
Light Neutron-Rich Hypernuclei from the Importance-Truncated No-Core Shell Model

Roland Wirth, Robert Roth

Institut für Kernphysik – Theoriezentrum, Technische Universität Darmstadt, Schlossgartenstr. 2, 64289 Darmstadt, Germany

Abstract

We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium
isotopic chains — from 5

Λ
He to 11

Λ
He and from 7

Λ
Li to 12

Λ
Li — in the ab initio no-core shell model with importance truncation.

All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity
renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the
absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction,
the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and
their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei
that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic
chains are not changed by the addition of a hyperon.
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1. Introduction

The exploration of the extremes of nuclear existence is one
of the main drivers in low-energy nuclear physics today. Cur-
rent and future experimental facilities strive for more and more
neutron-rich nuclei, approaching the neutron drip line. The
structure of nuclei with large neutron excess provides valuable
information about less-constrained parts of the nuclear interac-
tion and is a challenge for nuclear theory. At the same time,
these neutron-rich nuclei play a crucial role in for nucleosyn-
thesis processes in astrophysical environments, i.e., the r pro-
cess responsible for the production of the majority of heavy el-
ements in the universe [1]. Likewise, the strong interaction at
the neutron-rich extremes governs the structure and stability of
neutron stars [2, 3].

Strangeness in nuclei has also been a focus of experimen-
tal and theoretical activity [4]. A recent highlight are the mir-
ror hypernuclei 4

Λ
H and 4

Λ
He, which exhibit a marked charge-

symmetry breaking effect [5–8]. Beyond these very light sys-
tems, which can be described theoretically with established ab
initio few-body methods [9, 10], a multitude of phenomenolog-
ical models like mean-field [11, 12], Skyrme [13, 14], cluster
[15, 16] or microscopic shell models [17, 18] have been used
to describe heavier hypernuclei. Also, quantum Monte Carlo
methods have been developed [19, 20], which can calculate
ground-state energies throughout a large part of the hypernu-
clear chart but are limited to simplified interactions. Recently,
we presented a powerful ab initio method suitable for p-shell
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hypernuclei: the importance-truncated no-core shell model (IT-
NCSM) for hypernuclei [21]. With the IT-NCSM we can com-
pute not only ground, but also excited states including all rel-
evant electromagnetic observables. In order to accelerate the
convergence of the IT-NCSM we employ similarity renormal-
ization group (SRG) transformations and we recently extended
the SRG to hyperon-nucleon (YN) and induced hyperon-nucle-
on-nucleon (YNN) interactions [22].

In this work, we connect the worlds of neutron-rich nuclei
and strangeness. We explore light neutron-rich hypernuclei and
study the impact of the additional hyperon on their structure. In
particular, we consider the helium and lithium isotopic chains
and their hypernuclear analogs. Some of these hypernuclei have
been studied in experiment [23–26], others can in principle be
produced but have not been observed [27]. Some are not acces-
sible in experiments that produce hypernuclei off stable targets.
However, the possibility of using heavy ion collisions to pro-
duce hypernuclei of widely varying mass and proton-neutron
asymmetry is actively discussed [28, 29] so that these hypernu-
clei may become accessible in the future.

While some hypernuclei from these isotopic chains have
been considered in a microscopic shell model [18, 30], this
work provides the first systematic full ab initio treatment with
interactions from chiral effective field theory. Aside from ex-
ploring the low-lying spectra of these hypernuclei we investi-
gate whether the binding provided by the hyperon-nucleon in-
teraction shifts the neutron drip line compared to the nonstrange
isotopes.
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2. Importance-Truncated No-Core Shell Model

We compute the hypernuclear spectra using the IT-NCSM
for hypernuclei [21, 31] including the Λ and Σ hyperons explic-
itly. We start from a Hamiltonian

H = ∆M + Tint + VNN + VNNN + VYN (1)

that contains the nucleonic two- and three-body interactions
VNN and VNNN , and a hyperon-nucleon interaction VYN . The
first term ∆M is a mass term that accounts for the different rest
masses of the Λ and Σ hyperons; Tint is the intrinsic kinetic en-
ergy. We use the physical masses of the proton, neutron and the
hyperons in the calculation of these terms.

This Hamiltonian contains significant short-range correla-
tions due to short-range repulsions and tensor forces, so that a
calculation with this “bare” Hamiltonian requires exceedingly
large model spaces in order to get converged energies. We im-
prove the convergence behavior of the Hamiltonian using an
SRG transformation that suppresses these correlations and re-
duces the model-space dimensions required for convergence.
The SRG [32–34] is a very general family of unitary transfor-
mations that transforms the Hamiltonian according to the flow
equation

∂Hα

∂α
= [ηα,Hα], (2)

where ηα is the anti-Hermitian generator of the transformation
and α is the flow parameter. We adopt the common choice for
the generator in nuclear physics [34]

ηα = m2
N[Tint,Hα], (3)

where the nucleon mass mN fixes the units of α.
The SRG flow induces many-body terms: the commutator

on the right-hand side of (2) contains up to four-body terms
when Hα is a two-body operator. Thus, for any finite flow pa-
rameter α, the evolved Hamiltonian Hα of an A-body system
consists of up to A-body terms. Since using the full A-body
operator is computationally not feasible, we need to truncate
the evolved Hamiltonian at some lower operator-rank. We al-
ready include initial three-body interactions for the nucleonic
part and the induced four-body terms are small for light nuclei
[35], therefore we keep terms up to the three-body level. The
hyperonic part initially consists only of a two-body interaction.
However, we recently showed [22] that the induced hyperon-
nucleon-nucleon (YNN) terms are strong and it is vital to in-
clude them in the calculation to get reliable energies and spec-
tra. Thus, we also keep the induced YNN terms and the evolved
Hamiltonian that is used in the IT-NCSM is

Hα = ∆M + Tint + ṼNN,α + ṼNNN,α + ṼYN,α + ṼYNN,α, (4)

where corrections to the mass term and intrinsic kinetic en-
ergy have been absorbed into the interaction terms. Details on
the computation of the induced YNN terms can be found in
Ref. [36].

The no-core shell model (NCSM) is based on an expansion
of the many-body wave function in terms of Slater determinants

built from harmonic-oscillator single-particle states. We define
a finite model space by limiting the total number of oscilla-
tor quanta through

∑A
i=1 2ni + li ≤ Nmax + N0, where ni and li

are the radial and orbital angular momentum quantum numbers
of the ith particle, and N0 is the number of quanta in the low-
est state allowed by the Pauli principle. Since the YN interac-
tion allows changing particle types through Λ–Σ conversion, we
have to include all particle combinations permitted by the given
charge, strangeness and isospin projection of the system un-
der consideration. To solve the many-body problem and obtain
the eigenenergies and eigenstates of the Hamiltonian, we con-
struct a matrix representation of Hα in the Slater-determinant
basis and diagonalize it. As we increase Nmax the eigenvalues
of the matrix approach those of the Hamiltonian from above
(variational principle) and convergence indicates that we have
isolated an eigenvalue of the many-body Hamiltonian.

The dimension of the model space increases quickly with
Nmax and A so that calculations even for moderate values of the
truncation parameter become computationally difficult. How-
ever, many of the basis states in the model space have only a
small overlap with the low-lying eigenstates of the Hamiltonian
that we are interested in. By selecting only relevant basis states
for inclusion into the model space via an importance measure
derived from perturbation theory, we reduce the dimension of
the importance-truncated model space by orders of magnitude
compared to the full NCSM model space. The residual effect
of the neglected basis states on observables is accounted for
by extrapolating the expectation values to the full model space.
The importance truncation of the model space with subsequent
extrapolation constitutes the IT-NCSM, which is explained in
detail in Ref. [31].

3. Light Neutron-Rich Hypernuclei

We use the hypernuclear IT-NCSM to calculate the low-
lying states of single-Λ hypernuclei throughout the helium and
lithium isotopic chains. The initial Hamiltonian consists of an
NN interaction at next-to-next-to-next-to-leading order (N3LO)
chiral effective field theory by Entem and Machleidt [42], an
NNN interaction at N2LO by Navrátil [43], and a YN interac-
tion at LO by Polinder et al. [44]. The regulators in the nu-
cleonic sector are chosen as ΛN = 500 MeV/c, for the hyper-
onic sector we employ two different cutoffs ΛY = 600 MeV/c,
700 MeV/c in order to estimate the remaining uncertainty due
to the truncation of the chiral expansion at leading order. This
Hamiltonian is SRG-evolved to a flow parameter of α = 0.08 fm4,
as described in the previous section, and we apply the IT-NCSM
to compute the four lowest states up to Nmax = 12 with a basis
frequency of ~Ω = 20 MeV. We always show the low-lying
states with natural parity, which, in all the cases considered, is
the parity of the calculated ground state. Our calculations do
not include continuum degrees of freedom, which are impor-
tant for states close to threshold, and may lower the absolute
energies of these states.

Figure 1 shows Nmax sequences for a set of helium hyper-
nuclei. The ground state of 5

Λ
He (panel a) is practically con-

verged at Nmax = 12. The heavier system 9
Λ

He (panel c) con-
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Figure 1: Absolute energies of the low-lying spectrum of four helium hyper-
nuclei for the YN interaction with ΛY = 700 MeV/c cutoff. The colors denote
angular momenta: blue for J = 0 (1/2), red for J = 1 (3/2), green for J = 2
(5/2) for even (odd) systems. The gray bands mark the envelope of the fit func-
tions used to extrapolate the energies to infinite model-space size. Note that the
nuclei shown in (a) and (c) are particle-stable while those in (b) and (d) are not,
according to the calculation.

verges more slowly so that we resort to extrapolation for the
infinite-model-space result. We perform the extrapolation by
fitting three-parameter exponentials and a four-parameter ex-
tension with an additional N2

max-term to five different subsets of
the Nmax sequence consisting of four to six points. The mean
and standard deviation of these ten fit results comprise the ex-
trapolated value and its uncertainty. The envelope of the extrap-
olation functions for the ground state shows only little spread
and allows for a reliable extraction of the converged energy for
9
Λ

He. The excited states, as well as the ground states of 6
Λ

He and
10
Λ

He, show a slower convergence. These states are particle-
unbound, which manifests itself in the different convergence
behavior.

In Fig. 2, we show extrapolated absolute energies of low-
lying states of helium hypernuclei and their nucleonic parents.
The nucleonic calculation slightly underbinds the helium iso-
topes beyond 4He, but correctly reproduces the particle-insta-
bility of 5He and 7He. Experimental data on hyperon separa-
tion energies is only available for the isotopes up to 7

Λ
He. The

700 MeV/c cutoff moderately overbinds 5
Λ

He, which is a long-
standing issue with YN interactions that reproduce the binding
energies of the A = 4 system [9]. The overbinding in 6

Λ
He and

7
Λ

He is only a few hundred keV, but this is in part due to the nu-
cleonic calculation underbinding the helium isotopes. The YN
interaction with 600 MeV/c cutoff overbinds all these isotopes
by about 2 MeV.

The nonstrange helium isotopes show a marked odd-even
staggering that renders the odd isotopes unstable against neu-

tron emission. The additional binding provided by the hyperon
does not suffice to stabilize 6

Λ
He, which is again an artifact of

the overbinding in 5
Λ

He. The ground-state doublet of 8
Λ

He is pre-
dicted to be at threshold within extrapolation uncertainties for
the 700 MeV/c cutoff. The 600 MeV/c cutoff puts the ground
state 0.26(6) MeV below the 7

Λ
He + n threshold.

The staggering is also reflected in the neutron separation en-
ergies shown in Fig. 3. Our results agree with experiment at the
level of a few hundred keV, only the separation energy in 5He
is too low because the 3/2− resonance is predicted too high.
Conversely, the separation energy in the daughter hypernucleus
6
Λ

He is too low because the Hamiltonian overbinds 5
Λ

He. Unlike
the absolute ground-state energies, the neutron separation ener-
gies of the hypernuclei are remarkably robust against variation
of the regulator cutoff of the YN interaction.

The separation energies of the hypernuclei follow the trend
of their nucleonic parents with a shift, as expected by the 1 MeV-
per-additional-nucleon increase of the hyperon separation en-
ergy. This behavior holds up to 9

Λ
He, which has a neutron sep-

aration energy of approx. 3.6 MeV, compared to 2.3 MeV in
8He. Surprisingly, the neutron separation energy of the next hy-
pernucleus along the chain, 10

Λ
He, is essentially the same as the

experimental value for 9He and well in the unbound region. At
the N = 8 shell closure, 11

Λ
He shows a similar behavior. The

hyperon provides very little additional binding, if any, for these
very neutron-rich systems and the neutron drip line is the same
as for the nonstrange isotopes. From an mean-field perspective
this may be interpreted as the hyperon lowering the ν0p3/2 orbit
by 1 MeV while leaving the energy of the ν0p1/2 unaffected.

The low-lying states of hypernuclei and their nucleonic par-
ents along the lithium isotopic chain are shown in Fig. 4. Over-
all, the calculations for the nucleonic parents are well-converged
for the lighter isotopes and we get agreement between the calcu-
lated and experimental binding energies to better than 1 MeV.
The notable exception is 10Li, where we fail to reproduce the
parity inversion and the lowest negative-parity state is predicted
at an excitation energy of 1.2(5) MeV. For the heaviest isotope
considered, 11Li, convergence is not complete at Nmax = 12,
and the ground state is slightly overbound. The excited state is
probably a resonance, which converges slowly in the IT-NCSM
and, therefore, has larger extrapolation uncertainties. Given the
halo nature of systems like 9Li and 11Li, the level of agreement
with experimental data is surprising.

The description of the hypernuclear states is similar in qual-
ity to the more symmetric hypernuclei that we considered pre-
viously [22]. The 700 MeV/c cutoff reproduces the spectrum
of 7

Λ
Li and the known ground-state energies with a systematic

overbinding of 1 to 2 MeV. The 600 MeV/c cutoff overbinds
more strongly by 2 to 3 MeV and produces smaller splittings
among the hypernuclear doublet states.

The ground-state energies show a common trend with both
cutoffs: the addition of a neutron to 7

Λ
Li lowers the ground-state

by approximately 8 MeV with 7 MeV originating from the ad-
ditional binding of the nucleonic core. The remainder stems
from the increase of the Λ binding energy, which is in line with
the commonly-observed value of 1 MeV per additional nucleon
[23]. After the initial drop the ground-state energies continue
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Figure 2: Extrapolated energies of low-lying natural-parity states of hypernuclei along the helium chain. Shown are the nucleonic parents and the single-Λ
hypernuclei for two values of the YN interaction regulator ΛY = 600 MeV/c (dashed lines) and ΛY = 700 MeV/c (solid lines). Experimental values [23, 25, 37–40]
are marked by triangles, vertical lines denote extrapolation uncertainties. The colors denote angular momenta: blue for J = 0 (1/2), red for J = 1 (3/2), green for
J = 2 (5/2) and light blue for J = 3 (7/2) for even (odd) systems.
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Figure 3: Neutron separation energies of helium (hyper-)isotopes. Shown are
the separation energies calculated for the nucleonic parents (blue circles) and
for their daughter hypernuclei using the ΛY = 700 MeV/c (red squares) and
ΛY = 600 MeV/c (green triangles) cutoffs. Experimental values are shown as
black bars (crosses) for the (hyper-)nuclei. Vertical lines indicate extrapolation
uncertainties.

to decrease more slowly with a slight odd-even staggering, fol-
lowing the trend of the nucleonic parents.

At 10
Λ

Li, the energies start to saturate, indicating proximity
to the neutron drip line. The core of 11

Λ
Li, which is predicted

to be particle unstable with respect to neutron emission, is sta-
bilized by the presence of the hyperon (cf. Fig. 5). Note that
the doublets originating from the 1+ ground state and the very
low-lying 2+ excitation in 10Li completely overlap, forming an
isolated 3/2+ ground state and a nearly-degenerate triplet very
close to the 10

Λ
Li + n threshold.

The nucleon separation energies, shown in Fig. 5, are less
sensitive to the YN cutoff than the absolute binding energies.
The nucleonic Hamiltonian reproduces the experimental values
to a few hundred keV, except for 11Li, for which the separa-
tion energy is 1.5(4) MeV too high. As for the helium chain,
the neutron separation energies of the hypernuclei are shifted
to higher values compared to their nucleonic parents. The YN
interaction with 600 MeV/c cutoff reproduces the experimen-
tally known neutron separation energies of 8

Λ
Li and 9

Λ
Li almost

within extrapolation uncertainties. The larger cutoff provides
systematically smaller separation energies.

While the ground-state doublet of 12
Λ

Li is particle-stable, the
behavior of the neutron separation energies is different from the
lighter isotopes: the nucleonic core has a neutron separation en-
ergy of 1.9(4) MeV, but the additional hyperon lowers this value
to 1.2(4) MeV (1.0(4) MeV) for the 700 MeV/c (600 MeV/c)
cutoff. The experimental value for the 11Li neutron separation
energy is only 0.40 MeV and the calculation overestimates this
value because the nucleonic Hamiltonian overbinds the 11Li
ground state. Thus, when using a Hamiltonian that correctly
reproduces the 11Li ground state, the neutron separation energy
of 12

Λ
Li will be lower and very close to the 11

Λ
Li + n threshold.

The lack of additional binding due to the hyperon indicates that
no neutrons beyond the N = 8 shell closure will be bound. The
hypernuclear drip line is thus not different from the nucleonic
one.

4. Conclusions

We calculate neutron-rich hypernuclei throughout the he-
lium and lithium isotopic chains in an IT-NCSM framework us-
ing a Hamiltonian from chiral effective field theory. For all but
the lightest isotopes considered, this is the first time these hy-
pernuclei have been addressed in an ab initio framework with
chiral interactions. Our calculations for the ground and first-
excited states of the nucleonic parents show good agreement
with experimental data, except for 8He and 11Li, which show
larger discrepancies, as well as 9He and 10Li, where the calcu-
lation fails to reproduce the parity inversion of the ground state.
Some of these deficiencies can be attributed to missing contin-
uum degrees of freedom from the calculation [45–47].

Consistent with our previous findings in more symmetric
hypernuclei, the absolute energies show a large cutoff depen-
dence. The YN interaction with 600 MeV/c cutoff overbinds
systematically and the 700 MeV/c cutoff is consistently closer
to experiment. If one takes a slightly more phenomenological
approach with the aim of providing a good description of the
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Figure 4: Like Fig. 2, but for the lithium chain. Experimental values are taken from [23, 37–41].
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Figure 5: Same as Fig. 3, but for lithium (hyper-)isotopes.

available data, these results can be used to select a specific cut-
off and tune the interaction parameters to achieve this.

The overbinding is relatively constant across the isotopic
chains so that differential quantities like neutron separation en-
ergies are less sensitive to the cutoff of the YN interaction reg-
ulator. We achieve a reproduction of experimental neutron sep-
aration energies to better than 100 keV for the hypernuclei we
considered, except for 6

Λ
He, for which the separation energy

is skewed by overbinding of the 5
Λ

He ground state. For the
nonstrange nuclei, experimental values are reproduced to bet-
ter than 1 MeV. We find indications that 12

Λ
Li, which has an

N = 8 neutron shell closure, is at the drip line. Contrary to
the naive expectation, in the helium chain the hyperon does not
provide additional binding to neutrons beyond N = 6 so that
the heaviest particle-stable isotope is 9

Λ
He.
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