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Abstract

We introduce a hybrid many-body approach that combines the flexibility of the No-Core Shell Model (NCSM) with the efficiency
of Multi-Configurational Perturbation Theory (MCPT) to compute ground- and excited-state energies in arbitrary open-shell nuclei
in large model spaces. The NCSM in small model spaces is used to define a multi-determinantal reference state that contains the
most important multi-particle multi-hole correlations and a subsequent second-order MCPT correction is used to capture additional
correlation effects from a large model space. We apply this new ab initio approach for the calculation of ground-state and excitation
energies of even and odd-mass carbon, oxygen, and fluorine isotopes and compare to large-scale NCSM calculations that are
computationally much more expensive.
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Introduction. The solution of the nuclear many-body problem
with realistic interactions is at the heart of ab initio nuclear
structure theory. In recent years tremendous progress has been
made in the ab initio description of nuclear observables, par-
ticularly in the regime of medium-mass nuclei beyond the p-
shell. Innovative approaches like Coupled Cluster (CC) the-
ory [1, 2, 3, 4, 5, 6], In-Medium Similarity Renormalization
Group (IM-SRG) [7, 8, 9, 10, 11], or Self-Consistent Green’s
function (SCGF) [12, 13] have been established and provide
accurate descriptions of ground-states observables. In a pre-
vious work we have shown that many-body perturbation the-
ory (MBPT) with Hartree-Fock single-particle orbitals yields
rapidly convergent perturbation series and that low-order par-
tial sums are in agreement with state-of-the-art CC calcula-
tions [14], thus, adding to the collection of efficient medium-
mass methods.

Despite all the progress, the description of fully open-shell
medium-mass systems remains a challenge. The aforemen-
tioned methods, in their basic formulation, are limited to ground
states of nuclei with closed sub-shells. The ground state of
these nuclei is dominated by a single Slater determinant that can
serve as a reference state for the construction of the fully cor-
related eigenstate. Several extensions have been developed to
expand the range of the single-determinant methods. Isotopes
in the vicinity of shell closures can be tackled by equation-of-
motion techniques build on the ground state of a neighbouring
closed-shell nucleus [4]. Further away from shell closures, tra-
ditional shell-model approaches, build on a closed-shell core
and a small valence-space, combined with non-perturbative
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valence-space interactions derived from either CC [15] or IM-
SRG [16, 17] have been used successfully.

An important step towards a full no-core description of
open-shell nuclei with multi-determinantal reference states is
the multi-reference formulation of the IM-SRG [11]. First
applications used particle-number projected Hartree-Fock-
Bogoliubov reference states for even-mass isotopes in semi-
magic chains [18, 19, 20]. Recently, we merged the multi-
reference IM-SRG with the No-Core Shell Model (NCSM) [21,
22, 23] to address arbitrary even-mass isotopes and excited
states [24]. These methods are powerful and efficient but far
from trivial, both, conceptually and algorithmically.

In this paper we present a much simpler approach, a com-
bination of the NCSM in small model spaces with a low-order
MBPT correction to capture correlations from a large space.
This hybrid method, for the first time, allows to calculate nu-
clear ground-state and excitation energies for all open-shell sys-
tems in large no-core model spaces. After defining the Hamil-
tonian, we review multi-configurational perturbation theory and
discuss the combination with reference states obtained in the
NCSM. We then explore the convergence of the perturbative
expansion up to high orders to justify low-order truncations.
Using second-order perturbative corrections we perform a de-
tailed study of ground-state and excitation energies for carbon
and oxygen isotopes and benchmark with large-scale NCSM
calculations. Furthermore, we present the first no-core ab ini-
tio results for the fluorine isotopic chain out to the extremely
neutron-rich 31F.

Nuclear Hamiltonian. In all following calculations we start
from the chiral nucleon-nucleon (NN) interaction at next-to-
next-to-next-to leading order by Entem and Machleidt [25]. We
include a chiral three-nucleon (3N) interaction at next-to-next-
to leading order with a local regulator and a three-body cutoff
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of Λ3N = 400 MeV [26, 27]. The Hamiltonian is softened us-
ing a Similarity Renormalization Group (SRG) transformation
with a flow parameter α = 0.08 fm4 [28, 29, 30, 22, 31]. This
transformation induces many-nucleon forces that are included
consistently up to the 3N level, many-body forces beyond that
level are neglected. This SRG-evolved interaction has been
used in a number of calculations in the medium-mass regime
[6, 14, 24, 19, 20] and is, thus, ideally suited to benchmark the
present approach.

Multi-Configurational Perturbation Theory. The heart of
Rayleigh-Schrödinger perturbation theory is the definition of
an additive splitting, called partitioning, of the nuclear Hamil-
tonian into an unperturbed part H0 and a perturbation W,
such that H = H0 + W. While the choice of partitioning is
simple in the case of standard MBPT with respect to a sin-
gle Slater determinant, there is no canonical generalization to
multi-configurational reference states and several formulations
are possible. We adopt the so-called multi-configurational per-
turbation theory (MCPT) discussed in Refs. [32, 33] and also
used in Ref. [34].

We choose our multi-configurational reference state |ψref⟩ to
be a normalized eigenvector obtained in a prior NCSM calcula-
tion in a model spaceMref,

|ψref⟩ ≡
∑
ν∈Mref

cν |ϕν⟩ , (1)

where cν denotes the expansion coefficients and |ϕν⟩ the or-
thonormal many-body basis states, the simple Slater determi-
nant basis of the NCSM in our case. The unperturbed Hamilto-
nian is chosen such that the reference state fulfills an eigenvalue
relation

H0 |ψref⟩ = E(0)
ref |ψref⟩ . (2)

Formally, the unperturbed Hamiltonian can then be written in
the spectral representation

H0 = E(0)
ref |ψref⟩⟨ψref| +

∑
ν<Mref

E(0)
ν |ϕν⟩⟨ϕν| . (3)

Note that only the reference state and not the other eigenstates
of the initial NCSM calculation inMref are relevant here.

Following the Møller-Plesset idea, the zeroth-order energies
E(0)
ν of the unperturbed many-body states |ϕν⟩ outside the ref-

erence space, ν < Mref, are given by the sum E(0)
ν =

∑
p ϵp of

single-particle energies ϵp for the states occupied in |ϕν⟩. The
single-particle energies are defined via

ϵp ≡ ⟨p|H[1]|p⟩ +
∑

rs

⟨pr|H[2]|ps⟩ γrs , (4)

where H[1],H[2] are the one- and two-body parts of the full
Hamiltonian, respectively, and γrs is the one-body density ma-
trix of the reference state. In principle, an explicit three-body
term can be included as well, however, for the sake of compu-
tational simplicity we will later-on use a normal-ordered two-
body (NO2B) approximation for the inclusion of 3N interac-
tions [35]. The zeroth-order reference energy is also defined
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Figure 1: Partial sums (left panel) of 6Li and 7Li for the chiral NN+3N in-
teraction with α = 0.08 fm4 and truncation parameters Nmax = 4. The cor-
responding energy corrections for each order are displayed in the right panel,
respectively. All calculations are performed with a harmonic-oscillator basis at
ℏΩ = 20 MeV.

via these single-particle energies taking into account the multi-
determinantal character of the reference state through the mean
occupation numbers, i.e., the diagonal elements of the one-body
density matrix γpp, so that E(0)

ref =
∑

p ϵpγpp.
With the partitioning defined in Eq. (3) the zeroth- and first-

order contributions to the perturbation series for the energy read

E(0) = ⟨ψref|H0|ψref⟩ = E(0)
ref , (5)

E(1) = ⟨ψref|W |ψref⟩ = ⟨ψref|H|ψref⟩ − E(0)
ref . (6)

Obviously, the sum E(0) + E(1) reproduces the full reference en-
ergy, i.e., the eigenvalue obtained for the reference state with
the full Hamiltonian H inMref.

The second-order energy correction has the well-known form

E(2) = −
∑
ν<Mref

|⟨ψref|W |ϕν⟩|2

E(0)
ν − E(0)

ref

= −
∑
ν<Mref

|⟨ψref|H|ϕν⟩|2

E(0)
ν − E(0)

ref

(7)

= −
∑

µ′∈Mref

cµ′
∑
µ∈Mref

c⋆µ
∑
ν<Mref

⟨ϕµ|H|ϕν⟩⟨ϕν|H|ϕµ′⟩
E(0)
ν − E(0)

ref

. (8)

Higher-order perturbative contributions can be formulated in a
straight forward manner with the same basic structures for ma-
trix elements and energy denominators. Likewise the perturba-
tive corrections to the many-body states can be evaluated, which
is of interest for the computation of observables other than the
energies. One can also employ a recursive formulation, as dis-
cussed in Refs. [36, 37], to systematically extract high-order
corrections.

The matrix elements in the final expressions for the perturba-
tive corrections only involve the simple unperturbed basis states
|ϕν⟩, i.e., the Slater determinants that are the basis in m-scheme
NCSM calculations. Those matrix elements can be readily eval-
uated using standard NCSM technology. As an efficient alterna-
tive, we employ normal-ordering techniques for evaluating the
matrix elements in Eq. (8). We normal order the Hamiltonian
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Figure 2: Reference energies (◦, □) and second-order NCSM-PT energies (l, ■) with Nref
max = 0 and 2, respectively, for the ground states of 11−20C, 16−26O, and

17−31F for the NN+3N-full interaction with α = 0.08 fm4 and model-space truncation emax = 12. All calculations are performed with a Hartree-Fock optimized
single-particle basis at ℏΩ = 20 MeV. Importance-truncated NCSM calculations ( ▼) are shown for comparison [38]. Experimental values are indicated by black
bars [39].

with respect to the rightmost determinant |ϕµ′⟩ and we redo the
normal ordering for each element of the µ′ summation. Similar
techniques have been applied in quantum chemistry [40, 41].
The computational scaling of the second-order correction for
large reference spaces is given by dim(Mref)2 · n2

p · nh, where
np, nh denote the number of particle and hole states, respec-
tively.

Combining NCSM and MCPT. Using the multi-configurational
formulation of perturbation theory, we can define a two-stage
hybrid approach for the ab initio calculation of ground-state en-
ergies and excitation spectra.

The first step consists of an NCSM calculation in a small
model space, typically Nref

max = 0, 2 or 4, for a set of low-
lying eigenstates. These eigenstates guarantee good Jπ quan-
tum numbers and already contain the most important multi-
particle multi-hole correlations as a seed for the perturbative
improvement. The second step then consists of the evaluation
of the perturbative corrections in a large model space, typically
we use a truncation of the single-particle harmonic oscillator
basis at emax = (2n + l)max = 12. Each NCSM eigenstate of
interest serves as reference state for separate evaluations of the
perturbative correction. Thus, perturbation theory is used as
a convergence booster that efficiently accounts for correlations
from a huge model space.

Formally, this NCSM-PT approach is guaranteed to converge
to the exact result in two different limits: In the limit Nref

max → ∞
the perturbative energy corrections go to zero and we obtain the
exact eigenvalue. Alternatively, in the limit of the perturbative
order p → ∞ the exact value is also reproduced for all Nref

max,
provided that the perturbation series converges. In practice, we
will restrict ourselves to second-order perturbative correlations,
to keep the computational cost at a minimum, and vary Nref

max to
explore the stability of the NCSM-PT energies.

As input for the perturbative corrections the initial three-
body Hamiltonian is normal-ordered with respect to the multi-
configurational NCSM reference state. Subsequently, we dis-
card the residual three-body part and work with the chiral
Hamiltonian in normal-ordered two-body approximation [35].

Convergence Characteristics. To demonstrate that the multi-
configurational perturbation series is well behaved for NCSM
reference states, we explicitly evaluate high-order energy cor-
relations adopting the recursive scheme discussed in [36, 37].
As benchmark systems we choose 6Li and 7Li using a Nref

max = 0
reference space and a small Nmax-truncated space for the per-
turbative corrections, so that a direct comparison with explicit
NCSM calculations for the same Nmax is possible. We use an
underlying harmonic-oscillator single-particle basis for these
studies. Figure 1 shows the p-th order partial sums in the left-
hand panels and the size of the individual perturbative correc-
tions on a logarithmic scale in the right-hand panels. The dif-
ferent data sets correspond to the lowest four eigenstates from
the Nref

max = 0 space used as reference states in the perturbative
calculation. For all states the partial sums converge quickly and
higher-order energy corrections are exponentially suppressed.
The high-order partial sums agree within a few ten keV with the
results of direct NCSM calculations in the same model space.
We also find that the low-order partial sums provide a reason-
able approximation to the converged value. Note that the high-
order treatment requires the storage of the many-body basis,
and is, therefore, not applicable to medium-mass systems or
large model spaces. It serves as a proof-of-principle calculation
for the convergence of the perturbation expansion.

Ground-State Energies. For heavier systems and larger model
spaces, where we cannot compute the perturbation series up to
high orders explicitly, we limit ourselves to the computation-
ally simple second-order perturbative correction. We explore
ground and excited states through the carbon and oxygen iso-
topic chains, including even and odd-mass isotopes. For some
of these systems, large-scale calculations with the importance-
truncated NCSM are still feasible, so that we can benchmark the
NCSM-PT results directly. The importance-truncated NCSM
calculations within the NO2B approximation are performed up
to Nmax = 10 using an optimized natural orbital single-particle
basis obtained from diagonalizing a MBPT-corrected one-body
density. The use of such natural orbitals improves the model-
space convergence and eliminates the dependence on the under-

3
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Figure 3: Reference energies (◦, □) and second-order NCSM-PT energies (l, ■) with Nref
max = 2 for the ground states of 11−20C, 16−26O, and 17−31F for the

NN+3N-ind (squares) and NN+3N-full interaction (circles). The SRG flow parameter is given by α = 0.08 fm4 and all calculations are performed within a
emax = 12 truncated model space. We use Hartree-Fock optimized single-particle basis at ℏΩ = 20 MeV. Experimental values are indicated by black bars [39].
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Figure 4: Spectra obtained via second-order NCSM-PT for selected carbon and oxygen isotopes for the NN+3N-full interaction with α = 0.08 fm4 and truncation
parameter emax = 12. These calculations are performed with a harmonic-oscillator basis at ℏΩ = 16 MeV to separate center-of-mass contaminations. Importance-
truncated NCSM calculations for a sequence of model spaces are displayed in the right panel. For 19,20O and Nref

max = 4 we introduced an additional truncation
cµcµ′ ≥ 10−6 (µ , µ′) for the calculation of the second-order energy corrections in NCSM-PT in order to reduce computing time.

lying oscillator frequency [38].

The results for the ground-state energies of carbon, oxygen,
and fluorine isotopes are summarized in Fig. 2, respectively.
In addition to the NCSM-PT results including the second-order
correction for Nref

max = 0 and 2, we also show the reference en-
ergy, i.e., the NCSM eigenvalue obtained in the Nref

max space. For
these calculations we use a Hartree-Fock single-particle basis
in order to further optimize the reference states. Both the ref-
erence energies and second-order partial sums show a sizable
dependence on Nref

max. In general when starting from a Nref
max = 2

reference state NCSM-PT provides better ground-state system-
atics than Nref

max = 0 reference states. In particular NCSM-PT at
Nref

max = 2 almost perfectly reproduces the large-scale IT-NCSM

results. This indicates that the Nref
max = 2 space adds important

correlations to the reference states than cannot be captured by
the second-order perturbative correction. We conclude that the
NCSM-PT with Nref

max = 2 generally provides accurate ground-
state energies and an ideal compromise between accuracy and
computational efficiency. A single such NCSM-PT calculation
requires typically two to three orders of magnitude less comput-
ing time than the corresponding importance-truncated NCSM
calculation. With the present implementation we will be able
to perform NCSM-PT calculations with Nref

max = 2 up to the cal-
cium isotopes and slightly beyond.

The NCSM-PT ground-state energies in Fig. 2 for the
neutron-rich fluorine isotopes out to heaviest known isotope 31F
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[42] represent the first no-core ab initio calculations of these nu-
clei. This regime is relevant for the so-called oxygen anomaly
[43], i.e., the drastic shift of the neutron dripline from the oxy-
gen to the fluorine isotopic chain. Our calculations show prac-
tically constant ground-state energies in the range from 25F to
31F, in agreement with experiment. It will be very interesting to
explore this phenomenon with a range of chiral NN+3N inter-
actions, to study its robustness and the theoretical uncertainties
resulting from the input interaction.

Next we will explore the impact of chiral three-body forces
on the ground-state systematics. Therefore, we compare our
prior results for the NN+3N-full Hamiltonian to ground-state
energies obtained from using the chiral NN interaction and
keeping SRG-induced many-body terms up to the three-body
level (NN+3N-ind). Figure 3 provides a comparison of the two
interactions for the carbon, oxygen and fluorine isotopic chains.
All calculations are performed with Nref

max = 2 reference states.
We observe that in all cases the second-order results without
chiral 3N forces yield less binding and the agreement with ex-
periment is significantly worse. Of particular importance is the
impact on the oxygen dripline. While the inclusion of chiral
3N forces provides the neutron dripline at 24O, the NN+3N-ind
interaction is unable to reproduce this property and predicts the
neutron rich 25,26O to be bound more tightly than 24O. It was
already observed in prior calculations that the inclusion of chi-
ral 3N forces is necessary for the correct reproduction of the
experimentally observed dripline [43, 19].

We observe a similar trend in the fluorine chain, where the
inclusion of chiral 3N induces a kink in the ground-state bind-
ing energies at 25F, i.e., at neutron number N = 16 as in the
neighbouring 24O. Beyond 25F ground-state energies remain
constant up to 30F which corresponds to opening up the f7/2
shell. The NN+3N-ind interaction predicts a completely differ-
ent behaviour with smoothly decreasing ground-state energies
up to 29F, in contradiction to experiment.

Excitation Spectra. By evaluating the second-order correction
for different reference states extracted from the NCSM spec-
trum in the Nref

max space we can address the excited states di-
rectly. We obtain the absolute NCSM-PT energies of the ex-
cited states from separate calculations of the second-order cor-
rection and subsequently subtract the NCSM-PT ground-state
energy to extract excitation energies. Figure 4 presents the exci-
tation spectra of selected carbon and oxygen isotopes compared
to direct NCSM calculations.

It is well known that same-parity excitation energies in
NCSM converge much faster with Nmax than absolute energies.
Therefore, many of the NCSM excitation energies shown in the
right-hand columns of each panel in Fig. 4 are already quite
stable. The NCSM-PT, which leads to stable absolute energies
for the excited states, can hardly improve the convergence of
the excitation energies. We find similar stability with respect
to Nmax and Nref

max and good agreement for practically all ex-
citation energies. In cases where the level ordering changes
in the NCSM at large Nmax the NCSM-PT calculations give
the correct level ordering right away, examples are lowest two
states in 15C, and the third and fourth state in 19O. As for the

ground-state energies, an NCSM-PT calculation for Nref
max = 2

provides a good compromise of accuracy and computational ef-
ficiency. Due to the scaling with the reference-space dimension,
the NCSM-PT calculations with Nref

max = 4 reference states need
about two orders of magnitude more computing time than with
Nref

max = 2. We further note that absolute energies in NCSM are
far from being converged.

Conclusion and Outlook. We have introduced a hybrid ab ini-
tio approach, the NCSM-PT, that combines the flexibility of
the NCSM with the efficiency of MBPT techniques to compute
ground and excited-state energies in arbitrary open-shell sys-
tems in large model spaces. The NCSM in small model spaces
is used to define a multi-determinantal reference state that con-
tains the most important multi-particle multi-hole correlations
and the second-order correction from multi-configurational per-
turbation theory are used to capture correlation effects from a
large model-space. Everything is formulated in an m-scheme
basis, so that even and odd-mass nuclei and excited states can
be treated directly. We find very good agreement of the ground-
state and excitation energies obtained in NCSM-PT with direct
NCSM calculations—the accuracy of the NCSM-PT is on par
with more demanding approaches like the multi-reference IM-
SRG. We presented the first no-core ab initio calculations for
the of neutron-rich fluorine isotopes, which reproduce the so
called oxygen anomaly.

Because of its low computational cost compared to stan-
dard NCSM calculations, this approach is ideally suited for ex-
ploratory calculations over a large range of nuclei. With the
rapid progress in the construction of consistent NN+3N inter-
actions from chiral EFT at various orders and with different reg-
ulators [44, 45], survey calculations for testing and constraining
new nuclear interactions will be of great importance.
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