus the typical next step is

A A 47(2L +1)! . . Lo
RY, (R) = %}%zzﬂl ’2\/(211 + 1L +1)! 2 Ylvmzl(’lmz»%(’z)<

m; m
mymy, [1 L,

representing R in terms of 7, and r,, which can done using Legendre polynomials. A function depending

on cos 9, where 9 is the angle between , and r,, can be expanded in terms of Legendre polynomials,

glcos ) = Z ¢/ P(cos 9),

1=0

where the coeflicient ¢, is defined as

P2
¢ = 5 [ldu Pw)g(n) .

Aditionally, a Legendre polynomial that depends on cos 9 can be expanded in spherical harmonics,

A / 7,
Pfcos9) = - »»--O—>—0-»--.

This is known as the addition theorem, which is discussed as eq. (9) on page 164 of ref. [92] in an algebraic

representation, that s,
4 AN [
Pfcos 9) = Z—Zj 2 V()Y (7) -

Combining the above equations for a function f that depends on the absolute value of R, we obtain

7 7, 1
fR) =-»»- O—DZ—(} -»--X % J 1duPl(u)f(R(rl, o8 u)) , (3.32)

with

R(rl, N u) =/ 712 + rg + 2nryu.
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The integral over # can be interpreted as an integration over the angle 7, - #,. When using the above equations
with a minus sign, thatis » = r, — r,, we need slight modifications. For eq. (3.31) we obtain an additional

factor of (—1)%, the expression is otherwise unchanged. In eq. (3.32), the expression for R is replaced with

) 2
r(rl,rz,u) =A\/r+7,—2nru.

In cases with multiple coordinates that depend on the same angle, we still have only one integral, for instance,

if we have coordinates R = r, + r, and r = r, — r,, we would obtain

a

? 1
SR, 7)== :;7 O—DZ—(} 7’;27 - X % J duPl(u)f(R(rl, N u), r(rl, N u)) .
1

Also note that the sum over /is, in principle, infinite. However, if one integrates over #, or #,, one gets limits
for I from the solution of the integral. Even in more complicated situations, we always find a limit for /and

the number of summands is finite in all cases throughout this work.

3.4 RECOUPLING COEFFICIENTS

When cutting diagrams, the goal is to reduce them to a product of well-known coefhicients that do not
depend on any external projection quantum number. These coefficients are defined with respect to the
(re-)coupling behavior of states with multiple angular momenta. The simplest diagram is related to two
coupled angular momenta, without changing the coupling order. We can calculate the overlap of such a

state diagrammatically, using the coupled state from eq. (3.2).

o

X /1 ]2 jl(_l)zh/

(i) T 3) 7243 = 7.7, -0

A a

= hihi )]

h

= 070,009,510, ~ (3.33)

f»
=L}
where we connected the bra and ket states in the first step. In the second step we cut the diagram using

eq. (3.28), inverted the Jline and removed all scalar products. Usually one would expect the expression to

just yield the Kronecker deltas, without any diagram or symbol. This diagram is, in fact, just a representation
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of the triangular condition for j,, /,, and /, which is taken for granted when using the algebraic expression
on the left-hand side. Any 3j-symbol already enforces the triangular condition, therefore this diagram can
be removed completely if there is any 3j-symbol in the remaining diagram that connects the same three
angular momenta. This calculation also displays a subtle issue with the diagrams when calculating a scalar
product. In case of the bra-ket notation, the quantum numbers are ordered and it is clear which quantum
number in the bra corresponds to a specific quantum number in the ket. This information is lost when
using diagrams, one has to be careful which lines to connect. Note that the calculation above is usually
discussed as the orthogonality relation for the CGCs.

We obtain a definition for a recoupling symbol, the 6j-symbol, when calculating the scalar product of

states with three angular momenta in a different coupling order,

ACAYANZZA | ((FAVSANZZA

2 ’ 4 AN AN B -3 a2y
]M/ X]1/1]2/2/3]3]12]23]]

X (_1)2/1/+2/3+2/12 +2/53

+
s J
= m X ]12 ]23(_1)]1+/2+13+]3/‘1,]'1’ a\fz’/z/ a\js,/;a\j,]' . (334)
+ > +
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In the second line of the derivation we introduced a compact notation, where we have a large diagram on
the left-hand side and multiple lines on the right-hand side. In such cases, the whole diagram, including
all disconnected pieces, if any, are in front of all the algebraic expressions on the right-hand side. This is
especially important when the diagram contains sums that act on the right-hand side as well. The right-
hand side is then read in the usual order, that is, from top to bottom.

The 6j-symbol is invariant under permutations of its columns and under exchange of two angular mo-
menta of the upper row with the momenta directly beneath them. Both symmetries can be seen easily in

the diagrammatic expression by exchanging the position of two 3j-symbols, for example

ibec C v B C a C a BA ¢
{Ac} {H} 639
A b b
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Note that all phase factors, which appear when inverting signs and line directions in the third step, cancel

each other.

We obtain a 9j-symbol, when calculating the scalar product of states with four angular momenta in a

different coupling order,

(LG 2l [G3) 2 G372) 2215

Jis
],M// X ]/;],;/]/\2;2,]’\3]/\3/]/\4];’ /12 ]34 -]13 ]24 ]]’
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It is straightforward to verify that exchanging two rows or two columns of the 9j-symbol yields a factor of
(=1ythtisticthethit /st Lt/ The exponent of this factor must be an integer, therefore even permutations of

rows or columns do not yield a factor. Furthermore, the 9j-symbol is invariant when flipping it along either

of the diagonals.
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Interaction Matrix Elements

The main challenge when including a four-body interaction in many-body calculations is the sheer number
of matrix elements that need to be considered. It is, therefore, important to always work in a basis that uses
the symmetries of the Hamiltonian to keep the number of matrix elements manageable while not impeding
the actual calculation.

While working in the few-body sector, we use a coupled Jacobi harmonic oscillator (HO) basis that is
completely antisymmetric with respect to particle exchange: As nucleons are fermions, we only need to
consider antisymmetric states, and ignoring all states that are not completely antisymmetric drastically re-
duces the model-space size. The angular momenta and isospin quantum numbers are coupled to a total
angular momentum and isospin to exploit rotational invariance and isospin symmetry, respectively. Note
that isospin symmetry is broken by the Coulomb and nuclear interaction, and therefore, we cannot exploit
it in the two-body sector, however, isospin breaking is negligible for interactions with a higher particle rank.
We use the Jacobi coordinates to decouple the center-of-mass part, as we are only interested in intrinsic de-
grees of freedom, further reducing the size of the model space. Finally, we employ the HO basis, as it is
widely used in many-body calculations, which makes further transformations unnecessary. In many-body
calculations single-particle coordinates are employed, as it is not computationally feasible to construct a
completely antisymmetric many-body Jacobi basis.

The main challenge of this work is deriving and implementing the calculation of matrix elements in the
aforementioned bases, using the representation of the four-body interaction in single-particle momenta.

The first sections discuss the details of the utilized model spaces, followed by the general transformation of

31
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the single-particle momentum representation of the 4N interaction to the Jacobi HO basis. We discuss two
specific four-body interactions in this chapter, a simple contact interaction with a nonlocal regulator and

the chiral 4N interaction at N°LO.

4.1 JacoBr HARMONIC OSCILLATOR BAsis

The Jacobi HO basis we employ is defined using the following coordinates,

&= \/g(r1+ +rA),
_\ﬁ
4= 2("1_"2)’

k|1 .
sz\/m ;(rl+...+r,€)—r,€+1 with k< A, (4.1)
where 7,, ..., r, are single-particle coordinates and we assume equal masses for all particles. This specific

choice of coordinates implies A particles with identical mass. The coordinates are an extension of two-
particle relative coordinates to an arbitrary number of particles, they also have an explicit center-of-mass
coordinate, &), which allows the separation of the intrinsic degrees of freedom in this basis. Apart from
a factor, the two-particle relative coordinate is equal to ;. All additional Jacobi coordinates are defined
relative to the center-of-mass of the previously included single-particle coordinates, a visualization is shown

in fig. 4.1. Note that the Jacobi coordinates £, ..., £,_, do not change when adding the (4 + 1)-st particle.

7'1 r4 rl r4

Figure 4.1: Construction of the four-body Jacobi coordinates £y, £, £,, and £; from single-particle coordinates r;, 7,
r3, and r,. Filled circles represent the center-of-mass of the particles indicated by dashed lines and the origin is marked

by o.
These coordinates have a few desirable properties. First of all, transforming single-particle momentap,, ..., p,
to Jacobi momenta 7, ..., 7, is done in exactly the same way as the coordinates. Furthermore, the trans-

formation always has a Jacobian determinant of 1 and, especially important for using these coordinates in

conjunction with the HO basis, the HO Hamiltonian has the same form,

A 2 A-1 2
pi 1 2 Wi 1 2 &2
Hiq = — 4 -matr = — + -mw & .
HO ; I 2 i 2 2m 2 i

=0
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Two-Bopy Casg
Using Jacobi coordinates we construct a two-body HO state,

NI MLcm>® ‘N,(Llsl)le/l,TlMTl>,

cm~cm

where N

cm?

L, and M, are the radial, orbital angular momentum and projection quantum number cor-
responding to the center-of-mass part, respectively, which are defined with respect to £, and 7. The quan-
tum numbers N, and L, correspond to a HO state that is defined with respect to £, and w;. Additionally,
we define the quantum numbers S, and 77, which are the total spin and isospin of the first two particles,
respectively, and we couple the relative part of the state to a total angular momentum /;. The total energy

quantum number of the state is given by the radial and the orbital angular momentum quantum numbers,
E=FE_ +E with E_=2N,+L, and E =2N +L,.

We are only interested in completely antisymmetric states. As the center-of-mass part must be symmetric
when exchanging two particles, the relative part must be antisymmetric. Explicitly applying the particle-

exchange operator P, yields

PI,Z

N, (L1S1)]1M/‘» T1MT,> = (=1)b+SHT

N (L1S1)]1M/p T1MT‘> ,
which means that only states fulfilling
(_1)L1+S1+T1 =1 (4'2)

are relevant. The (=1)" part stems from the parity of the relative two-body wavefunction, as parity inver-
sion and particle exchange in coordinate space are the same for the two-body relative part. Exchanging the
coupling order of the spin and isospin, which corresponds to exchanging columns in CGCs, yields the re-

maining factors.

THREE-BoDY CASE

The three-body state is built upon the two-body one,

’NcmLcnlML > ®

1 1
]\fcmLcmjl4Lcm > ® ‘]\IIN ’ [(Llsl)jl <L2; )JZ] ]IZMflz’ (le > TIZMTIZ> >

Fyphyy Jo M, Ty, )

where the left-hand side is an abbreviation using the intrinsic HO energy £, = 2N, + L, + 2N, + L,, and
anindex k, = {N}, L, S,. /. T;, N,, L,, /,} that collects the remaining quantum numbers. Note that the

center-of-mass part now corresponds to three particles and the parity of the intrinsic three-body state is given
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by (-1)"*"2 = (=1)"2. When enforcing eq. (4.2), the state is already antisymmetric under exchange of the
first two particles, as the two-body relative part does not change when adding the third particle. The con-
struction of a completely antisymmetric basis requires an explicit diagonalization of the antisymmetrization
operator. As in the two-body case, the intrinsic part must be completely antisymmetric, and the antisym-
metrizer does not depend on the projection quantum numbers, therefore, those parts are suppressed in the

following formulae. An explicit calculation of the antisymmetrizer matrix elements yields

(Enka b Tl Bk Jo T )
1 2 SHSHTHT] £282 7 71 7 £18 &1 A .
= ElZ’El/zgfllerza‘TlZ’Tlrz<;3k123k1’z - ; Z(_l) SR LS ]1 172 2’Sl I/TITI/ <<A[1/L{’NZ/L;|]\]1L1’N2L2’L>>§
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5 1

S,

2

1
2
I

N = =
[SH S Sl
=

where we used a harmonic oscillator bracket (HOB), which is related to coordinate transformations of HO
states. We use the HOB as defined by Kamuntavicius ez 4/ [93]. This formula is discussed in ref. [94], and
a very detailed derivation can be found on pages 138-143 of ref. [9s].

The antisymmetrizer is clearly block diagonal in 77,, /;, and E,, and each block can be diagonalized sep-
arately. As we want to construct antisymmetric states, we are interested in all eigenstates of the antisym-
metrizer that have an eigenvalue of one. All other eigenstates have a spurious symmetry, indicated by an
eigenvalue of zero, and can be discarded. The entries of the eigenvectors obtained from a numerical diago-
nalization of each block are the so-called coefficients of fractional parentage (CFPs), which allow to construct

an antisymmetrized basis from the partly antisymmetric one,

|E12i1zf12 T12>[Z = Z ff;/;ﬁzﬂz |E12k12]12 T12> >
/€12
where we labeled the completely antisymmetric state using a subscript 2. The CFP depends on the 7'/ E-
block and the two indices i, and k,,. We already introduced the index k,,, which corresponds to a set of
quantum numbers in the partially antisymmetric state. The index ,, just labels the i;,-th eigenvector of the
antisymmetrizer with an eigenvalue of one and does not correspond to any physical quantum numbers. In
fact, there is a freedom in choosing CFPs, as the eigenvectors all have an eigenvalue of one and any linear
combination of these eigenvectors is still an eigenvector with the same eigenvalue. It is advantageous to
choose a set of CFPs that defines an orthonormal basis, but this does not eliminate the ambiguity in choosing

the basis.

Four-Bopy CAsE
The same approach as in the three-body case can be used for constructing the four-body basis. Again, we

define a partially antisymmetric basis, which is based on the fully antisymmetric three-body basis,
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E ki JinM o TsMr >
Epipp Ny, []12< >]3]]123 Tz’ (T )T M123>
EpJ T, 1
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where we introduced two additional shorthands using the indices

1 1
Eyy3 /i3 jmtglzy [( T > ) TIZE] T123MTm> ’

5123 {]\II’LI’SI’ ]1’ LZ’ ]2’N3’L3’]3’]12} and

ks = {EIZ’ZIZ’]IZ’TH’ 3’L3’]3}'

The former indicates the spatial part of a four-body state that is partially antisymmetric in the first two
particles and the latter is a collection of quantum numbers for the partially antisymmetric four-body basis.
Furthermore, we introduced the intrinsic four-body energy qunatum number E,,; = E,, + 2N, + L;. We
suppressed the center-of-mass part in the expressions above and introduced quantum numbers correspond-
ing to the additional Jacobi coordinate. The first and second Jacobi coordinate do not change when adding
a particle, and the state we constructed is, therefore, antisymmetric in the first three particles.

Again we caclulate the matrix elements of the antisymmetrizer to construct a fully antisymmetric basis,

<E1/23 k{23]1123 ’Tlf23 | 'Q{| E123 k123]123 7-'123 >

1 EpoJin T EIZ /12 12 T [ 72 B2
= L5 K
a\Elz}vEl/zs a\flzav/{zs a\T123’T1l23 < Fizskins Z Z ]12 12 ]2 ‘]3 ]12 12 ]2 ’/3 23

llz’kn 112
Ielzk Ly K
Ly+L)
(-1 T+ T+ L+ +]2+ng 1’2\]1,3[‘1!14,3 ,3] 11,3
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LT T,
123 712
i T T <<N2/L;’N3/L;|N2L2’N3L3;L23>>§ >, (4.4)
2 1 12

see pages 52-56 of reference [61] for a detailed derivation of the formula. The calculation of the antisym-
metrizer matrix elements can also be generalized to an A-body system, for details see ref. [94].

As in the three-body case, the antisymmetrizer is block-diagonal in the total angular momentum and
isospin, as well as the total intrinsic HO energy. Diagonalization of the individual blocks yields a completely

antisymmetric four-body basis,

i _ Eppso i3 Tios
|E1231123]123T123>a = 2 ¢ | 123%123. /103 T123> ’

ip3ok13
klZS

where we introduced another index, 7,,,, to label the different antisymmetric states.

In principle, this iterative scheme of adding one particle and antisymmetrizing the basis can be extended
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to many-body systems. However, the necessary calculation and diagonalization of the antisymmetrizer are
the main problems in using such a basis for an actual many-body calculation. With each new particle, the ba-
sis becomes larger, and at some point, the computational cost of antisymmetrization outweighs the possible

gains of a Jacobi basis.

EMBEDDING
For performing calculations using the Jacobi HO basis it is often necessary to represent an irreducible N-
body operator in a many-body space using N-body matrix elements. For instance, we can represent an

irreducible two-body Hamiltonian in a three-body Jacobi HO basis using the the two-body matrix elements,

! 2] . _ LS T El/z’/IZ’TIZ
a <E12112]12T12|H |E12112]12T12>4 =3 Z 23 SO ON N 8 G, G

/
igokyy ijpokyy
’
by ki,

AN (LS) s T HP N, (L,8,) 1 T ),

This formula can be derived by expressing the completely antisymmetric state in a partially antisymmetric
one and decouple the additional particle. Details on the derivation can be found in ref. [61]. The case of
embedding the matrix elements of a two-body Hamiltonian in a three-body space has one peculiarity. We
assume all representations of the Hamiltonian in a three- or four-body basis to be independent of the isospin
projection. This is not the case for the two-body representation, as the Coulomb and nuclear interaction
break the isospin symmetry substantially. Therefore the two-body matrix element in the formula above is
assumed to be the arithmetic mean of the possible isospin projections.

Formulae for the other transformations, that is, obtaining four-body matrix elements from two-body

and three-body ones, are similar,

<E |H |E > =4 z Z .o a\ .9 Elzs iz Ty ~Eiry Sz Tz
123%123./123 123 1w3tss T3 ), = T Ty le LONGNIO LG L0 [y T i by, G

’
i3k
ki kiys

AN (LS 1 THEP NG (L,8) 1 T),

i [2] .
a <E123l123]123 T123|H |E123’123]123 T123> =6 z Z Z Z jlz,j12 27 3]1,], &\TI,TI";NZ,NZ’JLZ,L sjz jz/a\N N";L%,L”;]%,A

123 km klZ 1z

! /
EpJin T EioJioTho wEro3o)123: Tis wFipso 2o Tios
: .t ! ; ’
inpokp ipoky ip3ok13 ify3kiys

AN (L) 7 T HPING (£,8) . ),

Note that in all cases there is a combinatorial factor, given by the binomial coefficient (g), when transform-
ing N-body matrix elements of an irreducible N-body operator in an A-body space. This also implies that
three-body matrix elements of irreducible two-body operators must be treated differently from the matrix
elements of irreducible three-body operators. A simple example would be to start with two-body matrix

elements of an irreducible two-body operator, embed them in three-body space and afterwards transform
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them to four-body space using the formulae above. We clearly obtain a factor of twelve instead of the ex-
pected factor of six. The same problem arises when performing a many-body calculation and representing
few-body operators in many-body space. Therefore, the few-body matrix elements for operators of different

particle ranks must be kept separate, if we want to use the same matrix elements for many-body calculations

with varying particle numbers.

4.2 FOUR-NUCLEON PARTIAL-WAVE DECOMPOSITION

Allinteractions we cover in this chapter are defined in terms of single-particle momenta and uncoupled spin
and isospin operators. However, the Jacobi basis we want to use has explicit orbital angular momentum de-
fined with respect to Jacobi coordinates, thus we need to perform a 4N partial-wave decomposition (PWD).

Our final goal is the calculation of the following matrix element,

<N L M E123’123]1,23 T3 |V New LewM,, Lem s Epsting J1o3 T123>

! !
Z 2 E23./103: T 123 Epy3o Sy 123[ElZ*jlz’TlZCElZ’]u’TIZ T/l T/ 1 T M
’123’}5123 &y inpoki i 1y 12377 Thps

k/
‘123 123 haokpy

rON(5) | s, )

V(S)‘NcmLcmM s Loz /i /123@123> ’ (4-5)

kips  kpy
kyy ki,

123

<NcmLcmM EZ}-/123 /123181,23

where we used that the interaction, 7, can always be factorized in a spatial part, ', and an isospin part,
V. The latter can usually be evaluated in a straightforward way, the former requires a PWD. All matrix
elements we are going to use are defined in a single-particle momentum basis and are not coupled. The first

step is decoupling the states and transform the expression to a Jacobi momentum basis by inserting two

completeness relations,

<N’ L M E123]123 /12%3123 V(S)’N L M E23]123 A23ﬁ123>

3 3 3 3 3_113 3 3
Hﬂd%d ramd'n (|| Emerenen >Y X XXX
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m,, ,m MLl, MLZ’ ML3,M .714]1,/[4]1 M/lz’M
mbm MSI’MI P2 m& /l’md M/z M/z M/3 M/s

1 1 ’ ’ ’

Sl P S/ Ly S | A Ly S | A
! ! 4 4 4 4
m, m, M 7, M I Msl M i M I /MS1 M i

N =

2

1 ro 1 ’ 1 ’ ’
; J2 Lz; 2 L3; J3 L3; Js

! !/ / ! ’
( M, )\ m m, | M, )\, ml | M,

1

=

c 2 c

Jz T A fu> Ju 13 s B B T
o

MM

’ ’
/12 /12 M, My M

Ji23 Ji2 ) M}m
Ry NoLo (WO)RL{MLM (7"(;)RNL1 (7"1) ) NyL, (Wz)RN 7 (WQ)RN3L3 ( ”3)R;§Lg (Wé)
Voo (R)Y <ﬁa>YLl,MLI<f1>Y;,MA<f;>YLZ,MLZ<ﬁ2>Y;,M£Z<f;>YLz,ML2<ﬁZ>Y*, (%)

c Ly M,
P [ () l (3) r_
<mjdmfbm&mjd, 7r17r21r3| 14 7r21r3> 83 (my — m,)
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=dn, 01,1080, m Erdm,dr, md 14’7 d’ Z > Z 2 > )

m, m, MLIM MM, ML3 M/;M MM, /12
o, My MY mg ) ! M, M, My M
S ols s L 8 | A4 LS| 5
m, m, M 0, m; m; M}Z M T /MS1 M . Mil /MS/1 /M]/l
<L2§JZ L S| 2N 5|k L;§/;>
M L, M M I, Miz m;c /14}2 M. L, M M I, Mi} m; M}3
(fl Ll (7 Bl AN\ b 5| \( F X ‘ s
My My |\ My, )\ My My | My )\ My My | M)\ My M| M
RNILI(Wl)R;JI'LI/(”f)RNZLZ( ) ( ) N3L3(7r3) (”3,)
Vi, (R Y] (R) Y1, (fz) Y (F)Yi, (ﬁz) Y (2)
= (i i[O, ) (4.6)

where Ry, is the radial HO wave function in Jacobi-momentum representation, which is orthonormal.

Furthermore, we used that the interaction conserves total momentum, thus making the integration over

. 1 . . .
the center-of-mass momentum simple. The factor of ; originates from transforming the momentum con-

servation from a single-particle expression to Jacobi momenta, that is

!’ ! ! ! ! 1 !
‘;(3)(1’1 tP,t Pt Ps— P~ P~ Ps _P4) = 3(3)(2(11'0 - 770)) = 53(3)(“’0 - 770) .

For an interaction that depends on single-particle momenta, these momenta can easily be expressed in

terms of Jacobi momenta. One can then insert such an interaction in eq. (4.6) and calculate the matrix

elements. However, this approach requires the evaluation of an 18-dimensional integral and 24 nested sums,

which limits the number matrix elements that can be computed in this way in a reasonable timeframe.

Therefore, further simplification is necessary, depending on the type of interaction we use. Nevertheless,

the naive approach employed in eq. (4.6) is an excellent tool for cross-checking the results of a more involved

derivation. In the following sections, we discuss the contact and the chiral 4N interaction and specialize

eq. (4.6) for each interaction.

43

CONTACT INTERACTION

A pure contact interaction for four particles could be modeled in the following way,

V=C3(r—1,)0%(r,-1)%r -r,),

however, a pure contact interaction is impossible to use in a many-body method. We therefore “smear out”

the delta distributions by transforming the interaction to the momentum basis and multiplying with a reg-
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ulator, yielding

(P VIppapsps)
1 . ’
= C(Zyr)lz J]]] d371d372d3r3d3r43(3)(71 - 7‘2)3(3)(72 - 7'3)3(3)(7-3 — 7'4) exp| i Z T (pl _pi)

i

(2 )’ o (pl AR A S My S M P4)
g 1 (3)(
8 2w)?
——

4B

— ¢y 80wy — ) E( 7], )y myy A)F(m, 7y 105, A)

- 7"0)

with the regulator

2 2 2\ exp
7w+ 7w, + 7wy

F(Vrl, Ty 7r3,A) =exp| — Yy

The regulator we use here is a nonlocal one, as the inverse Fourier transformation of the final expression
would result in a nonlocal expression in coordinate space. With the regulator we have introduced two ad-
ditional parameters, the cutoff .7 and an exponent 7,

The final expression can be inserted in eq. (4.6) and drastically simplified. We can integrate over all solid
angles and evaluate all sums by using the orthogonality relation of the CGCs (3.33). This leaves us with a

spatial part of

’ ’ ’
<NcmLcmMLcm’ L 23-[123 ]123(3123

Q)
V |]\[cmLcmMLc 123]123 112318123>

=648 9N, N}, 0L, 10,0, 2], 91,0911001,0010001,0010.0%8,50 10t o s Hn Ot 0,

HJ d7r1d7r2d7r37r127r§7r§RMLl (WI)RNZLZ(WZ)RN3L3 (”3)1:(”1’ 7o T35 A)

ﬂJ dm|dm)dminn) ) R ( )Rj\u (WQ)R*NE,LQ(W;)F<7FII, w7y, A) (4.7)

where the integration over the absolute values of the initial and final Jacobi momenta factorize. Therefore,
we only have to perform a three-dimensional numerical integration over the Jacobi momenta. Furthermore,
all orbital quantum numbers must be zero, which is expected of a contact interaction, as the centrifugal
barrier prevents any contacts. However, it is also a consequence of the chosen regulator. If the regulator
depends on an angle between the Jacobi coordinates, as would be the case for a local regulator, the contact
interaction can act even in channels with nonzero angular momentum. Finally, the interaction is diagonal in
many quantum numbers, including the complete isospin space, as we did not include any isospin operator.

"2 — 0% channel with a

In fact, antisymmetrization ensures that this interaction is only nonzero in the J,;
total isospin of 77,; = 0. These properties ensure that a lot of matrix elements need not be calculated and

the nonzero ones do not require much computing power.

39
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4.4 CHIRAL FOUR-NUCLEON INTERACTION

The chiral 4N interaction at N’°LO has been derived by Epelbaum [30, 31] in a single-particle momentum
basis. It is usually divided into eight different classes that correspond to specific combinations of coupling
constants. Within these classes there are several operator structures. For applying the PWD, we require
an interaction that can be factorized into an isospin and a spatial part, therefore, we have to handle every

structure separately when transforming them to the Jacobi basis. The different classes are [31]

% 94 9,4
C (@R g + a2 |gi + a2 gd + a2
[(11-14 T, Ty — T, T, 72-14) 49 9. 9 (Ia)
+ (1, X 7)) 7, 4Gy, (G X q,) -0 (Ib)
+ (1, X 73) 7, 45 Gy, (4 X qp) 0, (Ic)
+ 1,7, (g X 4)- 0, (g1, X q,)- 03] (1d)
+ all permutations,
_ 2 94 9,4
U @R g + a2 gl + a2 [g: + 2]
[(71-14 T, Ty — T,0 T, 72-74)q12-q4 (IIa)
+ (1, X 7,) 7, (g, X q,) - 03] (IIb)
& SR T (N U P (Ile)
(2F,)" g3 + 222] g5 + 222] [q; + 212
s 2
4 0,4 0y q -4, 0,-q,|q5 + M) [71'72 73'74] )

2(2F,)° [q7 + 22| [q; + 22| [q; + 222 g + A22]
+ all permutations,

4&’2 0,-q, (0;X0,)-q,

V., =
Y 2E,) gt + 02 (gl + A2)
1,75 (@ X q) -0, (IVa)
— (1, X71,) 75 g, qlz] (IVb)

+ all permutations,,

Zgi 0,-q, (0;%X0,)-q,
V. i=C . \Y4
" F) g + a2 (g7, + A2 Sache V)

+ all permutations,,

Zgi (0, X 0,)-qy, (05X0,)-q,,
(2F,) g5, + 422]*

Vin = C; Ty 73 (VII)

+ all permutations .
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The expressions for the chiral 4N interaction only depend on momentum transfers g, = p; — p,, where we
used the shorthand ¢,, = ¢, + ¢,. The total interaction also includes a factor from the Fourier transforma-
tion, identical to the case of the contact interaction. Due to momentum conservation, the total momentum
transfer must be zero, yielding an additional factor of

LEgYC)

Qn)y (ql T +q+ q4) ’

which is not included in the expressions above.

For classes II1, V1, and VIII we can construct diagrams, but the contributions of these classes vanish. In
case of class I11, the different contributions cancel each other, classes VI and VIII only contain disconnected
diagrams, which all vanish individually. Structure (Ic) can be generated from (Ib) by exchanging indices
1 < 4and 2 « 3, therefore, it is already included in all possible permutations. We simply use (Ib) with
a factor of two. Furthermore, we are interested in completely antisymmetric matrix elements, thus any
permutation of the interaction yields the same matrix element, and we simply use an additional factor of 24
to include all permutations. Note that one should make sure that the regulator is symmetric under particle
exchange, otherwise different permutations yield different results and cannot be included with a simple

factor.

4.4.1 IsosPIN PART

For evaluating the expression in the Jacobi basis, we separate the isospin part of every structure. In general,

we want to evaluate,

28 r 1 ' 1 (T) 1 1
(|(m2)mat| mia |7 || (122) 7t T, )
’ ’ 1 1
TIZZ'MTm — ; ; =+ TIBMTm
> > > >
e z S A T,
o2 z 2T 42T +4
- T o T + x(_l) 1 12
= 1 2 V > 1
_ > > + A A Ay Ay
XL T T T3 Thos
1 1
2 2
Ts
1 !
NS 1t
!
Ty 3 > AT,
- > > + X 3 ’ 3 ’
/ ! T 1 T3 T3 MT123’MT123
=T ; |vD| 3 | , (4.8)
- > > + Y alks alie alils ald
><(_1)T1T1 lp
2 2

where the operator V/ M s any of the isospin operators used in the chiral interaction. The isospin coupling

is expressed in diagrams using eq. (3.8). We already cut the two external lines using eq. (3.28), which shows
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that all expressions are diagonal in isospin. Keep in mind that we omit arrows on lines with integer quantum
numbers. Every isospin structure is now expressed in diagrams, inserted in eq. (4.8) and simplified by cutting
the diagram.

The easiest structure we have is a simple scalar product, as used in structure (IVa),

T T 5,

lm/ lm/ lm/ lm/ lm lm lm lm
27T TR TR T 270 2 537 5"

= I (1 1 L !
- _smzz’mr/za\mwm& Z(_l) <2mt1 7_1’/’- 2m’1> <2mt3 'T3’_P" me3>
M
. 14! !
D Y SR B
e T —m;, um —m, —um
“ i h i &

where we used the scalar product for spherical tensors, as shown in eq. (3.16), and applied the Wigner-Eckart
theorem (3.15) to obtain a representation in terms of 3j-symbols. Inserting this expression in eq. (4.8) is a

simple matter of connecting the outgoing and incoming lines correctly, which yields

r1 11 ’ ’ 1 1
<[<T1 Z)TUZ] ToyMy |7y - T3| [(Tg)Tu;] T123MT,Z3>

Tiys
1
- 2y +
Thy L L AT, X4 ) )
_n > o+ 2 12 Tio3sTyp3 " My M,
= ¢ e
PR
' i T, X6 T 1,1
——> +
1
2 2
+ +
7}23 1 1
2 2 p 718 2
@ X 11075 % T3 Tihs M'Iizz’M;izz
= - +
o n
T, - + ><6TlTl

[N}

1
S+ a0 4 1
6(=1)2 T1T1 a\ﬂszllza\ﬂzsvﬂ’zza\MruyMl TIZ’ 2’ T123

T123

1 1 1 1 ’
__’]"12 -

! !’
11\ [ nT
11
2 2 2 2 2
where the red lines indicate cuts, turquois lines are new lines obtained from cutting two lines using eq. (3.28),
and turquois colored 3j-symbols have been inserted by cutting three lines using eq. (3.27). Note thatline and
sign inversions are necessary to obtain the standard representation of the 6j-symbols, yielding the additional
1
—+T;
factor of (=1)2 2.
We can use the previous result to obtain an expression for 7, - 7;, which is relevant for structure (VII). The

latter can be constructed from the former by exchanging the first two particles in isospin space. Exchanging

the first two particles in the coupled state corresponds to a simple change in the coupling order, resulting in
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a factor of (=1)"*"1. Rewriting 7, - 7, by using particle exchange operators P, , ', acting only in isospin space,

we obtain

71 1 1
<[<T12>T ]TmM [(le)le;] T123M m>
71 71 ’ ’ () () 1
= <[(T1;>T12;]T123MT,23 Py1y-13P, [<T1')T ]T123MT123>

= ([ mi sty [ [ () 73 st )

Theisospin expressions for structure (Id), the last one that only has a single scalar product, is straightforward

Ty Ty

to calculate,

([(75) 7 it

1 1
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+
el et S 2 B
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In this case one has to be careful when cutting the diagram, as the line directions do not fit to eq. (3.27),

which introduces an additional factor. To indicate the necessary factor, the 7},-line has been colored red.
We continue with operators that contain two scalar products. The construction of the diagrams s straight-

forward, cutting them can be more involved due to additional lines. The following matrix element appears

in operator structures (IIc) and (IId),

71 11 ’ ’
<[<T1 E)TIZE] TmMTm

T Ty 737 T4

1 1
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Furthermore, the structures (Ia) and (IIa) require the following matrix element,
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which is the first isospin expression that requires the use of eq. (3.30) to cut four lines, inserting an additional
sum in the process. In such a case, the newly created thick line, as well as the additional 3j-symbols are
colored turquois. For the above derivation, there are multiple possible ways to cut four lines and inserting
the necessary additional sum. Choosing to insert it between two ¢ = % lines ensures that K can only be 0

or 1, reducing the number of summands. We can again exchange the first two particles to obtain the last
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expression with four isospin operators, as used in structures (Ia) and (Ila),

11 11 ' / 1 1
<[<T15>T12;] lesMrm [(TIE)THZ] T123MTm>

/ 71 71 ’ ! 1 L
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The remaining necessary structures involve one cross product and one scalar product. We can evaluate

the cross product using eq. (3.16), yielding
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where we used the Wigner-Eckart theorem (3.15) for expressing the isospin matrix elements. The expression

can be inserted in eq. (4.8) and simplified, yielding the isospin matrix element for structures (IVb) and (V),
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For structures (Ib) and (IIb) we need the following matrix element,

71 71 ’ ’ 1 1
<[(T1;>T12;] T123/[4T,23 [<T1;>T12;] T123MT123>

(1, X7,) - 74
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Note that both of the matrix elements calculated above yield imaginary numbers. However, there is an even
number of cross products in every term of the chiral interaction, therefore, we always obtain real numbers

when combining isospin and spatial parts.

4.4.2 SPATIAL PART

For the spatial part we can insert any of the substructures in eq. (4.6) and try to simplify the expression.

However, it is advantageous to change the coordinates to 4; and Z, first, with the transformation defined as

1
Al,::qu_’—ﬂ'i 77:‘:21'_341‘
E-—l(w'+7r) R £+1ia
i\ i = i+£ it

The Jacobian determinant of this transformation is one, thus we can easily replace the integration. We
then have to perform the transformation of the HO wave functions to these coordinates and transform the
expressions for the chiral interaction, which are given in single-particle momentum transfer. From thatitis
apparent that the interaction part does not depend on £, a huge advantage for simplifying the formula. If
we choose a regulator that does not depend on X, the HO wave functions and the spherical harmonics are

the only parts that depend on X, which allows us to evaluate the integration explicitly,

[ 2R ) R 520V, ()77 ()

A A ! 4
LiLz,' L, M, 4] #, L.M,

=J‘d32;R‘NviLi(7ri)R;]/L;(7r;)E ———O > - - e O
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where we used eq. (3.31) to express the spherical harmonics in the new coordinates. We continue by ex-
pressing the absolute values, 7, and #7/, in terms of the new coordinates. Therefore, we employ eq. (3.32),

yielding

'
N.LLy.y!

— L
_IQNiszVi»Vi, (4,2m,)

where we defined a shorthand for parts of the integrand. We now perform the integral over the solid angle

of L, using eq. (3.11) and combine the 4, coordinate lines using eq. (3.26), resulting in

’
s o YAY/ +X+V, ~Li L;
LI(-D)'&Fi*+*p D
(1) YLDk

X H dzid”izfpx, (”i)QN;’L;’YPYZ, (4, % n)

!
NLL VY,

’
s o YAY/ + XAV 42, ~Li L;
LI(=D)'Fhitatrtrap s D
(=1 vy Tv

N

5 x || asdeze (w) Q0 (9 5).

’
NL V.V,



48 CHAPTER 4. INTERACTION MATRIX ELEMENTS

Note that we obtained a few additional factors, as we inverted some coordinate lines to make use of eqs. (3.11)
and (3.26). We now cut the diagram, yielding
L, M;
\\ AL, AAl,
+ -

Y,y

ti

’
F % 1 i i{(_l)K+Yi'+Xi+K+Zi DLi DLi
2 i Vi’Vi,

= ——) = -~ + NLYY (49)
v XHdZ[dul.PXi( DO (4 2o )
i’Ml_i
= -4}\/]/:[4 A/,t{(di)

When inverting all signs of a 9j-symbol, the expression does not change. Applying the inversion to the
equation above, we can show that L, + L)+ 4L, must be even. Expressing the 9j-symbol in a traditional form

and using the Kronecker deltas, we obtain

L;
ﬁj’&w#(di) = H dZdu, Z Z > ZVZL VP -y X222 1 ; (—)lHNAAZ DY‘L Dy

V=0Y=0 X,
Y, L-Y, L
Z;'ZP ( )Q%LL;LL Vy(d 2”) Vz‘Li_ViLi
zZ, X, Ji,

i

vz \ (X zan\ (L-Y LV, X,
; (4.10)
000 00 0 0 0 0

which we call the basis part, asitincludes all information from the HO basis. Although this expression might
look more complicated than the original integral, it is completely separated from the rest of the interaction,
if the regulator does not depend on X

We can now insert eq. (4.9) in eq. (4.6) and express it diagrammatically. We also cut the two external lines,
Jias and /5, yielding a Kronecker delta. Furthermore, we add a regulator F that depends on momentum

transfer. This results in a spatial part of

(5)

Z\]cmLcmM . L 23]123 Ji23 18123>

[ﬂ 444,44, 52,

<MmLcmM iy JiosM /123 Bin| V.

Ll SMLL.MML/ a\/m /123 JM/m M)
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com? om

Jizs

X (— 1)4+2s1’+2 JoA2 2L A2 L+ 2Ly +2 42 ],

24(47r)3 G EPL T
T X W 1 1] ]1 ]2]2]3]3]12]12
* X E(dydy iy ) (4n)
]1 ~ I, ~AL,
X RNl.LpN{.Ll/ (dl)RNz’LZsz/’Lé (42)
+

~ AL
X RN3,L3,N3’,L; (‘43) >
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where 1 is a placeholder for one of the eleven substructures. Note that the integrand is factorized into a
product of the basis parts, the regulator and an interaction part. The factor included stems from including
all permutations (24), transforming momentum conservation to Jacobi momenta (é), representing angu-
lar integrals using diagrams ((47)°) and from the definition of the Fourier transformation ((2#)~). The

regulator only depends on transfer in Jacobi momenta and is defined as

A7+ 45+ 45\
F(4,,4,, 45, 1) = eXP(‘(% : (4.12)

In eq. (4.11) the spatial part of the chiral 4N interaction is assumed to depend on Jacobi momenta, how-
ever, the spatial part is given in single-particle momenta, we have to transform it first. We now perform this
transformation for the structure (Ia), the derivation of all the remaining structures works in exactly the same
way and for completeness they are discussed in appendix A. The main part of the derivation is the change

of momenta, which is done in two steps, the first step transforms

1 1
g~ —F=A+-q.
V2 o2
1 1
9~ ——F=4A+-q,. (4.13)
vz o2

The second step handles the remaining momenta,

2 1
9 — _\/;Az +—=A4,,
12

9 — 542 +—A4

Vi

9y 7 ——4;. (4.14)

This scheme results in only two additional integrals over the angles 4, - §,, and 4, - 4;.

We start by expressing the operator structure with diagrams,

’ ! ’ ! [ V(-‘)
m:ﬂm.rbmjrm.rd’ 771772773 Ia m.ramfbm.r[msd’wlﬂ27r3

Zgi 0,90, 9,9 92 95" 92

P
<msﬂ mthsfm,rd msﬂ m,rbmslm:d>

(2F,)¢ |4 + 2] g5, + M2)* (45 + A12]

X3, 4 ’
e QE, ) gt A2 g+ 28 g+ 22
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where we used eq. (3.15), the Wigner-Eckart theorem, to represent the the spin part in terms of a reduced
matrix element, which is a simple factor, and a 3j-symbol. The momentum parts were simply expressed
in a spherical basis, which results in an absolute value and a spherical harmonic. Furthermore, the scalar
products result in a connecting line, both is shown in eq. (3.16). We continue by combining coordinate lines

using eq. (3.26). This requires some lines to be inverted, but all phase factors cancel in this case, yielding

o -12¢, 4 7 T
T (OF,) gy + M2 g + M2 | qpy + M)

We now express ¢, by 4, and g,,, replacing the angular part as well as the absolute value ¢;. This transforma-
tion uses egs. (3.31) and (3.32), in that order. The latter equation introduces an additional integral that can
be interpreted as an integration over the angle 4, - §,,. Afterwards we have multiple 4, and g¢,, coordinate

lines that we have to combine using eq. (3.26) again.

& —2K,—K] —Ggé
X a\m;h,m;bam,(»m:’r Jd%4 PXé(%})DKIDK{\/E 18 (ZF /)16
i, 5 24K, .

ql(‘dl’ 12 ”4) 94 912 AK‘/
%(dv%z’ ”4)2 + M qf + M; [7122 +/Wfr]2 1

kl
X ‘;mjb,m,/ba\mjr,mf{ ld”4 PX4(%4)DKI,KI’

, 6
X \/5_21(1_1(1 (_1)1+X4+k12 GgA

= (2F,)¢
a4y qpom)™ g m K

1

%(dv%z’ ”4)2 + M ‘]ﬁ + M [4122 +M72r]2

Note that combining the coordinate lines requires line inversions that result in additional phase factors. We
now express ¢, and g, in Jacobi momenta and separate a 6j-symbol from the diagram, as already indicated

by the red line in the diagram above,
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k"
_ X a\mjb,m_{b a\mjl,mf'l [du4 PX4 (%4) Jd%S pX ( )DK K DKIIZ2 K

_ _ ! _ _ !
x \/51(12 2K, 1(1\/5 K 1(12(_1)1+X4+k12+k4

3gf1 %(‘dlv%z(dz’ds’”5)’”4)2_k1
(ZFw)é ‘]1(41’ 412(42’43’ ”S)’ ”4)2 + M;

3 24K L
TP OO0 X 3243 ) %2(42’43,%5)22+K1 to Y, dan
ng + M [412(42,43,;15) +M72r]

At this point all single-particle momenta are replaced. We just have to simplify the expression, starting by

combining coordinate lines again and separating an additional 6j-symbol, resulting in
ki
X a\m ,mfbgmx(,m;[ Jdu4 PX4<%4) J’d%S PX ( )DK K] DK12 K

K, —2K—K] —K, K.
X\/z =24 1\/5 12 12(_1)1+X4+X5+/e12+k4+/e4

)2—@

3&64 41(41’412(42’43»”5)5”4
(ZFW)G %(dl’ ) (‘427 4, ”5)’ ”4)2 + M

3 2+K], o
% 243 %z(dz’da’ ”S)ZH(I bz
Zdi + M [%2(42’43’ ”5)2 +M72r]

K K
1 12
~d,' 4,

X a\m ,m_{b a\mj ,mfl [d%4 PX ( ) Jd%S ( 5)

b

k) Kip—2Ki=K| /=—K;,~K],
x D' D% \/2 V3

1(]( K](

6
. 3¢ !
1+ X+ Xy kg4, A K K
X (_1) 4T AsTRpTRTR, 2 1 5

(2F,)°
71(41’712(42’43’”s)’”z})z_k1
%(dv %2(42743’ ”5)7 ”4)2 + M
3 2+K1,2 o
243 %2(42"437”5)”1(1 e
ng +M; [%2(42’43’”5)2 +/%72r]2

(4.15)

We can now insert the expression in eq. (4.11). To simplify the derivation, we will first complete simplify the
diagrammatic part and then add the remaining part of the formula.
As there are only two spherical harmonics for each coordinate line, we can use eq. (3.10) to remove the

coordinate lines, which enforces
AL =dL,, AL, =dL, and JL,=dL,.

We end up with the a combined diagram for class (Ia), which we can simplify by cutting it into 6j-symbols
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and 9j-symbols. As we have done for the isospin case in section 4.4.1, we indicate cuts by red lines and all

newly added lines and 3j-symbols are colored turquois. We obtain,

Jis

A

’
Ji
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AL, k, Jios

We can express the above diagram in a traditional form and add the remaining non-diagrammatic part of

eqs. (4.11) and (4.15), yielding

®)
Y

! ’ ! ! ! ! !
<NcmLcmMLcm’ E123]123M]m£123 ]\]cml‘cm/l4Lcm ’ E123]123Mj,235123>
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2 42 42 52 2
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(=3) ~ar I AL
1 2 3
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with the interaction part 7}, given by

't LA AR A !
Ly Ly L3Sy s o Jo S35 J1an T3 (d A..4 )
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00 0 000 dL, k, 4J, K, K, X, VAV 471 1
{k;zde}{sls;1}{1 1 kl}{l 1 k4}{]12]1’24]3}
1 11 ' ’ ’

K X, 5 22 ki ALy ), ky ALy 4] 3 S5 Js

1 LSL)(h B ke
LLo

3 2 J:
> LSS Ky A L Je
AL, 1 4], AL, 1 4], AJ, AL, 4],

w
—_

3!{21 71(41"112(42’43’”5)’”‘4)2_1€1
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1

w

3 24K o
243 ’ %2(42743’”5)%1{1 5 del(lz
zdg"'M}r[%z(dzadyﬂs)z"'M}r] L

Note that multiple sign changes and line inversions are necessary to obtain the standrad expressions for
6j-symbols and 9j-symbols, which result in the phase factor of the formula. All other classes and structures
yield a formula similar to eq. (4.11), just the interaction part changes. The derivation of the expressions for
these structures is done in exactly the same way as for structure Ia. Therefore, they are not discussed here.

For completeness, the derivations are given in appendix A.

4.4.3 IMPLEMENTATION

The implementation of the PWD is based on eq. (4.16). As the interaction part does not change when
using a different basis, for instance a different value for 71w in the HO case, it is advantageous to store the
interaction part. The same is true for the basis part, it does not change when calculating the PWD for a
different operator structure. Both parts stay the same when changing parameters of the local regulator.

Therefore, the implementation of the full PWD consists of three steps:

1. Calculating the interaction part for all required combinations of quantum numbers
As the interaction part depends on 4, 4,, and 4,, we obtain a three-dimensional grid for each set
of quantum numbers. We choose a simple equidistant grid, but this still introduces two additional
parameters: The maximum momentum and the number of grid points in each dimension. We use a

maximum momentum of 2 GeV, which covers all momenta that can be reached with typical cutofts
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for our regulator. The number of grid points is investigated in detail in chapter 7, a typical number

is 20 points in each dimension.

2. Calculating the basis part for all necessary combinations of quantum numbers
Note that all three basis parts in eq. (4.16) are identical. We only have to calculate it for the first
Jacobi coordinate and we can then reuse it for the other two. As it depends on 4,, we obtain a
one-dimensional grid. We use the same maximum momentum as for the interaction grid but we can
calculate much more grid points for the single dimension. Again, a detailed investigation is presented

in chapter 7 with a typical number of 250 points.

3. Combining interaction and basis grids
In this step we actually calculate eq. (4.16), integrating over 4,, 4,, and 4, using the predefined grids.

As the integration requires momenta that do not correspond to a specific grid point, we interpolate

the grids using
e AR AT Y ! X
Ly Ly, L3Sy o S T3 J1an T3 (d A A ) _ Z didfdk
oLy LSS Jor Jor T Jiayidy ALy, AL N\ 10 A 20 A 3 ) = Cjed 14245
i\j k=0

with X = 1, which is a linear interpolation, or X = 3, yielding a cubic interpolation. The 8 (X = 1)
or 64 (X = 3) coefficients ¢, , are determined by the 8 or 64 grid points surrounding the required
value. The basis parts are interpolated as well, using the same interpolation scheme, just reduced to

one dimension.

The integration is performed using the Cubature library [96], which implements two algorithm for a fast
multi-dimensional integration. For the creation of the basis grid, the so-called h-adaptive integration is used,
which partitions the integration domain into subdomains recursively. The creation of the interaction grid
relies on the so-called p-adaptive integration. In this case the degree of the Clenshaw-Curtis quadrature is
doubled until convergence. The combination of the grids is a difficult task for both algorithms, frequently
yielding innaccurate results. To mitigate the effect, both algorithms are employed and the results are com-
pared. In case of differences, the integration is repeated while enforcing a minimum of 300000 sampling
points.

The final matrix elements are calculated using eq. (4.5). This formula also requires the isospin parts
that have been derived in section 4.4.1. Furthermore it uses the precalculated CFPs to antisymmetrize the

representation, yielding matrix elements in the completely antisymmetric Jacobi HO basis.
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Many-Body Calculations

After contructing the Hamiltonian in the Jacobi HO basis, our goal is to include the two-, three- and
four-body interaction in many-body calculations. However, there are some intermediate steps necessary
to achieve this goal, all of which will be discussed within this chapter.

Typically, when using an interaction as constructed from chiral EFT, the so-called bare interaction, we
struggle with the model-space convergence of the many-body method. This can be linked to properties of
the interaction, for instance, a strong repulsion at short distances. Therefore, the interaction is first “soft-
ened” by using the SRG, yielding enhanced convergence in many-body calculations, which is discussed in
section s.I.

The SRG is performed in relative or Jacobi coordinates but the construction of an antisymmetrized
many-body basis in these coordinates is difficult, as previously discussed in section 4.1. For this reason, the
interaction is transformed to a single-particle basis, which makes it almost trivial to embed it in many-body
space. Details of this basis are discussed in section 5.2

Finally, we can use the interaction in a many-body method of choice, in this work we focus on ground-
state energies calculated in the NCSM as an exact many-body method in section 5.3 and HF calculations in

section 5.4, which allows a simple approximation of ground-state energies in heavier nuclei.
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5.1 SIMILARITY RENORMALIZATION GROUP

We have already discussed chiral interactions in great detail (chapter 2), and in principle, we would like to
perform many-body calculations based directly on these interactions. However, including the bare inter-
action is very difficult due to its properties. For instance, the NN interactions feature a strong short-range
repulsion and tensor forces, properties that the chiral forces share with all realistic NN interactions. Re-
gardless of the nucleus in question, solving the Schrédinger equation with such an interaction must yield a
highly correlated state. Using a many-body method that describes correlations by using superpositions of
uncorrelated states, such a highly correlated state requires a large model space, that is, the convergence of
the many-body calculation with respect to the size of the model space is very slow.

To improve the convergence, one constructs a Hamiltonian that reproduces all low-energy observables
of the bare interaction without requiring such large model spaces. It is advantageous to construct such an
interaction using a unitary transformation, an idea already implemented for realistic NN interactions in the
UCOM [53]. A unitary transformation does not change any of the eigenvalues of the Hamiltonian and the
unitary transformation can be applied to all other operators, which allows for the consistent description of
observables. In the case of UCOM the unitary operator is constructed explicitly in a way as to reduce the
correlation content of the wave function.

The SRG [54, s55] is built upon similar ideas and was, in fact, proposed before UCOM, yet it was not
applied to NN interactions until about ten years ago [97]. Its approach, as applied in this work, differs
from UCOM as it directly targets a matrix representation of the Hamiltonian. When representing the bare
interaction in a basis of uncorrelated states, the correlations result in strong oft-diagonal matrix elements
that connect low-lying and high-lying basis states. For the transformed interaction these matrix elements
should, ideally, vanish. For this reason, the SRG aims at a pre-diagonalization of the interaction, resulting
in an interaction that, in a relative two-body coordinate representation, does not exhibit a strong repulsion
anymore.

The SRG is in widespread use in nuclear structure theory today, which can be explained by the advantages
of this framework [57]. Itis conceptually simple and can easily be used for multi-nucleon forces, yetitallows
for great flexibility and it can be tailored for specific use cases, for instance, specific many-body methods. The
concept is powerful enough to be extended to a many-body method in its own right, the IMSRG [47, 48],
which employs the SRG framework to decouple a specific reference state from its excitations in the A-body
system under consideration.

This section only provides a brief overview of the SRG. In-depth information on details of the SRG and

its many applications can be found in one of the excellent reviews on this topic [56, 57].
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5..1 CONCEPT

The basic concept of the SRG is the continuous transformation of the Hamiltonian based upon the flow-

equation,

d
aHa - [”a’ Hoc] ’ (SI)

where H, is the initial Hamiltonian, , is called the generator of the transformation and « is the flow-
parameter. The generator has to be anti-hermitian, aside from that it can be chosen freely, which allows
for great flexibility within the SRG framework. Possible choices for the generator are discussed in the next
section. It is a crucial property of the SRG that the flow-equation results in a unitary transformation of the

Hamiltonian,
—7/7
Hzx - sz HO sz ’
where the operator U, can be related to the generator,

o

da da

du, du
=4

r=-U; =~Uy,. (52)
The integration of eq. (5.1), which is often called SRG evolution, to a specific value of a yields a transformed
Hamiltonian that has exactly the same eigenvalues as before. Integrating eq. (s.2) allows for the explicit
construction of the unitary transformation from the generator. Note that the generator usually depends
on the Hamiltonian, therefore, eq. (5.1) has to be integrated simultaneously with eq. (5.2).

In principle, the SRG transformation is unitary and does not change the eigenvalues of the Hamiltonian
nor any other observable. However, for a solution of the flow equation we have to represent the Hamil-
tonian and the generator in some basis, which leads to two truncations. Any basis we choose is truncated
at some point, defining the model space we are working in. For instance, we truncate the Jacobi HO basis
discussed in section 4.1 by limiting the maximum harmonic-oscillator energy quantum number. The effect
of such a truncation can easily be investigated by varying the model-space size.

Furthermore, any basis we choose throughout this work has a fixed number of particles. However, dur-
ing the SRG flow many-body interactions are induced with a higher particle rank than the bare interac-
tion. Performing the SRG in a specific few-body basis, therefore, neglects all induced contributions beyond
the particle number of the chosen basis. We are not able to include all these many-body contributions.
Throughout this work we will always neglect 4N and higher contributions. Note that the explicit inclusion
of induced four-body forces is possible but computationally expensive [60]. To investigate the effect of the
induced contributions, one can vary . As higher values of a should lead to additional induced forces, this

allows to estimate the effect of the neglected contributions.
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5..2  GENERATOR

As our goal is a pre-diagonalization of the Hamiltonian, we have to choose the generator accordingly. A

simple choice, as proposed by Wegner [ss, 98], is the following generator,
v, = |HY, H,],

where H is the diagonal part of the Hamiltonian in a chosen basis. This yields a trivial fixed point when
the Hamiltonian is completely diagonal. In fact, the fixed point is attractive and during the SRG evolution
the Hamiltonian is driven towards a diagonal form.

A widespread choice in nuclear theory is

1 = | T ]
where T} is the intrinsic kinetic energy and mz,, is the mass of a nucleon. The kinetic energy is also a diagonal
matrix in a relative two-body momentum representation and a tridiagonal one in case of a relative HO basis.
Apart from improved convergence of many-body calculations, this definition is independent of the basis
choice and was already used for the first application to NN interactions [97]. In this work we only use this
generator based on the intrinsic kinetic energy.

Over the years many different generators have been investigated, aiming for reduced many-body contri-
butions while keeping the improved convergence [60, 62—67]. This is still a very active field of research,
but even though some of the generators seem to strike a slightly better balance than the kinetic energy, the
changes are not drastic and the kinetic energy is still a very viable and well-tested choice for the SRG gener-

ator.

5..3 MANY-BoDY CONTRIBUTIONS

Performing the SRG in two-body space is simple. The Hamiltonian consists of two parts, the intrinsic

kinetic energy and a NN interaction. The evolution is performed in two-body momentum basis,

21 SRG(2B) 2
T, + Vi 1T, + T

int int,a

[2]
+ VNN,Dc 4

where we indicate irreducible two-body contributions with an upper index of [2]. Note that the intrinsic
kinetic energy is not a two-body operator, but an A-body operator, as it involves the center-of-mass motion.
However, it can be expressed using momenta of two particles,

T..=T-T

int cm
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Due to the factor 1/A, the intrinsic kinetic energy has to be handled separately when embedding it in a many-
body space. We, therefore, subtract the kinetic energy after the evolution and the induced two-body part of
the kinetic energy is absorbed in the interaction part, which are both irreducible two-body contributions
and can be handled in the same way.

Obtaining the evolved irreducible three-body part requires a few additional technical steps, conceptually

the evolution works analogously to the two-body case. Evolving the interaction in three-body space yields

SRG(3B)
+ Van + Vg ——— T+ To + T+ Vo + Vi + Vo -

int int,a int,a

T,

int

The result contains the intrinsic kinetic energy, which we directly subtract, as well as irreducible two- and
three-body contributions. We can obtain the irreducible three-body part by subtracting the result from a
two-body SRG evolution. However, the three-body evolution differs in details from the two-body one. For
instance, we do not resolve the dependence on the isospin-projection quantum number in three-body space,
and we always use the three-body Jacobi HO basis (see section 4.1), which might differ from the two-body
basis. For this reasons we have to repeat the two-body evolution with matrix elements that are averaged
over the projection quantum number and are represented in a two-body Jacobi HO basis. In principle, this
allows a consistent subtraction from the result of the three-body evolution, yielding the irreducible three-
body contributions. Note that the truncations of the two- and three-body Jacobi basis differ slightly, even if
the same maximum HO energy quantum number is chosen, that is £, = E,,. Thus, the subtraction is only
consistent, if the model space is sufficiently large.

In principle, this scheme can be extended to four-body space, as described in detail in refs. [60, 61]. How-
ever, in this work we only use the SRG up to the three-body level, as it is computationally too demanding
to achieve convergence with respect to the model-space size in a four-body SRG evolution. A thorough

investigation of the inclusion of induced 4N contributions can be found in ref. [60].

5.2 JT-COUPLED SCHEME

While it is helpful to perform the SRG in a Jacobi HO basis, as far less non-zero matrix elements have to
be considered, it is not computationally feasible to extend such a basis to a many-body calculation beyond
very light nuclei. The main problem is the complicated antisymmetrization of such a basis. When using a
single-particle basis, however, antisymmetrization is almost trivial. In our case the single-particle states are

HO states, that is,

la) =

1 L)/ !
7y ay ]am/'a’ zmtﬂ ’
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Figure s.1: Storage space needed to store a four-body Hamiltonian for a given maximum HO energy quantum
number in three different representations. Each matrix element requires 8 byte and the energy truncation in case of
the Jacobi HO representation only applies to the intrinsic energy. The basis representations are the m-scheme (-*-),
the JT-coupled scheme (—#-) and the Jacobi HO basis (+). Lines are only included to guide the eye.

where the orbital angular momentum and spin is coupled. The many-body state in the m-scheme is a simple

Slater determinant of these single-particle states. For example, in the four-body case we have
\abed), = Valel |a) @ 1) ® |¢) ® |d) .
As the basis states are antisymmetric, only states that fulfill
a<b<c<d

are part of the basis. The ordering ensures an orthogonal basis set. We truncate the basis to a given maximum
HO energy quantum number,
2n,+ L+ 2n, + L+ 20, + [ +2n,+ [, < E,
The downside is the large number of non-zero matrix elements when expressing the interaction in this
basis. We can, however, still use that the interaction is diagonal in parity, as well as, the sum of the an-
gular momentum and the sum of the isospin projection quantum numbers, hence the name ’m-scheme’.
The construction of a matrix in this many-body basis from few-body matrix elements is done using Slater-
Condon rules [99, 100].
When storing the Hamiltonian in a few-body basis, we reduce the number of matrix elements we have to

store by using the so-called JT-coupled scheme. As the Hamiltonian is diagonal in total angular momentum
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and isospin, we can use these symmetries to reduce the number of relevant matrix elements. Due to spher-
ical symmetry, the Hamiltonian is also independent of the total angular momentum projection quantum
number. In the three- and four-body matrix elements we also assume independence of the total isospin
projection, which is a small approximation, but it further reduces the necessary storage space. Naturally,
we require a basis that is coupled to total angular momentum and total isospin in such a case. For the con-
struction we simply apply the coupling to an antisymmetric m-scheme state to obtain an antisymmetric

JT-coupled state, for example, in case of four particles,
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where we introduced another index, a,,, = {4.5,¢d, J ;. J o Ty Ty }> With @ = {n,, 1., }. Again we

order the single-particle indices by using

N
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N
IA
Y}
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_,

This reduces the relevant matrix elements and ensures orthogonality of the basis. Note that with such a
definition the coupled basis states are not normalized. However, by simply decoupling the matrix elements
we retrieve the orthonormal m-scheme states again.

Converting a Hamiltonian given in Jacobi coordinates to the JT-coupled scheme is a non-trivial task and
the formulae and derivations for the conversion in two- and three-body space are discussed in detail in ref.

[101]. The derivation for four-body space can be found in ref. [61], yielding:
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A comparison of the storage space needed for a Hamiltonian in m-scheme, JT-coupled scheme, and Ja-
cobi HO basis is shown in fig. 5.1. The storage space needed for different basis choices differs by orders of
magnitude, which is a compelling argument to use the Jacobi HO basis as long as possible. Furthermore,
we still use much less space when using the JT-coupled scheme compared to the decoupled version. As it is

simple to perform the decoupling, we can obtain m-scheme matrix elements by decoupling them on the fly.

5.3 NO-CORE SHELL MODEL

The NCSM [41, 102-104] isa conceptually simple, yet exact many-body method that relies on the solution of
a large-scale eigenvalue problem. Already its name suggests its origin from the shell-model, but calculations
are performed without assuming a static core, thus, all nucleons are active degrees of freedom in this method.
In its simplest formulation, it uses the m-scheme to construct an A-body basis and searches for the lowest-
lying eigenvalues and corresponding eigenstates of the Hamiltonian in that basis.

The basis is truncated by limiting the HO excitation quanta to N, . Note that this differs from the £,

max*

truncation discussed in section s.2. As an illustration, let us focus on the model space for 1°Q, of which
one configuration is depicted in fig. 5.2. The N, = 0 space consists of exactly one configuration, the

unperturbed HO state with, both, s- and p-shell filled completely. This corresponds to E,,, . = 12ina

6,max

16-body space. In case of open-shell nuclei, we get multiple configurations already at the N, = 0 level,

max

which all have the same minimum E__.

On top of this unperturbed configuration we add excitations in HO shells. These are truncated at N,

max?’

yielding Ey, ... = 12 + N, in 16-body space. It follows that we need E, ., = N, + 2 for a two-body
and E, . = N, + 4 forafour-body interaction to fully cover the 16-body space, as only 2 and 4 particles

are relevant, respectively. While this is not a problem for the two- or three-body interaction, with a typical

truncation of E. This

3, max

~ 14 in the three-body case, the four-body case must be truncated at lower E, ..
is an additional truncation whose effect has to be investigated.

The eigenvalue problem itself is solved using the Lanczos algorithm [105], which efficiently yields the
lowest eigenvalues and corresponding eigenstates. With a set of eigenstates further operators can be eval-
uated, for instance the root-mean-square (rms) radius. An advantageous feature of the NCSM is that the
calculated energies obey the variational principle, in other words, the NCSM yields a strict upper bound of

the exact energies. Increasing N can only reduce the energies, therefore, the NCSM converges monoton-
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0000000

Figure 5.2: Configuration for '°O with an excitation energy of 641w. Neutrons and protons are depicted as blue and
red dots, respectively.

ically to the exact energies.

Using the above formulation, the NCSM is restricted to p-shell nuclei, due to the factorial growth of the
model-space size with the number of nucleons. Furthermore, the NCSM is computationally expensive and
N, is limited. Various extensions of the NCSM exist that aim to lighten the computational burden. One
way to adapt the NCSM is the use of a different basis. For instance, we obtain exactly the same result by
using the Jacobi HO basis instead of the single-particle one, which is called the Jacobi NCSM [94]. As the
antisymmetrization of the Jacobi basis becomes increasingly expensive with a higher number of nucleons,
this approach is only useful for A < 6, limiting the Jacobi NCSM to very light nuclei. However, the number
of matrix elements is greatly reduced compared to the single-particle case and one can reach higher values of
N, in this formulation, at least for the lightest nuclei, thatis A < 4. The Jacobi NCSM is used extensively
throughout this work for solving the eigenvalue problem in four-body space, targeting *He.

There are numerous other adaptions, for instance, as the HO is not well suited to describe loosely bound
or scattering states, it is advantageous to incorporate continuum physics in such a case. Possible choices
include the Berggren basis, as in the no-core Gamow shell model [106], or adding continuum states to the
existing HO basis which leads to the no-core shell model with continuum [107, 108].

A different approach is to optimize the basis to the nucleus and interaction in question, for instance by
using natural orbitals [109]. Alternatively, we can reduce the model-space size by identifying less important
configurations and removing them from the model-space. This approach leads to the IT-NCSM [42, 43],
which is also used in this work. For employing the importance truncation we need a reference state | 7. ),
which should be an approximation of the target state. We can then construct a model space by taking a full

NCSM space and calculating an importance measure for each configuration |®, ),

ref>

€, — €.

For the denominator we use Meller-Plesset partitioning, where the difference between the energies is given
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as the HO excitation energy, that is

€, —€,.,=Nhw,

v

where N is the number of HO excitation quanta. Using this measure, we only include states that fulfill

%,| > x..., Where x_,  is the importance threshold, an additional parameter in an IT-NCSM calculation.

In practice, the importance truncation is applied iteratively. We start with a full NCSM calculation,
for example at N = 4. From the solution of the eigenvalue problem we obtain an eigenstate for the
truncated Hamiltonian, which we use as a reference state in the next step. Afterwards we construct an
importance-truncated model space in N, = 6, using the resulting state from the N, = 4 calculation
as an approximation of the target state. Applying the Lanczos algorithm to the Hamiltonian in the newly
constructed space yields another eigenstate, which we can use as a reference state again. This procedure is
continued until a sufficiently high value of N, is reached.

Note that the removal of configurations slightly changes the results and for obtaining the energy of a
targeted state or any other observable, therefore, we perform multiple calculations with different importance
thresholds. Afterwards the results are extrapolated to vanishing importance threshold to regain the original
NCSM result. This scheme yields a significant reduction of matrix sizes so that larger values of N, can be
reached and it extends the applicability of the NCSM to the lower sd-shell. A detailed description of the

IT-NCSM and its application has been given by Roth [43].

5.4 HARTREE-FOCK METHOD

The HF method yields an approximate solution to the time-independent Schrédinger equation. Its central
assumption is that the many-body wave function can be expressed using a single Slater determinant, thus,
neglecting correlations between nucleons. The problem is then reduced to the determination of the optimal
single-particle states, which is accomplished using a variational ansatz. Details of the derivation can be found
in standard text books, for instance see ref. [110], and will not be discussed here.

The result is an eigenvalue problem for the so-called Fock operator f,

f[é’] |‘§z> =€ |gz> ’ (5.6)
2 If [ella) (alg) = € (4] . (5.7)

where the Fock operator depends on the one-body density matrix ¢. The solution of the eigenvalue problem
yields single-particle energies ¢, and corresponding HF states |£,). In eq. (5.7), the equation is expressed in
terms of a basis, which will be the HO basis in our case, that s,

1 L)/ !
Mg ay ]am/'a’ tha :

la) =
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Note that we use a spherical formulation of HF, targeting closed-shell nuclei. The HF states do not mix
different angular momenta, their projections or particle types. In the HO basis, the Fock operator can be

expressed as,

! 11, 1 11,0
@|f le]|a) = @IH )+ Y, (b | H|ab), g, + > N At |HP abe), g, e,

b,b' bbb c,c!
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where we used the one-body density matrix of the system and the Hamiltonian. The one-body density

matrix in terms of the HO states is given as

b= X (1) (Ele)

where we only sum over the A occupied HF single-particle states, which are the states with the lowest single-
particle energies €,. From egs. (5.6) and (5.8) it is apparent that HF is a mean-field method. The interaction
between nucleons is simulated by a mean field, the Fock operator.

As we used the HO basis, the matrix elements required in eq. (5.8) are all given in m-scheme representa-
tion. However, as we store the matrix elements in a JT-coupled scheme, we can gain a tremendous speedup
by performing the construction of the Fock operator directly in the coupled scheme. In case of the three-
body part, the relevant formulae have been derived by Wirth [111]. The derivation for the four-body part of
the Fock operator is discussed in appendix B.

As the Fock operator in the eigenvalue problem depends on the one-body density matrix, which in turn
depends on the solution of the eigenvalue problem, eq. (5.6) has to be solved in a self-consistent way. The

usual implementation is an iterative scheme. We start with the assumption that the single-particle HF states

éfl.> are HO states, thus the density matrix is diagonal. We construct the Fock operator using that density
and then solve eq. (5.6) with it. From the solution of the eigenvalue problem we get a new set of states, from
which we can construct a new density matrix, and so on. This is repeated until convergence is achieved.

While the iterative scheme is simple, numerical stability is not guaranteed.
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Results for a Four-Body Contact Interaction

The first four-body interaction we use is the contact interaction, as defined in section 4.3. In this case, the
PWD is simple and computationally cheap. The only parameters of the four-body interaction we can vary
are the regulator and the strength ¢,5. As described in section 4.3, we are using a nonlocal regulator, which
ensures that the contact interaction only acts in the /7 = 0" channel with isospin 7" = 0, which further
reduces computational requirements.

In this chapter, we analyze the effect of the interaction for two different two- and three-body interactions,
namely the EM/N500 interaction in section 6.1 and the SMS/HS500 interaction in section 6.2, see section 2..5
for details on these interactions. In both cases the interaction has been transformed using the SRG and all
contributions up to the three-body level are included. The four-body interaction has not been transformed.
One question of interest is if the simple contact interaction can be used to mimic the omitted SRG-induced
four-body forces. Furthermore, the two- and three-body interactions yield charge radii that are too small
compared to experimental results for heavier nuclei. We therefore also investigate the contact interaction’s
effect on radii and whether the interaction can improve on the description of the chiral interactions. Before
judging that, the effect of the regulator parameters and the convergence behavior is investigated for both sets
of two- and three-body interactions in *He. Afterwards, we investigate the effect of the contact interaction
in heavier nuclei, especially the effect on the ground-state energies and charge radii and the scaling with the
number of nucleons.
= 20 in Jacobi NCSM

= 10 for HF calculations and for NCSM calculations of nuclei heavier

As the PWD is computationally simple, we include the 4N interaction at £

4, max

calculations of *He and we use E

4,max

69
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than *He, as the four-body interaction requires a lot of storage space when represented in the JT-coupled
scheme, as discussed in section 5.2. For all comparisons with experimental data, we use ground-state energies

taken from refs. [112, 113], and charge radii listed in ref. [114].

6.1 THE EM/N500 INTERACTION

We first use the SRG-evolved EM/N500 interaction as a testbed for the contactinteraction. This interaction
has already been studied extensively for light and medium-mass nuclei 58, 115, 116]. It provides a good
agreement with experimental ground-state energies for light nuclei. However, throughout the p-shell the
effect of the missing SRG-induced four-body contributions becomes apparent. Additionally, charge radii
are systematically predicted too small, which is most likely not only an effect of the SRG transformation
but a deficiency of the initial interaction. We will use the interaction at two different flow parameters, a =
0.04 fm*, and « = 0.08 fm?, to capture the influence, if any, of the SRG evolution on the effect of the contact
interaction.

We first investigate the behavior of the contact interaction for different regulator parameters. To that
end, we can see the effect of the 4N interaction on the ground-state energy, that is, the difference between
the ground-state energy of a calculation with and without four-body forces in fig. 6.1 for various regulator
exponents and cutoffs. Furthermore, we investigate the convergence behavior and the perturbative inclu-
sion of the interaction, as shown in fig. 6.2, and for the latter we employ first-order perturbation theory. To
that end we calculate a ground state | ¥, ) without the 4N interaction and approximate the 4N contribution

to the ground-state energy by calculating the first-order correction,

(Yolvl %) - (6.1)

The general behavior we observe for the contact interaction strongly depends on the sign of the interaction.

In case of a repulsive contact interaction, as depicted in figs. 6.1(a) and 6.1(b), we always see the same
trend. At low cutoffs, its effect vanishes. This is not surprising, as we keep the factor ¢, constant, we sim-
ply cut away relevant parts of the integrals reducing the strength of the interaction. Increasing the cutoft,
the strength peaks at some point and then reduces again. At these higher cutoffs, the contact interaction
becomes increasingly short-ranged. We can interpret the reduced effect as the many-body method rearrang-
ing the ground state in such a way as to reduce the probability of four nucleons being extremely close to
each other. This becomes easier for an extremely short-ranged interaction, reducing the effect the contact
interaction has on the ground-state energy.

Note that this interpretation is consistent with the perturbative calculation, which cannot reproduce
the weakening effect at larger cutoffs, as seen in fig. 6.2(a). Furthermore, we observe that convergence de-
teriorates rapidly at higher cutoffs. Up to /,; = 300 MeV the perturbative 4N contributions agree well

with the full calculation, and at /,; = 500 MeV we still see a good convergence in an NCSM calculation at
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Figure 6.1: Effect of the four-body contact interaction on the ground-state energy of “He in Jacobi-NCSM calcula-

tions for different cutoffs and regulator exponents. The calculations are performed at N, = 20 and fiw = 20 MeV

with the EM/N500 interaction in the two- and three-body sector. The different regulator exponents

exp

shown are

2 (lightest line), 4, 6, and 8 (darkest line). The two- and three-body interactions have been SRG-evolved to flow-

parameters of & = 0.04 fm* (left side), and & = 0.08 fm* (right side). Figures (a) and (b) depict a repulsive force with

cyg = 1000 GeV™® and in figures (c) and (d) the attraction of the interaction is scaled by using ¢, = —

Aéﬂ

200 GeV™’
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Figure 6.2: Convergence of the ground-state energy of “He in Jacobi-NCSM calculations with 4N contact interac-
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estimating the four-body contribution using first-order perturbation theory (-0 ). All calculations employ a regulator
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exponent of 7., = 2 and a HO basis with a frequency of 71 = 20 MeV, and for the two- and three-body sector the

EM/N500 interaction has been SRG-evolved to a flow parameter of a = 0.04 fm*. Figure (a) depicts a repulsive force
200 GeV~’

with ¢, = 1000 GeV~* and in figure (b) the attraction of the interaction is scaled by using ¢,5 = — e
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N,.. = 20. Beyond that point, however, results at N, = 20 are less reliable and should be considered as
an upper bound. This convergence behavior is not unexpected, as the NCSM is not well suited to capture
extremely short-ranged or high-momenta physics.

When increasing the regulator exponent the general trend is identical, but the maximum of the peak
increases while its width decreases. An increased exponent changes the regulator from an almost Gaussian
shape to one that is similar to a step function, dropping off sharply at a given cutoff. At a fixed, low cutoff
we, therefore, obtain a stronger effect of the contact interaction for larger exponents, as a step function
includes more of the relevant low momenta. The inverse is true for higher cutoffs, the step-like functions
seem to have the smallest effect. Note that the difference at larger cutoffs might be a convergence effect,
as a Gaussian-like regulator extends to higher momenta which deteriorates convergence of the many-body
calculation.

The behavior in case of an attractive contact interaction is different. For this case, the strength is reduced
with increasing cutoff, as the larger cutoff increases the attraction and we obtain completely unphysical

deeply-bound states. To this end we employ the scaling

200 GeV™’
Gp=—"" (62)
4B

which matches the strength used in the repulsive case for .Z,; = 200 MeV, butit is reduced for higher cutoffs.
Note that this scaling is fine-tuned to suppress deeply-bound states for a regulator with »,,, = 2. Other
exponents still exhibit unphysical behavior at larger cutoffs, as apparent from figs. 6.1(c) and 6.1(d). For the
regulator exponent of 7, = 2 we can see increased attraction for larger cutoffs, even though ¢, is reduced.
Increasing the regulator exponent introduces a sharp drop at 4,; = 500 — 600 MeV.

For the very low curtoffs, that is, 4,; < 300 MeV, the perturbative inclusion of the 4N contributions
matches the full calculation and, therefore, we obtain exactly the same result as in the repulsive case. Bear
in mind that the perturbative calculations in fig. 6.2(b) give the same results as the ones from fig. 6.2(a), just
with a different sign and a reduced effect due to the introduced scaling for ¢,5.

As soon as we use higher values for the cutoff, and the perturbative inclusion is not a good prediction
for the full calculation anymore, the effect already differs. In case of a repulsive interaction the effect is
always weaker than the perturbative calculation suggests. For an attractive interaction, we observe the op-
posite. The convergence deteriorates faster as well. Already at 4,; = 500 MeV, the results from different
model-space sizes are almost equidistant. At higher cutoffs, the convergence pattern is even inverted, and
the contributions to the ground-state energy increase for larger values of N .

In both cases, the trends for the different flow parameters are very similar. For low cutoffs, we get almost
the same results in both cases, only at higher cutoffs the effect of the contact interaction differs. In the
repulsive case, the effects differ only slightly, while we obtain a large difference in the case of an attractive
contact interaction. However, the calculations at high cutoffs are not reliable in any way and only a small

change is necessary to produce completely unphysical results in this region.
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Due to the convergence behavior of the interaction at higher cutoffs, we use a cutoft of .7,; = 300 MeV
in the remainder of the section. Choosing the low cutoff also ensures that perturbative inclusion of the
interaction is in good agreement with the full calculation. Furthermore, we choose a regulator exponent of
Moy = 2. We now use this interaction in various nuclei to investigate its effect on ground-state energies and

charge radii for varying strength of the four-body contact interaction.

For calculating the charge radius we start with the rms radius of the protons, which is defined as

A

1
Rp,rms = <Y/0| E Z (ri - R)ZPZ'(P) |Y/0> ’ (63)

i=1
. @) . . . ..
where | Y’O> is the ground state, Pl.p projects on protons, and R is the center or mass, which is given by

LA

R=23, (6.4)
=1

when assuming identical masses. The rms radius assumes a point-like proton, and thus it does not take the

charge distribution of the proton itself into account. Therefore, the charge distribution of the proton has

to be folded with the distribution of the protons in the nucleus. Furthermore, although neutrons do not

carry a net charge, they do have a charge distribution that has to be included as well. From that, one can

derive the following formula for the charge radius of the nucleus [117],

N
Rom \[ Bt 2+ 22, (63)

where 77 , and 77 ; are the mean-square charge radii of the proton and neutron, respectively. We use 7, ;, =
—0.1161 fm* [68] and }’;Ch = (0.8751fm)* + 4—;2, which is the proton charge radius taken from ref. [118] with
the additional Darwin-Foldy term, see refs. [;17, 119]. For the mass of the proton we use m, = 938.272 MeV
[68]. Note that recent measurements of the proton charge radius in muonic hydrogen yield a much smaller
charge radius [120, 121], a discrepancy that is known as the proton radius puzzle. Using the smaller value for
the proton radius would reduce the charge radius of “He by about 0.02 fm.

There is one additional difficulty. In case of NCSM calculations of *He we always use the Jacobi NCSM
variant. As it does not use a single-particle basis, calculating the proton rms radius is nontrivial. Instead we
simply use the total rms radius. Full NCSM calculations with a single-particle basis yield proton rms radii
that are about 0.2% larger than total rms radii. This can be traced back to the Coulomb interaction that
pushes protons apart. The difference between the proton and total rms radii is about the same size as the
experimental uncertainty of the charge radius in “He, we therefore neglect it.

We are now in the position to investigate the effect of the 4N contact interaction on different nuclei using
NCSM and HF calculations. An overview of this effort can be seen in fig. 6.3, which depicts ground-state

energy per nucleon and charge radius for various strengths of the contact interaction.
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Figure 6.3: Ground-state energy and charge radius of “He (a), 'O (b), **Ca (c), and **Ni (d) in HF calculations at
max = 10. For the two- and three body sector the EM/NS500 interaction has been SRG-evolved to flow parameters
of & = 0.04fm* (-*-), and « = 0.08fm* (+). For *He we also show NCSM calculations with flow parameters
of a = 0.04fm* (- ), and & = 0.08fm* (-* ). A repulsive contact interaction is added with a strength of ¢,z =
0, 300, 1000, 2000, 3000, 5000, 7000, 10000 GeV 3. All calculations employ a regulator exponent of Nep = 2,2 cutoff of
A = 300 MeV, and a HO basis with a frequency of Aiw = 20 MeV. Dashed lines with gray bands are experimental
results and uncertainties. Stars indicate the ground-state energy and charge radius from a NCSM calculation in case
of “He or a IMSRG calculation for 0 and “°Ca. The SRG-induced contributions to the radius are not included in
any of these calculations, except for the additional NCSM calculations in 4He, thatis, in -> and ¢ , not in the ones

depicted by stars.
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Let us focus on *He for now, presented in fig. 6.3(a). We can see two types of NCSM calculation. Two
results without any four-body force corresponding to the two flow parameters, which are depicted as stars.
These calculations do not take the SRG-induced contributions to the radius operator into account. Fur-
thermore we have NCSM calculations for various strengths of the contact interaction, which do take these
contributions into account at the two-body level. These are depicted as dashed lines. Just looking at the
lower left of the dashed lines, we can see the difference the SRG-induced radius contributions make. Tak-
ing them into account slightly lowers the radius and reduces the flow parameter dependence, as one would
expect. Adding a repulsive contact interaction increases the ground-state energy and the radius, in fact, we
observe an almost linear dependence of the radius and ground-state energy on ¢3.

Comparing the NCSM results to HF, we get a very similar behavior. The lines in the HF case are almost
linear as well, and the direction of the lines is the same. Only the starting point, which corresponds to
the calculation without four-body forces, differs drastically. If one would shift the calculation without the
contact interaction to the NCSM result, the HF results are a good predictor for the NCSM results.

However, the HF calculations slightly overestimate the effect of the contact interaction. The reason is
the same as for the perturbative inclusion of 4N interaction in fig. 6.2, which also predicts an effect that is
slightly too large. In both cases, a four-body correlation tailored to the contact interaction at hand is not
accounted for in the many-body state. In the perturbative case, we do not change the ground-state at all,
and in the HF case, no correlations are taken into account in the many-body calculation.

Even without shifting the HF results, they yield a charge radius close to the NCSM result. The energy
is, of course, too high, while the = 0.08 fm* interaction does a little bit better, as the HF approximation
is better suited for such a soft interaction. The trends are similar for the other nuclei, however, we do see
slightly curved lines in the case of **Ni.

For heavier nuclei, we use the IMSRG [47, 48] to calculate ground-state energies and charge radii. The
IMSRG results are generally close to the NCSM calculations [48]. Even these IMSRG results without the
4N interaction, depicted as stars in figs. 6.3(b) and 6.3(c), show a strong flow parameter dependence in
0 and *°Ca, as the induced many-body contributions are missing. In all heavier nuclei, the SRG-evolved
interaction results in overbinding, yielding charge radii and ground-state energies that are small compared to
the experimental results. These effects become more severe for heavier nuclei, and for *Ni both HF results
are already overbound. Thus, the omitted induced four-body force must be repulsive and shows strong
scaling with the number of nucleons. Note that, while the ground-state energy depends strongly on the
flow parameter, the effect is less severe for radii. Therefore, it seems highly unlikely that the small radii are a
result of neglected SRG-induced many-body contributions. We rather conclude that the initial chiral two-
and three-body forces already predict radii that are too small.

From the results we can clearly see that we cannot imitate the behavior of the missing contributions
with a contact interaction. The induced contributions have almost no effect in *“He and grow fast with the
number of nucleons, at least for the ground-state energy. We can see a scaling of the contact interaction

as well, its effect does increase with the number of nucleons. However, we used a nonlocal regulator for
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the contact interaction, we therefore designed the interaction to only act in the /"7 = 070 channel. For
imitating the induced contributions we need the exact opposite, almost no contributions in “He, while
growing drastically with the number of nucleons.

Going to heavier nuclei, we also observe an increasing discrepancy between the predicted radii and exper-
imental results for the two- and three-body interaction. In the case of radii, we also observe a scaling of the
4N contribution, but again, this scaling is too weak, if we want to employ the contact interaction to improve
the prediction of charge radii. Furthermore, it seems impossible to improve the description of radii without
severly deteriorating the description of binding energies. For such a task the 4N contact interaction seems
to be the wrong tool. However, the prediction of radii can be fixed by modifying the two- and three-body

interaction, for instance, by directly fitting the LECs to radii of nuclei, as done by Ekstrom er al. [122].

6.2 TuHE SMS/HS00 INTERACTION

The second interaction we investigate is SMS/HS00. It includes two- and three-body forces consistently at
N?LO, for details on this interaction see section 2.5. As it does not have a complete fit for the three-body
interaction, only a correlation between ¢, and ¢, based on the triton ground-state energy, we simply use two
values for ¢, throughout this section, to be specific, ¢, = 0 and ¢, = 4.

We first investigate these two interactions without any four-body force in “He. For that we perform
calculations with the bare interaction, as depicted in fig. 6.4. As the bare case is not converged, we have to
extrapolate the ground-state energy. For that we employ the following Gaussian ansatz,

E(N,,) = Ey+ Aexp(=BN,,, — CN,,) . (6.6)
We fit the Gaussian function to the last four, five, and six data points. Furthermore, we fit an exponential
function, where we simply set C = 0, to the last three to six data points. Finally, we enforce that the band
spanned by these extrapolated ground-state energies is at least half of the distance between the lowest extrap-
olated energy and the last data point. If this condition is not fulfilled, the upper end of the band is extended
towards higher energies. Note that much more sophisticated extrapolation methods exist [123-125], which
allow extrapolations with less uncertainty.

Judging by the calculations employing the bare interaction, which is presented in fig. 6.4, the final ground-
state energy of “He and the charge radius is too low compared to experimental results. However, in both
cases the discrepancy is only on the order of 1 -2 %. As we cannot obtain completely converged results with
this interaction, we soften it using the SRG with flow parameters of & = 0.02 fm*, and & = 0.04 fm*. The
flow parameters are chosen lower compared to the previous interaction, as the SMS/HS00 interaction is
already slightly softer than the EM/N500 one. Ground-state energies and charge radii of *He for these two
SRG-transformed interactions are shown in fig. 6.5.

Interestingly, the evolved interactions fare better in comparison with experiment, at least for ¢;, = 4. The
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ground-state energy is on top of the experimental result for ¢, = 4. For ¢, = 0 it is compatible with the
extrapolation based on the bare interaction, yielding a value that is about 300 keV too low. The charge radii
for the evolved interactions are also larger than the trend in the bare interactions suggested. Again, the result
for ¢;, = 4is consistent with experiment and definitely higher than in the bare case. In the ¢;, = 0 case, the
charge radius is still slightly too small, but SRG-evolved result might be consistent with a converged result
for the bare interaction. Note that we include the SRG-induced two-body contributions to the radius to
reduce the flow parameter dependence of the result.

In case of the charge radii we see a small dependence on the flow parameter, where the smaller value of «
yields slightly smaller charge radii. This can be expected in a case where the charge radii are shifted upwards
by the SRG transformation. However, the ground-state energy is independent of the flow parameter, even
though the results for the bare interaction predict lower values for the ¢,, = 4 interaction. In this case the
missing induced contributions are clearly attractive, although the flow parameter variation does not hint
at that for the ground-state energy. Neglecting the induced contributions actually improves on the overly
attractive bare interaction. The effect of the SRG transformation in the ¢, = 0 case cannot be conclusively
determined from this data, but the flow parameter dependence of the charge radius hints at an attractive
effect of the neglected induced contributions.

To this two- and three-body interaction we now add the contact 4N interaction. As for the EM/N500
interaction in the last section, we start by investigating the regulator dependence. To that end we varied
the cutoff and regulator exponent for both values of ¢, in fig. 6.6, with the same strength of the four-body
interaction as in the last section. We also perform the analysis for convergence and the perturbative inclusion
of the 4N interaction in exactly the same way, results are depicted in fig. 6.7.

Overall, the trends and general behavior are identical to the EM/NS00 interaction. The overall effect of
the 4N contact interaction is a little bit stronger and it differs between the two ¢, values, yielding a stronger
effect for ¢, = 0 than for the ¢;, = 4 three-body interaction. The peaks in figs. 6.6(a) and 6.6(b) are a little
wider and shifted to higher cutoft momenta. In fig. 6.6(d) we see relatively small effects for the ¢, = 4
results at very large cutoffs, however, these results are extremely far from convergence, which is apparent
from fig. 6.7(b). The convergence generally seems to be slightly better in the EM/N500 case for smaller
cutoffs. Nevertheless, in both cases convergence rapidly deteriorates starting from .4, = S00 MeV.

Due to the very similar behavior with respect to regulator parameters, we choose the same parameters as
in the previous case, an exponent of 7,,, = 2 and a cutoft of 4,; = 300 MeV. Using this interaction, we
can perform HF calculations again, focusing on “He and 'O, as shown in fig. 6.8. Note that the quasi-exact
results obtained with a NCSM calculation show the same trend as for EM/N500. We have almost no flow
parameter dependence for “He, and it is very close to the experimental value, but O is overbound. That
is, the ground-state energy is too low and the charge radius is too small. The calculations hint at a flow
parameter dependence 'O, which suggests that the induced many-body forces are repulsive in case of “O.
However, the NCSM results are far from convergence for leQ, especially for a = 0.02 fm*. The extrapola-

tions for the ground-state energies overlap for the different flow parameters, and the difference for the radii
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of 2 (lightest line), 4, 6, and 8 (darkest lines). Figures (a) and (b) depicts a repulsive force with ¢,5 = 1000 GeV™® and in
200 GeV™/

figures (c) and (d) the attraction of the interaction is scaled by using ¢, = — i
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Figure 6.3: Ground-state energy and radius of “He (a), and 'O (b), in HF calculations at ¢,,,, = 10. For the two-
and three body sector the SMS/HS500 interaction has been SRG-evolved to flow parameters of & = 0.02 fm* (>, ),
and & = 0.04fm* (-, ). For the three-boy interaction we show results for ¢, = 0.0 (-*~,> )and ¢, = 4.0 (*, ).
A repulsive contact interaction is added with a strength of ¢,5 = 0,300, 1000, 2000, 3000, 5000, 7000, 10000 GevS. All
calculations employ a regulator exponent of Mep = 2,2 cutoft of 4,5 = 300 MeV, and a HO basis with a frequency of
fiw = 20 MeV. Dashed lines with gray bands are experimental results and uncertainties. Stars correspond to NCSM
calculations, with « = 0.02 fm* for open stars and & = 0.04 fm* for filled ones. Bands in the '°O case are spanned by
extrapolations of the ground-state energy, see text for details. SRG-induced contributions to the radius are included
at the two-body level for the NCSM calculations.

is small. We therefore cannot reliably extract the effect of the neglected induced contributions, in fact, the
flow parameter dependence may change or even disappear for larger model spaces. For investigating O,
larger flow parameters might be necessary. Note that in comparison to experiment, the ¢;, = 0 interaction
seems to fare better for °O, exactly the opposite when compared to the *He case. However, judging from
the charge radii, the flow parameter dependence is stronger for the ¢, = 0 interaction, which might explain
the additional overbinding compared to the ¢, = 4 case.

For HF calculations performed for *He, we see see an almost linear trend again, which is not completely
true for 0. The trends for different values of « or ¢, are similar, except for their starting point, of course.
However, for O, the « = 0.04fm* lines are slightly more curved than the & = 0.02 fm* ones and for
weak contact interactions, we obtain a stronger effect on the ground-state energy in the & = 0.04 fm* case
compared to a = 0.02 fm*.

Although the contact interaction would slightly reduce the flow parameter dependence in O, due to
the different behavior for « = 0.04fm* and « = 0.02fm*, we cannot use the four-body interaction to
imitate the induced four-body contributions. The effect on 0 s obviously too weak, and fitting different
interactions for different flow parameters fails, as “He is almost independent of the flow parameter. This is

the same situation as in the case for the EM/N500 interaction. However, in the ¢;, = 0 case, ground-state
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energy and charge radius are slightly too low. We can try to remedy that by fitting the strength of the 4N
contact interaction to the experimental ground-state energy of “He. As the dependence on a is minimal, we
do not differentiate between the two « values and use a = 0.04 fm* for the fitting procedure. The resulting
strength is ¢,z = 618 GeV ™.

Using the fitted contact interaction, we investigate it using NCSM calculations for “He and 0. We
first verify that our choice indeed performs as expected in *He, which is shown in fig. 6.9. The ground-
state energy is depicted in fig. 6.9(a), which now yields exactly the experimental result. As expected, we also
shifted the charge radius, which is closer to the experimental value, as seen in fig. 6.9(b). However, it is still
below the results for ¢;, = 4. The net effect for the ¢;, = 0 case is the removal of the one-pion exchange in
the chiral three-body force at N’LO and its replacement with a 4N contact interaction. Even though we
used a low cutoff, effectively smearing out the contact interaction, the three-body one-pion exchange seems
to have a larger effect on the radius for the same effect on the ground-state energy.

The general convergence behavior is not changed when adding the contact interaction, however the re-
pulsive effect of the interaction increases slightly for larger values of N, . When interested in the difference
between a calculation with and without the four-body contact interaction, even lower values of N _give a
reasonable result.

As predicted from the HF calculation, different a values do not change the effect of the contact in-

teraction in *He. The energies are still independent of «, and the difference between a = 0.02 fm?* and
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Figure 6.10: Ground-state energy (a) and charge radius (b) of '°O, as well as differences between a calculation with
and without the four-body contact interaction for the energy (c) and charge radii (d). For the two- and three-body
sector the SMS/HS00 interaction has been SRG-evolved to o = 0.02 fm* (dashed lines) and to & = 0.04 fm* (solid
lines). We show results without four-body interaction at ¢, = 0 (- ,*-), and at ¢, = 4 (-, ), as well as re-
sults with the contact interaction at ¢,y = 618 GeV™® and ¢;, = 0 (-=,=). All calculations use a HO basis with a
frequency of fiw = 20 MeV. Uncertainties of individual calculations stem from the extrapolation to vanishing impor-
tance threshold. SRG-induced contributions to the radius are included at the two-body level. Experimental values
and uncertainties are depicted using dashed lines and gray bands, respectively. Bands at N, = oo are spanned by
extrapolations using the last three to six data points, see text for details. Open bars correspond to a = 0.02 f m?, filled
ones to o = 0.04 fm*.
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a = 0.04 fm* for the charge radii is unchanged when adding the contact interaction.

The results obtained for O from NCSM calculations are shown in fig. 6.10. Note that including a
4N interaction reduces the maximum N, we can calculate, which is limited by the memory required to
store the 4N interaction. However, the difference between a calculation with and one without 4N forces is
sufficient to estimate the effect.

As expected from the HF calculations, the flow parameter dependence can only be slightly reduced by
adding a weak contact interaction. Nonetheless, we do achieve a repulsive effect that pushes the energy and
charge radius in the right direction, although the effect on the charge radius is extremely small. However,
we still obtain an overbound *O nucleus, the effect of the contact interaction is much too weak to change
that. This is not surprising, as the HF calculation already predicts that the contact interaction does not scale
strongly with the number of nucleons, even though we do see a larger effect in terms of binding energy per
nucleon for O compared to *He.

While the contact interaction is obviously unfit to reproduce effects of an SRG-induced four-body in-
teraction, it might be used to improve shortcomings of the initial interaction. However, in the 'O case the
effect of the induced contributions is difficult to estimate, as we are not able to obtain fully converged results.
The relatively small « dependence of the radii suggest that even the initial interaction would yield charge
radii that are too small. Nevertheless, the contact interaction we employ here is too weak to remedy that.
Note that using a four-body contact interaction breaks with the prescription of chiral EFT, which predicts
the four-body contact term to be at N°LO, which should only yield a very weak effect. Furthermore, for
such a case, it might be more practical to modify the two- or three-body interaction, as the inclusion of 4N
contributions in a many-body calculation is not always possible and generally requires more computational
effort.

A four-body interaction that has small or no contributions in the /” = 0% channel and scales strongly
with the number of nucleons might be able to mimic the omitted four-body contributions. Of course,
this warrants the use of four-body forces again, and a computationally more efficient approach might be
the use of different generators that yield less induced many-body contributions in the first place. However,
if no such generator can be found, the use of a simple 4N interaction might be a viable alternative to a

computationally demanding SRG evolution in four-body space.
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Effects of the Chiral 4N Interaction

After deriving and implementing the PWD of the chiral 4N interaction, we are now in the position to inves-
tigate its effects on nuclei. There has already been work done with chiral 4N forces, for instance by Nogga
et al. [36], investigating its effect on “He. In this case two- and three-body interactions were used to obtain
the *He ground state by solving Faddeev-Yakubovsky equations. Then the effect of the 4N interaction is
estimated by using first-order perturbation theory. The evaluation of the expectation value includes the
transformation from the partial-wave basis to a single-particle basis, which is done by using Monte Carlo
integration. Furthermore, the chiral 4N interaction has been studied by Tews ez al. [32], Krtiger et al. [33],
and Kaiser er al. [34], who have applied it to neutron and symmetric nuclear matter. The effect of the 4N
contributions has been evaluated at the HF level using single-particle coordinates in these cases. In all these
investigations the effect of the chiral 4N interaction turned out to be very small. However, previous inves-
tigations of the SRG-induced four-body force [60, 126] show a strong scaling with the number of nucleons
and so far, the effect of the initial chiral 4N interaction has not been investigated in heavier nuclei. Thus,
the main question for this chapter is the scaling behavior and the relevance of the 4N interaction in nuclei
heavier than *He.

Before we can discuss this question, we first have to investigate the effect of various parameters on the
4N interaction. We start with purely technical aspects in section 7.1, namely the parameters of the momen-
tum grids we introduced in section 4.4.3. Furthermore, we investigate the convergence of the many-body
methods in section 7.2. Afterwards, we have a closer look at the different classes that constitute the 4N in-

teraction in section 7.3 and we vary the four-body regulator we use in section 7.4. The behavior of the 4N
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interaction for different cutoffs is also investigated using a perturbative inclusion of the 4N contributions,
which is discussed in section 7.5.

After these sections, we use the four-body force for nuclear structure investigations. We start by analyzing
the four-body angular-momentum channels in section 7.6 and continue with a HO frequency variation in
section 7.7. Both of these sections yield valuable insights on the convergence behavior of the interaction and
allow us to analyze its relevance in section 7.8.

Note that the calculations performed throughout this chapter have a harsh limit on the four-body model-

space size, that is, the maximum HO energy E, s typically limited to 2 or 4. The only exception are

,max

a few *He results with a truncation of E,

4,max

= 6, which is possible because we only need one four-body
channel in this case. The reason for this truncation is the complexity and computational cost of the four-
body PWD. Even though we use such a low truncation, the calculations presented in this chapter take
well over a million core-hours of computing time on the Lichtenberg high performance computer at the
TU Darmstadt, which is a state-of-the-art computer cluster . Most of the computing time has been spent
constructing the interaction for the various parameters we investigate throughout this chapter.

All calculations performed in this chapter use the EM/N400 interaction for the two- and three-body
sector, for details on the interaction see section 2.5. This interaction has been softened using the SRG, where
we fully include all bare and induced contributions up to the three-body level, with flow parameters of

o = 0.04 fm? and & = 0.08 fm*. Note that the chiral 4N interaction has not been transformed.

71 MOMENTUM GRIDS

As we are using precalculated grids to perform the PWD, as described in section 4.4.3, we have a set of
purely technical parameters, namely the number of grid points and the interpolation scheme for both, the
interaction and the basis grid. Throughout this section we investigate the effect of these parameters on the
calculated ground-state energy of various nuclei. From the results presented in this section we can argue that
20° grid points with cubicinterpolation for the interaction part and 250 grid points with linear interpolation
for the basis part yields a highly accurate discretization of the momentum expressions.

To test these grids we have performed many-body calculations yielding ground-state energies of different
nuclei for various grid sizes and interpolation schemes and plot the effect of the 4N interaction for the vari-
ous classes and substructures in figs. 7.1 to 7.4. In all cases we have performed HF calculations, in the case of
*He in fig. 7.1, we have also performed NCSM calculations, which directly show that HF calculations yield
similar results. Note that each point is a separate calculation, for example, the result for class I is obtained
by summing up the matrix elements and then performing a HF or NCSM calculation. In each figure, we
have varied the technical parameters used in the discretization and find that the deviations between these
parameter sets is minimal.

When increasing the number of grid points for the interaction part from 20’ to 30%, no difference in
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Figure 7.1: Absolute effect of the chiral four-body interaction on the ground-state energy for different classes and
varying grid parameters in “He. Solid lines are NCSM calculations at N, = 20 and dashed lines are HF calculations
ate,,. = 10. All calculations employ a HO basis with a frequency of fiw = 24 MeV. In the two-and three-body sector
the EM/N400 interaction has been SRG-evolved to a flow parameter of « = 0.08 fm*. The four-body force uses
Cy = 0.21fm?, a regulator exponent of My = 4anditis truncated at £, ., = 2. The cutoftis fixed to 4,5 = 400 MeV
in (a) and 4,5 = 600 MeV in (b). Different colors and symbols correspond to different parameters of the basis and
interaction grid, which are:

(-~ ) Interaction grid: 20° points, cubic interpolation. Basis grid: 200 points, linear interpolation.

(—=,-= ) Interaction grid: 20’ points, cubic interpolation. Basis grid: 250 points, linear interpolation.
(—+, ) Interaction grid: 20° points, linear interpolation. Basis grid: 250 points, linear interpolation.
(++, ) Interaction grid: 30° points, cubic interpolation. Basis grid: 250 points, linear interpolation.
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Figure 7.2: Absolute effect of the chiral four-body interaction on the ground-state energy for different classes and
varying grid parameters in '°O. All results are HF calculations at ¢, ,, = 10 employing a HO basis with a frequency of
hw = 24 MeV. In the two-and three-body sector the EM/N400 interaction has been SRG-evolved to a flow parameter
of « = 0.08fm*. The four-body force uses C;- = 0.21 fm?, a regulator exponent of Mep = 4 and it is truncated at
E; ax = 2. The cutoft is fixed to 4,5 = 400 MeV in (a) and 4,53 = 600 MeV in (b). Different colors and symbols
correspond to the same grid parameters as in fig. 7.1, which are:

(-*-) Interaction grid: 20° points, cubic interpolation. Basis grid: 200 points, linear interpolation.

(—=) Interaction grid: 20° points, cubic interpolation. Basis grid: 250 points, linear interpolation.
(~+) Interaction grid: 20° points, linear interpolation. Basis grid: 250 points, linear interpolation.
(

—) Interaction grid: 30° points, cubic interpolation. Basis grid: 250 points, linear interpolation.
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Figure 7.3: Absolute effect of the chiral four-body interaction on the ground-state energy for different classes and
varying grid parameters in *’Ca. All results are HF calculations at e, = 10 employing a HO basis with a frequency of
hw = 24 MeV. In the two-and three-body sector the EM/N400 interaction has been SRG-evolved to a flow parameter
of « = 0.08fm*. The four-body force uses C;- = 0.21 fm?, a regulator exponent of Mep = 4 and it is truncated at
E4 ax = 2. The cutoft is fixed to 4,5 = 400 MeV in (a) and 4,53 = 600 MeV in (b). Different colors and symbols
correspond to the same grid parameters as in fig. 7.1, which are:

(-*-) Interaction grid: 20° points, cubic interpolation. Basis grid: 200 points, linear interpolation.

(—=) Interaction grid: 20° points, cubic interpolation. Basis grid: 250 points, linear interpolation.
(++) Interaction grid: 20° points, linear interpolation. Basis grid: 250 points, linear interpolation.
(

—) Interaction grid: 30° points, cubic interpolation. Basis grid: 250 points, linear interpolation.
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Figure 7.4: Absolute effect of the chiral four-body interaction on the ground-state energy for different classes and
varying grid parameters in **Ni. All results are HF calculations at e, = 10 employing a HO basis with a frequency of
hw = 24 MeV. In the two-and three-body sector the EM/N400 interaction has been SRG-evolved to a flow parameter

of « = 0.08 fm*. The four-body force uses C; = 0.21fm?, a regulator exponent of Mgy = 4and itis truncated at
E, mae = 2. The cutoft'is fixed to 4,3 = 400 MeV in (a) and 4,3 = 600 MeV in (b). Different colors and symbols

correspond to the same grid parameters as in fig. 7.1, which are:

(-*-) Interaction grid: 20° points, cubic interpolation. Basis grid: 200 points, linear interpolation.

(—=) Interaction grid: 20° points, cubic interpolation. Basis grid: 250 points, linear interpolation.

(~+) Interaction grid: 20° points, linear interpolation. Basis grid: 250 points, linear interpolation.

(—) Interaction grid: 303 points, cubic interpolation. Basis grid: 250 points, linear interpolation.
Using a cutoff of 4,5 = 600 MeV, for some of the classes the HF calculation fails to find a bound state, thus, these
results are not included in the figure.
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the results can be found. However, there is a small deviation when changing the interpolation to a linear
scheme in the interaction part, which indicates that the cubic interpolation converges faster with respect to
the number of grid points, as one would expect. In principle, we could also use the linear interpolation for
the interaction part, but this would require more grid points for the same level of accuracy. The calculation
of the interaction part is the computationally most demanding step in the PWD, therefore, we exploit the
cubic interpolation.

Reducing the number of grid points for the basis part or using the cubic interpolation does not change
the results at all. In this case, we are well converged at 250 grid points, even with the linear interpolation.
For the basis part, computational efficiency warrants the use of the linear interpolation, as the construction
of the basis grids is cheap and the cubic interpolation would slow down the integration over the momenta.
We therefore simply use a very high number of grid points.

Note that the analysis is true for all four figures, that is figs. 7.1 to 7.4. The nuclei, cutoffs, regulator
exponent and the value for C;.is chosen to match calculations performed throughout the remainder of this
chapter. In case of C;. we use the value from the two-body interaction. Note that this analysis only includes

requires too

max max

four-body forces up to E, ., = 2, as the construction of multiple interactions at higher £,
much computing time.

In fig. 7.4 we can observe an instability of the HF calculations, as for some classes the HF calculation fails
to find a bound state. This only occurs in case of **Ni. Calculating this nucleus without 4N contributions
already results in an almost degenerate spectrum of the single-particle energies during the iteration proce-
dure. Judging by these energies, it does not behave like a closed-shell nucleus, which is problematic for the
HF approximation. Even the extremely small 4N interaction can push the spectrum to an unphysical state,
where unoccupied single-particle states have an energy that is lower than some of the occupied states. In
such a case the iterative solution of the HF equations may fail completely, and it does not produce a bound

state. Note that this is a technical issue and might be circumvented by using a different scheme for solving

the HF equations or even by using a different starting point for the iteration.

7.2 MODEL SPACE CONVERGENCE

Throughout this chapter we use HF calculations with ¢, = 10 and Jacobi NCSM calculations for “He
with N = 20. To check if the chosen model spaces are sufficient for the calculation of the effect of the 4N
interaction, we investigate the model-space convergence. To that end we compare calculations in the chosen
model space with calculations in slightly smaller model spaces, thatis e, = 8 for the HF calculations and

N,... = 18 for the NCSM calculations. The results are summarized in fig. 7.5. The calculations have been
performed for two cutoffs and all different classes, as well as for the combined interaction. In almost all
cases we see no difference between the two model-space sizes. Only the *Ni calculations is not completely

converged with respect to the model-space size. However, the deviation is small, which indicated that the
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Figure 7.5: Convergence of many-body methods with respect to the absolute effect of the chiral 4N interaction on
the ground-state energy for different classes. The figure includes HF calculations ate,,,,, = 8 (dashed lines) and ¢,,,,, =
10 (solid lines) for “He (-=,—=-), 10 (- ,+), *Ca (-* ,+), and **Ni (-+ ,=), as well as *He NCSM calculations
at N, =18 (->)and N, = 20 (-*). All calculations employ a HO frequency of iw = 24 MeV and the included
EM/N400 interaction has been SRG-evolved to a flow parameter of « = 0.08 fm*. The four-body force uses C; =
0.21fm?, a regulator exponent of Moy = 4and itis truncated at £, ., = 2. The cutoft is fixed to 4,5 = 400 MeV in (a)
and 4,5 = 600 MeV in (b). For **Ni and 4,5 = 600 MeV, the HF calculation fails to find a bound state for some of

the classes, thus, these results are not included in the figure.
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calculation is almost converged, and therefore, results for *Ni are considered reliable. To be precise, we can
assume the uncertainty from the convergence of the many-body method to be smaller than 1 % for all nuclei
up to “*Ca, and up to 10 % in the **Ni case.

Note that the instability of the HF solution depends on the actual value of ¢, , as can be seen for class I in
fig. 7.5. In cases where we observe the instability, the HF calculation fails completely and does not produce
a ground state. We find no cases of a ground state with a binding energy that suddenly changes by a few
MeV. This is also apparent from the convergence pattern in fig. 7.5, as calculations fore, = 8and ¢, =10
always agree, if a bound state is found for both truncations.

In all cases throughout this chapter we consider only the contribution from the four-body interaction,
that is, the difference between a calculation with and without four-body forces, as done in fig. 7.5. In fact,
the uncertainty of the ground-state energy due to the limited model-space size of the many-body calculation
is much larger. The difference between a HF calculation at e, = 8 and ¢, = 10 usually is of the order
of 1 — 50 keV per nucleon, which is on the same order as the contribution from the chiral 4N interaction.
Luckily, the addition of the four-body interaction does not change the convergence pattern, resulting in the

observed small uncertainties for the effect of the four-body contribution.

7.3 INTERACTION CLASSES

From the previous calculations we already see that the chiral four-body force has a rather weak effect, at

least at the truncation of E, = 2. In fact, the overall contribution is much smaller than contributions

4,max
from the individual classes. This cancellation effect is depicted in fig. 7.6, where the different contributions
are presented. In fact, multiple cancellation effects can be observed. First of all, the different substructures
within a class tend to have different signs. Additionally, the resulting contributions for the five relevant
classes also differ in sign and partly cancel each other, leading to a total effect that is much weaker than just
the effect from a single class or substructure. These effects are especially pronounced for *He, but exist in
all nuclei shown in fig. 7.6.

Note that we perform a separate calculation for each class and substructure. This becomes apparent in
the case of **Ni, where summing up the individual contributions of the substructures does not yield the total
contribution obtained from combining the matrix elements first and then performing the HF calculation.
This already hints at the fact that a perturbative inclusion of the 4N contributions is insufficient in the case
of **Ni, which we discuss further in section 7.5. We will, therefore, exclude **Ni from the analysis in this
section, as reliably separating the contributions of different classes is not possible in this case.

When comparing *He, 'O, and *’Ca, we observe that the signs of the different contributions are identical
in all cases. This is slightly surprising, as different nuclei contain different angular momentum and isospin
structures, which could lead to a different behavior of the same class in different nuclei. Especially so, as

“He only probes one of the many four-body channels. Note that the calculations in fig. 7.6 include all
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Figure 7.6: Contributions of different classes of the chiral four-body interaction to the ground-state energy of dif-
ferent nuclei. The figure includes HF calculations at ¢,,,, = 10 for “He (=), O (~+), **Ca (), and **Ni (—).
All calculations employ a HO basis with a frequency of iw = 24 MeV and the EM/N400 interaction for the two-and
three-body sector has been SRG-evolved to a flow parameter of & = 0.08 fm*. The four-body force uses C- = 0.21 fm?,
a regulator exponent of 7., = 4 and it is truncated at £, ,,, = 2. The cutoff is fixed to 2,5 = 400 MeV in (a) and
Ag =600 MeV in (b).
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possible channels at the E, = = 2 truncation. However, all these nuclei are closed-shell nuclei with the

same number of protons and neutrons calculated in the HF approximation. This behavior might very well
change for other cases.

The general trend shows opposite signs and similar size of the contributions from classes I and II, which
are both completely independent from C;. Contributions from classes IV and V are typically weaker than
the first two classes, but they both depend on C;, and therefore, their behavior depends on the value of C;.
However, they do have a different sign, which leads to an almost complete cancellation between these two
classes. The contributions from class VII are small and attractive, and depend on C7.

Previous calculations found similar trends in *“He [36] and symmetric nuclear matter [33]. The symmet-
ric nuclear matter calculations by Kriiger ez al. [33] employ a range of NN interactions and the interaction
by Entem and Machleidt [84], which we use here, is among them. Employing this interaction, the sym-
metric nuclear matter calculations show exactly the same trend we observe. The signs for all classes and the
cancellation scheme between the classes match our calculations. Classes IV and V are also smaller than I and
IT in nuclear matter calculation and class VII yields the smallest results. The estimates for “He by Nogga
et al. [36] also show a weaker effect of classes IV, V, and VII compared to I and II. Furthermore, there is
a cancellation between the different classes. However, the signs do not match the results presented here
and, overall, our calculations yield much weaker effects of the chiral 4N interaction than the *He estimates.
Note that the calculations by Nogga er al. [36] differ from the ones presented here in various aspects, that
is, the applied two- and three-body forces, the chosen regulator for the four-body force, and the many-body

method, and therefore, truncations.

7.4 REGULATOR DEPENDENCE

So far, we have only seen results at two fixed values for the cutoft and one specific value for the regulator
exponent. To investigate the regulator behavior, HF and NCSM calculations have been performed for dif-
ferent regulator parameters. An overview is given in fig. 7.7 for *He at £, = 2.

In all cases, the behavior is similar when changing the cutoff /5. At a very low cutoft, the effect of the
four-body force vanishes. In this case, the regulator removes contributions from the interaction at the rele-
vant momentum scale, after all, lowering the cutoff only reduces the range of the momentum integration.
Increasing the cutoff leads to a monotonic increase in the four-body contributions, with a steep increase at
low cutofts, which flattens out at higher cutofts. This behavior is tied to the HO basis and the truncation we
use. A representation of the HO states in momentum space has a Gaussian tail that acts as a built-in cutoft.
Therefore all higher momenta included in the integration are irrelevant at this specific truncation.

For higher values of E, ., we cannot observe a flattening behavior up to «,; = 800 MeV, as depicted
in fig. 7.8. The HO wave functions simply extend to higher momenta in these cases, reducing the effect of

the HO cutoft. This figure also nicely shows that convergence with respect to the four-body model-space
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Figure 7.7: Contribution of the chiral 4N interaction to the ground-state energy of *He for different four-body reg-
ulator parameters. For the two-and three-body sector, the SRG-evolved EM/N400 interaction is employed. Calcula-
tions are performed using the NCSM at N, = 20 with two flow parameters of & = 0.04 fm* in (a), and & = 0.08 fm*
in (c). Additionally, HF calculations at ¢,,,, = 10 are shown, again with flow paramaters of « = 0.04 fm* in (b), and
,* ), Cp = —0.1fm?*

,*—*,=). Furthermore, the regulator ex-

a = 0.08 fm* in (d). The four-body interactions are contructed with Cj = —0.4 fm* ( *,
(", ™), Cp = 021Ffm* (+, ), and C = 0.4fm” (
ponent is varied using an exponent Mexp of 2 (lightest lines), 4, 6, and 8 (darkest lines). All calculations employ a HO

basis with a frequency of 7w = 24 MeV, and the four-body interaction is truncated at £, . = 2.
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Figure 7.g: Contribution of the chiral 4N interaction to the ground-state energy of “He for different four-body
cutofts and truncations. All calculations are performed using the NCSM at N, = 20 with the EM/N400 interaction
SRG-evolved to a flow parameter of & = 0.08 fm*. The four-body interaction uses C;; = 0.21fm” and a regulator
=2(°,*),E =40, ™), and E, . = 6( >, *+)for the four-
body interaction are shown. All calculations employ a HO basis with a frequency of 7w = 24 MeV. Furthermore,

exponent of 7, = 4. Truncations of E
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all calculations are obtained using a full diagonalization (solid lines), and a diagonalization with two-and three-body

forces only, approximating the four-body contribution using first-order perturbation theory (dashed lines).
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Figure 7.9: Contribution of the chiral 4N interaction to the ground-state energy of *He (-, ~#), 'O (-, +),*Ca

(-*,*),and **Ni (>, —-) for different four-body cutoffs. All calculations are performed using HF ate,,, = 10 with
the EM/N400 interaction SRG-evolved to a flow parameter of o« = 0.08 f m*. In all cases a HO basis with a frequency

of hw = 24 MeV isemployed. The four-body interaction uses C- = 0.21 m?, a truncation of Ej max = 2,and aregulator

exponent of 7, = 4. All results are obtained using a full HF calculation (solid lines), and a calculation with two-and

three-body forces only, approximating the four-body contribution by first-order perturbation theory (dashed lines).
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Figure 7.10: Contribution of the chiral 4N interaction to the ground-state energy of “He depending on Cy. Calcu-
lations are performed using the NCSM at N, = 20 with the EM/N400 interaction SRG-evolved to a flow parameter
of & = 0.08 fm* at cutoffs of A4, = 400 MeV (o ), and 4,5 = 600 MeV (- ). Furthermore, calculations for the same
interactions are shown using HF at /4,5 = 400 MeV (—*-), and 4,5 = 600 MeV (—*-). All calculations employ a HO
basis with a frequency of iw = 24 MeV, a four-body regulator exponent of Moy = 4 and a four-body model-space
truncation of E, .= 2.

4,max

size need not be monotonic. However, we can only perform E, = 6 calculations for *He, as the other

max
channels are computationally far too expensive.

Note that in some cases the effect of the 4N interaction does not behave completely monotonically when
changing the cutoff. For instance, in the NCSM calculation for C;- = 0.21fm*ata = 0.08 fm*and E, , = 2
in fig. 7.8 we observe a slightincrease at cutoffs larger than S00 MeV. However, these increases are at the order
of 0.2 keV, at such small differences, these effects might be due to numerical inaccuracies.

The cutoft dependence at E, . = 2 is also similar in heavier nuclei, as depicted in fig. 7.9. For heavier

nuclei, the whole curve seems to be slightly shifted. Changing the cutoft from 200 MeV to 300 MeV has only
aminimal impact, but we still get the steep increase at slightly higher cutoff momenta. Thus the flattening is
shifted to a higher cutoff as well. In general, heavier nuclei are expected to probe higher momenta, resulting
in the shifted curve.

Note that, apart from ONi, we still get a monotonic increase when increasing the cutoft. Again, ONj
does not follow this trend. Up to 4,; = 400 MeV, the 4N interaction acts attractive and afterwards it has
a repulsive effect. This repulsion can only be found for E,, . = 2, we can observe an attractive effect at

A = 600 MeV for *Ni at £,

4, max

max

= 4, which is discussed in section 7.6.
So far, we have focused on the variation of the cutoff momentum, but we also have the regulator exponent
left to choose. Increasing the regulator exponent does not change the observed behavior, it only results in

a steeper increase at low cutoffs and the curve also flattens out at lower cutoffs. For higher exponents, the
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regulator becomes more like a step function, therefore, it includes less of the contributions at momenta
beyond the cutoft and more of the ones at lower momenta. As high momenta are irrelevant due the built-
in cutoft of the HO basis, we only increase the contribution, when increasing the exponent while keeping
the cutoff at the same level. This results in the observed differences, where some fixed 4N contribution is
reached at lower cutofts for higher regulator exponents.

However, overall the behavior of the different exponents is quite similar and we simply select n,,, = 4
for the remaining calculations. Furthermore, we use two cutoffs, 4,; = 400 MeV, and 4,; = 600 MeV. The
lower one is still within the steep increase, while the regulator is already flattening at the higher one.

In fig. 7.7 calculations for different values of C;. are included. While the results almost match at €, =
0.21 fm?, this seems to be accidental. To investigate the effect, we have performed calculations for a whole
set of Cj.values, as shown in fig. 7.10. As we have classes with no, linear, and quadratic dependence on C,
we obtain a parabola. In the HF case the linear contributions seem to cancel almost exactly, resulting in
the maximum of the curve at C; = 0 fm”. The NCSM case yields a slightly shifted version of the parabola.
For both cutoffs investigated here, the intersection between the HF and the NCSM parabola is close to

C,=0.21fm".

7.5  PERTURBATIVE INCLUSION

We have already seen that the effect of the chiral 4N interaction is extremely small. Therefore, we should be
able to include the effect in a calculation using first-order perturbation theory. To investigate the perturba-
tive inclusion of the interaction we calculate the 4N contribution to the ground-state energy in the same way
as for the four-body contact interaction in section 6.1. In this chapter we also use the same method for HF
calculations, we simply use the approximate HF ground state calculated without any four-body forces. We
estimate the effect of the 4N interaction by calculating the expectation value of the interaction with respect
to that ground state. The result is compared to a full calculation, as done for *He with different truncations
in fig. 7.8 and for different nuclei in fig. 7.9.

In case of “He for the HF as well as for the NCSM calculation, we see no difference between the full

calculation and the perturbative inclusion at £, = 2. Athigher values of E, . we can observe differences

max max

in fig. 7.8. They are very small in case of E

4, max

= 4, but they increase drastically for E, = 6. In these

max

cases, the agreement between a full calculation and the perturbative one depends on the cutoff momentum.

At A5 = 400 MeV, we see no differences between the two for any value of £, ., but for 4,5 = 600 MeV

max?
and higher cutoffs, the perturbative calculation clearly differs from the full one. This is consistent with the
expectation that lower cutoffs result in softer interactions that are better suited for a perturbative inclusion.
We can therefore attribute the excellent agreement of the perturbative inclusion at large cutoffs 7,5 in the

E

4, max

= 2 case to the built-in HO cutoff. In case of heavier nuclei, we can discern small differences that

increase with larger values of the cutoft even for E, = 2.

max
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Again, the calculations for **Ni break the pattern. In this case the perturbative inclusion and the full HF
calculation do not match atall. In fact, the perturbative result is even attractive. This ties in with the almost
degenerate single-particle spectrum of *Ni. The perturbative inclusion of the 4N interaction follows the
same trend as the other nuclei. Small changes due to the four-body interaction, however, can effect a change
that is much larger than expected from such a weak force. This discrepancy should, therefore, be seen as
a special case that is rooted in a combination of the HF approximation, the chosen two- and three-body
interaction, and the structure of this specific nucleus.

For the remainder of this chapter we only employ full calculations. However, this analysis indicates that
a perturbative inclusion of the chiral 4N interaction is sufficient at low cutoffs. This is relevant for the
inclusion of the interaction in other many-body methods, as the simple evaluation of an expectation value

is generally simpler and computationally less expensive than the complete inclusion of a four-body force.

7.6 CHANNEL STRUCTURE

Asweusea PWD for including the 4N interaction, we can separate the contributions of different four-body
channels. An overview of the effect is shown in fig. 7.11, where we have only included the 4N interaction
up to a given four-body angular momentum. In general, we get the largest contributions when adding the
channels with a four-body angular momentum of /, < 4. For the heavier nuclei, *’Ca and *Ni, the channels
with a higher angular momentum have larger contributions than in the °O case. Especially the /, . = 4
and J, .. = S results are identical in **O, but we find contributions in the other two nuclei.

To discern the different factors that lead to the channel structure, we can employ two comparisons.
First of all, fig. 7.11 includes calculations for two different four-body cutoffs. As already discussed, the
Ay = 600 MeV cutoff leads to a larger four-body contribution than the .7,; = 400 MeV one. It is not
surprising that the cutoft acts differently depending on the angular momentum channel, as each channel
probes different length scales. We can very clearly see a very strong contribution of the /, = 2 channels for
the lower cutoff, while there is only a small contribution when using the larger cutoff.

Furthermore, the contributions of the different channels also depend on the wave-function of the nu-
cleus in question. We already know that the effect of 4N interaction can be calculated using a perturbative
inclusion. We can, therefore, use the ground state from a calculation without four-body forces as an excel-
lent approximation to the ground state calculated with four-body forces. Note that this is not quite true for

the **Ni case, as discussed in section 7.5. We use the ground state | Y’0> to calculate

(4) " (mle, %) . ()

where P ), 18 the projection operator on a specific four-body angular momentum, and the expectation value
is normalized in such a way that the maximum value for the given nucleus is one. This allows us to obtain

the relevance of the different angular momentum channels in the ground-state.
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Figure 7.11: Effect of the chiral 4N interaction on the ground-state energy of 'O (- ,~*-), “*Ca (-= ,=-), and **Ni
(>, *) in HF calculations with a limit on the maximum four-body angular momentum, Jimax> which limits the
included four-body channels. The results are obtained with the SRG-evolved EM/N400 interaction SRG-evolved to
a flow parameter of & = 0.04 fm* in (a) and (c), and to a flow parameter of & = 0.08 fm* in (b) and (d). The four-body
cutoftis A, = 400 MeV for (a) and (b), and itis 4,3 = 600 MeV for (c) and (d). The dashed lines indicatean £, = 2

truncation, and solid lines represent calculations using E, . = 4. All results are obtained at ¢, = 10, employ a HO

max

basis with a frequency of iw = 24 MeV, and use C = 0.21 fm?.
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Figure 7.12: Expectation value of the projection on a specific four-body angular momentum with respect to the
10 ground state. The ground state is obtained from a HF calculation at ¢,,, = 10 with the EM/N400 interaction
SRG-evolved to a flow parameter of @ = 0.04 fm* (2) and & = 0.08 fm* (b). All calculations employ a HO basis with a
frequency of hw = 24 MeV. Different line colors correspond to a truncation of E, . t02( * ), 4(*),6(*),8(—*),

and 10 (—*-). The total values are calculated by summing up all expectation values at a specific truncation.
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Figure 7.13: Expectation value of the projection on a specific four-body angular momentum with respect to the **Ca
(a) and **Ni (b) ground state. The ground state is obtained from a HF calculation at e, = 10 with the EM/N400
interaction SRG-evolved to a flow parameter of « = 0.08 fm*. All calculations employ a HO basis with a frequency of
hw = 24 MeV. Different line colors correspond to a truncation of £, t02( = ),4(*),6(*),8(-*),and 10 (-*).
The total values are calculated by summing up all expectation values at a specific truncation.
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On a technical level, the construction can easily be done by reusing the four-body framework we have
available. Instead of constructing an interaction in Jacobi momenta, we simply use the identity operator in
that channel and then convert it to the single-particle basis, see section 5.2. Normalization requires dividing
by the factor (’:), which comes in when embedding the matrix elements of the four-body projector in A-
body space, see section 4.1 for details.

The results of this calculation are shown in figs. 7.12 and 7.13. Lets focus on the first figure, that is 'O.
Note that we can clearly see a peak at /, = 2, which means, that this channel is expected to be important
when including four-body forces. Channels with lower and higher angular momentum are less important
and at /, = 5, no contributions can be found, which explains why the °O results in fig. 7.11 do not change
anymore at this level. While the size of the contributions to the ground-state energy in fig. 7.11 loosely
follow the trend of fig. 7.12, they do not match completely. Obviously, the strength of the interaction itself
also differs between channels. This is also apparent from the differences between the .7,; = 400 MeV and
Az = 600 MeV calculations in fig. 7.11, which are based on the same two- and three-body interactions, and
therefore, on a similar ground state.

We have already seen that the cutoff dependence does not change for different values of the flow param-
eter in the two- and three-body sector. The same is true for the channel structure in fig. 7.11. Both obser-
vations can be explained by the comparison in fig. 7.12. The expectation value of the four-body projection
operator is almost identical for the two flow parameters, from which we can conclude that the four-body
structure of these two ground states is almost identical. As the effect of the four-body interaction can be
predicted using a perturbative inclusion, the differences of the ground state between a calculation with and
without 4N forces should be small. Therefore, we would not expect different results for different flow pa-
rameters.

As the projection operator is treated in exactly the same way as the four-body interaction, it is also trun-

cated at some four-body energy E, . . Constructing the projection operator is, of course, simpler, that s,

,max*®
it requires very little computing time, therefore, we can use much larger model spaces. In principle, if the
applied truncation of the four-body space covers the ground-state wave function, we should get one when
summing up the expectation values of the different channels. For low truncations, we get considerably less

than one. In case of °O and E,

4,max

= 4, we are already at 0.8. From this analysis we can be confident that
calculations at such a low truncation are nevertheless sufficient. At the very least, the full calculations in
fig. 7.11 should be of the right order of magnitude, even if we cannot see much of a convergence in fig. 7.11
on its own.

We can repeat this analysis for **Ca and **Ni, as shown in fig. 7.13. In these cases, we can see that the
ground state also contains contributions from higher angular momenta, which is consistent with results
shown fig. 7.11. In fact, for higher values of E,  , we can even expect contributions from /, = ¢ in the “’Ca

case or even beyond that for **Ni. Note that for these heavier nuclei, E, .= 4is nota sufficient truncation,

,max

as the sum of the channels yields values below 0.1 in both cases.
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7.7 FREQUENCY VARIATION

We have already seen that we do not reach convergence with calculations performed at a truncation of

E,

4,max

= 4. For this reason, we investigate different HO frequencies using NCSM and HF calculations,
as shown in fig. 7.14. Note that both the many-body calculations are converged, with uncertainties below
1% for nuclei up to Ca using iw = 24 MeV, at least when only investigating the difference between a calcu-
lation with and one without 4N forces, as discussed in section 7.2. The uncertainties due to the many-body
calculation can be alittle larger for other frequencies, but up to *’Ca they are always below 5 %, they can be up

t0 20 % in the **Ni case, the exception is the calculation at .2,; = 600 MeV with £, . = 2 and hw = 28 MeV

4,max
for *°Ni, which exhibits considerable convergence issues. However, all other calculations are reliable, and
therefore, the dependence on the frequency only exists due to the truncation of the 4N interaction at such
low values for E, ..

As one would expect, we do see a frequency dependence for all nuclei, as we have not reached convergence
in any of the cases. The trend is flatter in case of HF calculations of *“He and °O, at least for frequencies

of Aiw < 24 and a truncation E

4,max

= 4 in the latter case. This can be interpreted as an indication of
convergence, which is consistent with the analysis in the last chapter, suggesting that the *He and °O results

are in the right ballpark. However, we observe larger gaps between E, = 2and E, . = 4 results in the

4, max
NCSM calculation compared to the HF calculations, which indicates that the HF calculations are missing
significant contributions due to their mean-field approximation.

We can also observe that the difference between the two cutoft values becomes smaller at lower frequen-

cies, especially for the E, .= 2 calculations. This ties in to the HO wave functions again. The HO wave

max
functions already have a built-in cutoff, which is lowered by reducing the HO frequency. For some low
value of the frequency, the two contributions from the two four-body cutoffs must be indistinguishable.
We already encountered this phenomenon in section 7.4.

To further investigate the convergence, we can use the projection operators again. We simply sum up all
angular momentum channels for each frequency, which allows us to gain insight in the four-body structure
of the nuclei and separating the trends that are related to the structure. The calculations are shown in fig. 7.15.

Comparing the “He HF calculations of the ground-state contributions with the total expectation value at

the same truncation yields a remarkable resemblance. In both cases, we have the smallest distance between

E =2and E

4, max 4,max

= 4 results at iw = 24 MeV, and the largest at iw = 16 MeV. However, from fig. 7.15

we would expect to gain 99% of the contribution already at £, . = 2, which is clearly not the case.

max

For all heavier nuclei, we obtain a clear trend in fig. 7.15. In all cases convergence is expected to be better
at lower frequencies. As these nuclei are all larger than *He, and as a HF calculation does not take any
correlations into account, especially not clustering effects, we expect wave functions that match the size of
nucleus to yield the highest expectation values for low truncations. Note that the peak can shift when the

truncation is close to convergence, as apparent from the “He case.
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Figure 7.14: Effect of the chiral 4N interaction on the ground-state energy of *He (a), '°O (b), **Ca (c), and **Ni (d).
For all nuclei HF calculations are performed ate,, = 10 with cutoffs of /4,5 = 400 MeV (—*-,-¢ ), and 4,5 = 600 MeV
(—=,-= ). Furthermore, NCSM calculations at N, .. = 20 are shown for *He with the same cutoffs of 4,5 = 400 MeV
(*5 ), and Az = 600 MeV (~*, ). All results are obtained with a four-body truncation of E, . = 2 (dashed
= 4 (solid lines). For the two-and three-body sector the EM/N400 interaction has been SRG-evolved

to a flow parameter of & = 0.08f m*. For all calculations a HO basis with a frequency of iw = 24 MeV is employed,

lines), and E,

,max

and the four-body interaction uses C- = 0.21 f m?, as well as a regulator exponent of Mep = 4
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the EM/N400 interaction SRG-evolved to a flow parameter of « = 0.08 fm*. Different line colors correspond to a
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At first sight this seems to disagree with the calculation of **Ca and **Ni in fig. 7.14, as the contributions
grow with larger values for the HO frequency. However, there is no indication that these larger values are

any closer to convergence. In fact, we expect large changes when increasing £, . and this might result in

max
a larger effect at low frequencies. Furthermore, the convergence does not have to be monotonic, it is quite
possible that the contribution at high frequencies is reduced when increasing the model space. We have
explicitely seen a non-monotonic convergence pattern in case of *He in ﬁg. 7.8.

For °O, the expectation values and the actual contributions agree with each other. From the expectation

values we €xpect convergence at E

4,max

= 4 and lower frequencies and, indeed, the frequency dependence in

fig. 7.14(b) is reduced.

7.8  RELEVANCE OF THE FOUR-NUCLEON FORCE

Throughout this chapter we have investigated the effect of the four-body contribution quite thoroughly.
We have seen that we are independent of the technical parameters, like the size of the momentum grids, and
we know that the many-body methods are converged. We have investigated the dependence on physical
parameters and we have investigated the convergence with respect to the four-body model space size, that

is, E

4,max"*

Although we are quite obviously not converged with respect to E, ., we deem calculations up to
0 as trustworthy enough, at least to estimate the size of the total effect of the chiral 4N interaction.

This leads us to the central question of this section: Are the four-body forces even relevant? Judging from
the calculations we have analyzed, there is a clear answer to this question: No, the 4N force is not relevant.
To illustrate just how small the effect really is, we can have a look at the expectation value of intrinsic kinetic
energy, the NN, the 3N, and the 4N interaction in fig. 7.16.

The figure clearly shows the many-body hierachy, which is predicted by chiral EFT. We can immediatly
see that 3N contributions are smaller than the NN ones, but they obviously have a relevant effect. The 4N
contributions, however, are completely negligible on this scale. To emphasize this point, we have a look at
the « dependence of the interaction. The EM/N400 interaction is known to be almost independent of the
flow parameter «, and we can see that in fig. 7.16(a), where the two NCSM calculations for the two flow
parameters are not distinguishable. Note that the HF calcluations have a larger separation, as a mean field
method is better suited for the softer interaction at & = 0.08 fm*. Nevertheless, a fully converged NCSM
calculation yields a separation of only ~ 10keV per nucleon. However, this is still an order of magnitude
larger than the effect of the initial 4N contributions.

The effect of the 4N interaction does scale with the number of nucleons, so *He might be an extreme
example. But even at '*O we are only at ~ 10 keV per nucleon, which is still two orders of magnitude below
the 3N contribution. We obtain slightly larger contributions for the heavier nuclei. Additionally, we cannot
exclude the possibility that the effect of the 4N interaction increases by an order of magnitude for *’Ca or

**Ni when fully converged. However, it does not seem likely that the initial four-body force can have a



110 CHAPTER 7. EFFECTS OF THE CHIRAL 4N INTERACTION

30
251 :
20 -
2
S 15+ -
=
SERUS -
<
¥ 0T i
~
~I< 0
_57 _
_1()7 _
30
251 :
20 -
2
s 5k -
=
SERUS -
<
S 1
~
~l< 0
_57 _
_107 _

+/aN +ViN +ViN T; +\N +ViN +ViN

Figure 7.16: Expectation value of the intrinsic kinetic energy and sums of the kinetic energy and the dif-
ferent nuclear forces with respect to the HF ground state. For example, the third data point corresponds to
VA ( ¥, | Tie + Van + V3N| Y’0>. The ground state is obtained using a HF calculation at ¢,,, = 10 with the EM/N400
interaction SRG-evolved to a flow parameter of & = 0.04fm* (- ) and « = 0.08 fm* (). Furthermore, the chiral

max

four-body interaction is included with a cutoff of /4,5 = 600 MeV, a regulator exponent of ., = 4, a truncation of

eXP
Ej max = 4 and Cp = 0.21fm”. All calculations employ a HO basis with a frequency of 1w = 24 MeV. The results are
shown for *He (a), '°O (b), **Ca (c), and **Ni (d). The yellow line in (a) is the ground-state energy per nucleon ob-
tained with a NCSM calculation at N, = 20 with the same interactions. Note that the two different flow parameters

only differ by 10 keV in a NCSM calculation.
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significant impact on the heavier nuclei, and it definitely has none on the lighter ones.

Currently, differences between variants of the chiral interactions and other uncertainties throughout a
many-body calculation, for instance induced 4N interactions, seem to be much more important and should
all be addressed before considering the initial chiral 4N force relevant. Even small changes to the regulator of
the three-body interaction can have a significant impact on state-of-the-art calculations [126]. Furthermore,
the calculation of medium-mass nuclei often yield overbound nuclei, with ground-state energies and radii
that are both too small. From these difficulties it seems highly unlikely that one can perform a many-body
calculation with an uncertainty that is small enough to warrant the inclusion of chiral 4N forces. Generally,
we can expect ab initio description of nuclei based on chiral forces to achieve an accuracy of about 1% of
the ground-state energy in the foreseeable future. The 4N forces are smaller than that and, therefore, not

relevant.
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Conclusions

Recent years brought major advances in the construction of nuclear interactions from chiral EFT, which
includes the derivation and construction of chiral two-body forces up to N*LO and beyond [22~26] and the
PWD of the chiral 3N interaction at N’°LO [29]. Prompted by these developments, the current focus is on
the reliable uncertainty quantification of observables calculated with chiral interactions, and on consistent
order-by-order calculations. In light of the above, the incorporation of chiral 4N interactions at N°LO is a
necessary step.

This work investigates the inclusion of 4N forces in many-body calculations. Due to the formulation of
the chiral interaction in single-particle momenta, the main obstacle that was overcome is the PWD of the
chiral 4N interaction. The solution presented in this work is a computationally feasible approach, however,
it requires a substantial analytic derivation. We include all operator structures in the leading order of the
chiral 4N interaction, and for each structure we separately performed the PWD. That s, for each structure
we handled coordinate transformations analytically, and evaluated as many angular integrals as possible.
From the resulting formulae we separated parts that can be reused and stored them as momentum grids to
reduce the computational workload. Despite the endeavor to reduce the computational effort, the PWD
remains the limiting factor.

However, we are now in the position to perform the PWD in a limited model space and include the re-
sulting interaction in many-body calculations. Variation of the grid sizes and interpolation scheme show
that the construction of the interaction is reliable. To be precise, the choice of the momentum grids does

not influence the calculated ground-state energies. We presented results gauging the effect of the 4N con-

3
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tributions on a series of nuclei, from the very light “He up to *Ni. All considered cases exhibit extremely
weak effects of the chiral 4N interaction. While we cannot achieve convergence with respect to the model-
space size, the presented analysis strongly indicates that the order of magnitude of the effect of the chiral 4N
interaction is correct, at least up to oo, Although we do observe a scaling with the number of nucleons,
we find no evidence in any of the performed interactions that the 4N interaction becomes important for
heavier nuclei.

In an investigation of the different contributions we find that the overall effect of the chiral 4N interaction
is weaker than individual contributions, that is, we have strong cancellations between different classes of
the interaction. As expected from such a weak interaction, we find that a perturbative inclusion of the 4N
contributions is sufficient, especially so for lower cutofts.

Even compared to previous estimates of the effect in *“He [36], we obtain a very weak effect, and the
generally small contributions from the chiral 4N interaction is also apparent from neutron and nuclear
matter calculations [32—-35]. However, comparing the effect of the 4N to the one of the 3N interaction at
N’LO [29, 32, 33] we generally see a much stronger effect of the 3N contributions, even though they belong
to the same chiral order.

Especially compared to uncertainties in many-body calculations or the discrepancies between different
variants of the two- and three-body force, the chiral 4N interactions are small. We conclude that, in the
foreseeable future, the inclusion of chiral 4N forces is not relevant for ab initio descriptions of nuclei based
on typical chiral two- and three-body interactions. For the future of many-body calculations this result is an
excellent outcome, as many-body calculations without four-body forces are generally simpler and compu-
tationally cheaper. Neglecting the four-body forces, consistent order-by-order calculations with a matching
regulator in the two- and three-body sector are already possible today.

Apart from chiral EFT, there exists another source of four-body forces relevant to nuclear structure.
Any transformation of the interaction using the SRG yields induced many-body contributions, which can
be sizable and show a strong scaling with the number of nucleons. It is possible to obtain these induced
4N forces and include them directly in the many-body calculation, but this approach is computationally
expensive [6o, 61]. While a SRG generator that minimizes these induced forces would be the optimal solu-
tion, one can try to imitate these contributions with a simpler four-body force. Additionally, the employed
chiral two- and three-body interactions result in radii that are much too small for heavier nuclei, which is
in all likelihood not a result of the SRG transformation. The effect might be mitigated by using a simple
four-body force.

To this end we have investigated a contact interaction, which does not pose computational challenges
when performing the PWD. This interaction has been designed to only act in the /7 = 0" channel, and
the PWD, as well as the inclusion of such an interaction in a many-body method, is simple compared to
the full chiral 4N interaction. To facilitate the model-space convergence of the many-body calculation, we
used a low cutoff. We have analyzed the effect of the four-body contact interaction in conjunction with the

EM/NS500 and the SMS/HS00 interactions. In both cases we find similar results, and while we observe a
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scaling of the effect of the contact interaction with the number of nucleons, it is much too weak to mimic the
SRG-induced contributions. However, reducing the strong flow-parameter dependence by using a simple
four-body interaction that is computationally feasible might be possible and may be investigated in future
work. From the analysis done in this work such an interaction should be weak in the /” = 0" channel and
feature contributions in higher partial waves. We find an effect of the contact interaction on the radius,
but it is not possible to improve agreement of charge radii with experiment without obtaining unphysical
binding energies.

If the inclusion of four-body forces proofs to be inevitable, extending other many-body methods to in-
clude these four-body contributions will become relevant. An easy solution would be the implementation
of a normal-ordering scheme, which is able to reduce the four-body force to a lower particle rank, thatis, up
to a two- or three-body space. This scheme has shown excellent results for reducing three-body interactions
[58, 59, 127] , and would directly enable the use of four-body interactions in a wide range of many-body

methods.
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Appendices
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Partial-Wave Decomposition of the Chiral

Four-Nucleon Interaction

In this chapter, we discuss the derivation of the ten operator structures that have not been discussed when
constructing the spatial part of the chiral 4N force in section 4.4.2. Note that more details are given through-

out section 4.4.2, as the approach here is completely identical to the one discussed in that chapter.

A1 CrLAss]-SUBSTRUCTURE B/C

We start by expressing the operator structure with diagrams and reduce the number of coordinate lines, in
the same way as done for structure (Ia). We have already included a factor of two to account for structure

(Ic) as well. Note that we have a cross product in this case, which is represented diagrammatically using

eq. (3.17), yielding
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From here on, the derivation is done exactly as in the previous case, expressing all momentum transfers in
terms of Jacobi momenta and reducing coordinate lines as much as possible. We therefore directly give the

result in terms of Jacobi coordinates,
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Representing the diagrammatic expression in a traditional form and adding the suppressed parts of the
formulae, we obtain a formula exactly like eq. (4.16), just the interaction part needs to be exchanged for
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A.2 CLASS]-SUBSTRUCTURE D

The derivation for structure (Id) works in the same way as the previous ones. First we obtain a diagrammatic

expression and join coordinate lines as much as possible,
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At this point we can insert the expression in eq. (4.11) again and start by simplifying the diagrammatic part,

Jis
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Using a traditional notation, we obtain an interaction part of
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k{Z ALI 4]1 k; 4L3 4]3 -[3( ]3 »/123 1kl dSl

1 1 1 1 ”

5 2 1 LS /4 L, 5 S Ly 5 Js h Lo 1k 4y IOSg(’
1 1 ’ ’ ’ r 1 ’ r 1 ’ ’ ’ ! A
> 2 1 L1 S1 ]1 Lz 5 ]2 L3 2 ]3 ]1 ]2 ]12 14Lz 4]2 (2F )c
S, Sl' A8, AL, 48, 4], AL, 1 4], AL, 1 4], AJ, 4], 4], 1 /eg A, "

- 3 2K, »
K Ko (41, 40 (45. 25 15) )™ s (4, 4y, )57
41(41,412(42,43, ”s>’ ”4)2 + M 345 + M? [‘112(42, 4, %5)2 +M3r]2

A.3 CrLAssII- SUBSTRUCTURE A

As in the previous cases, we start by expressing structure (IIa) diagrammatically,

’ ! l ’ 11 __t V(-‘)
mjﬂmjbmscmxd’ T1W2ﬂ-3 Ia m.rﬂmjbm.(lm.rd’ 71-171-271-3
4
_<m,m,m,m, 284 9,919 95 95" 902 ‘mmmm>
v N2E,) gt + M gy + M2 (g + 2]
1 !
-m
2
4 4, 9 1 9
= - - - O—O -
1
27
4 2
% 3 12¢, i 94 912
m,, m), mjc,m;/[ 6 2 2 2
v (ZFW) g + M g + M g, + M
4 2
—12g, i 94 12

m,, m) Jm m! N
W QF, ) g + My + M qiy + ML

-m
2

The conversion to Jacobi coordinates is exactly the same as in the previous cases, yielding

n
klz

i, [0, o) [0, 2 (1) B D

_ _ ! _ _ !
% \/51(12 2K K;\/g Ki Klz(_l)X4+X5+Ie4+/e;
4

3¢ 1
(ZFw)é ‘11(41’ ‘112(42’435 ”s)’ ”4)2 + M

3 2+I(y/2 ”
34 ( )1+1<1—1e12
473 G\ dy, 45, ug !

K K
A1 47 .
3 2 1 2
Zd§+M3rq12(dz,d3,u5) + M2
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Again we insert the expression in eq. (4.11) and simplify the diagrammatic part, which results in

Jios




128  APPENDIX A. PARTIAL-WAVE DECOMPOSITION OF THE CHIRAL FOUR-NUCLEON INTERACTION

Jins ki
Adding the non-diagrammatic part of the expression and using a traditional representation for the 6j-symbols
and 9j-symbols, we obtain

e LA AT A Y !
Ll*Lz’Ls’S1 A ’-]2J3*/12>-/123 (d d d )
Mary,Ly,L5,8), )52 35 125123341, AL 0 ALy =273

= Jd”4 PX4(”4) [d”s Z 2 Z DK1 p Klz K”_ZKI‘KI/ \/5—’(12—1({2

X Xs KKy ky k/
2y KK i,

+X4+X5+/e AL+ Lyt [+ 5+ T+ 8]+ jm AAAAAAAAA
11k, ky Ky ALy 1 ki, k{,z K X, kyy K X, 4L, Ky, X5 4L,
000 00 O 00 O 0 00 00 O 0 0 O
K, X K, Ky AL, ki kiy AL, 1 L1k Jio Jia 4T
0 00 Ky, Ky X K K X, ky ALy 4] 5 Js T
L S L, :
{ss }{4}{ L k;} S| RSR RO | MR
111 ' 1 VY, 1 °1 /1 3 5 J3 1 J2 Jn2
2 2 2 Ll 3 ALy kyy ki i

2 ar, 1k, ) Lary 1 a7, ) Lk, 4L, 4],

3
3 2+K1/ o
3&/:1 jKl/dKlz 1 243 ’ 92 (4 45, u >)1+Kl o

1 2 .
(2F7r)6 %(417 %2(42743’ ”5)’ ”4)2 + M idg + M %2(42’437 ”s) + M

A.4 CLAsSII- SUBSTRUCTURE B

Expressing the operator structure (IIb) with diagrams yields

’727r3>

2&44 0, ¢, 0,4, (g, %Xqy) 05
V(2F,)" g7 + 22 g + M2 | g; + A12]

)
VIb

! ! ! ! ! ! !
m, mgmm, , WMy

Sa b % 54>
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_72igja 9 42 91>

a4

-

’ 1

/+ b (O~ << -
1

"
klz

x 3m5h,m;,b Jd”4 Py, (1) Jdus Py, (”S)D%,&/DIQZ,K{Z

% \/EKlz—ZKrKl/ \/5_1{12_1(1/2(_1)X4+X5+k4+/€;
18igy 1
(ZFw)é 9 (41’ ‘]12(42’ 4, ”5)7 ”4)2 + M

3 2+K1'2 ”
24 1+K—ky,
473 q12(42’43’ %5) K Ky

a,' 4
3 1 2
25+ M2 gy (5. D5 05)” + M1
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Combining the diagrammatic part with the remaining parts of the formulae, we obtain

L{Ly Ly S{J{ S5 J3s i i (4.4, 4,)
IIbLl’LZ’LS’SI’-/1’jl’-[?’jll’]lZ};dLl’dLZ AL

o) § 5 R

X Xs KKy by k)
4),.4]5 K] K], /el’zle”

(_1)1+S{+4L,+/3+dfz+dj3+/l'2+]123+X4 §Sv‘ ]"1]’; jzjzj}.j;j;z ]124]24]3 k{?z, Ifzzk k/ZKZ 121(122[<1/§X2X2
1 1 k4 k/} kg d[‘3 1 k£2 k{,Z 1<1 X4 kiz 1(1/ X4 d[‘l ](12 XS JLZ
000 00 O 00 O 0 0 0 00 0 0 0 O
<K;2Xsk;>{ K z/sz;;}{kfzszl 1 }{Sls }{1121124]3}{ ok }
! 1 1 1 ’
000 Ky, Ky, X, K K X, 2 2 ]3 s Jis ky ALy 4]

1 1

Ly S Jy L, > /s L, 2 J3 h 111

’ rogr r 1 ’ y 1 ’ ’ ’ ’ ” ’
Ll Sl ]1 Lz 2 ]2 L3 2 ]3 ]1 ]2 ]12 klz sz k4
4L, 1 kiz sz 1 dfz 4L3 1 4]3 kiz dfz 4]3 k{z 4]2 4]3
3 2+K{2 o
18igf1 1 243 412(42’43’”5)1“(1 e AK{dKlz
6 2 3 1 2

(2F7r) 4]1(41"]12(42’43’ ”5)’ ”4) + M ;dg + M %2(42»43’ ”‘5)2 + M}

O

A.s CLAsSII- SUBSTRUCTURE C

Again, we start by expressing the operator structure (IIc) with diagrams and reduce the number of coordi-

nate lines. As the coordinates in this expression differ, we have to perform the coordinate change again,

7"27"3>

gﬁ 99129 "9, %9 93 9" 44
(25) [+ 22] [ + 422] (g + 42
1
2

g
Ve

P10
<m§amjbmj[m 71'171'271'3

I
P
£
S
3
§\

w
fb

y —36giq 7 7 7
(2F,) g+ M2+ M2 g+ M2

We first transform g, to ¢, and 4,, introducing an integral over ,, which correpsonds to the angle §,, - 4,

Note that the coordinate transformation has a minus sign, which results in a phase factor,
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K

—1-K, ' 1ng§ 1+K, 41 7 94
X |du, P, (u,) D ,\/E (—pfet ’ ’
J * X4< 4) LR (ZF )6412 qz(dly 9125 ”4)2 +M3,g§ +/l43rqi +M7%’

s

Combining the coordinate lines exactly cancels the phase factor and leads to

L 13g4 LK JKZ, q q
X |du, P [ RV R 8 1 > .
J ”4 X"(”[}) KZ’KZ\/_ (ZFW)G%Z 72(41’412’ ”4)2 + M 7§ + M2 g} + M

At this point, we can separate a 6j-symbol and transform the remaining coordines. Again, a phase factor is
introduced due to the coordinate transformation. Furthermore we obtain an integral over «, which corre-

sponds to the angle 4, - 4, yielding

G

4,
= X,
1
: e ) AA‘
-
C v val i 4

1 1 &y, —1-K,+ K3~ 2K+ K, —ki, Kt
X Jdu4 Py () Jdus Py (1) Dy (Dl oDy V2 V3R =DR

Ki+K, L+KG+K,

9gi§ 92 (42’ 4, ”S)HKz_kbdledz 1 4
Z(ZFW)G 42(41’%2(42’43’ %S)’ ”4)2 + M 73(42’43’ ”5)2 + M %Ag + M




SECTION A.5. CLASS II - SUBSTRUCTURE C

Simplifying the expression by combining coordinate lines, we obtain

k! —1-K,+K;-2K;+K, —k] , /
1 1 12 2773 3T 2 (\KG+Xs+4Ly
X Jdu4 Py (u,) [dus Py (1) D (/D /Dy o V2 V3 (=)

! 4 !
4 1+K,—k}, K Ki+Kp +K3+K],
924 ‘]12(42743’”5) 4,°4, 1 4,

2(2F7r)6 72(419%2(42’43’”5)’”4)2 + M %(dz’dz’ ”5)2 + M %d% + M '

Inserting the expression in eq. (4.11) again and simplifying the diagrammatic part yields

133
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In traditional form and combined with the non-diagrammatic part of the formulae, we obtain an interaction
part of

el AN AT AT Y !
L\’LZ’LS’Sl’jl 712’13’]12’]123 (d d d )
UcL,Ly,L3,8, 1, o0 S50 J125 1233 4Ly ALy ALy P23

T

X4 XS KZ K3K12 ké klz Y2 Y3
4,4, KKK, k, Z

XZXZ 1 dL3 k4 1 klZ k{Z YZ K3 1<12 Y3 K:; [(IIZ KZ X4 klZ
““Noo o 00 0 00 0 00 0 000
KX, d,\ (Y, X, 4L, \ [ Y, X, k, K, Y, Z K, Y, Z,
00 0 00 0 00 0 K K, K, X, 4], k,
1 2 7Y, 1 2 7, 1 K, K, ky Ty T 481 1
12 KVS K3, XS JL ‘4]2 X4 ‘dLl klZ -/123 ]3, ]3 klZ /6{2 ‘dLl
Sl

11 1 1
> 2 1 L, 1 L, 2 5 Ja L, 513 h e
1 1 ’ ’ ’ r 1 ’ r 1y ’ ’ ’
> 2 1 Ly S A L, 2 ) Ly 5]3 VI R/
S, Sl' A8, AL, A4S, /e{2 4L, 1 4], AL, 1 k, /e{2 4], k
9g4A %2(42743’”5)1“(2 124 24K3+Klz 1 42+K3/+K{2

2(2F7r)672(41’%2(d 43’”3) ”4) +M73(42’43’”5)2+M§4§+M.

A.6 CrAssII-SUBSTRUCTURE D

We start by expressing the operator structure (IId) with diagrams and perform the coordinate transforma-
tion again. This will result in one of the most complicated expressions, as it depends on all four single-

particle momenta.

Id 7"3>

gﬁ 0,°4, 0,4, 0545 ”4'44[4122+M2]
Z(ZFW) [ql +M] [92+M2] [73 +M][q4+/l42

P
<mjﬂm5bmj[m 77171'27I'3|

’

lm/ 1
2 % 2

—18gf1 4 9 93 94
(2F, )¢ i + M2 4 + M2 s + M2 g + M2

[‘]122 + Mfr] :
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This time we have to replace g, and g, in the first step using the replacements from eq. (4.13), yielding

ke R 1
X |du, P DD A2 TRy 2 R
I "y X4(%4) KK Kz»Kz\/_ ( ) <2F7r)6 ! Uit (dl’ 92> M‘i)z + Mi

1 75 a K+Ky 1 o 2
912 [912 + M?r] :
42(41»‘]12’ ”4)2 + M q§ + M qﬁ + M

Note that the expression for ¢, contains a minus sign, which results in an additional phase factor. As usual,

an integral was introduced over #,, which corresponds to the angle §,, - 4,. Reducing the coordinate lines

of q,, and A, results in

—2-K,-K, % 9g4 1/ z/ 1
X Jdu4 PXQ(”‘k)D;(l,K{D;(z,KZ/\/E (_1)1+K2+X4 (ZFA)GJIK +K, ; (d " )2 + M2
- 1 1> 712> 74

1 75 94 K+K,

92
42(41»‘]12’ ”4)2 + M 45 + M qf + M

[%22 + Myzr] :

We transform all three remaining coordinates in the next step, as shown in eq. (4.14), which results in

4,
G

1
a 2 d
4, 1
X - - <
lm
2 Y
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4
. | 1 ki —K— Kot K 2K+ Ky, o=k Kj+Ky+X,
8 [d”‘* Px, (1) Idus P, (45) D i Dl P P KK\/E V3D

K+K]  K+K;, +Kj+K],
4 1782 3T 812 3702
94 4, 4, 4, 1

8(2F7r)6 %(41’%2(42’43’ ”5)’”4)2 + M 72(419%2(42943’”5)’”4)2 + M
1 1
43(‘42’43’”5)2 + M Edi + M

912 (42’ 45, ”s)KlJer_klz [%2 (42, 4, ”5)2 + Myzr] :

As described earlier, the integral over # corresponds to integration of the angle 4, - 4,. Reducing coordinate
lines again yields the following expression, which is the most complicated expression so far, as all single-

particle momenta are involved,

4
1 | | ki \/_*KﬁKz+K3*2K3+K12 \/__klz K+ Ky+ X+ X +AL
xIdu4PX4(u4) [dus PXS(uS)DIQ’KI,DKZ’KZ,DKS’KS,DKIZ’KI,Z 2 377D

! 'y gt
K+K, K+K, +K+K),

9g: 4,4, A, 1
8(2F7r)6 41(41"112(42’43’ ”5)’ ”4)2 + M 92(41’%2(42’43’ ”5)’ ”4)2 + M
1 1

912 (42’ 45, ”s)KlJer_klz [412 (42’ 4, ”5)2 + M72r] :

43(42’43’”5)2 + M 24§+/Mfr

As done in all previous derivations, we insert the expression in eq. (4.11) and simplify the diagrammatic part,
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Transforming the diagrams to a traditional form, we obtain for the interaction part:

’ ’ ! ’ ! ! ’ ! ’
LLLL LS, T T T s (4,4, 4,)
IIdLl’LZ’LS’SI’]17/2*/3’A2’1123;4L1’4L2’4L3 r 22 3

- fonrite farnie) T3 B B T o0 ol

KKy Ky Ky kgl Y11,
de]ZKKKK AR

AAAAAAAAA A

ki -2 Y2 52 52 512 152 1.
\/_ (— 1)1+]3+]12+]123+ASI+Z+16 +K+K12+Y2SS -[1]1 ]2f2 f3f3 ]lzfudSzdfzkz Y ZY;YéZIZKIZKIZKZZKZZ

s omonen (1AL \ (KK Y, \ (KK Y, \({ KK, Y, K, K
K;‘K;ZKVIZZI(I%XZXS% 3 M4 1 2 712 1 2 71 2 3 12 3 3 12
0o0o0/\ooo 0oo00/\oo o 00 0
le2 X4 klZ Yl X4 dLl YZ XS dLZ Y3 XS k4 k4 -[12 -]1,2
000/\oo o 00 0 000/ )\ Jiy i /s
{dleSlku}{ku Y, Z }{ku Y, ZI}{ 1z Yz}{ 1z Yz}
leZ X4 ),I 1<3, 1(12 ](1,2 XS 4]2 k/i 1<12 K31<3, XS dLZ 4]2

B (55 1) (L S A (L i) (Lsh) (A A
W e N A RN A Y N
1 K K ) s s .451 ALy 48, by ) \ar, 1 a7,)) \ary 1k, ) by 47, &,
o 41(+K d K, 41+K+K“ X

S(ZFW)G ‘11(41’412(42’43’”5)’”4)2+/Mi42(41’%2(42’43’”5)’”4)2+ﬂ/[fr

1 1
2 3 2
%(42’43”"5) +M72rzd3+‘/l[72r

712(42’ 4, ”s)KlH{Z_kIZ [%2(42’ 45, ”5)2 + Mvzr] .
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A.7 CrLASSIV - SUBSTRUCTURE A

We start with a diagrammatic representation of structure (IVa) and reduce the number of coordinate lines,

mjﬂmj,,mj(mxd’ 71-17‘-271.3>

’ ’ ro [ V(f)
leﬁmjh mx(m:d’ T3V va

4gf1 0,-q, (0;%X0,)-q, (9, Xqy,) 0,

Il
—~
-—S\
3
3
3

(2F,)* g + 222] |qi, + M2

—864g,  q; T

9
Ea
_ W 7
- ) :
G2 (2F,) 4 + M2 g, + A22)?

b k- —432¢)
XJdu4PX4(”4)DK,Iq\/_ TW
9 (41’ 12> ”4)2_k1 ‘]122+K1 K|

ql(dl’qIZ’ ”4)2 + M [7122 +ﬂ[72r]2 1
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At this point we have to do the coordinate transformation again, starting with replacing ¢, with g, and 4,.

Thereby we introduce an integral over #,, which corresponds to the angle ¢, - 4,. This results in

k —2K-K/ 1+K+h
X Jdu4 pX4(”4)D1(11,1(1'\/£ (=pHhThe

2—Fk, 24K,
432 (4, o) am K

T(ZFW)4 41(41’%2’ ”4)2 + M [4122 +/‘ﬂ7r]2 1

n”
klZ

A - X Jd”4 PX4(”4) [d”s PXS (”S)DI;,KI'D&Z,@'Z
KKK ke, . 2162

X \/5 \/5 (_1) 1 12CT
(2F,)*

41(41’%2(42’437 ”s)’ ”4)2_k1

41(41’%2(42’43’ ”s)’ ”4)2 +M;
92 (42943’ ”5)2+K1_k12
[%2 (42, 4, ”5)2 + /%Zr]

K K, K
1 12 12
241 dz 4,7 .

Having reduced the number of coordinate lines again, we can extract one 6j-symbol and replace g,, with 4,
and A;. Of course, this introduces an integral over #, which corresponds to the angle AA2 . AA3. Afterwards
we reduce the number of coordinate lines again, yielding

Im/
2

’ N kl kl”z
1 LLoa A x J% Py () [d Py (1) D8 D
imﬁb 1 2K =K[+Kpy okl K kKL 216g;
: x V2 V3R (R o — DA
! (2F,)
- 2k
41(41» 412(42’ 43 ”s)’ ”4) '
~ X >
7{2” 41(41’712(42143’”5)’”4) + M,
2+ K~k
woldedyis) WAV

’AT’ - [%2(42’ 4, ”5)2 +j%72r]
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1
- k k//
X Jdu4 Pxé(%) Idus pXS(”i)DJ%,m’D;;J({z

’ ” 4
ﬁz X \/5_2[(1_1(‘ o \/g_klz(_l)1+1<l’+klz+1q2+dL; C, 216gA4
o (27,)

X 71(41"112(42’43’”5)’"4)2_1€1
A, 41(41"]12(42’43’”5)5”4)2+M3r
712(‘42"43’”5)2+K1_k12 K K, K

41412412.
Ay dyu) + a2
Gu\42, 43, U ”

At this point we can insert the expression in eq. (4.11) again and start by simplifying the diagrammatic part,

Jizs
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Adding the non-diagrammatic part of the expression and using a traditional representation for the 6j-symbols

and 9j-symbols, we obtain

e AR Y e !
LI’LZ’LS’SP-]] ’jZ’-/S’jlz’-/IZS (d A d )
WVaL,,L,,L3.8,. )1, )5 ] 120 J13: AL ALy AL 1203

e 2, Bt

Xy X5, A8y Ky Ky kyskyy
4),.4],,4]; K| K], /e’ &y,

XZXZ 1 1 kl 1 1 klZ klZ k{Z k{; [(1 X4 k{Z ](1/ X4 JLI
> N\oo0o 000 00 0 00 0 00 0
K, X, 4L, \ { K, X, 4L, L AL, k], ky, K,k k|, AL, k,
00 0 00 0 ., K, X, 451 1 K K X,
}{hm%} }
kiz 4L, 4], 5T T
L L,
L L

h

(NI e S f—/‘\ k

1 1 1 "

> 2 1 S A J L3§]3 h Lo 1k 4y
R NEA By Lis Ay A B Tyl 4,
S, S; 48, AL, A8, A, AL, 1 4J, AL, 1 4], AJ, 4], 4, 1 4L, 4],

Zlégz 9 (41, 91 (Az’ s, ”5)’ ”4)2461 912 (42’ 3, ”5)2+K1_k1”2

d 41(124 12
T
(2F7r)4 41(41,412(42,43,%5),%4)2 + M [%2(42’43’”) +M]2

A.8 CrASSIV - SUBSTRUCTURE B

Representing structure (IVb) diagrammatically yields

)

4§§1 0,-q, (0;X0,) -4, 4,9
"2F) g+ 22 |q + 22)

P10
<mjﬂmjbm5[m 7I'17I'27l'3|

< Sy S,

IVb

4 4 1 9
- - O——O b -

44ig, g I
T(2F,) gt + M2 [, + 22

’
my, My,
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Reducing the number of coordinate lines results in the following expression

;. l4digy g} 7
" (2F,) gi + M2 g7y + M2

At this point we need to transform the coordinates again. However, the derivation is identical to structure

(IVa) therefore we simply get the result

1
-m n k 1%
2 fa 4 1 12
{ k ar LA x - Jdu4 Py (ny) Jdus PXS(uS)DK,K,DWq,Z
i —2K=K{+Kyy 2okl Kby Ky L 36ig,
4, x \/E \/5 (=TT et O "
(2F,)

%(dp%z(dzvda’”5)’”4)2_k1
41(41’%2(42’43’”5)’”4)2+/%72r
712(42’43’”5)2+K1_k'2 K K, K.

d ld lzd 12 .
[412(42’43’%5)24_%]2 1 ’ ’

3

At this point we can insert the expression in eq. (4.11) again and start by simplifying the diagrammatic part,
Jis

Sy Lyop Ly /5
- +
1 1
2 2 5
' + R
i T 1 * Ji
1 1 2
— , . 0 S,
S 1 1 ) !
VA AL, b ky, k,
4 12 ]1
- Ottt -
L, + L,
+ 1 ]2
! L 4L, L
2 + 2 !
L e
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The interaction part in traditional form, combined with the remaining part of the formulae, reads

LY Ly L S{ Ty 3o T iy (4,4, 4,)
IVbLl,Lz,LS,Sl,jl,]2,]3,j12,]123;4L1,dL2,4L3 =273

i) B B

X4 X 1(1 1(12 kl 12
Afy.A)y.dfy KK, kL k],

AAAAAAAAA

11kl llkIZ klZ k;z k{’Z 1(1 X4 k{Z 1(1, X4 dLl 1<12 XS dLZ
000 /\00 0 000 00 0 00 0 00 0

K, X, AL, \ [ 4Ly 4L, K, ky, K, k. Ky AL, k, 11 K S, 8! 1
00 0 K, Ky X ) 4711 K K X, ) \ K, 4L, 4], iii
1 1 "
T T AT L 8 ) L, > Ja L, 35 J3 h b 1k, 4]y
12 J12 3 ’ ' ! y 1 ’ ’ ’ ' ! ’
{ , } Ll Sl ./1 Lz 2 Jz L3 i ]3 ]1 ]2 ]12 14]42 4]2
5 Ty Jes :

ar, v 4) ) Va1 a5, Vac, 1 ar,) ap, 47, 47, (1 4L, 4,

36igy 4 (4, 9,,(4,, 45, 15), ”4)2_/61 qu(45. 45, %5)2+Kl_k{;

K
7 7 12 7 12
(21 7r)4 ql(AI’ 412(‘4 2’43’“5)’ ‘/14)2 MW [qIZ(A Z’AB’ “5)2 Mzﬂ]z

A9 CrLassV

Again we start by representing structure (V) diagrammatically,

’ (A [ V(—‘)
msamjbms(m,(’,’WITrZWS \Y% mJﬂthm.\‘(mjd’ T,

2&24 0,-q, (0;X0,)-q,
2F,)" |qi + 422] (g, + A22]
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and transforming the coordinates works in exactly the same way as in the previous cases, yielding

~ k]//
o 7{17 X 3mjb’mj/h Jdu4 Py, () J‘du5 Py, (MS)D;I,K{D -

1<12’ 12
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% %2(42’43’ ”5)1+1q—k12
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K K, K
1 12 12
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Finally, we obtain an interaction part in traditional form,

e ol gl gt gt gt !
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A.1o0 Crass VII

We start by representing structure (VII) diagrammatically and reducing the number of coordinate lines,

Py I V(S)
m:ﬂmsbm:l.m:d’ ™| Vv msdm:bmszm:d’ W,
2
c? 2¢, (0,X0,)-qy, (05X0)-qy,
"(2F,)? g3, + 222)?
T q12 T

!’ ’ !’ !
= < mg m,mom, m m mom, >
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2 _432&24 qizz
" (2F,) g+ 42)

12 1(1 _klZ
X '[du5 Py (%S)DI;Z,K{Z\/E 2\/5
> _216&24 92 (dz’ 45, us )2—1612
! (ZFW)Z [712(42’43’ ”5)2 + Mi]z

Ky K
X 4,4,

We can now change the momentum dependence from ¢,, to 4, and A,, which introduces an integral over
15, which corresponds to the angle 4, - 4,. Note that this is the only class that does not have an integral over

n, and is independent of A, resulting in a much simpler expression. We obtain
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The next step is to insert the expression in eq. (4.11) again and start by simplifying the diagrammatic part,

Ji
F Loy LY Js
3 + + +
1
2 T
' + 4 2 ¥ o
” ]12 1 1 1 1 ./12
1, 0Ly X Y 3
- SI’ + 1 + Sl
A AL 1
3 1 .]1
— * + _
AN\ et
L, + L,
+ 1 ]2
Ll




152 APPENDIX A. PARTIAL-WAVE DECOMPOSITION OF THE CHIRAL FOUR-NUCLEON INTERACTION

Expressing the diagrams in a traditional form and combining the formulae yields an interaction part of

! ’ ’ ’ ! ! ! ’ !
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Four-Nucleon Extension of Spherical

Hartree-Fock

The evaluation of the Fock operator is the only part of the HF calculation requiring a modification for the
inclusion of four-body forces. The Fock operator obtains a contribution by summing over three of the four

particles multiplied with the one-body density matrix ¢,

, 1 A
@I = X 3 3, (aved | Hlabed gyg.ein

bbb ! dd

We use that ¢ is rotationally invariant in the spherical formulation of HF. Thus, it cannot depend on the
angular momentum projection and must be diagonal in both, single-particle angular momentum and its

projection, yielding

&1 = G5 10m, -

The index & excludes the angular momentum projection quantum number, but it includes all remaining
single-particle quantum numbers represented by 4. In principle, the single-particle states also contain an
isospin part. However, this part must be decoupled and cannot be handled in the coupled scheme. We,
therefore, suppress the isospin part in the following derivation for brevity.

Using this relation, we can express the four-body contribution to the Fock operator diagrammatically,
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suppressing the dependence of the Hamilton operator on the remaining quantum numbers,

(@l ]a) =

Z Z Z G350 1 8eer 1 8t 1d ful

b ol dd

|
S

where we cut the two external lines and rewrote the density matrices using ;5 = &/, The diagram can

be interpreted as an average over all projection quantum numbers,

- %a/a,,;amiﬂ,m& SN it s Y, Aabed|Hlabed), .

bor ed dd' TaTv e Ja mjmmm,
. ~ J/

{0 d’|Hlabed),

As we store matrix elements in a coupled basis, we can speed up the calculation by evaluating the averaging
in a coupled basis, with one additional complication: We have a completely antisymmetric basis and only
store one of the 24> permutations of the bra and ket states in the interaction matrix. Therefore a permuta-
tion of the single-particle states is necessary. We name this permutations ¢’ and ¢ for the bra and ket state,

respectively,

ﬁ Z sgn(a)sgn(a")4<o"(ﬂ')o"(b')a"(c')o"(d')|H|o‘(éz)a(b)a(£)o'(d)>ﬂ , (Ba)
Jals 1 Ja mfa’mfbw
oMy sgn

Sa't'c'd'|Hlabed) , =
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where used the relative permutation £ = ¢ o ¢, For brevity we use p,¢,7,5 = a(a), o(b), o(c), o(d) and
p.q. 7. = o-'(a’), o-'(b’), a’(c’), o-’(d') from now on. As the prefactor and the sum over the projection
quantum numbers is symmetric in all four particles, we can express them using p, ¢, 7, s as well. However, as
the permutations between both sides differ, we cannot simply connect the outgoing j, line with the incom-

ing j, line. Asa first step we can obtain the coupled matrix element by inserting identities in the j-lines,

i, . . .
. oy Dy W, iy
Jo > <
> J. j j j
I = " g S I e
> > ——+
/s /s I Vi Jord 7
i it T
Expressing eq. (B.1) using diagrams, inserting the above relation and cutting the /line yields
Ty iy
- < > -
T\ 72 Jr |/,
a(&l'b’['d’lHIﬂde>ﬂ = Z Sgn(f) 19 q]r ]r‘i rq
""" ]M" ]; jo qur
— +
W
A J

=OF E gy o o)

P PPV
" Joa o0 Joar Joar

=2 ¥ e (e b [0 4]0 ),
J J,,q,/},,qr Ip g 77 Js

1
]M’jM"

YNNI )

Note that at this point the lines are still not connected. However, by expressing everything in a coupled basis
and cutting the /line, we separated the antisymmetric matrix element from the factor & that we defined in
the equation above. The factor # only depends on the relative permutation, which dictates how to connect
the lines. From the diagrammatic expression it is easy to see that only the relative permutation is relevant,
as any permutation that is applied to both, bra and ket states, would yield the same diagram. We therefore
have to go through all 24 possible permutations and calculate % for each one.

We start with the simplest permutation possible,

Iy
o
/;q /-x\-[M
9({1234} i dgdoedo Togs Tos Ty Jos ]) = —sgn({1234)) —p—F—4+
]P,WA . 7
"
7

1 . ) )
- a\qu'/ﬁ/qa\fmr'fir/qr 72 jz {]P’lq’ ]M} {]M’]” ]M’} {]qu’]ﬁ ]} ’

]]W pqr
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Exchanging the first two particles only changes the sign of the relative permutation and the sign of the

3j-symbol in the top left of the diagram, which results in a simple factor.

Jp
+ +
Jul |
9«‘({2134} Ty dgdredo Togs Tos o Jos ]) = —sgn({2134)) —¢—F—+
]P,WA Vo
by
7

= (O F((1234) sy oo Sy Tog T o T)-

This is true for all permutations, effectively reducing the number of permutations we have to derive by a

factor of 2. The next permutations involve the first three particles,

T
- +
Jrg Jr | oo
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Sk Vi
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AP
F12314) sy oo S S Sy S T) = —sgn(12314)) =

+
]/’/q’ ]Pq’
et
J

= COMIBF(1324) oo o Sy S 7).
where we can see another symmetry: When exchanging the two particles that are mapped to j, and j,, the
sign of the permutation and the sign of the 3j-symbol in the top right of the diagram are changed. Addi-
tionally, the j, and j, labels are exchanged. This further reduces the number of diagrams we have to evaluate.

Combining both symmetries yields a fourth expression,

F24) oo Sy T Ty Ty T) = O IG((231) o Sy T T Ty )

= (_1)1+l‘[)+jr+‘//)q+‘//’qg<{1324} ’jq’jp’jr’j;’ qu’ -/;q’qu” .]p,qr, ]) .



We now continue with permutations involving all four particles,
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Evaluating the averaging in this way can speed up the calculation tremendously, as the sum over the projec-

tion quantum numbers does not have to be performed anymore and decoupling of the matrix elements is

only necessary for the isospin part.



(4]

(5]

[10]

References

J. Chadwick, The Existence of a Neutron, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 136, 692 (1932), DOI: 10.1098/rspa.1932.0112.

H. Yukawa, On the Interaction of Elementary Particles. I, Proceedings of the Physico-
Mathematical Society of Japan. 3rd Series 17, 48 (1935), DOI: 10.11429/ppmsj1919.17.0_48.

C.M. G. Lattes, H. Muirhead, G. P. S. Occhialini, e¢ 4L, Processes involving Charged Mesons,
Nature 159, 694 (1947), DOI: 10.1038/15969420.

R. Machleidt, K. Holinde, and C. Elster, The Bonn meson-exchange model for the nucleon-

nucleon interaction, Physics Reports 149,1(1987), DOI: 10.1016/S0370-1573(87)80002-9.

R. Machleidt, High-precision, charge-dependent Bonn nucleon-nucleon potential, Phys-
ical Review C 63, 024001 (2001), arXiv: nucl-th /0006014, DOI: 10 . 1103 / PhysRevC . 63 .
024001.

A. Rios, A. Carbone, and A. Polls, Comparison of nuclear Hamiltonians using spectral
function sum rules, Physical Review C 96, 014003 (2017), arXiv: 1702.03117, DOI: 10.1103/

PhysRevC.96.014003.

W. E. Ormand, B. A. Brown, and M. Hjorth-Jensen, Realistic calculations for c-coefficients
of the isobaric mass multiplet equation in 1pOf shell nuclei, Physical Review C 96, 024323

(2017), arXiv: 1608.08127, DOI: 10.1103/PhysRevC.96.024323.

L. Hlophe, J. Lei, C. Elster, ¢ 4L, °Li in a Three-Body Model with Realistic Forces: Sep-
arable versus Non-separable Approach, Physical Review C 96, 064003 (2017), arXiv: 1710.
02602, DOI: 10.1103/PhysRev(C.96.064003.

A. Shirokov, J. Vary, A. Mazur, ez al., Realistic nuclear Hamiltonian: Ab exitu approach,
Physics Letters B 644, 33 (2007), arXiv: nucl-th/0512105, DOI: 10.1016/].physletb.2006.
10.066.

R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Accurate nucleon-nucleon potential with
charge-independence breaking, Physical Review C s1, 38 (1995), arXiv: nucl-th /9408016,
DOI: 10.1103/PhysRevC.51.38.

159


http://dx.doi.org/10.1098/rspa.1932.0112
http://dx.doi.org/10.11429/ppmsj1919.17.0_48
http://dx.doi.org/10.1038/159694a0
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://arxiv.org/abs/nucl-th/0006014
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://arxiv.org/abs/1702.03117
http://dx.doi.org/10.1103/PhysRevC.96.014003
http://dx.doi.org/10.1103/PhysRevC.96.014003
http://arxiv.org/abs/1608.08127
http://dx.doi.org/10.1103/PhysRevC.96.024323
http://arxiv.org/abs/1710.02602
http://arxiv.org/abs/1710.02602
http://dx.doi.org/10.1103/PhysRevC.96.064003
http://arxiv.org/abs/nucl-th/0512105
http://dx.doi.org/10.1016/j.physletb.2006.10.066
http://dx.doi.org/10.1016/j.physletb.2006.10.066
http://arxiv.org/abs/nucl-th/9408016
http://dx.doi.org/10.1103/PhysRevC.51.38

160

REFERENCES

J. Fujita and H. Miyazawa, Pion Theory of Three-Body Forces, Progress of Theoretical Physics

17,360 (1957), DOT: 10.1143/PTP.17.360.

N. Kalantar-Nayestanaki and E. Epelbaum, Feature Article: The Three-Nucleon System as
a Laboratory for Nuclear Physics: The Need for 3N Forces, Nuclear Physics News 17, 22

(2007), arXiv: nucl-th/0703089, DOI: 10.1080/10506890701404222.

S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, ez 4/, Realistic models of pion-exchange
three-nucleon interactions, Physical Review C 64, o14001 (2001), arXiv: nucl-th /0102004,

DOI: 10.1103/PhysRevC.64.014001.

T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi, e 4L, Study of quark mass dependence of binding
energy for light nuclei in 2 + 1 flavor lattice QCD, Physical Review D 92, 014501 (2015), DOIL:
10.1103/PhysRevD.92.014501.

K. Orginos, A. Parreno, M. . Savage, ez al., Two Nucleon Systems at m ~ 450 MeV from Lat-
tice QCD, Physical Review D 92, 114512 (2015), arXiv: 1508.07583, DOI: 10.1103/PhysRevD.
92.114512.

E. Chang, W. Detmold, K. Orginos, e al., Magnetic structure of light nuclei from lattice
QCD, Physical Review D 92, 114502 (2015), arXiv: 1506. 05518, DOI: 10.1103/PhysRevD.92.
114502.

S. Aoki, T. Doi, T. Hatsuda, ¢t al., Lattice quantum chromodynamical approach to nuclear
physics, Progress of Theoretical and Experimental Physics 2012, 1A105 (2012), arXiv: 1206 . 5088,
DOI: 10.1093/ptep/pts010.

S. Weinberg, Nuclear forces from chiral lagrangians, Physics Letters B 251, 288 (1990), DOI:

10.1016/0370-2693(90)90938-3.

S. Weinberg, Effective chiral lagrangians for nucleon-pion interactions and nuclear

forces, Nuclear Physics B 363,3 (1991), DOL: 10.1016/0550-3213(91)90231-L.

P. Boucaud, P. Dimopoulos, F. Farchioni, ¢t al., Dynamical twisted mass fermions with
light quarks, Physics Letters B 650, 304 (2007), arXiv: hep-lat/0701012, DOI: 10.1016/7 .
physletb.2007.04.054.

R. Baron, P. Boucaud, P. Dimopoulos, ¢t 4l., Light meson physics from maximally twisted
mass lattice QCD, Journal of High Energy Physics 2010, 97 (2010), arXiv: 0911 . 5061, DOI:
10.1007/JHEPO8(20160)097.

D. R. Entem, N. Kaiser, R. Machleidt, e 4L, Peripheral nucleon-nucleon scattering at fifth
order of chiral perturbation theory, Physical Review C o1, 014002 (2015), arXiv: 1411.5335,

DOI: 10.1103/PhysRevC.91.014002.


http://dx.doi.org/10.1143/PTP.17.360
http://arxiv.org/abs/nucl-th/0703089
http://dx.doi.org/10.1080/10506890701404222
http://arxiv.org/abs/nucl-th/0102004
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevD.92.014501
http://arxiv.org/abs/1508.07583
http://dx.doi.org/10.1103/PhysRevD.92.114512
http://dx.doi.org/10.1103/PhysRevD.92.114512
http://arxiv.org/abs/1506.05518
http://dx.doi.org/10.1103/PhysRevD.92.114502
http://dx.doi.org/10.1103/PhysRevD.92.114502
http://arxiv.org/abs/1206.5088
http://dx.doi.org/10.1093/ptep/pts010
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://arxiv.org/abs/hep-lat/0701012
http://dx.doi.org/10.1016/j.physletb.2007.04.054
http://dx.doi.org/10.1016/j.physletb.2007.04.054
http://arxiv.org/abs/0911.5061
http://dx.doi.org/10.1007/JHEP08(2010)097
http://arxiv.org/abs/1411.5335
http://dx.doi.org/10.1103/PhysRevC.91.014002

161

[23] D. R. Entem, N. Kaiser, R. Machleidt, ez 4., Dominant contributions to the nucleon-
nucleon interaction at sixth order of chiral perturbation theory, Physical Review C 92,

064001 (2015), arXiv: 1505.03562, DOI: 10.1103/PhysRevC.92.064001.

[24] E.Epelbaum, H. Krebs, and U.-G. Meifiner, Precision Nucleon-Nucleon Potential at Fifth
Order in the Chiral Expansion, Physical Review Letters 115, 122301 (2015), arXiv: 1412 . 4623,

DOI: 10.1103/PhysRevlett.115.122301.

[25] D.R.Entem, R. Machleidt, and Y. Nosyk, High-quality two-nucleon potentials up to fifth
order of the chiral expansion, Physical Review C 96, 024004 (2017), arXiv: 1703.05454, DOIL:

10.1103/PhysRevC.96.024004.

[26] P.Reinert, H. Krebs, and E. Epelbaum, Semilocal momentum-space regularized chiral two-

nucleon potentials up to fifth order (2017), arXiv: 1711.08821.

[27] V. Bernard, E. Epelbaum, H. Krebs, ¢t 4l, Subleading contributions to the chiral three-
nucleon force: Long-range terms, Physical Review C 77, 064004 (2008), arXiv: 0712 . 1967,

DOI: 10.1103/PhysRevC.77.064004.

(28] V. Bernard, E. Epelbaum, H. Krebs, ¢t 4., Subleading contributions to the chiral three-
nucleon force. II. Short-range terms and relativistic corrections, Physical Review C 84,

054001 (2011), arXiv: 1108.3816, DOI: 10.1103/PhysRevC.84.054001.

[29] K.Hebeler, H.Krebs, E. Epelbaum, ez 4L, Efficient calculation of chiral three-nucleon forces
up to N3LOfor ab initio studies, Physical Review C 91, 044001 (2015), arXiv: 1502 . 02977,

DOI: 10.1103/PhysRevC.91.044001.

[30] E.Epelbaum, Four-nucleon force in chiral effective field theory, Physics Letters B 639, 456

(2006), arXiv: nucl-th/0511025, DOI: 10.1016/j .physletb.2006.06.046,

[31] E.Epelbaum, Four-nucleon force using the method of unitary transformation, The Euro-
pean Physical Journal A 34,197 (2007), arXiv: 0710.4250, DOI: 10.1140/epja/i2007-10496~
0.

[32] L Tews, T. Kriiger, K. Hebeler, e al., Neutron Matter at Next-to-Next-to-Next-to-Leading
Order in Chiral Effective Field Theory, Physical Review Letters 110, 032504 (2013), arXiv:

1206.0025,D01: 10.1103/PhysRevLett.110.032504.

(33] T.Kriiger, I. Tews, K. Hebeler, ez al, Neutron matter from chiral effective field theory
interactions, Physical Review C 88, 025802 (2013), arXiv: 1304.2212,D01: 10.1103/PhysRevC.

88.025802.

[34] N.Kaiser and R. Milkus, Reducible chiral four-body interactions in nuclear matter, 7he
European Physical Journal A s2, 4 (2016), arXiv: 1508 . 07323, DOIL: 10 . 1140 /epja /12016~

16004-7.


http://arxiv.org/abs/1505.03562
http://dx.doi.org/10.1103/PhysRevC.92.064001
http://arxiv.org/abs/1412.4623
http://dx.doi.org/10.1103/PhysRevLett.115.122301
http://arxiv.org/abs/1703.05454
http://dx.doi.org/10.1103/PhysRevC.96.024004
http://arxiv.org/abs/1711.08821
http://arxiv.org/abs/0712.1967
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://arxiv.org/abs/1108.3816
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://arxiv.org/abs/1502.02977
http://dx.doi.org/10.1103/PhysRevC.91.044001
http://arxiv.org/abs/nucl-th/0511025
http://dx.doi.org/10.1016/j.physletb.2006.06.046
http://arxiv.org/abs/0710.4250
http://dx.doi.org/10.1140/epja/i2007-10496-0
http://dx.doi.org/10.1140/epja/i2007-10496-0
http://arxiv.org/abs/1206.0025
http://dx.doi.org/10.1103/PhysRevLett.110.032504
http://arxiv.org/abs/1304.2212
http://dx.doi.org/10.1103/PhysRevC.88.025802
http://dx.doi.org/10.1103/PhysRevC.88.025802
http://arxiv.org/abs/1508.07323
http://dx.doi.org/10.1140/epja/i2016-16004-7
http://dx.doi.org/10.1140/epja/i2016-16004-7

162

(35]

(38]

[46]

REFERENCES

T. Kriiger, Neutron matter, neutron pairing, and neutron drops based on chiral effective
field theory interactions, PhD thesis, TU Darmstadt (2016), http://tuprints.ulb. tu-
darmstadt.de/id/eprint/5649.

A.Nogga, D. Rozpedzik, E. Epelbaum, ¢t 4l., Four-nucleon force contribution to the binding
energy of “He, EP] Web of Conferences 3,05006 (2010), DOI: 10.1051/epjconf/20100305006.

A. K. Motovilov, Progress in methods to solve the Faddeev and Yakubovsky differential
equations, Few-Body Systems 43, 121 (2008), arXiv: 0712 . 0620, DOI: 10.1007 /s00601-008 -
0219-5.

J. Lomnitz-Adler, V. Pandharipande, and R. Smith, Monte Carlo calculations of triton and
*He nuclei with the Reid potential, Nuclear Physics A 361,399 (1981), DOI: 10.1016/0375-
9474 (81)90642-4.

J. Carlson, Alpha particle structure, Physical Review C 38, 1879 (1988), pOI: 10 . 1103 /
PhysRevC.38.1879.

B. S. Pudliner, V. R. Pandharipande, J. Carlson, et 4l., Quantum Monte Carlo Calculations
of A < 6 Nuclei, Physical Review Letters 74, 4396 (1995), arXiv: nucl-th /9502031, DOL: 10.
1103/PhysRevLett.74.4396.

D. C. Zheng, B. R. Barrett, L. Jaqua, ez al., Microscopic calculations of the spectra of light
nuclei, Physical Review C 48,1083 (1993), arXiv: nucl-th/9304025, DOI: 10.1103/PhysRevC.

48.1083.

R. Roth and P. Navritil, Ab Initio Study of **Ca with an Importance-Truncated No-Core
Shell Model, Physical Review Letters 99, 092501 (2007), arXiv: 0705 . 4069, DOL: 10 . 1103 /
PhysRevLett.99.092501.

R. Roth, Importance truncation for large-scale configuration interaction approaches,

Physical Review C 79, 064324 (2009), arXiv: 0903.4605, DOI: 10.1103/PhysRevC.79.064324,

G. Hagen, M. Hjorth-Jensen, G. R. Jansen, ef al., Emergent properties of nuclei from ab
initio coupled-cluster calculations, Physica Scripta 91, 063006 (2016), arXiv: 1601 . 08203,
DOIL: 10.1088/0031-8949/91/6/063006.

A. Cipollone, C. Barbieri, and P. Navritil, Isotopic Chains Around Oxygen from Evolved
Chiral Two- and Three-Nucleon Interactions, Physical Review Letters 111, 062501 (2013),

arXiv: 1303.4900, DOI: 10.1103/PhysRevLett.111.062501.

V. Soma, A. Cipollone, C. Barbieri, ez al., Chiral two- and three-nucleon forces along
medium-mass isotope chains, Physical Review C 89, o61301 (2014), arXiv: 1312 . 2068, DOI:

10.1103/PhysRevC.89.061301.


http://tuprints.ulb.tu-darmstadt.de/id/eprint/5649
http://tuprints.ulb.tu-darmstadt.de/id/eprint/5649
http://dx.doi.org/10.1051/epjconf/20100305006
http://arxiv.org/abs/0712.0620
http://dx.doi.org/10.1007/s00601-008-0219-5
http://dx.doi.org/10.1007/s00601-008-0219-5
http://dx.doi.org/10.1016/0375-9474(81)90642-4
http://dx.doi.org/10.1016/0375-9474(81)90642-4
http://dx.doi.org/10.1103/PhysRevC.38.1879
http://dx.doi.org/10.1103/PhysRevC.38.1879
http://arxiv.org/abs/nucl-th/9502031
http://dx.doi.org/10.1103/PhysRevLett.74.4396
http://dx.doi.org/10.1103/PhysRevLett.74.4396
http://arxiv.org/abs/nucl-th/9304025
http://dx.doi.org/10.1103/PhysRevC.48.1083
http://dx.doi.org/10.1103/PhysRevC.48.1083
http://arxiv.org/abs/0705.4069
http://dx.doi.org/10.1103/PhysRevLett.99.092501
http://dx.doi.org/10.1103/PhysRevLett.99.092501
http://arxiv.org/abs/0903.4605
http://dx.doi.org/10.1103/PhysRevC.79.064324
http://arxiv.org/abs/1601.08203
http://dx.doi.org/10.1088/0031-8949/91/6/063006
http://arxiv.org/abs/1303.4900
http://dx.doi.org/10.1103/PhysRevLett.111.062501
http://arxiv.org/abs/1312.2068
http://dx.doi.org/10.1103/PhysRevC.89.061301

163

[47] XK. Tsukiyama, S. K. Bogner, and A. Schwenk, In-Medium Similarity Renormalization
Group For Nuclei, Physical Review Letters 106, 222502 (2011), arXiv: 1006 . 3639, DOI: 10 .

1103/PhysRevLett.106.222502.

(48] H. Hergert, S. K. Bogner, T. . Morris, ez al., The In-Medium Similarity Renormalization
Group: A novel ab initio method for nuclei, Physics Reports 621, 165 (2016), arXiv: 1512 .
06956, DOI: 10.1016/j.physrep.2015.12.007.

[49] A. Tichai, J. Langhammer, S. Binder, ¢ 4., Hartree-Fock many-body perturbation theory
for nuclear ground-states, Physics Letters B 756, 283 (2016), arXiv: 1601 . 03703, DOI: 10 .
1016/7.physletb.2016.03.029.

[so] M. Hjorth-Jensen, M. P. Lombardo, and U. van Kolck, Eds., An Advanced Course in Compu-
tational Nuclear Physics, ser. Lecture Notes in Physics. Cham: Springer International Publish-

ing (2017), 936, ISBN: 978-3-319-53335-3, DOI: 10.1007/978-3-319-53336-0.

[s1] A.Tichai, E. Gebrerufael, and R. Roth, Open-Shell Nuclei from No-Core Shell Model with

Perturbative Improvement, submitted to Physical Review Letters (2017), arXiv: 1703.05664.

[s2] E. Gebrerufael, K. Vobig, H. Hergert, ez al, Ab Initio Description of Open-Shell Nuclei:
Merging No-Core Shell Model and In-Medium Similarity Renormalization Group,
Physical Review Letters 118, 152503 (2017), arXiv: 1610 . 05254, DOI: 10 . 1103 / PhysRevLett .
118.152503.

[s3] H.Feldmeier, T. Neff, R. Roth, ez 4L, A unitary correlation operator method, Nuclear Physics

A 632, 61(1998), arXiv: nucl-th/9709038, DOI: 10.1016/S0375-9474(97)00805-1.

[s4] S.D.Glazekand K. G. Wilson, Renormalization of Hamiltonians, Physical Review D 48, 5863
(1993), DOI: 10.1103/PhysRevD.48.5863.

[ss] F. Wegner, Flow-equations for Hamiltonians, Annalen der Physik 506, 77 (1994), DOI: 10 .
1002/andp.19945060203.

[s6] R.Furnstahl, The Renormalization Group in Nuclear Physics, Nuclear Physics B - Proceed-
ings Supplements 228, 139 (2012), arXiv: 1203.1779, DOI: 10.1016/3 .nuclphysbps.2012.06.
005.

[s7] R.]J. Furnstahl and K. Hebeler, New applications of renormalization group methods in
nuclear physics, Reports on Progress in Physics 76, 126301 (2013), arXiv: 1305 . 3800, DOI: 10 .

1088/0034-4885/76/12/126301.

[s8] R. Roth, S. Binder, K. Vobig, ¢z 4., Medium-Mass Nuclei with Normal-Ordered Chiral
NN +3N Interactions, Physical Review Letters 109, 052501 (2012), arXiv: 1112.0287, DOI: 10.

1103/PhysRevLett.109.052501.


http://arxiv.org/abs/1006.3639
http://dx.doi.org/10.1103/PhysRevLett.106.222502
http://dx.doi.org/10.1103/PhysRevLett.106.222502
http://arxiv.org/abs/1512.06956
http://arxiv.org/abs/1512.06956
http://dx.doi.org/10.1016/j.physrep.2015.12.007
http://arxiv.org/abs/1601.03703
http://dx.doi.org/10.1016/j.physletb.2016.03.029
http://dx.doi.org/10.1016/j.physletb.2016.03.029
https://isbnsearch.org/isbn/978-3-319-53335-3
http://dx.doi.org/10.1007/978-3-319-53336-0
http://arxiv.org/abs/1703.05664
http://arxiv.org/abs/1610.05254
http://dx.doi.org/10.1103/PhysRevLett.118.152503
http://dx.doi.org/10.1103/PhysRevLett.118.152503
http://arxiv.org/abs/nucl-th/9709038
http://dx.doi.org/10.1016/S0375-9474(97)00805-1
http://dx.doi.org/10.1103/PhysRevD.48.5863
http://dx.doi.org/10.1002/andp.19945060203
http://dx.doi.org/10.1002/andp.19945060203
http://arxiv.org/abs/1203.1779
http://dx.doi.org/10.1016/j.nuclphysbps.2012.06.005
http://dx.doi.org/10.1016/j.nuclphysbps.2012.06.005
http://arxiv.org/abs/1305.3800
http://dx.doi.org/10.1088/0034-4885/76/12/126301
http://dx.doi.org/10.1088/0034-4885/76/12/126301
http://arxiv.org/abs/1112.0287
http://dx.doi.org/10.1103/PhysRevLett.109.052501
http://dx.doi.org/10.1103/PhysRevLett.109.052501

164

[59]

[63]

(64]

[67]

[68]

REFERENCES

H. Hergert, S. Binder, A. Caldi, ¢t al., Ab Initio Calculations of Even Oxygen Isotopes with
Chiral Two-Plus-Three-Nucleon Interactions, Physical Review Letters 110, 242501 (2013),

arXiv: 1302.7294,DOI: 10.1103/PhysRevLett.110.242501.

A. Calci, Evolved Chiral Hamiltonians at the Three-Body Level and Beyond, PhD thesis,
Technische Universitit Darmstadt (2014), http://tuprints.ulb.tu-darmstadt.de/id/

eprint/4069.

S. Schulz, SRG-Induced Four-Body Forces in Ab Initio Nuclear Structure, Master’s thesis,
Technische Universitit Darmstadt (2013), http://crunch.ikp.physik.tu-darmstadt.de/
tnp/pub/2013_schulz_master.pdf.

E. Anderson, S. K. Bogner, R. J. Furnstahl, ez 4/, Block diagonalization using similarity
renormalization group flow equations, Physical Review C 77, 037001 (2008), arXiv: 0801 .

1098,D0I: 10.1103/PhysRevC.77.037001.

E. D. Jurgenson, Applications of the Similarity Renormalization Group to the Nuclear

Interaction, PhD thesis, Ohio State University (2009), arXiv: 0912.2937.

W. Li, E. R. Anderson, and R. J. Furnstahl, Similarity renormalization group with novel
generators, Physical Review C 84, 054002 (2011), arXiv: 1106.2835, DOI: 10.1103/PhysRevC.
84.054002.

S. Reinhardt, Unitary Transformations for Nuclear Structure Calculations, PhD thesis,

Technische Universitit Darmstadt (2013), http://tuprints.ulb.tu-darmstadt.de/3448/.

N. M. Dicaire, C. Omand, and P. Navritil, Alternative similarity renormalization group
generators in nuclear structure calculations, Physical Review C 90, 034302 (2014), arXiv:

1406.1815,D0I: 10.1103/PhysRevC.90.034302.

T. Hiither, Alternative Generators for the Similarity Renormalisation Group, Master’s

thesis, Technische Universitit Darmstadt (2016).

C. Patrignani, K. Agashe, G. Aielli, ez al., Review of Particle Physics, Chinese Physics C 40,
100001 (2016), DOI: 10.1088/1674-1137/40/10/100001.

J.-W. Chen, G. Rupak, and M. J. Savage, Nucleon-nucleon effective field theory without
pions, Nuclear Physics A 653, 386 (1999), arXiv: nucl-th /9902056, DOI: 10. 1016 /S0375~
9474(99)00298-5.

S. Weinberg, Phenomenological Lagrangians, Physica A: Statistical Mechanics and its Appli-

cations 96,327 (1979), DOI: 10.1016/0378-4371(79) 902231,

E. Epelbaum, H.-W. Hammer, and U.-G. Meifiner, Modern theory of nuclear forces, Reviews

of Modern Physics 81,1773 (2009), arXiv: ©811.1338, DOI: 10.1103/RevModPhys.81.1773.


http://arxiv.org/abs/1302.7294
http://dx.doi.org/10.1103/PhysRevLett.110.242501
http://tuprints.ulb.tu-darmstadt.de/id/eprint/4069
http://tuprints.ulb.tu-darmstadt.de/id/eprint/4069
http://crunch.ikp.physik.tu-darmstadt.de/tnp/pub/2013_schulz_master.pdf
http://crunch.ikp.physik.tu-darmstadt.de/tnp/pub/2013_schulz_master.pdf
http://arxiv.org/abs/0801.1098
http://arxiv.org/abs/0801.1098
http://dx.doi.org/10.1103/PhysRevC.77.037001
http://arxiv.org/abs/0912.2937
http://arxiv.org/abs/1106.2835
http://dx.doi.org/10.1103/PhysRevC.84.054002
http://dx.doi.org/10.1103/PhysRevC.84.054002
http://tuprints.ulb.tu-darmstadt.de/3448/
http://arxiv.org/abs/1406.1815
http://dx.doi.org/10.1103/PhysRevC.90.034302
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://arxiv.org/abs/nucl-th/9902056
http://dx.doi.org/10.1016/S0375-9474(99)00298-5
http://dx.doi.org/10.1016/S0375-9474(99)00298-5
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://arxiv.org/abs/0811.1338
http://dx.doi.org/10.1103/RevModPhys.81.1773

(83]

[84]

165

R. Machleidt and D. Entem, Chiral effective field theory and nuclear forces, Physics Reports

503, 1 (2011), arXiv: 1105.2919, DOI: 10.1016/j .physrep.2011.02.001.

V. Koch, Aspects of Chiral Symmetry, International Journal of Modern Physics E 06, 203
(1997), arXiv: nucl-th/9706075, DOI: 10.1142/S0218301397000147.

D. Phillips, Building light nuclei from neutrons, protons, and pions, Czechoslovak Journal

of Physics 52, B49 (2002), arXiv: nucl-th/0203040, DOI: 10.1007/s10582-002-0079-z.

S. Scherer and M. R. Schindler, A Primer for Chiral Perturbation Theory, ser. Lecture Notes
in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg (2012), 830, ISBN: 978-3-642-19253-1,
DOI: 10.1007/978-3-642-19254-8.

E. Epelbaum, Nuclear forces from chiral effective field theory, Progress in Particle and Nu-

clear Physics 67,343 (2012), arXiv: 1001.3229, DOI: 10.1016/j .ppnp.2011.12.041.

J. Goldstone, Field theories with « Superconductor » solutions, 7/ Nuovo Cimento 19, 154

(1961), DOI: 10.1007/BFO2812722.

V. Bernard, N. Kaiser, J. Kambor, ez al., Chiral structure of the nucleon, Nuclear Physics,

Section B 388,315 (1992), DOI: 10.1016/0550-3213(92)90615-1.

E. Epelbaum, W. Glockle, and U.-G. Meif8ner, Nuclear forces from chiral Lagrangians using
the method of unitary transformation (I): Formalism, Nuclear Physics A 637,107 (1998),
arXiv: nucl-th/9801064, DOI: 10.1016/S0375-9474(98)00220-6.

S. Okubo, Diagonalization of Hamiltonian and Tamm-Dancoff Equation, Progress of The-

oretical Physics 12, 603 (1954), DOL: 10.1143/PTP.12.603.

E. Epelbaum, W. Glockle, and U.-G. Meiflner, Nuclear forces from chiral Lagrangians using
the method of unitary transformation II: The two-nucleon system, Nuclear Physics A

671, 295 (2000), arXiv: nucl-th/9910064, DOL: 10.1016/S0375-9474(99) 00821-0.

M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory. Cambridge,
Masachusetts: Perseus Books (1995), ISBN: 0-201-50397-2.

C. Ordéfiez, L. Ray, and U. van Kolck, Two-nucleon potential from chiral Lagrangians,

Physical Review C 53,2086 (1996), arXiv: hep-ph/9511380, DOI: 10.1103/PhysRevC.53.2086.

D. R. Entem and R. Machleidt, Accurate charge-dependent nucleon-nucleon potential at
fourth order of chiral perturbation theory, Physical Review C 68, 041001 (2003), arXiv:
nucl-th/0304018, D0O1: 10.1103/PhysRevC.68.041001.

D. R. Entem and R. Machleidt, Chiral 27 exchange at fourth order and peripheral NN
scattering, Physical Review C 66, 014002 (2002), arXiv: nucl-th /0202039, DOI: 10 . 1103/
PhysRevC.66.014002.


http://arxiv.org/abs/1105.2919
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://arxiv.org/abs/nucl-th/9706075
http://dx.doi.org/10.1142/S0218301397000147
http://arxiv.org/abs/nucl-th/0203040
http://dx.doi.org/10.1007/s10582-002-0079-z
https://isbnsearch.org/isbn/978-3-642-19253-1
http://dx.doi.org/10.1007/978-3-642-19254-8
http://arxiv.org/abs/1001.3229
http://dx.doi.org/10.1016/j.ppnp.2011.12.041
http://dx.doi.org/10.1007/BF02812722
http://dx.doi.org/10.1016/0550-3213(92)90615-I
http://arxiv.org/abs/nucl-th/9801064
http://dx.doi.org/10.1016/S0375-9474(98)00220-6
http://dx.doi.org/10.1143/PTP.12.603
http://arxiv.org/abs/nucl-th/9910064
http://dx.doi.org/10.1016/S0375-9474(99)00821-0
https://isbnsearch.org/isbn/0-201-50397-2
http://arxiv.org/abs/hep-ph/9511380
http://dx.doi.org/10.1103/PhysRevC.53.2086
http://arxiv.org/abs/nucl-th/0304018
http://dx.doi.org/10.1103/PhysRevC.68.041001
http://arxiv.org/abs/nucl-th/0202039
http://dx.doi.org/10.1103/PhysRevC.66.014002
http://dx.doi.org/10.1103/PhysRevC.66.014002

166

[86]

(87]

[94]

REFERENCES

R. N. Pérez, J. E. Amaro, and E. R. Arriola, Coarse-grained potential analysis of neutron-
proton and proton-proton scattering below the pion production threshold, Physical Re-

view C 88, 064002 (2013), arXiv: 1310.2536, DOI: 10.1103/PhysRevC.88.064002.

R. Navarro Pérez, . E. Amaro, and E. R. Arriola, Erratum: Coarse-grained potential analysis
of neutron-proton and proton-proton scattering below the pion production thresh-
old [Phys. Rev. C gg , 064002 (2013)], Physical Review C 91, 029901 (2015), DOIL: 10.1103/
PhysRevC.91.029901.

P. Navritil, Local three-nucleon interaction from chiral effective field theory, Few-Body

Systems 41, 117 (2007), arXiv: 0707 . 4680, DOL: 10.1007/500601-007-0193-3.

D. Gazit, S. Quaglioni, and P. Navritil, Three-Nucleon Low-Energy Constants from the
Consistency of Interactions and Currents in Chiral Effective Field Theory, Physical Re-
view Letters 103, 102502 (2009), arXiv: 0812.4444,D0OI: 10.1103/PhysRevLett.103.102502.

K. Hebeler, Private Communication (2017).
T. Hiither, Private Communication (2017).

D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum theory of angular mo-
mentum. World Scientific Publishing (1988), ISBN: 997150107 4.

G. Kamuntavi¢ius, R. Kalinauskas, B. Barrett, ez 4l., The general harmonic-oscillator brack-
ets: compact expression, symmetries, sums and Fortran code, Nuclear Physics A 695, 191

(2001), arXiv: nucl-th/0105009, DOI: 10.1016/S0375-9474(01)01101-0.

P. Navrétil, G. P. Kamuntavi¢ius, and B. R. Barrett, Few-nucleon systems in a translationally
invariant harmonic oscillator basis, Physical Review C 61, 044001 (2000), arXiv: nucl-th/

9907054, DOI: 10.1103/PhysRevC.61.044001.

S. Binder, Angular Momentum Projection and Three-Body Forces in the No-Core
Shell Model, Master’s thesis, Technische Universitit Darmstadt (2010), http://crunch.ikp.

physik.tu-darmstadt.de/tnp/pub/2010_binder_master.pdf.

S. G. Johnson, Cubature - adaptive multidimensional integration, version r.0.1 (2013),

https://github.com/stevengj/cubature.

S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Similarity renormalization group for nucleon-
nucleon interactions, Physical Review C 75, 061001 (2007), arXiv: nucl-th /0611045, DOI:

10.1103/PhysRevC.75.061001.

F.]. Wegner, Flow equations for Hamiltonians, Physics Reports 348,77 (2001), DOI: 10.1016/
S0370-1573(00)00136-8.

J. C. Slater, The Theory of Complex Spectra, Physical Review 34, 1293 (1929), DOL: 10.1103/
PhysRev.34.1293.


http://arxiv.org/abs/1310.2536
http://dx.doi.org/10.1103/PhysRevC.88.064002
http://dx.doi.org/10.1103/PhysRevC.91.029901
http://dx.doi.org/10.1103/PhysRevC.91.029901
http://arxiv.org/abs/0707.4680
http://dx.doi.org/10.1007/s00601-007-0193-3
http://arxiv.org/abs/0812.4444
http://dx.doi.org/10.1103/PhysRevLett.103.102502
https://isbnsearch.org/isbn/9971501074
http://arxiv.org/abs/nucl-th/0105009
http://dx.doi.org/10.1016/S0375-9474(01)01101-0
http://arxiv.org/abs/nucl-th/9907054
http://arxiv.org/abs/nucl-th/9907054
http://dx.doi.org/10.1103/PhysRevC.61.044001
http://crunch.ikp.physik.tu-darmstadt.de/tnp/pub/2010_binder_master.pdf
http://crunch.ikp.physik.tu-darmstadt.de/tnp/pub/2010_binder_master.pdf
https://github.com/stevengj/cubature
http://arxiv.org/abs/nucl-th/0611045
http://dx.doi.org/10.1103/PhysRevC.75.061001
http://dx.doi.org/10.1016/S0370-1573(00)00136-8
http://dx.doi.org/10.1016/S0370-1573(00)00136-8
http://dx.doi.org/10.1103/PhysRev.34.1293
http://dx.doi.org/10.1103/PhysRev.34.1293

167

[100] E.U.Condon, The Theory of Complex Spectra, Physical Review 36, 1121(1930), DOI: 10. 1103/

PhysRev.36.1121.

[1o1] A. Calci, Ab initio nuclear structure with SRG-transformed chiral NN plus NNN in-
teractions, Master’s thesis, Technische Universitit Darmstadt (2010), http://crunch.ikp.

physik.tu-darmstadt.de/tnp/pub/2010_calci_master.pdf.

[102] D.C.Zheng,].P. Vary, and B. R. Barrett, Large-space shell-model calculations for light nu-
clei, Physical Review C 50, 2841 (1994), arXiv: nucl-th /9405018, DOIL: 10.1103/PhysRevC.

50.2841.

[103] D.C.Zheng, B. R. Barrett, J. P. Vary, et al., Large-basis shell model studies of light nuclei
with a multivalued G-matrix effective interaction, Physical Review C 52,2488 (1995), arXiv:

nucl-th/9507011, DOI: 10.1103/PhysRevC.52.2488.

[104] P. Navritil and B. R. Barrett, No-core shell-model calculations with starting-energy-
independent multivalued effective interactions, Physical Review C 54, 2986 (1996), arXiv:
nucl-th/9609046,D0I: 10.1103/PhysRevC.54.2986.

[10s] C.Lanczos, An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators, Journal of Research of the National Burean of Standards

45,255 (1950), DOI: 10.6028/jres.045.026.

[106]  G. Papadimitriou, J. Rotureau, N. Michel, ef 4L, Ab initio no-core Gamow shell model cal-
culations with realistic interactions, Physical Review C 88, 044318 (2013), arXiv: 1301.7140,

DOI: 10.1103/PhysRevC.88.044318.

[107] S. Baroni, P. Navrétil, and S. Quaglioni, Ab Initio Description of the Exotic Unbound
"He Nucleus, Physical Review Letters 110, 022505 (2013), arXiv: 1210 . 1897, DOI: 10 . 1103 /

PhysRevLett.110.022505.

[108]  S.Baroni, P. Navritil, and S. Quaglioni, Unified ab initio approach to bound and unbound
states: No-core shell model with continuum and its application to "He, Physical Review

C 87, 034326 (2013), arXiv: 1301.3450, DOI: 10.1103/PhysRevC.87.034326.

[109] C. Constantinou, M. A. Caprio, J. P. Vary, ez al., Natural orbital description of the halo nu-

cleus °He (2016), arXiv: 1605.04976.

[to]  A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory. Dover Publications (1996), ISBN: 0486691861.

[tu] R.Wirth, Ab-Initio Approach to Hypernuclei, PhD thesis, Technische Universitit Darmstadt
(2018).


http://dx.doi.org/10.1103/PhysRev.36.1121
http://dx.doi.org/10.1103/PhysRev.36.1121
http://crunch.ikp.physik.tu-darmstadt.de/tnp/pub/2010_calci_master.pdf
http://crunch.ikp.physik.tu-darmstadt.de/tnp/pub/2010_calci_master.pdf
http://arxiv.org/abs/nucl-th/9405018
http://dx.doi.org/10.1103/PhysRevC.50.2841
http://dx.doi.org/10.1103/PhysRevC.50.2841
http://arxiv.org/abs/nucl-th/9507011
http://dx.doi.org/10.1103/PhysRevC.52.2488
http://arxiv.org/abs/nucl-th/9609046
http://dx.doi.org/10.1103/PhysRevC.54.2986
http://dx.doi.org/10.6028/jres.045.026
http://arxiv.org/abs/1301.7140
http://dx.doi.org/10.1103/PhysRevC.88.044318
http://arxiv.org/abs/1210.1897
http://dx.doi.org/10.1103/PhysRevLett.110.022505
http://dx.doi.org/10.1103/PhysRevLett.110.022505
http://arxiv.org/abs/1301.3450
http://dx.doi.org/10.1103/PhysRevC.87.034326
http://arxiv.org/abs/1605.04976
https://isbnsearch.org/isbn/0486691861

168

[12]

[113]

[114]

[115]

[116]

[117]

(18]

[119]

[r20]

[r21]

[r22]

[123]

REFERENCES

W. Huang, G. Audi, M. Wang, e al., The AME2016 atomic mass evaluation (I). Evaluation
of input data; and adjustment procedures, Chinese Physics C 41, 030002 (2017), DOIL: 10 .

1088/1674-1137/41/3/030002.

M. Wang, G. Audi, F. G. Kondev, ez al., The AME2016 atomic mass evaluation (II). Tables,
graphs and references, Chinese Physics C 41, 030003 (2017), DOI: 10.1088/1674-1137/41/
3/030003.

L. Angeli and K. Marinova, Table of experimental nuclear ground state charge radii: An
update, Atomic Data and Nuclear Data Tables 99, 69 (2013), DOI: 10.1016/3 .adt.2011.12.
006.

R. Roth, J. Langhammer, A. Caldi, ¢t 4., Similarity-Transformed Chiral NN+ 3N Interac-
tions for the Ab Initio Description of *C and O, Physical Review Letters 107, 072501 (201),
arXiv: 1105. 3173,D01: 10.1103/PhysRevLett.107.072501.

R. Roth, A. Calci, J. Langhammer, ez al., Evolved Chiral NN +3N Hamiltonians for Ab
Initio Nuclear Structure Calculations, Physical Review C 90, 024325 (2014), arXiv: 1311 .

3563, D01: 10.1103/PhysRevC.90.024325.

J. L. Friar, J. Martorell, and D. W. L. Sprung, Nuclear sizes and the isotope shift, Physical
Review A 56, 4579 (1997), arXiv: nuc1l-th/9707016, DOI: 10.1103/PhysRevA.56.4579,

P.J. Mohr, D. B. Newell,and B.N. Taylor, CODATA recommended values of the fundamen-
tal physical constants: 2014, Reviews of Modern Physics 88, 035009 (2016), arXiv: 1507.07956,
DOI: 10.1103/RevModPhys.88.0350009.

U. D. Jentschura, Proton radius, Darwin-Foldy term and radiative corrections, The Euro-

pean Physical Journal D 61,7 (2011), arXiv: 1012.4029, DOI: 10.1140/epjd/e2010-10414-6.

R. Pohl, A. Antognini, F. Nez, ez al., The size of the proton, Narure 466, 213 (2010), DOI: 10.
1038/nature09250.

A. Antognini, F. Nez, K. Schuhmann, ez 4l, Proton Structure from the Measurement of
2S-2P Transition Frequencies of Muonic Hydrogen, Science 339, 417 (2013), DOI: 10.1126/

science.1230016.

A. Ekstrom, G. R. Jansen, K. A. Wendy, ez al., Accurate nuclear radii and binding energies
from a chiral interaction, Physical Review C 91, os1301 (2015), arXiv: 1502 . 04682, DOL: 10.

1103/PhysRevC.91.051301.

R.J. Furnstahl, G. Hagen, and T. Papenbrock, Corrections to nuclear energies and radii in
finite oscillator spaces, Physical Review C 86, 031301 (2012), arXiv: 1207.6100, DOI: 10.1103/

PhysRev(C.86.031301.


http://dx.doi.org/10.1088/1674-1137/41/3/030002
http://dx.doi.org/10.1088/1674-1137/41/3/030002
http://dx.doi.org/10.1088/1674-1137/41/3/030003
http://dx.doi.org/10.1088/1674-1137/41/3/030003
http://dx.doi.org/10.1016/j.adt.2011.12.006
http://dx.doi.org/10.1016/j.adt.2011.12.006
http://arxiv.org/abs/1105.3173
http://dx.doi.org/10.1103/PhysRevLett.107.072501
http://arxiv.org/abs/1311.3563
http://arxiv.org/abs/1311.3563
http://dx.doi.org/10.1103/PhysRevC.90.024325
http://arxiv.org/abs/nucl-th/9707016
http://dx.doi.org/10.1103/PhysRevA.56.4579
http://arxiv.org/abs/1507.07956
http://dx.doi.org/10.1103/RevModPhys.88.035009
http://arxiv.org/abs/1012.4029
http://dx.doi.org/10.1140/epjd/e2010-10414-6
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1126/science.1230016
http://dx.doi.org/10.1126/science.1230016
http://arxiv.org/abs/1502.04682
http://dx.doi.org/10.1103/PhysRevC.91.051301
http://dx.doi.org/10.1103/PhysRevC.91.051301
http://arxiv.org/abs/1207.6100
http://dx.doi.org/10.1103/PhysRevC.86.031301
http://dx.doi.org/10.1103/PhysRevC.86.031301

169

[124] S.A. Coon, M. L. Avetian, M. K. G. Kruse, et 4l., Convergence properties of ab initio calcu-
lations of light nuclei in a harmonic oscillator basis, Physical Review C 86, 054002 (2012),

arXiv: 1205.3230, DOI: 10.1103/PhysRevC.86.054002

[125] A.Geifel, Bayessche Extrapolation fiir das No-Core Schalenmodell, Bachelor’s thesis, Tech-

nische Universitit Darmstadt (2017).

[126]  S.Binder,]. Langhammer, A. Calci, ez al., Ab initio path to heavy nuclei, Physics Letters B 736,

119 (2014), arXiv: 1312.5685, DOI: 10.1016/j.physletb.2014.07.010.

[27]  S.Binder,]. Langhammer, A. Calci, ez 4L, Ab initio calculations of medium-mass nuclei with
explicit chiral 3N interactions, Physical Review C 87, 021303 (2013), arXiv: 1211.4748, DOL:

10.1103/PhysRevC.87.021303


http://arxiv.org/abs/1205.3230
http://dx.doi.org/10.1103/PhysRevC.86.054002
http://arxiv.org/abs/1312.5685
http://dx.doi.org/10.1016/j.physletb.2014.07.010
http://arxiv.org/abs/1211.4748
http://dx.doi.org/10.1103/PhysRevC.87.021303

170



Danksagung

An erster Stelle mochte ich Prof. Robert Roth danken fiir die Mglichkeit diese Dissertation anzufertigen.
Seine hilfreichen Ratschlige und physikalische Intuition haben wesentlich zum Gelingen dieser Arbeit bei-

getragen.

Fiir die Ubernhame des Zweitgutachtens und wertvolle Diskussionen wihrend der Promotion danke ich

Prof. Hans-Werner Hammer.

Ein grofler Dank geht auch an HGS-HIRe fiir die abwechslungsreichen und interessanten Fortbildungen

im Rahmen der Graduiertenschule sowie die finanzielle Unterstiitzung von Konferenzbesuchen.

Ich danke meiner Arbeitsgruppe und Biirokollegen fiir die angenehme Arbeitsatmosphire, sowie die reich-
haltigen Diskussionen physikalischer und anderweitiger Natur. Ohne euch wiirde ich wohl noch heute iiber
das eine oder andere Problem griibeln. Besonders mochte ich Roland Wirth danken, fiir seinen unermiid-
lichen Einsatz als Systemadministrator und wertvolle Hilfe bei allen technischen und physikalischen Her-

ausforderungen.

Ganz besonderer Dank geht an Anna Eichhorn, Eskendr Gebrerufael, Alexander Tichai und Klaus Vobig

tiir das Korrekturlesen der Arbeit und die hilfreichen Verbesserungsvorschlige.
Schliefflich bedanke ich mich bei meinen Eltern, die mich wihrend des gesamten Studiums unterstiitzt ha-

ben, sowie bei all den Freunden, die mich wihrend der Promotion begleitet haben, ein offenes Ohr fiir

meine Probleme hatten und mich immer unterstiitzt haben.

71



172



Name:
Geburtsdatum:
Geburtsort:

Nationalitit:

1999 - 2008

2009 - 2011

2011 - 2013

2014 -2018

Werdegang

Stefan Schulz
25.07.1988
Giefien

deutsch

Gymnasium Philippinum Weilburg

Bachelorstudium Physik, Technische Universitit Darmstadt,

Thesis: Auswirkung der Form des Konkurrenzterms auf die Dynamik von
Réiuber-Beute Systemen

Masterstudium Physik, Technische Universitit Darmstadt,

Thesis: SRG-Induced Four-Body Forces in Ab Initio Nuclear Structure

Promotionsstudium, Technische Universitit Darmstadt

173



174



Erklarung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den angegebenen Quellen
und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen wurden, sind als solche
kenntlich gemacht. Diese Arbeit hat in gleicher oder dhnlicher Form noch keiner Priifungsbehérde vorge-

legen. Eine Promotion wurde bisher noch nicht versucht.

Darmstadt, den 6. Februar 2018

Stefan Schulz

175



	Titlepage
	Abstract
	Zusammenfassung
	Contents
	List of Abbreviations
	Introduction
	Chiral Effective Field Theory
	Chiral Symmetry
	Effective Lagrangian
	Effective Interaction
	Regularization and Renormalization
	Chiral Forces

	Angular Momentum
	Basic Concepts
	Spherical Tensors
	Transformations
	Basic Transformations
	Cutting Diagrams
	Coordinate changes

	Recoupling Coefficients

	Interaction Matrix Elements
	Jacobi Harmonic Oscillator Basis
	Four-Nucleon Partial-Wave Decomposition
	Contact Interaction
	Chiral Four-Nucleon Interaction
	Isospin Part
	Spatial Part
	Implementation


	Many-Body Calculations
	Similarity Renormalization Group
	Concept
	Generator
	Many-Body Contributions

	JT-coupled scheme
	No-Core Shell Model
	Hartree-Fock Method

	Results for a Four-Body Contact Interaction
	The EM/N500 Interaction
	The SMS/H500 Interaction

	Effects of the Chiral 4N Interaction
	Momentum Grids
	Model Space Convergence
	Interaction Classes
	Regulator Dependence
	Perturbative Inclusion
	Channel Structure
	Frequency Variation
	Relevance of the Four-Nucleon Force

	Conclusions
	Appendices
	Partial-Wave Decomposition of the Chiral Four-Nucleon Interaction
	Class I - substructure b/c
	Class I - substructure d
	Class II - substructure a
	Class II - substructure b
	Class II - substructure c
	Class II - substructure d
	Class IV - substructure a
	Class IV - substructure b
	Class V
	Class VII

	Four-Nucleon Extension of Spherical Hartree-Fock

	References
	Danksagung
	Werdegang
	Erklaerung zur Dissertation

