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Abstract

In this work, we merge two successful ab initio nuclear-structure methods, the no-core shell
model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-
SRG), to define a novel many-body approach for the comprehensive description of ground
and excited states of closed- and open-shell medium-mass nuclei.

Building on the key advantages of the two methods—the decoupling of excitations at the
many-body level in the IM-SRG, and the exact diagonalization in the NCSM applicable up to
medium-light nuclei—their combination enables fully converged no-core calculations for an
unprecedented range of nuclei and observables at moderate computational cost. The e�ciency
and rapid model-space convergence of the new approach make it ideally suited for ab initio
studies of ground and low-lying excited states of nuclei up to the medium-mass regime.

Interactions constructed within the framework of chiral e�ective field theory provide an
excellent opportunity to describe properties of nuclei from first principles, i.e., rooted in
quantum chromodynamics, they overcome the lack of predictive power of phenomenologi-
cal potentials. The hard core of these interactions causes strong short-range correlations,
which we soften by using the similarity-renormalization-group transformation that acceler-
ates the model-space convergence of many-body calculations. Three-nucleon e�ects, which
are mandatory for the correct description of bulk properties of nuclei, are included in our
calculations by using the normal-ordered two-body approximation, which has been shown to
be su�cient to capture the main e�ects of the three-nucleon interaction.

Using these interactions, we analyze energies of ground and excited states in the carbon and
oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an
important benchmark. Furthermore, we study the Hoyle state in 12C—a three-alpha cluster
state that cannot be converged in standard NCSM calculations. Moreover, we explore island-
of-inversion physics in magnesium isotopes, where the shell-model magic numbers vanish and
new ones appear.

Due to our implementation of the IM-NCSM method, we are restricted to nuclei with
even mass numbers. We propose and benchmark a simple and straightforward idea for the
extension to odd nuclei within the framework of IM-NCSM using a particle-attached or
particle-removed scheme.
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Zusammenfassung

In dieser Arbeit kombinieren wir zwei in der Kernstrukturphysik erfolgreiche ab initio Viel-
teilchenmethoden, das No-Core Schalenmodell (NCSM) und die Multireferenz In-Medium
Similarity Renormalization Group (IM-SRG) Transformation. Dies ermöglicht einen neuen
Zugang zur umfassenden Beschreibung von Grund- und Anregungszuständen mittelschwerer
Kerne mit o�ener und geschlossener Schale.

Ausgehend von den Hauptvorteilen beider Methoden – der Entkopplung der Anregungen
auf Vielteilchenlevel in der IM-SRG und der exakten Diagonalisierung im NCSM für leich-
te bis mittelschwere Kerne – ermöglicht ihre Kombination vollständig konvergierte no-core
Rechnungen für einen noch nie erreichten Bereich der Kerne und Observablen mit moderatem
Rechenaufwand. Aufgrund ihrer E�zienz und rapiden Modelraumkonvergenz eignet sich die
neue Methode ideal für ab initio Studien von Grundzuständen und tiefliegenden angeregten
Zuständen von Kernen bis ins mittelschwere Regime.

Wechselwirkungen aus der chiralen e�ektiven Feldtheorie bieten eine hervorragende Mög-
lichkeit, Eigenschaften von Kernen ausgehend von den Grundprinzipien der Physik verankert
in der Quantenchromodynamik zu beschreiben und die mangelnde Vorhersagekraft von phä-
nomenologischen Wechselwirkungen zu überwinden. Die starke, kurzreichweitige Abstoßung
der Wechselwirkungen ruft starke, kurzreichweitige Korrelationen hervor, die wir mithilfe der
Similarity-Renormalization-Group Transformation, die die Modelraumkonvergenz der Viel-
teilchenrechnungen beschleunigt, abmildern. Dreinukleonen-E�ekte, die für die korrekte Be-
schreibung der Masseneigenschaften der Kerne zwingend erforderlich sind, werden in unseren
Rechnungen mittels der normalgeordneten Zweiteilchenapproximation behandelt, die ausrei-
chend ist, um die Hauptwirkung der Dreiteilchenbeiträge zu erfassen.

Mit diesen Wechselwirkungen analysieren wir Grund- und Anregungsenergien in Kohlen-
sto�- und Sauersto�ketten, in denen traditionelle NCSM Rechnungen noch machbar sind und
einen wichtigen Richtwert zum Vergleich bieten. Weiterhin studieren wir den Hoyle-Zustand
in 12C, einen Clusterzustand aus drei Alphateilchen, der in traditionellen NCSM Rechnungen
nicht konvergiert werden kann. Weiterhin untersuchen wir die Physik der sogenannten „Island
of Inversion“ in Magnesiumisotopen, bei denen die magischen Zahlen aus dem Schalenmodell

verschwinden und Neue entstehen.
Aufgrund unserer Implementation der IM-NCSM Methode sind wir auf Kerne mit gerader

Massenzahl beschränkt. Wir schlagen eine einfache Idee für die Erweiterung auf ungerade
Kerne mittels des „particle-attached particle-removed“ Schemas vor und analysieren diese.
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Introduction

The goal of physics, in general, is the understanding of nature. In particular, theoretical
nuclear structure physicists aim at a consistent theoretical description of the atomic nucleus
in the low-energy regime based on the fundamental laws of nature.

The nucleus is a compound of protons and neutrons, both called nucleons. As a first
approximation, we describe the nucleus as a complex non-relativistic many-body quantum
system made of point-like fermionic nucleons. The complexity of this system is rooted,
amongst others, in the fact that the nucleons can interact with each other via the nuclear
force that is deduced from the three fundamental forces of the standard model of physics
[PS95; Ram99]. Furthermore, the nucleons themselves are not point-like particles as we treat
them, but they are composed of quarks confined in colorless baryons. However, the quarks
carry not only color charge, but also electric charge, and they can convert into each other.
Furthermore, they can interact with each other via the electromagnetic and weak force, unified
in the electroweak theory [Gla61; Wei67], as well as the strong force formulated in quantum
chromodynamics (QCD) [PS95]. Consequently, the nuclear force among the nucleons is the
residual force the nucleons in the nucleus feel derived from these fundamental forces.

Tackling the quantum system built of nucleons poses two key challenges: It is neither clear
how to construct a nuclear interaction based on the fundamental theories nor how to solve
the nuclear many-body problem associated with the Schrödinger equation.

Concerning the first point, there are di�erent philosophies since the construction of a
nuclear interaction is not unique. They can be roughly classified into phenomenological
and QCD-motivated realistic interactions. It is desirable to derive the nuclear interaction
from QCD, which contains quarks and gluons, where the latter mediates the strong force, as
fundamental degrees of freedom. Unfortunately, QCD exhibits a non-perturbative character
in the low-energy regime relevant for nuclear physics. Therefore, an e�ective description of
the nucleus is used, where nucleons and pions, instead of quarks and gluons, are the e�ective
degrees of freedom. The coupling between nucleons and pions is described consistently with
respect to the symmetries of QCD in the framework of chiral e�ective field theory [ME11;
EHM09].

Once an interaction is given, it is still extremely di�cult to solve the Schrödinger equation.
One of the most active areas in nuclear structure theory nowadays is the development of ab
initio many-body methods for the comprehensive description of nuclei. The term ab initio
ensures that the many-body technique is completely converged with respect to all truncations
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Contents

that have to be introduced in order to make the Schrödinger equation numerically tractable. A
special focus is put on the ground states, low-lying excitations and spectroscopic observables.
Traditionally, nuclear spectroscopy is the domain of shell-model-type approaches, both the
valence-space shell model [Cau+05] and the ab initio no-core shell model (NCSM) [Nav+07;
Bro01; BNV13]. These methods solve a large-scale eigenvalue problem of the Hamiltonian in
a truncated model space and address ground and excited states on equal footing, but they
are limited by the basis dimension [Var+09]. Because of that, these methods are typically
limited to nuclei in the p-shell.

Several other methods have been developed that tackle the many-body problem from a
di�erent angle, among them the coupled-cluster (CC) approach [Bin+14; Bin+13; Coe58;
W≥o+05; Hag+08; Hag+07] and the in-medium similarity renormalization group (IM-SRG)
[TBS11; TBS12; Her+16; Her17]. Instead of solving the eigenvalue problem directly, these
methods use a similarity transformation of the Hamiltonian to decouple a given reference
state, representing the ground state, from all particle-hole excitations. This concept of decou-
pling is very powerful and complementary to a direct NCSM-type diagonalization. Generally,
CC and IM-SRG have di�erent computational characteristics and a much better scaling with
particle number, but their basic formulation is limited to ground states. The complementar-
ity with NCSM suggests that a combination of both philosophies, direct diagonalization and
many-body decoupling, could be advantageous. First steps along these lines are the e�ective
interactions for the valence-space shell model extracted from CC and IM-SRG calculations
presented recently [Bog+14; Str+16; Jan+14; Str+17; Jan+16].

In contrast to valence-space methods, we propose an ab initio no-core approach, where
convergence with respect to all model-space truncations is demonstrated explicitly. For the
calculations presented here, we use a chiral nucleon-nucleon (NN) plus three-nucleon (3N)
Hamiltonian softened via the free-space similarity-renormalization-group (SRG) transforma-
tion to accelerate model-space convergence. Since the complete inclusion of 3N interactions
in the many-body method is associated with significantly increased computational cost, we
rely on the multi-reference normal-ordered two-body approximation which has been justified
to be su�cient to capture the main e�ects of the 3N interaction [GCR16].

This work is organized as follows: In part I, we summarize the basics of the (free-space)
SRG transformation, the Hartree-Fock method and the concept of normal ordering. In par-
ticular, the normal-ordering technique is crucial for the formulation of the multi-reference
IM-SRG. In part II, we extensively discuss the framework of the multi-reference IM-SRG and
briefly introduce the NCSM. Subsequently, we describe why and how we merge them into a
consistent ab initio many-body tool that we call in-medium no-core shell model (IM-NCSM).
In part III, we present results of IM-NCSM calculations for ground and excited states of
open-shell nuclei and benchmark them against large-scale NCSM calculations. We propose a
simple and straightforward extension of the IM-NCSM using a particle-attached or particle-
removed formalism to tackle odd nuclei. To test how well this extension works, we present
results for selected nitrogen isotopes. In part IV, we provide a brief summary and outlook
on remaining challenges for forthcoming investigations.
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Basics
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Introduction to Part I

In this part, we present the basic tools necessary to formulate the in-medium no-core shell
model that will be introduced in the next part.

In chapter 1, we start with the basic concepts of the (free-space) similarity-renormalization-
group (SRG) method which is a powerful technique to soften an interaction, i.e., to pre-
diagonalize its matrix representation. Furthermore, we derive the so-called operator flow
equation, which is an essential ingredient for the in-medium similarity-renormalization-group
(IM-SRG) transformation.

In chapter 2, we recap the Hartree-Fock (HF) method which is a simple approximate many-
body method. It provides a simple and e�cient way to optimize a single-particle basis, which
can be used as a starting point for a more sophisticated many-body methods like IM-SRG or
no-core shell model.

Finally, in chapter 3, we discuss the concept of normal ordering and Wick’s theorem, which
are crucial to include three-body interactions in an approximate way. Since, in particular, the
whole IM-SRG framework is formulated in terms of normal-ordered operators, we illustrate
the generalized Wick’s theorem which is a mandatory technique for calculating products of
normal-ordered operators. The concept of normal ordering is always based on a given A-body
state that we call the reference state. We discuss three di�erent classes of reference states:
the physical vacuum |0Í, a single Slater determinant |�Í, or a linear combination of Slater
determinants |�Í, respectively. The latter one is the most significant case for this work.
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Chapter 1

Similarity Renormalization Group

The similarity-renormalization-group (SRG) transformation is a well established method to
soften an interaction, i.e., to pre-diagonalize its matrix representation. The basic idea is to
apply a unitary transformation to the initial Hamiltonian such that its matrix representation
changes into band- or block-diagonal form in a specific basis, or in other words, to suppress
matrix elements between high- and low-lying basis states. As a consequence, the convergence
behavior of many-body calculations, such as the no-core shell model, is improved. Since a
unitary transformation does not change the eigenvalues of an operator, the solution of the
many-body problem using a unitarily transformed Hamiltonian is identical to the solution
the eigenvalue problem of the initial Hamiltonian.

Let U
–

be a unitary operator depending continuously on the SRG flow parameter –. Hence,
the SRG transformation on the initial Hamiltonian H is given by

H
–

:= U †
–

HU
–

, (1.1)

where H
–

is called the SRG-transformed or SRG-evolved Hamiltonian. Taking the total
derivative of that expression with respect to SRG flow parameter – yields

dH
–

d–
= dU †

–

d–
HU

–

+ U †
–

H
dU

–

d–
. (1.2)

Since the transformation operator U
–

is unitary, i.e., U
–

U †
–

= , we obtain by di�erentiating
this expression with respect to –

dU †
–

d–
= ≠U †

–

dU
–

d–
U †

–

. (1.3)

With the aid of this relation and the unitarity of U
–

, we can rewrite (1.2) in the following
form

dH
–

d–
= ≠U †

–

dU
–

d–
U †

–

HU
–

+ U †
–

HU
–

U †
–

dU
–

d–
(1.4)
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1. Similarity Renormalization Group

= ≠U †
–

dU
–

d–
H

–

+ H
–

U †
–

dU
–

d–
(1.5)

=
3

≠ U †
–

dU
–

d–

4
H

–

≠ H
–

3
≠ U †

–

dU
–

d–

4
(1.6)

=
#
≠U †

–

dU
–

d–
, H

–

$
. (1.7)

In the last step, we introduced the commutator of two operators that is defined by
#
A, B

$
:=

AB ≠ BA for arbitrary operators A and B . The generator of the transformation is defined
as

÷
–

:= ≠U †
–

dU
–

d–
. (1.8)

Hence, we have to solve an initial-value problem with the initial condition H
–=0 = H in

order to find the SRG-evolved Hamiltonian H
–

. Using this definition, the operator flow
equation for the SRG-evolved Hamiltonian H

–

is given by

dH
–

d–
=

#
÷

–

, H
–

$
. (1.9)

The generator of the transformation ÷
–

is anti-Hermitian, i.e., ÷†
–

= ≠÷
–

, which can be
shown as follows

÷
–

+ ÷†
–

= ≠U †
–

dU
–

d–
≠ dU †

–

d–
U

–

= ≠d(U †
–

U
–

)
d–

= ≠d
d–

= 0. (1.10)

There are many possibilities for the choice of the generator ÷
–

, for instance the Wegner gen-
erator [Weg94]. Typically, the generator is chosen as a commutator of a Hermitian operator
and the SRG-evolved Hamiltonian H

–

, since this ensures anti-Hermiticity of the generator.
In this work, the generator of the SRG transformation is chosen as the commutator of the
intrinsic kinetic energy T int and the SRG-evolved Hamiltonian H

–

[BFP07], i.e.,

÷
–

:= m2
N

#
T int, H

–

$
, (1.11)

where m
N

is the nucleon mass, and the intrinsic kinetic energy is defined as

T int := T ≠ T cm. (1.12)

Here, T and T cm denote the total and the center-of-mass kinetic energy, respectively. This
generator drives the Hamiltonian towards a diagonal form in a basis of eigenstates of the
intrinsic kinetic energy, i.e., momentum eigenstates. For this specific choice of the generator,
a dimensional analysis of the units yields that the SRG flow parameter – has the dimension
of length to the power of four.

The SRG transformation of any n-body operator within an A-body system induces irre-
ducible many-body operators up to the A-body level due to the commutator structure of
the operator flow equation. Starting with a Hamiltonian H containing the intrinsic kinetic
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energy T int and two- and three-nucleon interactions, V NN and V 3N, the SRG transformation
yields

U †
–

HU
–

= U †
–

(T int + V NN + V 3N) U
–

(1.13)

=
!
T [2]

int,– + V [2]
NN,–

"

+
!
T [3]

int,– + V [3]
NN,–

+ V [3]
3N,–

"

...

+
!
T [A]

int,– + V [A]
NN,–

+ V [A]
3N,–

"
. (1.14)

The number within the bracket denotes the particle rank. Note that there is no one-body
term since we use the two-body form of the kinetic energy operator. Formally, only if all the
induced terms up to the A-body level are kept, the SRG transformation is unitary and the
spectrum of the Hamiltonian in an exact A-body calculation is preserved and independent
of the SRG flow parameter –. In practice, the SRG transformation has to be truncated at
a particle rank m < A, which formally violates the unitarity of the SRG transformation.
Hence, the SRG flow parameter – is used as a diagnostic tool to quantify the relevance of
omitted beyond-m-body terms.

Throughout this work, we stick to the NN+3N-full Hamiltonian starting with the initial
chiral NN+3N Hamiltonian and retain all terms up to the three-body level in the SRG
transformation with – = 0.08 fm4 [Rot+11], i.e.,

H
–

=
1
T [2]

int,– + V [2]
NN,–

2
+

1
T [3]

int,– + V [3]
NN,–

+ V [3]
3N,–

2
. (1.15)
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Chapter 2

Hartree-Fock Method

In this chapter, we briefly recap the ideas of the Hartree-Fock (HF) method, which is widely
used in atomic and nuclear physics, as well as quantum chemistry. The HF method has two
scopes of application: On the one hand, it is used to approximate the ground state of the
Hamiltonian on a self-consistent mean-field level, i.e., the nucleons move independently from
each other without accounting for the correlation among the particles. On the other hand,
it provides a simple and e�cient way to optimize a single-particle basis, which can be used
as a starting point for a more sophisticated many-body methods as the in-medium similarity
renormalization group or the no-core shell model to account for missing correlations. The
latter is the purpose of our usage.

Hamiltonian in Second Quantization

For the following discussion, it is convenient to formulate the Hamiltonian H in second
quantization. To that end, we introduce the creation operator for a single-particle state |pÍ
as ap := a†

p

and the annihilation operator as a
q

, respectively. Furthermore, we use a tensor-
like notation to write products of creation and annihilation operators in a compact form

ap

q

:= apa
q

(2.1a)

apr

qs

:= apara
s

a
q

(2.1b)

aprt

qsu

:= aparata
u

a
s

a
q

. (2.1c)

We refer to these operators as (basic) one-, two-, three-body operators. Note the reversed
order of the lower indices.

Finally, using these operators, we can write the Hamiltonian in second quantization as

H = h +
ÿ

p
q

hp

q

ap

q

+ 1
4

ÿ

pr
qs

hpr

qs

apr

qs

+ 1
36

ÿ

prt
qsu

hprt

qsu

aprt

qsu

(2.2)

with the zero-body term h, one-body matrix elements hp

q

and the antisymmetrized two- and

11



2. Hartree-Fock Method

three-body matrix elements defined as

hpr

qs

:= Èpr|
1
T [2]

int,– + V [2]
NN,–

2
|qsÍ (2.3a)

hprt

qsu

:= Èprt|
1
T [3]

int,– + V [3]
NN,–

+ V [3]
3N,–

2
|qsuÍ . (2.3b)

Here, we add h and the one-body matrix elements hp

q

for a general treatment of the Hamil-
tonian, which are zero in our case since the Hamiltonian contains just two- and three-body
operators (1.15). Note that we suppress the SRG flow parameter – for brevity since it is
fixed to – = 0.08 fm4 throughout this work.

Closed-Shell Systems

Let us first discuss the HF method for closed-shell nuclei, i.e., the nucleons fill complete (sub-)
shells. This case is well covered in the literature, and a standard treatment of this matter
can be found in [Suh07; RS80; SO96]. Since the nucleons move independently from each
other, the energetically favored configuration is where all nucleons occupy the energetically
lowest single-particle states taking into account the Pauli exclusion principle. Therefore,
we can choose a single Slater determinant |�HFÍ, an antisymmetrized A-body product state
built of single-particle states, as first approximation to the many-body ground state of the
system under consideration. Assuming that |�HFÍ is normalized, we obtain the optimized
single-particle states in the HF framework by minimizing the energy functional

E := È�HF|H |�HFÍ (2.4)

= h +
ÿ

p
q

hp

q

È�HF|ap

q

|�HFÍ + 1
4

ÿ

pr
qs

hpr

qs

È�HF|apr

qs

|�HFÍ + 1
36

ÿ

prt
qsu

hprt

qsu

È�HF|aprt

qsu

|�HFÍ (2.5)

with respect to the single-particle states serving as optimization parameters. Introducing the
one-, two- and three-body density matrix elements with respect to the HF Slater determinant

flp

q

:= È�HF|ap

q

|�HFÍ (2.6a)

flpr

qs

:= È�HF|apr

qs

|�HFÍ (2.6b)

flprt

qsu

:= È�HF|aprt

qsu

|�HFÍ (2.6c)

and making use of the fact that the higher-body density matrices factorize into products of
one-body density matrices

flpr

qs

= flp

q

flr

s

≠ flp

s

flr

q

(2.7a)

flprt

qsu

= flp

q

flr

s

flt

u

+ flp

u

flr

q

flt

s

+ flp

s

flr

u

flt

q

≠ flp

u

flr

s

flt

q

≠ flp

s

flr

q

flt

u

≠ flp

q

flr

u

flt

s

, (2.7b)
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which is characteristic for a single Slater determinant, we can simplify the energy functional
to

E = h +
ÿ

p
q

hp

q

flp

q

+ 1
2

ÿ

pr
qs

hpr

qs

flp

q

flr

s

+ 1
6

ÿ

prt
qsu

hprt

qsu

flp

q

flr

s

flt

u

. (2.8)

The HF single-particle states have to be determined in a self-consistent way because the
occupied states themselves generate the mean-field that the nucleons feel, which again fixes
the single-particle states in which the nucleons move.

Open-Shell Systems

Going to open-shell systems while preserving the spherical symmetry of the basis, we face the
problem that multiple configurations yield the same mean-field energy. Put di�erently, there
are many allowed configurations associated with the same total energy on the mean-field level
because the valence nucleons can occupy any of the states in the partially occupied shells.
The equal-filling approximation is one possible solution to this problem, where we assume
projection-number-independent fractional occupation numbers and the factorization of the
higher-body densities as formulated in (2.7). With these requirements, the energy functional
to be minimized is analogous to the original HF problem (2.8).

The most general case is given by doubly open-shell nuclei, i.e., the Afi

v

protons and A‹

v

neutrons partially occupy states of the valence shells corresponding to an angular momentum
jfi

v

and j‹

v

, respectively. Obviously, 2jfi

v

+ 1 must be strictly greater than Afi

v

. The same must
hold for the neutrons as well. We make the following ansatz for the one-body density matrix
elements in the case where all indices correspond to one of the state in the valence shell,
which is the non-trivial case

flx

y

= ”x

y

◊

Y
]

[

A

fi
v

2j

fi
v +1 if x refers to a proton valence state
A

‹
v

2j

‹
v +1 if x refers to a neutron valence state.

(2.9)

Obviously, this ansatz respects the requirement that the occupation numbers are independent
of the magnetic quantum number.
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Chapter 3

Normal Ordering and Wick’s
Theorem

Normal ordering is a powerful technique for the evaluation of expectation values of products
of operators with respect to an arbitrary A-body state. The in-medium similarity renor-
malization group that will be subject of chapter 4 is formulated in terms of the so-called
normal-ordered operators. Moreover, normal ordering with respect to non-trivial reference
states is useful to systematically derive approximations to operators beyond the two-body
rank, which are computationally and conceptually demanding to include in many-body cal-
culations.

The concept of normal ordering is built on a given A-body state that we call the reference
state. We discuss three di�erent types of reference states: the physical vacuum |0Í, a single
Slater determinant |�Í (single-reference case), or a linear combination of Slater determinants
|�Í (multi-reference case). The latter one is the most significant case for this work. Note
that the vacuum case is a special case of the single-reference one which in turn is a special
case of the multi-reference one.

This chapter is organized as follows: We briefly discuss the concept of normal ordering with
respect to the vacuum (section 3.1). Furthermore, we generalize this concept to a single-
reference state with the aid of the particle-hole formalism and formulate Wick’s theorem
(section 3.2). Finally, we point out the problems we are facing when considering the multi-
reference state, and formulate the extended Wick’s theorem introduced by Kutzelnigg and
Mukherjee (section 3.3). With the aid of this Wick’s theorem, we derive formulae for changing
from the so-called vacuum representation to the reference-state representation (section 3.3.3).
Based on these results we show how to derive approximations for any three-body operator
(section 3.3.4). Furthermore, we introduce the generalized Wick’s theorem, which applies to
products of normal-ordered operators (section 3.3.5). Finally, making use of the generalized
Wick’s theorem we summarize the results for commutators of normal-ordered operators in
section 3.3.6, which are the main ingredient for the multi-reference in-medium similarity
renormalization group. The detailed derivation can be found in appendix A.
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3. Normal Ordering and Wick’s Theorem

3.1. Vacuum Case

The starting point is the following definition:

Definition 3.1. A product of fermionic operators is in normal order with respect to the
vacuum |0Í if all creation operators are to the left of all annihilation operators.

A product of operators fulfilling this condition is in vacuum normal order, briefly operator
in V-NO. Alternatively, we refer to this product as vacuum normal-ordered operator (V-NO
operator). Obviously, any single creation operator ap = a†

p

, and annihilation operator a
q

is
an operator in V-NO. To give more examples, the one-, two-, three-body operators from (2.1)

ap

q

= apa
q

(3.1a)

apr

qs

= apara
s

a
q

(3.1b)

aprt

qsu

= aparata
u

a
s

a
q

(3.1c)

are operators in V-NO, too.
For the mathematical description of the normal ordering, we define an operator N |0Í

that brings a product of operators into V-NO, taking into account a sign factor. Let
A1, A2, . . . , A

n

be pairwise distinct fermionic operators each of them representing either
a creation operator ap or an annihilation operator a

q

. Using this requirement, we define the
normal-ordering operator N |0Í as follows:

Definition 3.2. The normal-ordering (super)operator N |0Í is defined by

N |0Í{A1A2 . . . A
n

} := sgn(fi) A
fi(1)Afi(2) . . . A

fi(n), (3.2)

where sgn(fi) is the sign of the permutation fi œ S
n

needed to bring the product A1A2 . . . A
n

into normal order with respect to the vacuum. The product A
fi(1)Afi(2) . . . A

fi(n) is then
called an operator in V-NO. Here, S

n

denotes the set of all permutations of (1, 2, . . . , n).

In general, this prescription is not unique, because two di�erent creation operators anti-
commute. The same applies to the annihilation operators. Additionally, we require that the
normal-ordering operator is linear and maps the identity operator of the antisymmetric Fock
space 1 onto itself, i.e., N |0Í{1} = 1. Linearity means

N |0Í{A1A2 . . . A
j

(µC + D)A
j+1 . . . A

n

} = µN |0Í{A1A2 . . . A
j

CA
j+1 . . . A

n

}
+ N |0Í{A1A2 . . . A

j

DA
j+1 . . . A

n

} (3.3)

for any complex number µ and any two operators C and D.
By construction, the normal-ordering operator has the following property

N |0Í{A1A2 . . . A
i

. . . A
j

. . . A
n

} = ≠N |0Í{A1A2 . . . A
j

. . . A
i

. . . A
n

}, (3.4)
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3.1. Vacuum Case

which we simply call antisymmetric under transposition of any two di�erent operators. This
is related to the property of the signum function sgn(fifiÕ) = sgn(fi)sgn(fiÕ), and that the sign
of any transposition is negative.

We illustrate the action of the normal-ordering operator N |0Í by means of some simple
examples

N |0Í{a
q

ap} = ≠N |0Í{apa
q

} = ≠apa
q

(3.5)

N |0Í{a
q

a
s

ap} = (≠1)2 apa
q

a
s

. (3.6)

These simple examples demonstrate that acting with the normal-ordering operator N |0Í on a
given product of operators, in general, generates a di�erent operator compared to the initial
one, i.e.,

A1A2 . . . A
n

”= N |0Í{A1A2 . . . A
n

}. (3.7)

The question is how to transform a product of operators into normal order with respect to
the vacuum while retaining an operator identity. Put di�erently, what are the missing terms
on the right hand side to have an equal sign. We are looking for an operator identity that
expresses the given product as a linear combination of operators in V-NO. We refer to this
procedure as the normal-ordering transformation.

The straight-forward way is to put creation operators to the left of all annihilation operators
using the anticommutation relations, given by

)
a

q

, a
p

*
=

)
aq, ap

*
= 0 (3.8)

)
a

q

, ap

*
= ”p

q

, (3.9)

where the brackets denote the anticommutator defined as
)
A1, A2

*
:= A1A2 + A2A1. By

means of the anticommutation relations, e.g., the product of a
q

a
s

ap can be transformed to

a
q

a
s

ap ≠≠≠≠æ a
q

a
s

ap = apa
q

a
s

+ ”p

s

a
q

≠ ”p

q

a
s

. (3.10)

We observe that the first term in (3.10) can be identified with the term obtained in (3.6),
namely N |0Í{a

q

a
s

ap}, and the two additional terms are operators in V-NO, too. Hence, the
given product is expressed as a sum of operators in V-NO. Since we used only equivalence
transformations, (3.10) is an operator identity.

The normal-ordering transformation can be very exhausting, especially if the number of
operators is large. A more systematic approach to this problem is the use of Wick’s theorem,
where the normal-ordering operator N |0Í plays an important role. But before formulating the
Wick’s theorem, we generalize the concept of normal ordering to a single Slater determinant.

17



3. Normal Ordering and Wick’s Theorem

3.2. Single-Reference Case

We describe how to generalize the concept of normal ordering to a single Slater determinant
based on the particle-hole formalism. Let |�Í be an A-body single-reference state1, i.e., a
single Slater determinant

|�Í =
AŸ

i=1
ai |0Í . (3.11)

Furthermore, let the occupied single-particle states

ai |0Í with i = 1, 2, . . . , A (3.12)

and the unoccupied single-particle states

ab |0Í with b > A (3.13)

form an orthonormal basis {ap |0Í : p = 1, 2, . . . } of the one-body Hilbert space. Convention-
ally, we refer to the indices i, j, k, . . . and b, c, d, . . . as hole and particle indices, respectively.
The indices p, q, r, . . . can refer to both.

Acting with the operator ai for a hole index on the reference state |�Í yields

ai |�Í = 0 (3.14)

due to Pauli exclusion principle. Moreover, annihilating the unoccupied single-particle state
|bÍ from the reference state |�Í vanishes

a
b

|�Í = 0 (3.15)

due to the definition of annihilation operators. Since both types of operators act like annihi-
lation operators with respect to the reference state |�Í, we redefine them to be quasiparticle
annihilators. Analogously, the operators a

i

and ab are redefined to be quasiparticle creators
relative to the reference state, since they create a hole and a particle, respectively. Based on
this reinterpretation, we can define normal ordering with respect to a single-reference state
|�Í in analogy to the vacuum case.

Definition 3.3. A product of operators is in normal order with respect to a single-reference
state |�Í, if all quasiparticle creators are to the left of all quasiparticle annihilators.

A product of operators fulfilling this condition is in single-reference normal order, briefly an
operator in SR-NO. Alternatively, we refer to it as single-reference normal-ordered operator
(SR-NO operator). Note in both terms, we do not exactly specify the reference state |�Í.
Hence, care should be taken if di�erent reference states are involved.

1The rigorous correct terminology is single-reference single-determinant reference state.
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3.2. Single-Reference Case

For the mathematical formulation, we introduce a normal-ordering operator N |�Í with
respect to the reference state |�Í that is linear and antisymmetric analogously to the vacuum
case. Note that we recover the vacuum case if the reference state does not contain any
particles. For illustration purposes, we consider the action of the normal-ordering operator
N |�Í on a product of quasiparticle operators

N |�Í{aia
j

} = ≠a
j

ai , N |�Í{aia
b

} = aia
b

(3.16)

N |�Í{a
b

ac} = ≠aca
b

, N |�Í{a
b

a
j

} = ≠a
j

a
b

. (3.17)

A key property of the operators in SR-NO is that their expectation value with respect to the
state they are normal ordered to vanishes, i.e.,

È�| N |�Í{A1A2 . . . A
n

} |�Í = 0. (3.18)

This holds also for the vacuum case.
In practical calculations, we need to write a given product of operators as sum of operators

in SR-NO. As a reminder, we refer to this procedure as normal-ordering transformation. One
possible way to perform this transformation could be to make use of the anticommutation
relations for the quasiparticle operators analogously to the vacuum case. This procedure
might get cumbersome. A more sophisticated and systematic approach represents the Wick’s
theorem with respect to a given single-reference state |�Í stating:

Theorem 3.1. A product of n operators A1, A2, . . . , A
n

can be expressed as a sum of its
SR-NO product and all possible normal-ordered contractions with respect to |�Í [Wic50]

A1A2 . . . A
n

= N |�Í{A1A2 . . . A
n

} +
ÿ

all contractions

w.r.t.|�Í

N |�Í{A1A2 . . . A
n

}. (3.19)

A contraction with respect to |�Í between A1 and A2 is indicated by

A1A2, (3.20)

and denotes a complex number. A normal-ordered contraction indicates normal ordering
combined with a contraction between the operators A

i

and A
j

, which has to be evaluated in
the following way

N |�Í{A1A2 . . . A
i≠1A

i

A
i+1 . . . A

j≠1A
j

A
j+1 . . . A

n

}

= sgn(fi) A
i

A
j

N |�Í{A1A2 . . . A
i≠1A

i+1 . . . A
j≠1A

j+1 . . . A
n

}, (3.21)

where fi is a permutation that brings the two corresponding operators adjacent without
changing their original order. This is because the contraction A1A2 is not identical to A2A1
as we will see later.

Theorem 3.1 is pointless without a formula for the contraction. For that purpose, we apply
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3. Normal Ordering and Wick’s Theorem

it to a product of two operators A1 and A2 yielding

A1A2 = N |�Í{A1A2} + N |�Í{A1A2} = N |�Í{A1A2} + A1A2. (3.22)

Since the expectation value of an operator in SR-NO with respect to |�Í vanishes according
to (3.18), we obtain for the contraction with respect to the reference state

A1A2 = È�| A1A2 |�Í , (3.23)

which is equal to the expectation value of the product with respect to the reference state
itself. We define a hole contraction as the contraction between an creator and annihilator

apa
q

= È�| apa
q

|�Í =: “p

q

(3.24)

which is identical to a one-particle density matrix element “p

q

with respect to the reference
state. Furthermore, a particle contraction is given by

a
q

ap = È�| a
q

ap |�Í =: “̄p

q

(3.25)

which in this case corresponds to a one-hole density matrix element “̄p

q

. All other combina-
tions vanish

apaq = a
p

a
q

= 0. (3.26)

Especially for a single-reference state, the one-particle and one-hole density matrix elements
can be simplified to

“p

q

= ”p

q

n
q

, (3.27)

“̄p

q

= ”p

q

(1 ≠ n
q

) = ”p

q

≠ “p

q

. (3.28)

Here, we introduced the particle occupation number n
q

which is just one or zero depending
on whether this corresponding single-particle state is occupied in |�Í or not, i.e.,

n
q

:=

Y
]

[
1, if q occupied in |�Í,
0, else.

(3.29)

The naming convention for the two non-vanishing types of contractions is rooted in the
following observation. A hole contraction has non-vanishing contributions only if both indices,
p and q, are hole indices (i, j, . . . ). Similarly, a particle contraction does not vanish only if
both indices, p and q, are particle indices (b, c, . . . ). In other words, any mixing of particle
and hole indices always leads to vanishing contractions.

In order to clarify the statement of theorem 3.1, we consider the one- and two–body op-
erators, ap

q

and apr

qs

, which are, by definition, normal ordered with respect to the vacuum.
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3.3. Multi-Reference Case

The aim is to express them as a sum of the operators in SR-NO. From (3.22) we immediately
obtain

ap

q

= apa
q

= N |�Í{ap

q

} + “p

q

. (3.30)

For the two-body operator, the application of theorem 3.1 yields

apr

qs

= apara
s

a
q

(3.31)

= N |�Í{apr

qs

} + “p

q

N |�Í{ar

s

} + “r

s

N |�Í{ap

q

} ≠ “p

s

N |�Í{ar

q

} ≠ “r

q

N |�Í{ap

s

}
+ “p

q

“r

s

≠ “p

s

“r

q

. (3.32)

3.3. Multi-Reference Case

Since the normal ordering with respect to a single-reference state is limited to closed-shell
nuclei, i.e., the nucleons fill complete (sub-) shells, it is desirable to extend the normal-
ordering concept to linear combination of Slater determinants, called multi-reference case2.
This will enable us to target open-shell systems.

In the whole section the following requirements are made: Let H
n

be a finite-dimensional
subspace of the A-body Hilbert space H, and {|„

i

Í : i = 1, . . . , n} be a complete orthonormal
basis of H

n

. Furthermore, let |�Í œ H
n

be a normalized A-body state

|�Í :=
nÿ

i=1
c

i

|„
i

Í , (3.33)

with complex numbers c
i

and single Slater determinants |„
i

Í.

3.3.1. Problem and Guiding Principle

The “traditional” definition of normal ordering says that a product of operators is in normal
order with respect to a reference state, if all (quasiparticle) creation operators are to the
left of all (quasiparticle) annihilation operators. This statement is no longer useful for a
multi-reference state |�Í since there is no well-defined particle-hole picture, i.e., for all i and
j ”= i there is a single-particle state |pÍ occupied in the i-th single Slater determinant and
unoccupied in the j-th single Slater determinant

ap |„
i

Í = 0, (3.34)

ap |„
j

Í ”= 0. (3.35)

Consequently, the operator ap is a (quasiparticle) annihilation operator with respect to |„
i

Í
and (quasiparticle) creation operator with respect to |„

j

Í. Hence, it is not obvious how to
define normal ordering with respect to |�Í. This simple observation implies that one has

2The rigorous correct terminology is single-reference multi-determinant reference state.
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3. Normal Ordering and Wick’s Theorem

to give up the “traditional” definition of normal ordering. Therefore, the normal-ordering
transformation is defined only in the framework of a Wick-like theorem. For the generalization
of Wick’s theorem with respect to a multi-reference state |�Í two basic requirements have to
be fulfilled:

(I) If an operator X ”= 1 is in normal order with respect to |�Í, briefly an operator in
MR-NO, then the expectation value of X with respect to |�Í vanishes, i.e.,

È�| X |�Í = 0. (3.36)

The opposite direction of this statement is in general wrong.

(II) For the special case that |�Í consists only of a single Slater determinant, the well-known
normal-ordering framework with respect to a single-reference state must be recovered.

A generalization fulfilling both requirements was proposed and proven by Mukherjee and
Kutzelnigg [Muk97; KM97], and formulated in form of a Wick-like theorem with respect to
a multi-reference state.

3.3.2. Wick’s Theorem

For the mathematical formulation of the normal ordering with respect to a multi-reference
state |�Í, we introduce a normal-ordering operator N := N |�Í omitting the subscript from
now on. This definition is more abstract, i.e., it does not correspond to a reordering of creation
operators to the left of all annihilation operators. But the normal-ordering operator N is
required to be linear, antisymmetric and maps the identity operator 1 onto itself. The action
of the normal-ordering operator on a product of operators leads to an operator in multi-
reference normal order, briefly an operator in MR-NO. Alternatively, we say (reference-state)
normal-ordered operator if it is clear which reference state we mean.

Analogously to the single-reference case, we can perform the normal-ordering transforma-
tion with the aid of Wick’s theorem with respect to a multi-reference state |�Í stating:

Theorem 3.2. A product of n operators A1, A2, . . . , A
n

can be expressed as a sum of its
MR-NO product and all possible normal-ordered contractions with respect to |�Í [KM97;
Muk97]

A1A2 . . . A
n

= N {A1A2 . . . A
n

} +
ÿ

all contractions

w.r.t.|�Í

N {A1A2 . . . A
n

}. (3.37)

A contraction with respect to |�Í between A1 and A2 denoted by

A1A2 (3.38)

yields a complex number. This type of contractions, called 2-tuple contraction, is comparable
to the one introduced for the single-reference case (3.20). The new ingredient of theorem 3.2
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3.3. Multi-Reference Case

is that additional contractions between more than two operators have to be considered which
are denoted as

A1A2 . . . A
l

with 3 Æ l Æ n. (3.39)

We refer to these types of contractions as l-tuple contractions, which are also complex number
only if all operators to be contracted are adjacent.

Normal ordering in combination with contractions is evaluated in the same way as in the
single-reference case, i.e.,

N {A1A2 . . . A
i≠1A

i

A
i+1 . . . A

j≠1A
j

A
j+1 . . . A

n

}
= sgn(fi) A

i

A
j

N {A1A2 . . . A
i≠1A

i+1 . . . A
j≠1A

j+1 . . . A
n

}. (3.40)

The same applies for the l-tuple contractions with l > 2.
Finally, as a direct consequence of theorem 3.2 in combination with the property of the

normal-ordering operator (3.36), we obtain a formula how to calculate the expectation value
of a product of operators with respect to the reference state

È�| A1A2 . . . A
n

|�Í =
ÿ

full contractions

w.r.t. |�Í

N {A1A2 . . . A
n

}. (3.41)

A full contraction is understood as a product of several contractions where all operators
within the normal-ordering operator are contracted among each other. However, in order to
make use of this formula and of theorem 3.2 in general, we need to derive formulae for these
contractions.

Formulae for the Contractions

Applying theorem 3.2 to a product of two operators A1 and A2 leads to

A1A2 = N {A1A2} + A1A2. (3.42)

Taking the expectation value with respect to the reference state |�Í and making use of
requirement (3.36), we obtain a formula for the 2-tuple contraction with respect to |�Í

A1A2 = È�| A1A2 |�Í . (3.43)

We define a hole contraction as follows

apa
q

= È�| apa
q

|�Í =: “p

q

, (3.44)

23



3. Normal Ordering and Wick’s Theorem

which is identical to a one-particle density matrix element with respect to |�Í, denoted as
“p

q

. A particle contraction is given by

a
q

ap = È�| a
q

ap |�Í =: “̄p

q

, (3.45)

which is equal to a one-hole density matrix element with respect to |�Í, denoted as “̄p

q

. All
other combinations given by

apaq = a
p

a
q

= 0 (3.46)

vanish since the reference state has a fixed particle number.
Since the number of possible contractions can be very large due to the l-tuple contractions

for l > 2, we summarize their main properties (see [Geb13] for more details). For this case,
the l-tuple contraction vanishes if the number of creation and annihilation operators di�er
from each other, e.g.,

apara
q

= apa
s

a
q

= 0. (3.47)

This implies that we have only l-tuple contraction with even l. In contrast to the 2-tuple
contraction, the l-tuple contraction with l > 2 is antisymmetric with respect to exchange of
any two di�erent operators within the contraction

A1A2 . . . A
i

. . . A
j

. . . A
l

= ≠A1A2 . . . A
j

. . . A
i

. . . A
l

. (3.48)

Combining both statements, all non-trivial l-tuple contractions with l > 2 are given by

apara
s

a
q

= “pr

qs

≠ A(“p

q

“r

s

) =: ⁄pr

qs

(3.49a)

aparata
u

a
s

a
q

= “prt

qsu

≠ A(“p

q

⁄rt

su

) ≠ A(“p

q

“r

s

“t

u

) =: ⁄prt

qsu

(3.49b)
...

ap

1ap

2 . . . apna
qn

. . . a
q

2

a
q

1

= ⁄p

1

p

2

...pn
q

1

q

2

...qn
(3.49c)

that are equal to the corresponding irreducible n-body density matrix element ⁄p

1

p

2

...pn
q

1

q

2

...qn
de-

scribing genuine n-particle correlations. As expected, the l-tuple contractions with l > 2 do
vanish for a single-reference state since it does not contain correlations. Hence, we do recover
the single-reference case fulfilling the second requirement in section 3.3.1.

Here, we use the so-called index antisymmetrizer as introduced in [KNM10] defined as
follows

A(hp

1

...pm
q

1

...qm
gr

1

...rn
s

1

...sn
) := 1

(m!n!)2Fsym

ÿ

fiœSm+n

ÿ

‡œSm+n

sgn(fi‡)hp‡(1)

...p‡(m)

qfi(1)

...qfi(m)

g
r‡(1)

...r‡(n)

sfi(1)

...sfi(n)

(3.50)
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3.3. Multi-Reference Case

with the symmetry factor

Fsym :=

Y
]

[

1
2! if m = n and g © h

1 else,
(3.51)

where both matrix elements hp

1

...pm
q

1

...qm
and gr

1

...rn
s

1

...sn
are assumed to be antisymmetric with respect

to exchange among the upper and lower indices. The prefactor ensures that each unique
permutation form appears with coe�cient unity, and S

m+n

denotes the set of all permutations
of (1, 2, . . . , m + n). We give some examples for the action of the index antisymmetrizer

A(hp

q

gr

s

) = + hp

q

gr

s

+ hr

s

gp

q

≠ hp

s

gr

q

≠ hr

q

gp

s

(3.52)

A(hp

q

hr

s

) = + hp

q

hr

s

≠ hp

s

hr

q

(3.53)

A(hp

q

grt

su

) = + hp

q

grt

su

≠ hp

s

grt

qu

≠ hp

u

grt

sq

≠ hr

q

gpt

su

+ hr

s

gpt

qu

≠ hr

u

gpt

qs

≠ ht

q

gpr

us

≠ ht

s

gpr

qu

+ ht

u

gpr

qs

(3.54)

A(hpr

qs

gt

u

) = + hrt

su

gp

q

≠ hrt

qu

gp

s

≠ hrt

sq

gp

u

≠ hpt

su

gr

q

+ hpt

qu

gr

s

≠ hpt

qs

gr

u

≠ hpr

us

gt

q

≠ hpr

qu

gt

s

+ hpr

qs

gt

u

(3.55)

=A(gp

q

hrt

su

). (3.56)

Its action on a product of more than two multiply-indexed objects can be easily generalized by
adjusting the symmetry factor properly. We show the simplest example where the symmetry
factor is 3!

A(hp

q

hr

s

ht

u

) = + hp

q

hr

s

ht

u

+ hp

u

hr

q

ht

s

+ hp

s

hr

u

ht

q

≠ hp

u

hr

s

ht

q

≠ hp

s

hr

q

ht

u

≠ hp

q

hr

u

ht

s

. (3.57)

Applications of the Wick’s Theorem

We introduce a compact notation for the action of the normal-ordering operator N on the
one-, two-, three- and n-body operators in V-NO

ãp

q

:= N {ap

q

} (3.58a)

ãpr

qs

:= N {apr

qs

} (3.58b)

ãprt

qsu

:= N {aprt

qsu

} (3.58c)
...

ãp

1

p

2

...pn
q

1

q

2

...qn
:= N {ap

1

p

2

...pn
q

1

q

2

...qn
}. (3.58d)

We refer to them as the one-, two-, three- and n-body operators in MR-NO. Since the normal-
ordering operator is antisymmetric with respect to exchange of any two di�erent operators
comparable to (3.4), these operators are antisymmetric with respect to exchange among the
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3. Normal Ordering and Wick’s Theorem

upper and lower indices, respectively

ã
p

1

...pi...pj ...pn
q

1

...qi...qj ...qn = ≠ã
p

1

...pj ...pi...pn
q

1

...qi...qj ...qn = ≠ã
p

1

...pi...pj ...pn
q

1

...qj ...qi...qn . (3.59)

Note that exchanging an upper index with a lower one does not make any sense. With the
aid of theorem 3.2, we can express any n-body operator in V-NO as a sum of the one-, two-,
up to n-body operators in MR-NO yielding

ap

q

= ãp

q

+ “p

q

apr

qs

= ãpr

qs

+ A(“p

q

ãr

s

) + “pr

qs

aprt

qsu

= ãprt

qsu

+ A(“p

q

ãrt

su

) + A(“pr

qs

ãt

u

) + “prt

qsu

...

ap

1

...pn
q

1

...qn
= ãp

1

...pn
q

1

...qn
+

n≠1ÿ

i=1
A(“p

1

...pi
q

1

...qi
ãpi+1

...pn
qi+1

...qn
) + “p

1

...pn
q

1

...qn
.

(3.60a)

(3.60b)

(3.60c)

(3.60d)

3.3.3. Vacuum and Reference-State Representation

We can now change from vacuum to reference-state representation and back. Suppose we
have an operator O that is a sum of general zero-, one-, two- and three-body contributions,
i.e., written in second-quantized vacuum representation (where all creators are to left of all
annihilators)

O := A +
ÿ

p
q

Bp

q

ap

q

+ 1
4

ÿ

pr
qs

Cpr

qs

apr

qs

+ 1
36

ÿ

prt
qsu

Dprt

qsu

aprt

qsu

. (3.61)

Inserting relations (3.60a)–(3.60c) for the vacuum normal-ordered operators, we obtain

O =A +
ÿ

p
q

Bp

q

ãp

q

+
ÿ

p
q

Bp

q

“p

q

+ 1
4

ÿ

pr
qs

Cpr

qs

ãpr

qs

+ 4
4

ÿ

pr
qs

Cpr

qs

“p

q

ãr

s

+ 1
4

ÿ

pr
qs

Cpr

qs

“pr

qs

+ 1
36

ÿ

prt
qsu

Dprt

qsu

ãprt

qsu

+ 1
4

ÿ

prt
qsu

Dprt

qsu

“p

q

ãrt

su

+ 1
4

ÿ

prt
qsu

Dprt

qsu

“pr

qs

ãt

u

+ 1
36

ÿ

prt
qsu

Dprt

qsu

“prt

qsu

(3.62)

=A +
ÿ

p
q

Bp

q

“p

q

+ 1
4

ÿ

pr
qs

Cpr

qs

“pr

qs

+ 1
36

ÿ

prt
qsu

Dprt

qsu

“prt

qsu

+
ÿ

p
q

3
Bp

q

+
ÿ

r
s

Cpr

qs

“r

s

+ 1
4

ÿ

rt
su

Dprt

qsu

“rt

su

4
ãp

q

+ 1
4

ÿ

pr
qs

3
Cpr

qs

+
ÿ

t
u

Dprt

qsu

“t

u

4
ãpr

qs

+ 1
36

ÿ

prt
qsu

Dprt

qsu

ãprt

qsu

. (3.63)
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where we renamed summation indices and organized the terms according to their particle
rank in the last step. We can clearly see that the operator O is now expressed as a linear
combination of the reference-state normal ordered operators 1, ãp

q

, ãpr

qs

and ãprt

qsu

:

O =X +
ÿ

p
q

Y p

q

ãp

q

+ 1
4

ÿ

pr
qs

Zpr

qs

ãpr

qs

+ 1
36

ÿ

prt
qsu

W prt

qsu

ãprt

qsu

(3.64)

and

X =A +
ÿ

p
q

Bp

q

“p

q

+ 1
4

ÿ

pr
qs

Cpr

qs

“pr

qs

+ 1
36

ÿ

prt
qsu

Dprt

qsu

“prt

qsu

= È�|O|�Í (3.65a)

Y p

q

=Bp

q

+
ÿ

r
s

Cpr

qs

“r

s

+ 1
4

ÿ

rt
su

Dprt

qsu

“rt

su

(3.65b)

Zpr

qs

=Cpr

qs

+
ÿ

t
u

Dprt

qsu

“t

u

(3.65c)

W prt

qsu

=Dprt

qsu

(3.65d)

we obtain the matrix elements in reference-state representation as a function of the original
matrix elements in vacuum representation. It is noteworthy that the n-body matrix element in
vacuum representation contribute to all lower particle ranks in reference-state representation.
This observation is crucial to systematically define approximations of a given operator that are
the subject of section 3.3.4. Furthermore, the zero-body part in reference-state representation
X is identical to the expectation value of the considered operator O with respect the reference
state |�Í, which can be calculated more e�ciently using Slater-Condon rules [Sla29; Con30]
instead of performing the summation with the density matrix elements. Therefore, we do
not need the three-particle density matrix explicitly; the one- and two-body density matrices
can be easily computed using standard many-body technology.

Finally, for many-body approaches that do not naturally use a normal-ordered formulation,
we give the inverse transformation, i.e., from reference-state to vacuum representation

A =X ≠
ÿ

p
q

Y p

q

“p

q

≠ 1
4

ÿ

pr
qs

Zpr

qs

(“pr

qs

≠ 4“p

q

“r

s

) ≠ 1
36

ÿ

prt
qsu

W prt

qsu

(“prt

qsu

≠ 18“p

q

“rt

su

+ 36“p

q

“r

s

“t

u

)

(3.66a)

Bp

q

=Y p

q

≠
ÿ

r
s

Zpr

qs

“r

s

≠ 1
4

ÿ

rt
su

W prt

qsu

(“rt

su

≠ 4“p

q

“r

s

) (3.66b)

Cpr

qs

=Zpr

qs

≠
ÿ

t
u

W prt

qsu

“t

u

(3.66c)

Dprt

qsu

=W prt

qsu

. (3.66d)
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3.3.4. Multi-Reference Two-Body Approximation for Three-Body Operators

In practical calculations including operators beyond the two-body rank is, both, a com-
putational and conceptual challenge. Hence, an approximate but systematic treatment in
many-body methods is desired. The relations (3.65) are a proper starting point to derive
such an approximation.

For instance, a pure three-body operator in vacuum representation

V (3) := 1
36

ÿ

prt
qsu

V prt

qsu

aprt

qsu

(3.67)

can be transformed into reference-state representation via (3.65) while setting A = Bp

q

=
Cpr

qs

= 0 and Dprt

qsu

= V prt

qsu

yielding

V (3) = 1
36

ÿ

prt
qsu

V prt

qsu

“prt

qsu

+ 1
4

ÿ

prt
qsu

V prt

qsu

“pr

qs

ãt

u

+ 1
4

ÿ

prt
qsu

V prt

qsu

“p

q

ãrt

su

+ 1
36

ÿ

prt
qsu

V prt

qsu

ãprt

qsu

. (3.68)

By neglecting the reference-state normal-ordered three-body contribution, we obtain the so-
called multi-reference normal-ordered two-body (MR-NO2B) approximation

V (3)
MR-NO2B := 1

36
ÿ

prt
qsu

V prt

qsu

“prt

qsu

+ 1
4

ÿ

prt
qsu

V prt

qsu

“pr

qs

ãt

u

+ 1
4

ÿ

prt
qsu

V prt

qsu

“p

q

ãrt

su

. (3.69)

This approximation has been shown to be su�cient to capture the main e�ects of the three-
nucleon interactions used in this work for the description of ground-state and excitation
energies of closed and open-shell nuclei [Rot+12; GCR16]. To transform this operator into
vacuum representation we can make use of the relations (3.66) while setting W prt

qsu

= 0.

3.3.5. Generalized Wick’s Theorem

Various many-body techniques like in-medium similarity renormalization group or coupled-
cluster approach are formulated in terms of the normal-ordered operators. Typically, we
face the challenge to calculate the product or commutators of reference-state normal-ordered
operators. The aim is to express this product again in terms of the normal-ordered operators.
For illustration purposes, we consider the simplest non-trivial case, where a product of two
one-body operators in MR-NO, N {A1A2} and N {B1B2}, is given3. By means of (3.42),
we can simplify this expression to

N {A1A2} · N {B1B2} (3.70)

=
1
A1A2 ≠ A1A2

2 1
B1B2 ≠ B1B2

2
(3.71)

= A1A2B1B2 ≠ A1A2B1B2 ≠ A1A2B1B2 + A1A2 B1B2 (3.72)

3The operators B
1

and B
2

has to be from the same set of second quantized operators as the Ai.
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= A1A2B1B2

≠
1
N {A1A2} + A1A2

2
B1B2 ≠ A1A2

1
N {B1B2} + B1B2

2
+ A1A2 B1B2. (3.73)

Furthermore, the first term can be expressed as sum of the normal-ordered operators with
the aid of theorem 3.2 yielding

A1A2B1B2 = N {A1A2B1B2}
+ A1A2 N {B1B2} ≠ A1B1 N {A2B2} + A1B2 N {A2B1}
+ A2B1 N {A1B2} ≠ A2B2 N {A1B1} + B1B2 N {A1A2}
+ A1A2 B1B2 ≠ A1B1 A2B2 + A1B2 A2B1 + A1A2B1B2. (3.74)

Hence, in total we obtain for the product of the given normal-ordered operators

N {A1A2} · N {B1B2}
= N {A1A2B1B2}

≠ A1B1 N {A2B2} + A1B2 N {A2B1} + A2B1 N {A1B2} ≠ A2B2 N {A1B1}
≠ A1B1 A2B2 + A1B2 A2B1 + A1A2B1B2. (3.75)

Taking a closer look, we observe that contractions including only A1 and A2 or only B1 and
B2, called self contractions, do not appear anymore. Putting it in another way, we need only
to consider contractions containing at least one A

i

and at least one B
j

operators. These
kind of contractions are called external contractions.

This observation forms the basis of the generalized Wick’s theorem with respect to a given
reference state which generalizes this observation to any product of normal-ordered operators,
and reads as follows:

Theorem 3.3. A product of reference-state normal-ordered operators N {A1, A2, . . . , A
n

}
and N {B1, B2, . . . , B

m

} can be expressed as a sum of operators in reference-state normal-
ordered plus all external normal-ordered contractions [KM97; KNM10], i.e.,

N {A1A2 . . . A
n

} · N {B1B2 . . . B
m

}
= N {A1A2 . . . A

n

B1B2 . . . B
m

} +
ÿ

external

contractions

N {A1A2 . . . A
n

B1B2 . . . B
m

}. (3.76)

Here, external contractions always involve at least one of the A
i

and one of B
j

operators.

For illustration purposes, we consider the product of two one-body operators in SR-NO
yielding

ãp

q

ãr

s

= N {apa
q

} · N {ara
s

} (3.77)

= N {apr

qs

} ≠ apa
s

N {ar

q

} + a
q

arN {ap

s

} + apa
s

a
q

ar + apa
q

ara
s

(3.78)

= ãpr

qs

≠ “p

s

ãr

q

+ “̄r

q

ãp

s

+ “p

s

“̄r

q

+ ⁄pr

qs

. (3.79)
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We note that the expectation value of a product of normal-ordered operators with respect to
the reference state does not vanish in general, but it is equal to the fully-contracted terms,
i.e., for the above example, we obtain

È�|ãp

q

ãr

s

|�Í = “p

s

“̄r

q

+ ⁄pr

qs

(3.80)

Based on this results for the products of normal-ordered operators, we can calculate their
commutators, e.g.,

#
ãp

q

, ãr

s

$
=ãp

q

ãr

s

≠ ãr

s

ãp

q

(3.81)

=
1
ãpr

qs

≠ “p

s

ãr

q

+ “̄r

q

ãp

s

+ “p

s

“̄r

q

+ ⁄pr

qs

2
≠

1
ãrp

sq

≠ “r

q

ãp

s

+ “̄p

s

ãr

q

+ “r

q

“̄p

s

+ ⁄rp

sq

2
(3.82)

=0 + (“̄r

q

+ “r

q

)ãp

s

≠ (“̄p

s

+ “p

s

)ãr

q

+ “p

s

“̄r

q

≠ “r

q

“̄p

s

+ 0 (3.83)

=”r

q

ãp

s

≠ ”p

s

ãr

q

+ ”r

q

“p

s

≠ ”p

s

“r

q

(3.84)

where the normal-ordered two-body operators cancel each others. Further examples relevant
for this work can be found in appendix A. We summarize the most important ones in the
next section.

3.3.6. Relevant Commutators

In this section, we summarize the major results from appendix A for the derivation of com-
mutators between the operators relevant for this work using theorem 3.3. Let us define the
operators

A(1) :=
ÿ

p
q

Ap

q

ãp

q

, C(2) := 1
4

ÿ

pr
qs

Cpr

qs

ãpr

qs

(3.85a)

B(1) :=
ÿ

r
s

Br

s

ãr

s

, D(2) := 1
4

ÿ

tv
uw

Dtv

uw

ãtv

uw

(3.85b)

that do not necessarily have to be Hermitian or anti-Hermitian. The matrix elements of the
two-body operators Cpr

qs

and Dpr

qs

are assumed to be antisymmetric with respect to exchange
among the upper and lower indices, respectively, i.e.,

Cpr

qs

= ≠Crp

qs

= ≠Cpr

sq

= +Crp

sq

(3.86)

Dpr

qs

= ≠Drp

qs

= ≠Dpr

sq

= +Drp

sq

. (3.87)

In (3.84), we have already observed that the commutator of two normal-ordered one-body
operators does not contain a two-body part anymore. We generalize this observation to a
commutator of any normal-ordered operators.

Proposition 3.1. The commutator of a normal-ordered n-body and a normal-ordered m-body
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3.3. Multi-Reference Case

operator has a maximum rank of n + m ≠ 1, i.e.,

(
#
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...pn
q

1

q
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...qn
, ãr

1

r

2

...rm
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1

s

2

...sm

$
)[n+m] = 0. (3.88)

Proof. We need to show that the n + m-body part of the considered commutator vanishes
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...qn
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=ãp
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(3.90)

=ãp
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r
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...pnr

1

r

2
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1
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2

...qns

1

s

2

...sm
(3.91)

=0, (3.92)

where we made use of the antisymmetry with respect to exchange among the upper and lower
indices of the normal-ordered operator, respectively.

In accordance with the previous statement, we obtain

[A(1), B(1)] =
ÿ

p
q

A
ÿ
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ÿ
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(3.93a)

(3.93b)

(3.93c)
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For the commutator between two two-body operators, we obtain

[C(2), D(2)] =1
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Here, we used the abbreviation Gprtv

qsuw

:= Cpr

qs

Dtv

uw

≠ Dpr

qs

Ctv

uw

. A detailed derivation of these
commutators can be found in appendix A.2. In contrast to the single-reference case, the
commutator between two operators with di�erent particle rank, e.g., one- and two-body
operators, still contains a zero-body part, which is a peculiarity of the multi-reference case.
This can be verified easily since the zero-body part of the commutator of the one- and two-
body operators (3.93b) and (3.93c) is governed only by the irreducible two-body density
matrix, which vanishes for the single-reference case.
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In-Medium No-Core Shell Model
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Introduction to Part II

One of the most dynamic areas in nuclear structure theory today is the development of ab
initio many-body methods that solve the stationary Schrödinger equation given by

H |�
n

Í = E
n

|�
n

Í , (3.94)

where E
n

denotes the eigenvalue associated to the eigenstate |�
n

Í of the Hamiltonian H .
These ab initio many-body methods are crucial for modern nuclear structure theory, and
provide a connection between QCD-based interactions and nuclear-structure observables.
Furthermore, they establish ideal benchmark tool for approximate methods.

Ground states, low-lying excitations and spectroscopic observables are of essential impor-
tance. Traditionally, nuclear spectroscopy is the domain of shell-model-type approaches,
both the valence-space shell model [Cau+05] and the ab initio no-core shell model (NCSM)
[Nav+07; Bro01; BNV13]. These methods solve a large-scale eigenvalue problem of the Hamil-
tonian in a truncated model space, and address ground and excited states on equal footing,
but they are limited by the basis dimension [Var+09].

In the last decade, other methods have been formulated that face the many-body problem
with a di�erent ansatz, among them the coupled-cluster (CC) approach and the in-medium
similarity renormalization group (IM-SRG). These methods aim a decoupling of a given ref-
erence state from its excitations via a similarity transformation. Here, the reference state
represents the ground state. This concept of decoupling is extremely powerful and comple-
mentary to a direct NCSM-type diagonalization, which solve the eigenvalue problem directly.
Generally, CC and IM-SRG have a much polynomial scaling with particle number A. Unfor-
tunately, their basic formulation is limited to ground states. Hence, their complementarity
proposes that a combination of both formalism, many-body decoupling and direct diagonal-
ization, could be advantageous. First steps along these lines are the e�ective interactions for
the valence-space shell model extracted from CC and IM-SRG calculations presented recently
[Bog+14; Str+16; Jan+14; Str+17; Jan+16].

This part is organized as follows: We discuss the multi-reference IM-SRG in detail in
chapter 4. Furthermore, we recap the main ideas of NCSM in chapter 5. Subsequently, we
merge them into a new ab initio many-body tool, called in-medium no-core shell model (IM-
NCSM), to universally address ground and excited states of closed and open-shell nuclei up
to medium masses, presented in chapter 6.
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Chapter 4

Multi-Reference In-Medium
Similarity Renormalization Group

The multi-reference in-medium similarity renormalization group (IM-SRG) is a very powerful
and well established ab initio many-body method, especially in the medium-mass sector
[Her+16; Her17]. It is based on the idea of a unitary transformation of the Hamiltonian,
which preserves the spectrum, that decouples a given reference state |�Í from all states that
are orthogonal to it. In its simplest version it is designed to extract ground-state observables.

This chapter is organized as follows: The basic concept of the multi-reference IM-SRG
is described in detail in section 4.1. We derive the system of multi-reference IM-SRG flow
equations in m-scheme, which are computationally very ine�cient, in section 4.2. To improve
on this, we exploit symmetries of the Hamiltonian and perform total-angular-momentum
coupling (J-coupling) of these equations assuming scalar density matrices, which is given only
if the reference state has vanishing total angular momentum (section 4.3). A more detailed
explanation and a proof of this statement can be found in appendix C.3. Consequently,
this assumption limits the investigation of this work to even nuclei and scalar operators.
For a very e�cient implementation of the J-coupled flow equations, we will rewrite them
as matrix products to make use of highly-optimized implementations of the Basic Linear
Algebra Subprograms (section 4.4). Based on the so-called generalized A-particle A-hole
basis analyzed in detail in section 4.5, we will motivate the construction of the generators in
section 4.6. Finally, we describe how to extract other observables beside ground-state energies
in the framework of the multi-reference IM-SRG (section 4.7). Since we are limited to scalar
operators, as aforementioned, we will focus on radii and electric monopole transitions.
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4. Multi-Reference In-Medium Similarity Renormalization Group

4.1. Basic Concepts

The starting point is a Hamiltonian that typically contains operators up to three-body rank

H = h +
ÿ

p
q

hp

q

ap

q

+ 1
4

ÿ

pr
qs

hpr

qs

apr

qs

+ 1
36

ÿ

prt
qsu

hprt

qsu

aprt

qsu

, (4.1)

where ap

q

, apr

qs

and aprt

qsu

denote the one-, two- and three-body operators (2.1), and h, hp

q

, hpr

qs

and hprt

qsu

are the zero-, one-, two- and three-body matrix elements of the Hamiltonian. In our
calculations, we use the free-space SRG-evolved chiral Hamiltonian (2.2) which contains the
intrinsic kinetic energy operator, nucleon-nucleon (NN) and three-nucleon (3N) interactions.
We write this Hamiltonian in reference-state representation with respect to |�Í via normal
ordering as given in (3.65)

H =E +
ÿ

p
q

fp

q

ãp

q

+ 1
4

ÿ

pr
qs

�pr

qs

ãpr

qs

+ 1
36

ÿ

prt
qsu

W prt

qsu

ãprt

qsu

(4.2a)

with

E := È�| H |�Í = h +
ÿ

p
q

hp

q

“p

q

+ 1
4

ÿ

pr
qs

hpr

qs

“pr

qs

+ 1
36

ÿ

prt
qsu

hprt

qsu

“prt

qsu

(4.2b)

fp

q

:=hp

q

+
ÿ

r
s

hpr

qs

“r

s

+ 1
4

ÿ

rt
su

hprt

qsu

“rt

su

(4.2c)

�pr

qs

:=hpr

qs

+
ÿ

t
u

hprt

qsu

“t

u

(4.2d)

W prt

qsu

:=hprt

qsu

. (4.2e)

Here, |�Í denotes the reference state, which will be decoupled from the rest of the Hilbert
space. Remarkably, the zero-, one- and two-body parts of the Hamiltonian in reference-state
representation still contain information about the initial 3N interaction. We make use of the
MR-NO2B approximation and omit the residual normal-ordered three-body contribution as
explained in section 3.3.4. This approximation has been shown to be su�cient to capture the
main e�ects of the 3N interactions used in this work for the description of ground-state and
excitation energies of closed and open-shell nuclei [Rot+12; GCR16].

In contrast to the free-space SRG introduced in chapter 1, the fundamental goal here is to
solve the many-body problem, which is an eigenvalue problem of the Hamiltonian. This is
achieved via a continuous unitary transformation [Weg94]

H (s) := U †(s)H (0)U (s), (4.3)

which is parameterized by the real-valued flow parameter s Ø 0, and with the initial condition
H (0) := H . The main goal is to map the reference state on an eigenstate of the transformed
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4.1. Basic Concepts

Hamiltonian with an associated energy E(Œ) via the unitary transformation, i.e.,

H (Œ) |�Í = E(Œ) |�Í . (4.4)

Consequently, the reference state is decoupled from all other states orthogonal to it or decou-
pled from all excitations on top of it. The central idea is to suppress the so-called o�-diagonal
matrix elements of the Hamiltonian that couple the reference to other states orthogonal to
it. The strategy will be explained in detail in section 4.6.

The major advantage of a unitary transformation is that the spectrum of the operator
that is transformed is preserved. Additionally, the transformed operator remains Hermitian
if the initial operator is Hermitian. Taking the derivative of (4.3) with respect to the flow
parameter s, we obtain the so-called operator flow equation

dH (s)
ds

=
#
÷(s), H (s)

$
(4.5)

which is mathematically a first-order operator di�erential equation with a dynamical anti-
Hermitian generator related to the unitary transformation via

÷(s) := dU †(s)
ds

U (s) = ≠÷†(s). (4.6)

The exact steps how to derive the operator flow equation (4.5) starting from a general unitary
transformation (4.3) can be found in chapter 1.

Since a commutator of n- and m-body operators is composed of operators up to the
(n + m ≠ 1)-body level according to proposition 3.1, the commutator structure of the flow
equation induces three- and higher-body contributions after an infinitesimal step even if we
start with only two-body operators. After a finite evolution in the flow parameter s, the
induced contribution can include up to A-body operators. To deal with this problem, we
define states with respect to the reference state, this is where the normal-ordering procedure
comes into play because all terms beyond two-body operators are too expensive to handle. If
the reference state is a reasonable approximation of the true eigenstate of the Hamiltonian,
which is unknown, then many-body terms are less important. This fact is encoded in the
term “In-Medium” in the word IM-SRG.

Thus, we truncate ÷(s), H (s) and their commutator at a given particle rank k Æ A in
normal-ordered form, leading to the so-called multi-reference IM-SRG(k). In practical cal-
culations, we stick to the multi-reference IM-SRG(2) truncation, in which the transformed
Hamiltonian reads

H (s) =: E(s) +
ÿ

p
q

fp

q

(s)ãp

q

+ 1
4

ÿ

pr
qs

�pr

qs

(s)ãpr

qs

(4.7)

=: H(0)(s) + H(1)(s) + H(2)(s), (4.8)

where the flow-parameter dependence is only given in the matrix elements of the Hamiltonian.
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4. Multi-Reference In-Medium Similarity Renormalization Group

Pay attention to the ambiguity that the symbol s represents an index and the flow parameter
written within the brackets. Consequently, the left-hand side of the operator flow equation is

dH (s)
ds

= dE(s)
ds

+
ÿ

p
q

dfp

q

(s)
ds

ãp

q

+ 1
4

ÿ

pr
qs

d�pr

qs

(s)
ds

ãpr

qs

. (4.9)

Analogously, we make the following ansatz for the generator

÷(s) =
ÿ

p
q

÷p

q

(s)ãp

q

+ 1
4

ÿ

pr
qs

÷pr

qs

(s)ãpr

qs

=: ÷(1)(s) + ÷(2)(s). (4.10)

Note that the zero-body part of the generator ÷—which is in general a pure imaginary number
due to anti-Hermiticity—is set to zero since any value of this quantity would not a�ect the
results due to the commutator structure of the flow equation. However, the matrix elements
are assumed to be real-valued throughout this work. We leave the choice of the generator ÷

unspecified and postpone the discussion of suitable choices to section 4.6.
In order to derive the system of multi-reference IM-SRG flow equations, we first have

to work out the commutator on the right-hand side of the operator flow equation (4.5) by
making use of Wick’s theorem and then equating the coe�cients to obtain a system of coupled
first-order di�erential equations for the matrix elements of the Hamiltonian.

The method of equating the coe�cients works as follows: Once the right-hand side has
been expressed in terms of the normal-ordered operators 1, ãp

q

, ãpr

qs

, for instance

#
÷(s), H (s)

$
=: Ÿ +

ÿ

p
q

Ÿp

q

ãp

q

+ 1
4

ÿ

pr
qs

Ÿpr

qs

ãpr

qs

, (4.11a)

equating the coe�cients yields the system of the multi-reference IM-SRG flow equations1

dE(s)
ds

= Ÿ (4.11b)

dfp

q

(s)
ds

= Ÿp

q

(4.11c)

d�pr

qs

(s)
ds

= Ÿpr

qs

. (4.11d)

In order to work out the commutator on the right-hand side of the flow equation, we split
it into several commutators using the linearity of the commutator and employ the results
summarized in (3.93)

dH (s)
ds

=
#
÷(s), H (s)

$
=

#
÷(1)(s) + ÷(2)(s), H(0)(s) + H(1)(s) + H(2)(s)

$
(4.12)

=
#
÷(1)(s), H(1)(s)

$
+

#
÷(1)(s), H(2)(s)

$

+
#
÷(2)(s), H(1)(s)

$
+

#
÷(2)(s), H(2)(s)

$
. (4.13)

1The coe�cients Ÿpr
qs can be chosen such that they are antisymmetric with respect to exchange among the

upper and lower indices, respectively.
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Note that H(0) does not contribute to the commutator since it is just a number.

4.2. m-Scheme Flow Equations

In this section, we derive the system of multi-reference IM-SRG flow equations in the so-called
m-scheme version. First, we calculate the commutators on the right-hand side of the operator
flow equation using the results of (3.93). Second, we make use of equating the coe�cients
to obtain a system of coupled first-order di�erential equations for the matrix elements of the
Hamiltonian. Finally, we write the m-scheme flow equations in a specific single-particle basis,
namely the so-called natural orbitals that will simplify the expressions enormously.

4.2.1. Commutator of the Generator and Hamiltonian

Suppressing the flow parameter s and making use of the relations (3.93), we obtain the
commutator between the one- and two-body parts of the generator and Hamiltonian in any
possible combinations. The complete commutator of the generator and Hamiltonian is then
the sum of all sub-commutators due to linearity of the commutator.

The commutator between the one-body part of the generator and the one-body part of the
Hamiltonian yields
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ÿ
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ãp

q

+
ÿ

pr
q

(÷p

r

f r

q

≠ fp

r

÷r

q

)“p

q

. (4.14)

Furthermore, for the one-body part of the generator with the two-body part of the Hamilto-
nian, we obtain
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ÿ
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Analogously, we get for the two-body part of the generator with the one-body part of the
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Hamiltonian
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4

ÿ
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Finally, for the commutator of the two-body parts of these operators we obtain
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where terms involving three-body irreducible density matrices ⁄(3) are neglected since they
contribute only by few keV’s to the ground-state energies2 [Her16]. Here, we redefined
Gprtv

qsuw

:= ÷pr

qs

�tv

uw

≠ �pr

qs

÷tv

uw

.

2Excluding the lighter nuclei, typical binding energy per nucleon is about 8 MeV.
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4.2. m-Scheme Flow Equations

4.2.2. Flow Equations

Discarding the induced three- and higher-body contributions, we obtain the so-called multi-
reference IM-SRG(2). Additionally, we neglect terms including three-body irreducible density
matrices ⁄(3). Using the shorthand notation Gprtv

qsuw

:= ÷pr

qs

�tv

uw

≠�pr

qs

÷tv

uw

the method of equating
the coe�cients yields the system of multi-reference IM-SRG(2) flow equations in the m-
scheme:
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) (4.18a)
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(÷p

r

f r

q

≠ fp

r

÷r

q

)

+
ÿ

rt
su

�pr

qs

÷t

u

(≠”t

s

“r

u

+ “t

s

”r

u

)

+
ÿ

rt
su

÷pr

qs

f t

u

(”t

s

“r

u

≠ “t

s

”r

u

)

+ 1
2

ÿ

rtv
suw

Gprtv

usqw

(“̄t

u

“̄v

s

“r

w

+ “t

u

“v

s

“̄r

w

)

+
ÿ

rtv
suw

(1
4Gptrv

swqu

+ Gprtv

usqw

+ 1
2Gprtv

qusw

≠ 1
2Gptrv

qsuw

)”t

u

⁄rv

sw

(4.18b)
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= +

ÿ
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(÷p

r

f r

q

≠ fp

r

÷r

q

)“p

q

+ 1
4

ÿ

prtv
qsuw

Gprtv

qsuw

“p

u

“r

w

“̄t

q

“̄v

s

+ 1
4

ÿ

pr
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+ O(⁄(3)). (4.18c)
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Remarkably, all terms of the two-body part from (4.18a) reappear in the zero-body part
(4.18c) just contracted with the irreducible two-body density matrix element, i.e.,

1
4

ÿ

pr
qs

d�pr

qs

ds
⁄pr

qs

= 1
2

ÿ

prt
qs

(≠�pr

ts
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q

+ �tr
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t

)⁄pr

qs

(4.19)

+ 1
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t

)⁄pr
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+
ÿ

prtv
qsuw

Gprtv

qusw
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w
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Gprtv

uwqs

(“̄t

u

“̄v

w

≠ “t

u

“v

w

)⁄pr

qs

.

This observation is very helpful for an e�cient implementation of these equations. We leave
this reshaping of the mathematical expression (4.19) to the reader.

It is notable that the system of the multi-reference IM-SRG(2) flow equations (4.18) does
not depend on the irreducible four-body density matrix ⁄(4) and on non-linear powers of
the irreducible two-body density matrix ⁄(2). Even though these contractions appear in the
products of normal-ordered two-body operators, they cancel in the commutators (compare
results obtained in appendices A.1 and A.2.3).

It is convenient to transform these equations into a suitable single-particle basis, the so-
called natural orbitals, which will be discussed in the next section.
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4.2. m-Scheme Flow Equations

4.2.3. Flow Equations in Natural Orbitals

Up to now, we have not specified which single-particle basis we use, and, in principle, we can
take any single-particle basis. We will stick to the so-called natural-orbital basis, which is the
eigenbasis of the (scalar) one-particle density matrix “(1), i.e., by diagonalizing this matrix
we obtain

“p

q

≠æ “p

q

= n
p

”p

q

, (4.20)

where the arrow indicates the transformation into the eigenbasis of this one-particle density
matrix. Here, n

p

œ [0, 1] indicates the eigenvalues of the one-particle density matrix called
the mean particle occupation numbers, which can take any value between zero and one. Note
that in the single-reference case, they can be either zero or one. Trivially, the one-hole density
matrix is diagonal in this basis as well, i.e.,

“̄p

q

= ”p

q

≠ “p

q

≠æ “̄p

q

= (1 ≠ n
p

)”p

q

=: n̄
p

”p

q

(4.21)

with the mean hole occupation number n̄
p

= 1 ≠ n
p

.
The reason for choosing the natural-orbital basis is simply because the number of sum-

mations in the system of the flow equations can be reduced significantly. For instance, the
number of summation indices appearing in term (4.18c)

dE

ds
= . . . + 1

4
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+ . . . (4.22)

= . . . + 1
4
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Gprtv

tvpr

n
p

n
r

n̄
t

n̄
v

+ . . . (4.23)

is halved, which increases computational e�ciency tremendously, i.e., the computational
e�ort can be reduced from O(N8) to O(N4), where N is the dimension of the one-body
basis.

In practical calculations all matrix elements are given in a di�erent basis {|–Í}, e.g.,
harmonic-oscillator or Hartree-Fock basis. Consequently, we have to transform the matrix
elements into the natural-orbital basis {|pÍ} according to

Xp

q

=
ÿ

–—

C–

p

C—

q

X–

—

(4.24a)

Y pr

qs

=
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–“
—”

C–

p

C—

q

C“

r

C—

s

Y –“

—”

. (4.24b)

Here, C–

p

denotes the transformation coe�cients

|pÍ =
ÿ

–

C–

p

|–Í , (4.25)

which are diagonal in the angular momentum l
p

, total angular momentum j
p

, its projection
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m
p

and the projection of the isospin m
tp for a scalar density matrix, i.e.,

C–

p

≥ ”l–
lp

”j–
jp

”m–
mp

”mt–
mtp

. (4.26)

While the transformation coe�cients are independent of the projection quantum number
m

p

, they depend on the isospin projection m
tp and total angular momentum j

p

. Thus,
the transformation can only connect the radial quantum numbers of |pÍ and |–Í with each
other. Furthermore, this transformation is unitary since it is a transformation between two
orthonormal bases, i.e.,

ÿ

p

C–
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—

= ”–
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. (4.27)

Finally, using the shorthand notation introduced earlier, Gprtv

qsuw

:= ÷pr

qs

�tv

uw

≠ �pr

qs

÷tv

uw

, we can
write the system of multi-reference IM-SRG(2) flow equations in natural-orbital basis still in
m-scheme as follows:
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(4.28a)

(4.28b)

(4.28c)
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Remarkably, we observe that the two-body part has the same structure as for the single-
reference case [Her+16; Her17]. But note that the particle occupation numbers n

p

can take
any values between zero and one, whereas for the single-reference case they can either be zero
or one, as mentioned before. Hence, sums over the single-particle basis cannot be simply split
into particle and hole sums as in the single-reference case. The multi-reference specific terms
are those involving the irreducible two-body density matrix elements ⁄pr

qs

: the last line in
the one-body part (4.28b), having three structurally di�erent terms, and the last line in the
zero-body part (4.28c). The single-reference case is recovered just by setting the irreducible
two-body density matrix ⁄(2) to zero.

It is clear from (4.28) that the computational e�ort for solving the multi-reference IM-
SRG(2) flow equations is dictated by the two-body part that scales like O(N6) with the
single-particle basis size N .

For an e�cient implementation, we perform a total-angular-momentum coupling of the sys-
tem of multi-reference IM-SRG flow equations to exploit rotational invariance of the Hamil-
tonian, and then rewrite them as matrix products in order to make use of extremely fast
implementations of the Basic Linear Algebra Subprograms (BLAS) [BLA17]. First, let us
start with total-angular-momentum coupling explained in the next section.

4.3. J-Coupled Flow Equations in Natural Orbitals

We introduce the essential quantities like Clebsch-Gordan coe�cients, Wigner 3j and 6j

symbols for the total-angular-momentum coupling (J-coupling). Furthermore, we recap the
properties of scalar one-body and J-coupled two-body matrix elements that will be needed
for the J-coupling of the system of flow equations (4.28). Finally, we discuss the so-called
Pandya transformation, which will be very useful for the implementation of these equations.

4.3.1. Angular-Momentum-Coupling Coe�cients and Pandya Transformation

The Clebsch-Gordan coe�cients are defined as the overlap of the J-coupled two-body state
|(j

p

j
q
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)JMÍ . (4.29)

They fulfill the orthogonality and completeness relations
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47



4. Multi-Reference In-Medium Similarity Renormalization Group

and behave under exchange of the first two or second and third columns as follows:
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with the multiplicity Ĵ := 2J + 1. Making use of the symmetry, we can easily derive the
following relation

ÿ
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The Wigner 3j symbols are defined as
A
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m1 m2 m3

B
:= (≠1)j

1

≠j

2

≠m

3

ĵ3
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where the inverse relation yields
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Furthermore, they fulfill a (modified) orthogonality relation as well, i.e.,
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The Wigner 6j symbols are defined as a sum over products of four Wigner 3j symbols
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and fulfill the orthogonality relation given by
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Ĵ Õ2
�{j

1

j

4

J

Õ}�{j

3

j

2

J

Õ} (4.40)
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Furthermore, they obey the symmetry relation given by
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The matrix elements of a scalar one-body operator can be expressed as3
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Here, the projection quantum number m
p

is written explicitly and the label p does not contain
it anymore. By averaging over the projection quantum numbers, we obtain
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ĵ2

p

ÿ

mpmq

Opmp
qmq

. (4.44)

Furthermore, the matrix elements of a scalar two-body operator are given as function of the
J-coupled matrix elements as follows
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Note that the J-coupled two-body matrix elements are not normalized because they lack a
factor (1 + ”p

q

)≠1/2. The inverse relation yields
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Assuming antisymmetric two-body matrix elements

Opmprmr
qmqsms

= ≠Ormrpmp
qmqsms

= ≠Opmprmr
smsqmq

(4.47)

3See appendix C.1 for the exact definition of a scalar operator.
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the J-coupled matrix elements behaves under exchange among the upper and lower indices
like

JOpr

qs

= ≠(≠)J≠jp≠jr JOrp

qs

= ≠(≠)J≠jq≠js JOpr

sq

, (4.48)

which is a direct consequence of (4.32) and (4.47).
The definition of the Pandya transformation of J-coupled two-body matrix elements reads
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The inverse Pandya transformation looks quite similar
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since Wigner 6j symbols fulfill the orthogonality relation (4.40). Furthermore, if the initial
matrix elements are (anti-)Hermitian then the Pandya-transformed matrix elements are (anti-
)Hermitian, i.e.,

JO14
32 = ± JO32

14 ∆ JO
12̄
34̄ = ± JO

34̄
12̄. (4.51)

This is a direct consequence of the symmetry of the Wigner 6j symbols (4.42). But in contrast
to JO12

34, the Pandya-transformed matrix elements in general do not fulfill the relation given
in (4.48), i.e.,
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4
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43̄. (4.52)

4.3.2. Performing J-Coupling

Since the J-coupling is very technical, we do not show how to couple every individual term.
Instead, we explicitly demonstrate J-coupling for some terms and discuss all assumptions we
made to perform the J-coupling, which will limit the applicability of the formulae to even
nuclei and additionally to scalar operators, i.e., spherical tensor operators of rank zero. For
the definition of a spherical tensor operator see (C.1). A detailed derivation of all terms can
be found in appendix B. The main outcome of the derivation is summarized in section 4.3.3.

For the J-coupling, we assume that the density matrices are scalar. This can only be
guaranteed if the reference state has vanishing total angular momentum—a proof of this
statement can be found in appendix C.3. However, this is mostly true for ground states
of even-mass nuclei. This leads to mean occupation numbers that are independent of the
projection quantum number m

p

, i.e.,

n
p

= n
pmp (4.53)

n̄
p

= n̄
pmp . (4.54)
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Note that the Hamiltonian is scalar and the generator must be constructed as a scalar oper-
ator. So far, the system of multi-reference IM-SRG(2) equations (4.28) are in principle valid
for any operator. From now on, we assume a Hermitian operator H (unitary transformations
preserve this property)

H†(s) = H (s) (4.55)

and let the operator ÷ be either Hermitian or anti-Hermitian captured by the symbol ‰, i.e.,

÷†(s) = ‰ ÷(s) with ‰ :=

Y
]

[
1 if ÷ Hermitian

≠1 if ÷ anti-Hermitian.
(4.56)

This simple flexibility will enable us to derive the formulae for the commutator of an anti-
Hermitian and Hermitian operator with a Hermitian operator simultaneously. This helps us
to implement the so-called Wegner generator which is defined as the commutator between two
specific Hermitian operators, and will be subject of section 4.6.2. Hence, let us analyze the
symmetry of the commutator of a Hermitian operator H and an anti-Hermitian (Hermitian)
operator ÷ yielding

#
÷, H

$† = (÷H ≠ H÷)† = ‰H÷ ≠ ‰÷H = ‰
#
H , ÷

$
= ≠‰

#
÷, H

$
(4.57)

which implies that the commutator between ÷ and H is Hermitian (anti-Hermitian).
Having this statement in mind, the strategy for the J-coupling looks as follows. In order

to emphasize external indices, we will enumerate them with arabic numbers 1, 2, . . . and
m1, m2, . . . for the projection quantum numbers. Each subterm in (4.28a)–(4.28c) will be
enumerated with Roman numerals. Furthermore, it will be written in compact form using
the following abbreviation for terms obtained by permutations

[1m1 ¡ 2m2] := interchange the indices 1 with 2 and m1 with m2 (4.58)

[1m12m2 ¡ 3m34m4] :=[1m1 ¡ 3m3] · [2m2 ¡ 4m4]. (4.59)

For instance, these abbreviations for the permutation would generate the following expressions

A1m

1

2m

2

≠ [1m1 ¡ 2m2] =A1m

1

2m

2

≠ A2m

2

1m

1

(4.60)

B1m

1

2m

2

3m

3

4m

4

≠ [1m12m2 ¡ 3m34m4] =B1m

1

2m

2

3m

3

4m

4

≠ B3m

3

4m

4

1m

1

2m

2

(4.61)

where A1m

1

2m

2

and B1m

1

2m

2

3m

3

4m

4

can represent long and complicated terms depending on the in-
dices 1m1, 2m2 and so on. Using this shorthand notation it is convenient to write (4.28a)
and (4.28b) in fully symmetrized form in the following sense

X1m

1

2m

2

:=A1m

1

2m

2

≠ ‰[1m1 ¡ 2m2] (4.62)
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Y 1m

1

2m

2

3m

3

4m

4

:=
33

B1m

1

2m

2

3m

3

4m

4

≠ [1m1 ¡ 2m2]
4

≠ [3m3 ¡ 4m4]
4

≠ ‰[1m12m2 ¡ 3m34m4]. (4.63)

In this form it is obvious that these matrix elements obey the relations

X1m

1

2m

2

= ≠ ‰X2m

2

1m

1

(4.64)

Y 1m

1

2m

2

3m

3

4m

4

= ≠ ‰Y 3m

3

4m

4

1m

1

2m

2

(4.65)

and

Y 1m

1

2m

2

3m

3

4m

4

= ≠Y 2m

2

1m

1

3m

3

4m

4

= Y 1m

1

2m

2

4m

4

3m

3

, (4.66)

which is manifestly (anti-) Hermitian, according to (4.57). We perform J-coupling of the two-
body part (4.28a) according to (4.46). For extracting the J-coupled one-body part (4.28b)
we reshape the M -scheme equations to compare with (4.43), or—when necessary—use the
averaging procedure as formulated in (4.44). It follows immediately from the symmetry
relations of the Clebsch-Gordan coe�cients (4.32) that the one- and two-body parts in the
J-coupled version take the following form

X1
2 =A1

2 ≠ ‰[1 ¡ 2] (4.67)

JY 12
34 =

33
JB12

34 ≠ (≠)J≠j

1

≠j

2 [1 ¡ 2]
4

≠ (≠)J≠j

3

≠j

4 [3 ¡ 4]
4

≠ ‰[12 ¡ 34]. (4.68)

Finally, we write the zero-body part (4.28c) such that it is proportional to (1 ≠ ‰) to ensure
(4.57) for the zero-body part.

J-Coupling of a Specific Two-Body Term as Demonstration

Let us consider a specific two-body part defined by the first two lines of (4.28a) that we
enumerate with Roman I

A
d�1m

1

2m

2

3m

3

4m

4

ds

B

I
:= +

ÿ

t

ÿ

mt

(≠�1m

1

2m

2

tmt4m

4

÷tmt
3m

3

≠ �1m

1

2m

2

3m

3

tmt
÷tmt

4m

4

+ �tmt2m

2

3m

3

4m

4

÷1m

1

tmt
+ �1m

1

tmt
3m

3

4m

4

÷2m

2

tmt
)

+
ÿ

t

ÿ

mt

(÷1m

1

2m

2

tmt4m

4

f tmt
3m

3

+ ÷1m

1

2m

2

3m

3

tmt
f tmt

4m

4

≠÷tmt2m

2

3m

3

4m

4

f1m

1

tmt
≠ ÷1m

1

tmt
3m

3

4m

4

f2m

2

tmt
).

(4.69)

Since all other terms are particular permutations of the external indices, we take two specific
terms as representative

=
A

ÿ

t

ÿ

mt

(�tmt2m

2

3m

3

4m

4

÷1m

1

tmt
≠ ÷tmt2m

2

3m

3

4m

4

f1m

1

tmt
) ≠ [1m1 ¡ 2m2]

B

≠ ‰[1m12m2 ¡ 3m34m4]. (4.70)

52



4.3. J-Coupled Flow Equations in Natural Orbitals

Using the antisymmetry of the matrix elements with respect to exchange among the lower
indices, we arrive at a fully symmetrized form

=
331

2
ÿ

t

ÿ

mt

(�tmt2m

2

3m

3

4m

4

÷1m

1

tmt
≠ ÷tmt2m

2

3m

3

4m

4

f1m

1

tmt
) ≠ [1m1 ¡ 2m2]

4

≠ [3m3 ¡ 4m4]
4

≠ ‰[1m12m2 ¡ 3m34m4]. (4.71)

The permutation [1m12m2 ¡ 3m34m4] multiplied with factor ≠‰ guarantees (4.57). The
permutations [1m1 ¡ 2m2] and [3m3 ¡ 4m4] take care of the symmetry with respect to
exchange among the upper and lower indices as expressed in (4.47), respectively.

The J-coupling procedure according to (4.46) yields
A

d J�12
34

ds

B

I
=

ÿ

m

1

m

2

m

3

m

4

3
j1 j2

m1 m2

----
J

M

43
j3 j4

m3 m4

----
J

M

4 A
d�1m

1

2m

2

3m

3

4m

4

ds

B

I
(4.72)

=
ÿ

m

1

m

2

m

3

m

4

3
j1 j2

m1 m2

----
J

M

43
j3 j4

m3 m4

----
J

M

4

◊
3331

2
ÿ

t

ÿ

mt

(�tmt2m

2

3m

3

4m

4

÷1m

1

tmt
≠ ÷tmt2m

2

3m

3

4m

4

f1m

1

tmt
) ≠ [1m1 ¡ 2m2]

4

≠ [3m3 ¡ 4m4]
4

≠ ‰[1m12m2 ¡ 3m34m4]
4

(4.73)

making use of the symmetry relation of the Clebsch-Gordan coe�cients (4.32) yields

=
331

2
ÿ

t

ÿ

mt

ÿ

m

1

m

2

m

3

m

4

3
j1 j2

m1 m2

----
J

M

43
j3 j4

m3 m4

----
J

M

4

◊ (�tmt2m

2

3m

3

4m

4

÷1m

1

tmt
≠ ÷tmt2m

2

3m

3

4m

4

f1m

1

tmt
) ≠ (≠)J≠j

1

≠j

2 [1 ¡ 2]
4

≠ (≠)J≠j

3

≠j

4 [3 ¡ 4]
4

≠ ‰[12 ¡ 34]. (4.74)

Expressing the one- and two-body matrix elements in terms of the J-coupled matrix elements
as given in (4.43) and (4.45), respectively, we obtain

=
331

2
ÿ

t

ÿ

mt

ÿ

m

1

m

2

m

3

m

4

ÿ

J

Õ
M

Õ

3
j1 j2

m1 m2

----
J

M

43
j3 j4

m3 m4

----
J

M

4

◊
3

j
t

j2

m
t

m2

----
J Õ

M Õ

43
j3 j4

m3 m4

----
J Õ

M Õ

4
”j

1

jt
”m

1

mt
( J

Õ�t2
34÷1

t

≠ J

Õ
÷t2

34f1
t

)

≠ (≠)J≠j

1

≠j

2 [1 ¡ 2]
4

≠ (≠)J≠j

3

≠j

4 [3 ¡ 4]
4

≠ ‰[12 ¡ 34] (4.75)
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=
331

2
ÿ

t

ÿ

mt

ÿ

m

1

m

2

m

3

m

4

ÿ

J

Õ
M

Õ

3
j1 j2

m1 m2

----
J

M

43
j3 j4

m3 m4

----
J

M

4

◊
3

j
t

j2

m
t

m2

----
J Õ

M Õ

43
j3 j4

m3 m4

----
J Õ

M Õ

4
”j

1

jt
”m

1

mt
( J

Õ�t2
34÷1

t

≠ J

Õ
÷t2

34f1
t

)

≠ (≠)J≠j

1

≠j

2 [1 ¡ 2]
4

≠ (≠)J≠j

3

≠j

4 [3 ¡ 4]
4

≠ ‰[12 ¡ 34] (4.76)

which can be simplified using the orthogonality relation (4.30) to

=
331

2
ÿ

t

ÿ

J

Õ
M

Õ
”J

Õ
J

”M

M

Õ( J

Õ�t2
34÷1

t

≠ J

Õ
÷t2

34f1
t

) ≠ (≠)J≠j

1

≠j

2 [1 ¡ 2]
4

(4.77)

≠ (≠)J≠j

3

≠j

4 [3 ¡ 4]
4

≠ ‰[12 ¡ 34] (4.78)

=
331

2
ÿ

t

( J�t2
34÷1

t

≠ J÷t2
34f1

t

) ≠ (≠)J≠j

1

≠j

2 [1 ¡ 2]
4

≠ (≠)J≠j

3

≠j

4 [3 ¡ 4]
4

≠ ‰[12 ¡ 34] (4.79)

which is finally expressed in terms of the J-coupled two-body and m-independent one-body
matrix elements.

J-Coupling of a Specific One-Body Term as Demonstration

Let us start with the first line in (4.28b) defining
A

df1m

1

2m

2

ds

B

I
:=

ÿ

r

ÿ

mr

(÷1m

1

rmr
f rmr

2m

2

≠ f1m

1

rmr
÷rmr

2m

2

) (4.80)

=
ÿ

r

ÿ

mr

÷1m

1

rmr
f rmr

2m

2

≠ ‰[1m1 ¡ 2m2] (4.81)

=
ÿ

r

ÿ

mr

÷1
r

f r

2 ”j

1

jr
”jr

j

2

”m

1

mr
”mr

m

2

≠ ‰[1m1 ¡ 2m2] (4.82)

=”j

1

j

2

”m

1

m

2

ÿ

r

÷1
r

f r

2 ≠ ‰[1m1 ¡ 2m2]. (4.83)

Hence, we can read o� the projection quantum number independent part
A

df1
2

ds

B

I
=

ÿ

r

÷1
r

f r

2 ≠ ‰[1 ¡ 2]. (4.84)

J-Coupling of a Specific Zero-Body Term as Demonstration

As a final demonstration, let us consider the first line in (4.28c)
3dE

ds

4

I
:=

ÿ

pr

ÿ

mpmr

(÷pmp
rmr

f rmr
pmp

≠ fpmp
rmr

÷rmr
pmp

)n
p

(4.85)
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=(1 ≠ ‰)
ÿ

pr

ÿ

mpmr

÷pmp
rmr

f rmr
pmp

n
p

(4.86)

=(1 ≠ ‰)
ÿ

pr

÷p

r

f r

p

n
p

ÿ

mpmr

”mp
mr

”
jp

jr
(4.87)

=(1 ≠ ‰)
ÿ

pr

ĵ2
p

÷p

r

f r

p

n
p

(4.88)

which is completely determined by the projection number independent matrix elements.

4.3.3. Summary of the J-Coupled Flow Equations in Natural Orbitals

In summary, we get

d J�12
34

ds
=

531
2

ÿ

t

1
J�t2

34÷1
t

≠ J÷t2
34f1

t
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ÿ
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ÿ
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ĵ2

t

”jt
js

1
J

1÷1t

2s

J

2⁄sw

rv

J

2�rv

tw

≠ [ ÷ ¡ �]
2 6

≠ ‰[1 ¡ 2]
dE

ds
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ÿ
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n
p

+ 1
4(1 ≠ ‰)

ÿ
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ÿ

prtv

Ĵ2 J÷pr
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n
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ÿ

J

ÿ

prqs

Ĵ2 d J�pr
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ds
J⁄pr
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+ O(⁄(3)).

(4.89a)

(4.89b)

(4.89c)
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Given that all matrix elements are real-valued, the zero-body part vanishes completely as ex-
pected if we assume a Hermitian operator ÷ by setting ‰ = 1, since the commutator is then
anti-Hermitian according to (4.57). The terms obtained by the permutations basically guar-
antee the (anti-)Hermiticity of the operator defined by the commutator, and the symmetry
with respect to exchange among the upper and lower indices in the sense of (4.48).

4.4. Implementation of the J-Coupled Flow Equations

The main goal of this section is to rewrite the system of J-coupled flow equations (4.89)
in a convenient form for an e�cient implementation. The basic idea is to express these
flow equations as matrix products to accelerate the evaluation of the right-hand side by
using the Basic Linear Algebra Subprograms (BLAS) [BLA17] which are much faster than a
straightforward implementation of the summation loops appearing in the flow equations.

4.4.1. Bases, Matrix Products and Traces

First, we introduce the one-body and two-body bases used to represent the operators taking
into account their symmetries. Since the one-body operators used in this work are rotationally
invariant, i.e., diagonal in the projection quantum number m

p

and independent of it, we
introduce a spherical one-body basis

B(1) :=
Ó

|p m
p

Í = |ñ
p

(l
p

1
2)j

p

m
p

; 1
2m

tpÍ : 2ñ
p

+ l
p

Æ emax · m
p

= 1
2

Ô
. (4.90)

truncated with respect to the maximum single-particle energy quantum number emax to have
a finite basis of dimension d1 : = dim(B(1)). Here, ñ

p

œ {0, 1, . . .} is the radial quantum
number4, the angular-momentum l

p

œ {0, 1, . . .} and spin-1
2 quantum number are coupled

to the total angular momentum j
p

œ { |l
p

≠ 1
2 |, |l

p

≠ 1
2 | + 1, . . ., l

p

+ 1
2} with its projection

quantum number m
p

œ { ≠j
p

, ≠j
p

+ 1, . . ., j
p

}. Moreover, the z-component of the isospin-1
2

quantum number encodes whether this single-particle state belongs to a neutron m
tp = ≠1

2
or a proton m

tp = +1
2 .

We denote the matrix representation of a given spherical one-body operator A as follows

A := (Ap

q

)pœ(1,...,d

1

)
qœ(1,...,d

1

) =

Q

ccccca

A1
1 A1

2 . . . A1
d

1

A2
1 A2

2 . . . A2
d

1

...
... . . . ...

Ad

1

1 Ad

1

2 . . . Ad

1

d

1

R

dddddb
, (4.91)

where the upper and lower indices correspond to the row and column indices, respectively.
This notation is generic and independent whether Ap

q

refers to a matrix element of the operator
A in vacuum or reference-state representation.

4To avoid confusion with the mean occupation number np, we put a tilde ˜ on top it.
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Analogously, the diagonality in the coupled two-body angular momentum J and the in-
dependence of its projection M motivates the following definition for the two-body basis in
each subspace spanned by two-body states with total angular momentum J , i.e.,

JB(2) :=
Ó

|(pr)JMÍ : M = 0 · �{jpjrJ} · 2ñ
p

+ l
p

+ 2ñ
r

+ l
r

Æ Emax
Ô

(4.92)

with the maximum two-body energy quantum number Emax and �{jpjrJ} being true if and
only if the single-particle total angular momentum j

p

and j
r

can couple to the two-body total
angular momentum J . Here, we can take the specific projection quantum number M = 0
since the quantum number J is an integer because j

p

and j
r

are half-integer. The complete
two-body basis is the union of JB(2) over all possible values of J , which is finite since the
one-body basis is finite. In this basis the matrix notation of a given rotationally invariant
two-body operator C is given by

JC := ( JCpr

qs

)prœ(1,...,d

J
2

)
qsœ(1,...,d

J
2

) =

Q

cccccca

JC1
1

JC1
2 . . . JC1

d

J
2

JC2
1

JC2
2 . . . JC2

d

J
2...

... . . . ...

JC
d

J
2

1
JC

d

J
2

2 . . . JC
d

J
2

d

J
2

R

ddddddb
. (4.93)

Here, the indices pr and qs can be seen as collective indices for the J-coupled two-body basis
running from 1 to the dimension of the J-coupled two-body basis dJ

2 := dim(JB(2)).
Using this matrix notation, we can write matrix products of the two given one-body ma-

trices

(A · B)p

q

:=
ÿ

r

Ap

r

Br

q

(4.94)

and two-body matrices

(JX · JY )pr

qs

:=
ÿ

tv

JXpr

tv

JY tv

qs

(4.95)

which can be implemented in a much more e�cient way using BLAS operations than straight-
forward summation loops. For matrix products, we have to make sure that both matrices
are given either in vacuum or reference-state representation, otherwise the product does not
make sense. Moreover, the trace of a given one- or two-body matrix is defined as

tr(A) :=
ÿ

p

Ap

p

(4.96)

tr(JC) :=
ÿ

pr

JCpr

pr

. (4.97)

Finally, for an e�cient implementation of the first term in two-body part (4.89a) and second
term of the one-body part (4.89b), we embed any one-body matrix elements Ap

q

into the
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J-coupled two-body basis using the following prescription

J(�
A

)pr

qs

:= Ap

q

”r

s

= Ap

q

”r

s

�{jpjrJ}�{jqjsJ} (4.98)

where we implicitly assume that j
p

and j
r

couple to the total angular momentum J ; the
same applies for j

q

and j
s

. These embedded matrix elements are Hermitian (anti-Hermitian)
if and only if the operator A is Hermitian (anti-Hermitian). But they are not necessarily
antisymmetric with respect to exchange among the upper and lower indices in the following
sense

J(�
A

)pr

qs

”= (≠)J≠jp≠jr J(�
A

)rp

qs

”= (≠)J≠jq≠js J(�
A

)pr

sq

. (4.99)

With the aid of this definition (4.98), we can write

ÿ

t

A1
t

JBt2
34 =

ÿ

tu

A1
t

”2
u

JBtu

34 =
ÿ

tu

J(�
A

)12
tu

JBtu

34 =
1

J �
A

· JB
212

34
. (4.100)

Even though we generate many trivial zero entries in the matrix J �
A

, the right-hand side
of this expression can be implemented using BLAS operations in a much more e�cient way
than a straightforward implementation of the summation loops.

4.4.2. BLAS Compliant J-Coupled Flow Equations

Our starting point is the system of multi-reference IM-SRG(2) flow equations (4.89). We
will suppress the terms obtained by permutations for brevity. These terms basically guaran-
tee the symmetry of the operator defined by the commutator according to (4.57), and the
antisymmetry with respect to exchange among the upper and lower indices, respectively, as
formulated in (4.48).

Two-Body Part

By embedding the one-body matrix elements into the J-coupled two-body basis according to
(4.98), we obtain for the first term

A
d J�12

34
ds

B

I
=1

2
ÿ

t

( J�t2
34÷1

t

≠ J÷t2
34f1

t

) (4.101)

=1
2

3
J �

÷

· J� ≠ J �
f

· J÷
412

34
(4.102)

where we used (4.100). With the following definition

JF tv

uw

:= (1 ≠ n
t

≠ n
v

)”tv

uw

(4.103)
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which is a diagonal matrix in the two-body basis, we can recast the second term to
A

d J�12
34

ds

B

II
= + 1

8
ÿ

tv

J÷12
tv

J�tv

34(1 ≠ n
t

≠ n
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) (4.104)

= + 1
8

ÿ
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J÷12
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JF tv

uw

J�uw

34 (4.105)

= + 1
8

1
J÷ · JF · J�

212

34
. (4.106)

We define the two-body matrix element

J

Õ
Dvu

wt

:= ≠ (n
v

≠ n
t

)”vu

wt

�{jvjuJ

Õ} (4.107)

where we implicitly assume that j
v

and j
t

couple to J Õ on the right hand side, and performing
its Pandya transformation (4.49) using relation (1) in [VMK88, p. 305] yields

JD
vt̄

wū

= ≠
ÿ
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I
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j
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j
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j
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J Õ
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Õ
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(4.108)

= + (n
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I
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j
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j
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= + (n
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≠ n
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)”vt
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�{jvjtJ

Õ} (4.110)

= ≠ J

Õ
Dvu

wt

= ≠ J

Õ
Dvt

wu

. (4.111)

This implies that the Pandya transformation of J

Õ
Dvu

wt

is proportional to the identity transfor-
mation in this case. Introducing the abbreviation for the product of three Pandya-transformed
matrices

J

Õ
B

14̄
32̄ :=

ÿ

tv
uw

J

Õ
÷14̄

vt̄

J

Õ
D

vt̄
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Õ�wū
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Õ
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Õ
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Õ�
214̄
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. (4.112)

we can recast the third term to
A

d J�12
34

ds

B

III
= ≠ 1

2
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Õ
Ĵ Õ2

I
J j1 j2

J Õ j3 j4
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32̄(n
t
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) (4.113)

identifying the Pandya-transformed two-body matrix element JD
vt̄

wū

since j
t

and j
v

couple
to J Õ because of J

Õ�vt̄

32̄, we get

= + 1
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ÿ
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ÿ
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Õ
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I
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I
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Õ
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32̄ (4.115)

= ≠ 1
2

JB12
34 . (4.116)
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In the last step, we identified the inverse Pandya transformation (4.50) of J

Õ
B

14̄
32̄ and used an

appropriate shorthand notation for the transformed matrix elements.

One-Body Part

The first term of the one-body part is simply a matrix product
A

df1
2

ds

B

I
=

ÿ

r

÷1
r

f r

2 =
1
÷ · f

21

2
. (4.117)

The second term of the one-body part is analogous to first term of the two-body part
A
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ds

B
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ĵ2
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. (4.120)

With the aid of the diagonal matrices

JM tv

uw

:=n̄
t

n̄
v

”tv

uw

(4.121)
JN tv

uw

:=n
t

n
v

”tv

uw

(4.122)

we can express the third term of the one-body part as matrix products
A

df1
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ds

B
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2ĵ2
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Ĵ2 J÷1r

tv

J�tv

2r

(n̄
t

n̄
v

n
r

+ n
t

n
v

n̄
r

) (4.123)
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. (4.125)

The fourth term is simply a product of three matrices
A
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2
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B
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4
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=1
4

1
ĵ2
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Ĵ2
1

J÷ · J⁄ · J�
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. (4.127)

Analogously, the fifth term is a product of three Pandya-transformed matrices
A

df1
2

ds

B

V
= 1

ĵ2
1

ÿ

J
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= 1
ĵ2
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ÿ
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Ĵ2
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. (4.129)

With the aid of the following abbreviation for a product of two matrices
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=
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J
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=
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we can reshape the last term as follows
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which can be further simplified by means of a Pandya transformation. For that purpose, let
us consider the first term of the previous expression

≠1
2

1
ĵ2
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ĵ2

1
”j

1

j

2

ÿ

J

1

J

2

ÿ

tsw

(≠)J

1

≠J

2

≠j

1

+jw Ĵ2
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ĵ2

t

”jt
js

J

1÷1t

s2
J

2(⁄�)sw

wt

(4.136)

= ≠ (≠)2 1
2

1
ĵ2

1
”j

1

j

2

ÿ

J

3

J

4

ÿ

J

1

J

2

ÿ

tsw

(≠)J

1

≠J

2

≠j

1

+jw Ĵ2
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ĵ2

1
”j

1

j

2

ÿ

J

3

J

4

ÿ

tsw

Ĵ2
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= ≠ 1
2

1
ĵ1
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Note that only the J = 0 block with positive parity, i.e., +1, is needed since the J-coupled
two-body state |(ww̄)JMÍ always has positive parity. The reason is that the parity depends
on the angular momentum l

w

as follows (≠1)lw+lw̄ = (≠1)lw+lw = (≠1)2lw = +1, which holds
since l

w

is an integer. The derivation of the second term is analogous. Hence, we obtain
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with 0+(⁄�) and 0+(⁄÷) being the J = 0 block of the Pandya-transformed matrices with
positive parity of

J

Õ(⁄�) :=J

Õ
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Õ� (4.146)
J

Õ(⁄÷) :=J

Õ
⁄ · J

Õ
÷. (4.147)

Note that all J Õ blocks of these matrices are needed for the calculation of 0+(⁄�) and 0+(⁄÷)
because of the sum over all J Õ in the definition of the Pandya transformation (4.49), i.e.,
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Ĵ Õ2

I
j1 j2 0
j3 j4 J Õ

J
J

Õ(⁄÷)14
32 (4.149)

with the parity fip

q̄

:= (≠1)lp+lq̄ = (≠1)lp+lq .

Zero-Body Part

The first term of the zero-body part is simply a matrix product that has already been calcu-
lated in the first term of the one-body part
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ĵ2
p

÷p

r

f r

p

n
p

(4.150)
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With the aid of the previously-defined diagonal matrices, the second term can be expressed
as the trace of a product of four matrices
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where we used the definition of the trace from (4.97). The last term is simply
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4.4.3. Summary of BLAS Compliant Flow Equations

In summary, we obtain the system of J-coupled multi-reference IM-SRG(2) flow equations in
natural orbitals rewritten in BLAS compliant form
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(4.158a)

(4.158b)

(4.158c)

For an e�cient implementation, we make use of intermediate results. For instance, the second
term in the one-body part is basically a partial trace of the first sub-expression in the two-
body part. Furthermore, the Pandya-transformed matrix J÷ calculated in the third term of
the two-body part can be used to implement the fifth and sixth term of the one-body part.
Finally, the matrix products ÷ · f and J÷ · JM · J� appearing in the one-body part also occur
in the first and second term of the zero-body part, respectively.
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As a reminder, these are the definitions used to write these equations in compact form:

J(�
÷
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(4.159a)

(4.159b)

(4.159c)

(4.159d)

(4.159e)

(4.159f)

(4.159g)

(4.159h)

(4.159i)

(4.159j)

(4.159k)

(4.159l)

(4.159m)

(4.159n)
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Finally, we give an overview of the most important symbols used here.

n
p

, n̄
p

mean particle and hole occupation numbers

⁄pr

qs

irreducible two-body density matrix element
J⁄pr

qs

J-coupled irreducible two-body density matrix element
J⁄

pr̄

qs̄

Pandya-transformed J-coupled irreducible 2-body density matrix elem.
J⁄ matrix representation of J⁄pr
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J⁄ matrix representation of J⁄
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qs̄

H Hamiltonian
E, fp

q

, �pr
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, W prt

qsu

0-, 1-, 2-, 3-body matrix elements of H in reference-state repr.
J�pr
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J-coupled two-body matrix elements of H in reference-state repr.
J�pr̄
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Pandya-transformed J-coupled two-body matrix elements of J�pr
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f matrix representation of fp
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÷ generator of the multi-reference IM-SRG evolution
÷p

q
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qs

one- and two-body matrix elements of ÷ in reference-state repr.
J÷pr
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J-coupled two-body matrix elements of ÷ in reference-state repr.
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Pandya-transformed J-coupled two-body matrix elements of J÷pr
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÷ matrix representation of ÷p

q

J÷ matrix representation of J÷pr
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J÷ matrix representation of J÷pr̄

qs̄

J(�
÷

)pr
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embedded J-coupled two-body matrix elements J(�
÷

)pr
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:= ÷p

q
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s

J �
÷

matrix representation of J(�
÷

)pr

qs
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4.5. Generalized A-Particle A-Hole Basis

In this section, we introduce a specific many-body basis of the A-body Hilbert space, called A-
particle A-hole basis, based on a given A-body reference state (section 4.5.1). The concept of
this basis is footed in the normal-ordering technique introduced in chapter 3, and is a crucial
point for the construction of the generators for the IM-SRG evolution discussed in section 4.6.
For illustration purposes, we focus on specific basis states (sections 4.5.2 and 4.5.3). It turns
out that the A-particle A-hole basis is overcomplete. We propose an algorithm that gives
at least the right number of basis states, and demonstrate its usage on a two-body system
as a test case (section 4.5.4). But the linear independence of the states generated by this
algorithm still remains to prove, which is highly non-trivial. However, we emphasize that the
overcompleteness does not cause any problems in IM-SRG.

4.5.1. General Considerations

Suppose the reference state can be expressed as a linear combination of Slater determinants
|�

n

Í, which are antisymmetrized A-body states, as follows

|�Í =
ÿ

n

c
n

|�
n

Í . (4.160)

Based on the reference state the single-particle basis can be classified in three disjoint sets
which are schematically depicted in figure 4.1:

• A core state corresponds to a single-particle state occupied in all Slater determinants of
the reference state. These single-particle states will be indicated by the indices i, j, . . .,
and the corresponding set of all core indices is abbreviated by C.

• An active state is a single-particle state occupied in at least one, but not in all of
these Slater determinants. These single-particle states will be indicated by the indices
x, y, . . ., and a shorthand notation for the set of all active indices is A. Note that these
states do not exist in the single-reference case.

• A virtual state is a single-particle state unoccupied in all of these Slater determinants.
These single-particle states will be indicated by the indices b, c, . . ., and the set contain-
ing all virtual indices is denoted by V.

Conventionally, the indices p, r, q, s,. . . can refer to all of these types of indices. Due to Pauli
exclusion principle, creating a core state or annihilating a virtual state on top of the reference
state leads to

ai |�Í = È�| a
i

= 0 (4.161)

a
b

|�Í = È�| ab = 0. (4.162)
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...

...

...

Figure 4.1.: A schematic depiction for the classification of the single-particle basis based on
a reference state |�Í containing eight identical fermions. Core states (blue solid
circles) are single-particle states occupied in all Slater determinants |�

n

Í, whereas
the virtual states are occupied in none of them. The remaining single-particle
states, called active states, are occupied (red solid circles) and unoccupied (red
open circles) in some of them. The vertical ordering of the states has no meaning.

Consequently, the n-body density matrix element vanishes

“p

1

...pn
q

1

...qn
= È�|ap

1

...pn
q

1

...qn
|�Í = 0 (4.163)

for di�erent scenarios:

• If any index is virtual, i.e., p
i

œ V or q
i

œ V for any i œ {1, 2, . . . , n}.

• If the number of the core, active and virtual indices in the upper and lower indices is
di�erent, e.g., if there are exactly two and three active orbitals in the upper and lower
indices, respectively.

If one of the upper indices belongs to the core then the action of the n-body operator on the
reference state is reducible in the sense that can be expressed as a linear combination of the
action of (n ≠ 1)-body operators

ai p

2

p

3

...pn
q

1

q

2

q

3

...qn
|�Í =(”i

q

1

ap

2

p

3

...pn
q

2

q

3

...qn
≠ ”i

q

2

ap

2

p

3

...pn
q

1

q

3

...qn
+ . . . + (≠1)n≠1”i

qn
ap

2

p

3

...pn
q

1

q

2

...qn≠1

) |�Í (4.164)

= 1
(n ≠ 1)!

ÿ

fiœSn

sgn(fi)”i

qfi(1)

ap

2

p

3

...pn
qfi(2)

qfi(3)

...qfi(n)

|�Í . (4.165)

Here, S
n

denotes the set of all permutations of (1, 2, ..., n). By projecting (4.165) on the
reference state, i.e., multiplying with È�| from the left, we can identify the one-body density
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matrix elements that has the same form in this case

“i p
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3
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=”i

q

1
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2
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2

q

3

...qn
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2
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2
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3
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q

1
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3

...qn
+ . . . + (≠1)n≠1”i
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2
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3
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q

1

q

2

...qn≠1

(4.166)

= 1
(n ≠ 1)!

ÿ

fiœSn

sgn(fi)”i

qfi(1)

“p

2

p

3

...pn
qfi(2)

qfi(3)

...qfi(n)

. (4.167)

Hence, if all upper indices correspond to the core then the density matrix element is trivially
diagonal

“i

1

i

2

...in
q

1

q

2

...qn
= A(”i

1

q

1

”i

2

q

2

· · · ”in
qn

) (4.168)

which looks like the single-reference case.
Based on the reference state |�Í, we generate A-body states by acting with the normal-

ordered n-body operator on this reference state

|�p

1

...pn
q

1

...qn
Í :=ãp

1

...pn
q

1

...qn
|�Í (4.169)

=(ap

1

...pn
q

1

...qn
≠ “p

1

...pn
q

1

...qn
) |�Í ≠

n≠1ÿ

j=1
A(“p

1

...pj
q

1

...qj |�pj+1

...pn
qj+1

...qn Í) (4.170)

which we call the generalized n-particle n-hole state or n-particle n-hole excitation.
Obviously, these n-particle n-hole excitations are antisymmetric with respect to exchange

among the upper and lower indices, respectively:

|�p

1

...pi...pj ...pn
q

1

...qi...qj ...qn Í = ≠ |�p

1

...pj ...pi...pn
q

1

...qi...qj ...qn Í = ≠ |�p

1

...pi...pj ...pn
q

1

...qj ...qi...qn Í (4.171)

for all i, j œ {1, 2, . . . n} with i ”= j because the (reference-state) normal-ordered operators
do have this property (3.59). Let us analyze the scenarios where these n-particle n-hole
excitations vanish.

Proposition 4.1. Any n-particle n-hole excitation vanishes

|�p

1

...pn
q

1

...qn
Í = 0 (4.172)

• if at least one of the lower indices is a virtual index, i.e., q
k

œ V for any k œ {1, 2, . . . , n},

• if at least one of the upper indices is a core index, i.e., p
k

œ C for any k œ {1, 2, . . . , n}.

Since the proof of this proposition is extremely technical, we postpone it to appendix B.2.
With the aid of the reference state and generalized n-particle n-hole excitations up to particle
rank A, we can define a nucleus-specific many-body basis of the A-body Hilbert space, which
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we call the generalized A-particle A-hole basis

BIM-SRG :=
;

|�Í
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(4.173)

=
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*
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1
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...qA
Í : p1, p2, . . . p
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”œ C, q1, q2, . . . , q
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”œ V,

p1 < p2 < . . . < p
A

, q1 < q2 < . . . < q
A

*
(4.174)

Here, we restricted the indices in order to get rid of trivial zero vectors as analyzed in
proposition 4.1 and linear dependencies (4.171), but this basis still remains overcomplete
in general. We propose an algorithm how to choose a proper number of basis states from
the overcomplete A-particle A-hole basis, and explicitly demonstrate its usage on a simple
problem in section 4.5.4. A general proof of the linear independence of the set of basis states
generated by this algorithm has yet to be provided. Luckily, it does not cause any problem
for our discussion. In multi-reference coupled cluster, for instance, this is a problematic point
and one has to calculate the many-body overlap matrix. After diagonalizing this matrix, one
can eliminate the overcompleteness by discarding all basis states related to zero eigenvalue
of the overlap matrix.

Furthermore, this basis is not orthogonal because, e.g., the generalized one-particle one-
hole states are in general not orthogonal to each other due to the irreducible two-body density
matrix element, which does not vanish for the multi-reference case:

È�p

q

|�r

s

Í = n
p

n̄
q

”p

s

”r

q

+ ⁄pr

qs

”= ”p

s

”r

q

. (4.175)

But it remains true that the reference state |�Í is orthogonal to all other states by construction
due to normal ordering, i.e.,

È�|�p

q

Í = È�|ãp

q

|�Í = 0 (4.176a)

È�|�pr

qs

Í = È�|ãpr

qs

|�Í = 0 (4.176b)
...

È�|�p

1

...pA
q

1

...qA
Í = È�|ãp

1

...pA
q

1

...qA
|�Í = 0. (4.176c)

Thus, all states besides the reference state span a subspace of the A-body Hilbert space
orthogonal to the subspace spanned by the reference state only (see figure 4.2).

Let us analyze the n-particle n-hole excitations for the case n > A. Obviously, this case
does not contribute for the single-reference case, where the reference state is just a single
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Figure 4.2.: Schematic depiction that all n-particle n-hole excitations are orthogonal to the
reference state. Whereas the n-particle n-hole excitations are either orthogonal
to each other nor normalized.

Slater determinant. But for the multi-reference case, taking a closer look at the definition of
the n-particle n-hole excitations given in (4.169), we can clearly see that these basis states
do not vanish since they contain contribution from lower-particle rank excitations. This is
related to the existence of the active space. However, a natural question that arises is whether
they can be expressed as linear combination of i-particle i-hole excitations with i Æ A.

Proposition 4.2. Any n-particle n-hole excitation on top of the A-body reference state |�Í
with n > A can be written as linear combination of all generalized i-particle i-hole excitations
with i Æ A

|�p
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...pn
q

1

...qn
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s
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1

...si
Í

R

db . (4.177)

Thus, excitations beyond A-body rank do not necessarily vanish, but are superposition of
lower-particle rank excitations.

Proof. First step is to show that the generalized n-particle n-hole excited state is orthogonal
to |�Í

È�|�p

1

...pn
q

1

...qn
Í = È�|ãp

1

...pn
q

1

...qn
|�Í = 0, (4.178)

which is guaranteed due to the construction of normal ordering. Introducing the shorthand
notation for the vacuum normal-ordered n-body operator

a[n] :=ap

1

...pn
q

1

...qn
(4.179)

we can convince ourselves that the full n-particle density matrix with respect to the reference
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state vanishes for n > A

“[n] := È�|a[n]|�Í = 0 (4.180)

since we cannot annihilate more than A particles occupied in the reference state |�Í. The
vacuum normal-ordered n-body operator can be expressed as a linear combination of the
reference-state normal-ordered operators (3.60d). On the one hand, since all full l-particle
density matrices for l > A vanish, expression (3.60d) for the case n > A can be formulated
structurally as

a[n] = ã[n] + F(“[1], . . . , “[A], ã[n≠1], . . . , ã[n≠A]) (4.181)

with a properly defined function F which is a linear combination of the normal-ordered i-
body operators with n ≠ A Æ i Æ n ≠ 1. On the other hand, by writing all normal-ordered
operators in terms of the vacuum normal-ordered operators by a recursive treatment, we can
recast this expression to

ã[n] = a[n] ≠ G(“[1], . . . , “[A], a[n≠1], . . . , a[A+1], a[A], . . . , a[1]) (4.182)

with a properly defined function G which is still a linear combination of the vacuum normal-
ordered j-body operators with 1 Æ j Æ n ≠ 1. Note, in contrast to F , the function G depends
on all particle ranks down to one. The proof is closed by applying the normal-ordered n-body
operator on the reference state |�Í

|�[n]Í :=ã[n] |�Í (4.183)

= a[n] |�Í
¸ ˚˙ ˝

=0

≠G(“[1], . . . , “[A], a[n≠1], . . . , a[A+1], a[A], . . . , a[1]) |�Í (4.184)

= ≠ G
n

(“[1], . . . , “[A], a[A], . . . , a[1]) |�Í (4.185)

with a new function G
n

for each rank n which does not depend on operators beyond particle
rank A, since g(a[i]) |�Í = 0 for all i > A and any function g. By reexpressing the vacuum
normal-ordered one- to A-body operators in terms of the reference-state normal-ordered one-
to A-body operators, we can rewrite the above expression to

|�[n]Í = ≠H
n

(“[1], . . . , “[A], ã[A], . . . , ã[1]) |�Í . (4.186)

with a properly defined function H
n

which is still a linear combination of the reference-state
normal-ordered operators up to particle rank A. This means that |�p

1

...pn
q

1

...qn
Í = |�[n]Í lives in

the subspace spanned by all basis states {|�r

1

...ri
s

1

...si
Í} with i = 1, . . . , A. Consequently, it can

be expressed as a linear combination of these states, which was the statement to be proven.
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4.5.2. Generalized One-Particle One-Hole States

Since the definition of the generalized one-particle one-hole state, also called one-particle
one-hole excitation, given in (4.169) contains the one-body density matrix elements, let us
construct these

“p

q

=

Y
____]

____[

”p

q

if p œ C or q œ C
“p

q

if p, q œ A
0 else .

(4.187)

Hence, the generalized one-particle one-hole excitation is given by

|�p

q

Í = ãp

q

|�Í = (ap

q

≠ “p

q

) |�Í . (4.188)

Let us consider di�erent scenarios depending on the indices. For the case where the upper
index belongs to the core, p = i, we obtain using the relations (4.165) and (4.167)

|�i

q

Í = ai

q

|�Í ≠ “i

q

|�Í = ”i

q

|�Í ≠ ”i

q

|�Í = 0 (4.189)

which is in accordance with proposition 4.1. The case where the upper index is a virtual one,
p = x, we have to consider two non trivial cases depending on the type of the lower index

|�x

q

Í =

Y
____]

____[

ax

q

|�Í if q œ C
(ax

q

≠ “x

q

) |�Í if q œ A
0 else.

(4.190)

The last case is given by an upper virtual index, p = b, yielding

|�b

q

Í =

Y
]

[
ab

q

|�Í if q œ C fi A
0 else.

(4.191)

All non-vanishing one-particle one-hole excitations can be classified into four di�erent sce-
narios depicted in figure 4.3. The blue and red shaded areas correspond to core and active
orbitals, respectively. In the first scenario, we can annihilate a core state in the reference
state and create a virtual state, which is the only non-vanishing combination appearing in
the single-reference case. Analogously, we can annihilate a core or active state and create
an active or virtual state, respectively. In the latter scenario, we can even annihilate an
active and create another (or the same) active state. Additionally, we have to subtract a
multiple of the reference state to construct the one-particle one-hole excitation, which makes
this scenario special compared to the other cases.
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Figure 4.3.: Depicted are the non-vanishing generalized one-particle one-hole excitations. The
blue and red shaded area correspond to core and active orbitals, respectively. In
the first case, we can annihilate a core state in the reference state and create
a virtual state which is the only circumstance appearing in the single-reference
case. All other cases are specific for the multi-reference case.

4.5.3. Generalized Two-Particle Two-Hole States

In analogy to the generalized one-particle one-hole state, let us start with the construction of
the two-body density matrix elements. If one of the upper indices belongs to the core, p = i,
the two-body density matrix can be simplified with the aid of (4.167) to

“ir
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= È�|air
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. (4.192)

Hence, for the general case we obtain
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(4.193)

where we made use of the statement in (4.163) to write down the non-trivial cases.
Let us consider the generalized two-particle two-hole state given by
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for di�erent scenarios. If one of the upper index corresponds to the core, for instance p = i,
then the generalized two-particle two-hole excitation vanishes
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=”i

q

ãr

s

|�Í ≠ ”i

s

ãr
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=0 (4.198)

which is in accordance with the proposition 4.1. If all upper indices belongs to the active
space, p = x and r = y, then there are two non-trivial scenarios
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(4.199)

If one index belongs to the active space and the other one to the virtual space, p = x and
r = b, we can simplify the two-particle two-hole excitation making use of the fact that the
one-body density vanish if the upper index corresponds to the virtual space
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Based on this expression we can write down all non-trivial cases
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The last scenario assumes both upper indices to be elements of the virtual space, i.e., p = b

and r = c, yielding

|�bc
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≠ 0) |�Í ≠ 0 (4.202)

=
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]

[
abc

qs

|�Í if q, s œ C fi A
0 else ,

(4.203)

which is the only case appearing in the single-reference case keeping in mind that A is empty.
All non-vanishing two-particle two-hole excitations are depicted in figure 4.4.
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Figure 4.4.: Depicted are the non-vanishing generalized two-particle two-hole excitations.
The blue and red shaded area correspond to core and active orbitals, respectively.
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4.5.4. Algorithm and Two-Body System As Case Study

In this section, we propose an algorithm that yields a proper basis dimension of the anti-
symmetrized A-body Hilbert space, which is

!
d

1

A

"
with d1 Ø A being the dimension of the

single-particle basis. Since the overcompleteness is directly related to multiple counting of
equivalent configurations, we propose an algorithm to avoid this multiple counting:

• For a given reference state |�Í, define a set of A single-particle indices as follows

D := {1, 2, . . . , |C|
¸ ˚˙ ˝

œC

, |C| + 1, . . . , A
¸ ˚˙ ˝

œA

} (4.204)

where |C| denotes the number of core states. Additionally, we require that the Slater
determinant |�DÍ : = |12 . . . AÍ constructed with these single-particle states is non-
orthogonal to the reference state, i.e.,

È�D|�Í ”= 0. (4.205)

Note that we have freedom in the choice of the A ≠ |C| indices from the active space A.

• Use these A single-particle indices from D in the lower n slots and the remaining ones
in the upper n slots of the n-particle n-hole excitation.
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. (4.206)

• The total number of all n-particle n-hole excitations generated in this way for n = 1,

2, . . . , min{A, d1 ≠ A} plus one—for the reference state—is identical to the dimension
of the antisymmetrized A-body Hilbert space, which is

!
d

1

A

"
.

We give a proof of the last statement. According to the algorithm, we have
!

A

n

"
physically

distinct possibilities to assign n of the first A single-particle indices to the lower slots of
the n-particle n-hole excitation. Analogously, we have

!
d

1

≠A

n

"
combinations to distribute the

d1 ≠ A remaining indices on the n upper slots of the n-particle n-hole excitation. Supposing
that A = min{A, d1 ≠ A}, the total number is given by
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n=1

A
A

n

BA
d1 ≠ A

n

B

=
Aÿ

k=0

A
A

k

BA
d1 ≠ A

k

B

(4.207)

=
Aÿ

k=0

A
A

A ≠ k

BA
d1 ≠ A

k

B

=
A

A + (d1 ≠ A)
(A ≠ k) + k

B

=
A

d1
A

B

. (4.208)

The case, d1 ≠ A = min{A, d1 ≠ A}, is similar and yields the same result.
Let us consider a simple example of a two-particle fermionic quantum system, i.e., A = 2.

We use this example to demonstrate the usage of the algorithm and to illustrate the overcom-
pleteness of the generalized A-particle A-hole basis. Suppose we have a four dimensional or-
thonormal single-particle basis {|1Í , |2Í , |3Í , |4Í}, i.e., Èi|jÍ = ”i

j

. Based on this single-particle
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basis we can generate a basis of the (antisymmetrized) two-body Hilbert space, consisting
of antisymmetrized two-body Slater determinants (configurations). This Hilbert space is 6
(=

!4
2
"

= 4!
2!·2!) dimensional, and all configurations are

;
|�1Í := |12Í , |�2Í := |13Í , |�3Í := |14Í , |�4Í := |24Í , |�5Í := |34Í , |�6Í := |23Í

<
. (4.209)

This two-body basis is obviously orthonormal, i.e., È�
l

|�
k

Í = ”l

k

. Now, let us define the
reference state as follows

|�Í := c |�1Í + d |�2Í = c |12Í + d |13Í (4.210)

with non-zero real-valued coe�cients c and d fulfilling c2 + d2 = 1 that ensures that the
norm of the reference state is È�|�Í = 1. Based on this reference state we can classify the
single-particle basis according to core, active and virtual states

C ={1} (4.211)

A ={2, 3} (4.212)

V ={4} (4.213)

which is shown schematically in figure 4.5. To apply the algorithm described above, we define
the first A = 2 indices as follows

D = {1, 2}. (4.214)

Alternatively, we could have used {1, 3}. In both cases, the overlap È�D|�Í ”= 0 does not
vanish, as required. According to the algorithm, the basis states that need to be considered
are

;
|�Í

< € ;
|�3

1Í , |�4
1Í , |�3

2Í , |�4
2Í

< € ;
|�34

12Í
<

, (4.215)

which has the proper number of basis states. At this point, we emphasize that it is not clear
whether these basis states are linearly independent or not. Let us write them out explicitly
using their definitions (4.169) or the results derived in sections 4.5.2 and 4.5.3. For that

Figure 4.5.: Classification of the single-particle basis based on the given reference state
(4.210). Filled (open) symbol correspond to occupied (unoccupied) single-particle
states. Blue, red and black colors indicate core, active and virtual states,
respectively.
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purpose, let us first calculate the one-body density matrix with the aid of (4.187)

“(1) =

Q

ccccca

1 0 0 0
0 c2 cd 0
0 cd d2 0
0 0 0 0

R

dddddb
. (4.216)

Hence, we obtain for the n-particle n-hole states with n Æ 2

|�3
1Í = ≠c |23Í (4.217a)

|�4
1Í = ≠c |24Í ≠ d |34Í (4.217b)

|�3
2Í = c |13Í ≠ cd |�Í = (c ≠ cd2) |13Í ≠ c2d |12Í (4.217c)

|�4
2Í = c |14Í (4.217d)

|�34
12Í = c |34Í + cd |�4

2Í = c |34Í + c2d |14Í . (4.217e)

As expected, some basis states are superposition of Slater determinants, non-normalized and
non-orthogonal to each other. The determinant of the overlap matrix between these n-particle
n-hole excitations from (4.215) and the configurations from (4.209) yields

det

Q

cccccccccca

È�1|�Í È�1|�3
1Í È�1|�4

1Í È�1|�3
2Í È�1|�4

2Í È�1|�34
12Í

È�2|�Í È�2|�3
1Í È�2|�4

1Í È�2|�3
2Í È�2|�4

2Í È�2|�34
12Í

È�3|�Í È�3|�3
1Í È�3|�4

1Í È�3|�3
2Í È�3|�4

2Í È�3|�34
12Í

È�4|�Í È�4|�3
1Í È�4|�4

1Í È�4|�3
4Í È�4|�4

4Í È�4|�34
14Í

È�5|�Í È�5|�3
1Í È�5|�4

1Í È�5|�3
2Í È�5|�4

2Í È�5|�34
12Í

È�6|�Í È�6|�3
1Í È�6|�4

1Í È�6|�3
2Í È�6|�4

2Í È�6|�34
12Í

R

ddddddddddb

(4.218)

= c6 (4.219)

= È�D|�Í(
d

1

A ) ”= 0, (4.220)

which is non-vanishing. Here, we see the impact of the additional constraint (4.205) in the
algorithm. If we do not fulfill this requirement, the overlap matrix vanishes and the set of
the states from (4.215) is obviously linearly dependent. However, the algorithm generates a
complete set basis states of the A-body Hilbert space in this case study—a general proof of
the linear independence still remains. Consequently, all other n-particle n-hole states can be
expressed as linear combination of the basis states from (4.215), e.g.,

|�2
1Í = d |23Í = ≠d

c
|�3

1Í (4.221)

|�2
2Í = c |12Í ≠ c2 |�Í = 2 |�Í ≠ d

c
|�3

2Í (4.222)

|�3
3Í = d |13Í ≠ d2 |�Í = d

c
|�3

2Í (4.223)

|�24
12Í = c |24Í + c2 |�4

1Í = ≠1
c

|�4
1Í ≠ d

c2 |�34
12Í + d2

c
|�4

2Í . (4.224)
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The three-particle three-hole states are superposition of these basis states as well, i.e.,

|�prt

qsu

Í = (aprt

qsu

≠ “prt

qsu

) |�Í ≠ A(“p

q

|�rt

su

Í) ≠ A(“pr

qs

|�t

u

Í) (4.225)

= ≠A(“p

q

|�rt

su

Í) ≠ A(“pr

qs

|�t

u

Í). (4.226)

Here, the first term vanishes since our reference state contains only two particles. This result
is in accordance with proposition 4.2.

To demonstrate the importance of the additional constraint (4.205) in the algorithm, let
us consider a di�erent reference state given by

|�Í := c1 |13Í + c2 |23Í + c3 |24Í . (4.227)

Obviously, the core and virtual space are empty in this case, i.e., the complete single-particle
states belong the active space. Without the additional constraint, |�DÍ := |12Í, which is
orthogonal to the given reference state, would be a possible choice, generating the basis
states given in (4.215). But in this case the one-particle one-hole state |�3

1Í = 0 vanishes,
leading to linear dependent set of basis states. This problem is solved if we choose a Slater
determinant, for instance, |�DÍ := |13Í that is non-orthogonal to the given reference state.
The A-particle A-hole basis based on this reference is then given by

;
|�Í

< € ;
|�2

1Í , |�4
1Í , |�2

3Í , |�4
3Í

< € ;
|�24

13Í
<

, (4.228)

which indeed is a basis, since the determinant of the overlap matrix È�D|�Í6 does not vanish.
In summary, we have proposed a smart algorithm to pick up a set of basis states from

the (overcomplete) generalized A-particle A-hole basis (4.173). This automatically yields
at least a proper basis dimension of the antisymmetrized A-body Hilbert space, but linear
independence still remains to be proved. Using a simple two-body system as case study, we
have discussed the overcompleteness and the usage of the algorithm.
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4.6. Generators

In this section, we explain the main idea for the proper construction of generators for multi-
reference IM-SRG ground-state energy calculations, i.e., for the energetically lowest state.
Furthermore, we give an overview of the generators used in practical calculations, and briefly
analyze their decoupling properties, meaning how o�-diagonal matrix elements are suppressed
for large enough value of the flow parameter.

4.6.1. Basic Idea

We recapitulate that the main goal is to solve the many-body problem of the initial Hamil-
tonian H (0) by means of a continuous unitary transformation such that

H (Œ) |�Í = E(Œ) |�Í . (4.229)

Then E(Œ) is an eigenvalue of H (Œ) and H (0), as well, since a unitary transformation
preserves the spectrum. In contrast to direct diagonalization methods, the main idea is to
decouple a predefined reference state |�Í, which is a physically motivated approximation of
the ground state with the proper quantum numbers. This is achieved by splitting the flowing
Hamiltonian into two pieces called diagonal and o�-diagonal Hamiltonian

H (s) = Hd(s) + Hod(s) (4.230)

with the additional aim that the o�-diagonal piece has to vanish in the limit, where the flow
parameter s goes to infinity

Hod(s) sæŒ≠æ 0. (4.231)

The definition of the o�-diagonal Hamiltonian Hod can be specified based on the represen-
tation of the Hamiltonian in the generalized A-particle A-hole basis introduced in (4.173).
By representing the initial or flowing Hamiltonian in this basis, it becomes clear which of
the matrix elements need to be suppressed in order to decouple the reference state |�Í from
other basis states, see figure 4.6. Once the following matrix elements

0 = È�|H (Œ)|�p

q

Í (4.232a)

0 = È�|H (Œ)|�pr

qs

Í (4.232b)
...

0 = È�|H (Œ)|�p

1

...pA
q

1

...qA
Í (4.232c)

are suppressed by the unitary transformation, the reference state is decoupled from the gen-
eralized n-particle n-hole states with n > A as well because these excitations are linearly
dependent on the lower-particle rank excitations up to rank A according to proposition 4.2.
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Figure 4.6.: Schematic depiction of the Hamiltonian evolved to a specific flow parameter s
and to infinity, H (s) and H (Œ), respectively, represented in an A-body basis
consisting of the reference state |�Í and generalized particle-hole excitations
|�p

q

Í , |�pr

qs

Í , . . . of it. This illustrates and motivates how to define the o�-diagonal
Hamiltonian in order to have the reference state become an eigenstate of the final
Hamiltonian. The desired eigenvalue of the initial and final Hamiltonian is then
identical to E(Œ) = È�|H (Œ)|�Í since a unitary transformation preserves the
spectrum.

Hence, it is su�cient to suppress excitations up to particle rank A, and then the reference
state |�Í obviously becomes an eigenstate of the final Hamiltonian H (Œ).

The matrix elements that should be suppressed basically define the o�-diagonal piece of the
Hamiltonian written in second quantization for the multi-reference IM-SRG(2) truncation

Hod(s) =
ÿ

p
q

(fod)p

q

(s)ãp

q

+ 1
4

ÿ

pr
qs

(�od)pr

qs

(s)ãpr

qs

(4.233)

with one- and two-body matrix elements given in m-scheme natural orbitals

(fod)p

q

(s) := È�|H (s)|�p

q

Í + [p ¡ q] (4.234a)

=n̄
p

n
q

fp

q

(s) + O(⁄(2)) + [p ¡ q] (4.234b)

(�od)pr

qs

(s) := È�|H (s)|�pr

qs

Í + [pr ¡ qs] (4.234c)

=n̄
p

n̄
r

n
q

n
s

�pr

qs

(s) + O(⁄(nØ2)) + [pr ¡ qs]. (4.234d)

The generalization to multi-reference IM-SRG(A) is obvious. In our implementation, we
neglect terms depending on irreducible two- and higher-body density matrix elements due
to computational e�ciency. We note that the complete expressions can be deduced from
appendix A.3.1 which might be interesting for forthcoming investigations.

Once a decoupling pattern, i.e., the definition of the o�-diagonal Hamiltonian, is identified,
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Figure 4.7.: We illustrate in a simplified picture the manifold of the unitarily equivalent
Hamiltonians to the initial Hamiltonian H (0). Once the decoupling pattern is
set by the o�-diagonal Hamiltonian, the final Hamiltonian H (Œ) is fixed. There
are still many paths going from the initial Hamiltonian to the final Hamilto-
nian. Which path on this manifold we take, or in other word decoupling scheme,
depends on the choice of the generator. Wegner, White, Imaginary-Time and
Brillouin are some well-established examples for generators in the literature. Ne-
glecting truncation e�ects, all paths should lead to the same final Hamiltonian.
Note that the Wegner generator can have other fixed points beside the final
Hamiltonian (see section 4.6.2).

the fixed point of the evolution is given by H (Œ) (see figure 4.7). There are still infinitely
many paths on the manifold of all unitary equivalent Hamiltonians going from H (0) to
H (Œ). Which path or, in other words, which decoupling scheme we take depends on the
choice of the generator. There are di�erent choices for the generators which di�er in how
the o�-diagonal matrix elements are suppressed, numerical e�ciency, and how they induce
many-body interactions in practical calculations. In multi-reference IM-SRG(A) without any
truncation, all generators yield the same final result. The commonly used generators in the
literature are the Wegner, White, Imaginary-Time and Brillouin generators, which will be
introduced in sections 4.6.2–4.6.4.

Note that we cannot guarantee that the multi-reference IM-SRG, even the untruncated
version, will necessarily extract the ground-state energy of the nucleus under consideration,
but it will converge against one eigenvalue. However, we expect that the evolution will
converge against the eigenstate that has the largest overlap with reference state, which is
di�cult to prove.

Other decoupling patterns to decouple the reference state and other eigenstates are also
possible theoretically, but they have proved to be useless in practical calculations because of
strong induced many-body interaction [Her+16].
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4.6.2. Wegner Generator

After this brief motivation of the general idea, let us formulate the canonical choice for the
multi-reference IM-SRG evolution proposed by Wegner [Weg94]

÷(s) :=
#
Hd , H

$
= ≠

#
Hod , H

$
. (4.235)

Due to the similarity to the multi-reference IM-SRG operator flow equation, which is the
commutator between ÷ and H , we can make use of the formulae (4.18a) and (4.18b), keeping
the global minus sign in mind, and replace ÷ by Hod , i.e., ÷p

q

æ (fod)p

q

and ÷pr

qs

æ (�od)pr

qs

.
Note that the zero-body part can be set to zero because of the commutator structure of the
flow equation. Moreover, the matrix elements in practical calculations are real, anyway. The
J-coupled version in natural orbitals can be obtained from formulae (4.89a) and (4.89b) with
the corresponding replacement and by setting ‰ = 1 since Hod is Hermitian.

Since ÷ = 0 is a trivial fixed point of the multi-reference IM-SRG evolution, the Wegner
generator has additional fixed points where Hod commutes with Hd even though Hod is
non-zero, e.g., due to a degeneracy in the spectrum of H (s) [Her+16]. A second type of fixed
point exists when the flow parameter s goes to infinity, where Hod(s) vanishes as required.

The Wegner generator is ine�cient in practical applications. The reason is that the flow
equations become extremely sti� which is related to the fact that third powers of the matrix
elements fp

q

and �pr

qs

appear in the flow equations. In practical calculations, it is known that
solver for ordinary di�erential equations for sti� problems have higher storage and computing
time requirements than for non-sti� or weakly-sti� cases [Her+16] which is the case for the
White or Imaginary-Time generators, which will be introduced in the next section.

The SRG with the Wegner generator is a true renormalization-group transformation, i.e.,
it preferentially suppresses matrix elements of states with large energy di�erences (see also
the discussion about decay scales in section 4.6.5).

4.6.3. White and Imaginary-Time Generator

In second quantization consistent with the multi-reference IM-SRG(2) truncation, the gener-
ator in general has the following form

÷ =
ÿ

p
q

÷p

q

ãp

q

+ 1
4

ÿ

pr
qs

÷pr

qs

ãpr

qs

. (4.236)

The matrix elements of the White and Imaginary-Time generator are defined with the aid of
the matrix elements of the o�-diagonal Hamiltonian (4.234) [Whi02; TBS11; Her+16]

÷p

q

:=F(�p

q

)(fod)p

q

≠ [p ¡ q] (4.237a)

=F(�p

q

)(n̄
p

n
q

fp

q

+ O(⁄(2))) ≠ [p ¡ q] (4.237b)

÷pr

qs

:=F(�pr

qs

)(�od)pr

qs

≠ [pr ¡ qs] (4.237c)
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=F(�pr

qs

)(n̄
p

n̄
r

n
q

n
s

�pr

qs

+ O(⁄(nØ2))) ≠ [pr ¡ qs] (4.237d)

with the following abbreviation

F(�) :=

Y
]

[

1
� for White generator

sgn(�) for Imaginary-Time generator.
(4.238)

The generalization to three-body or higher rank is obvious. The symbol �p

q

, called Epstein-
Nesbet energy in the literature, indicates the di�erence between the expectation value of the
evolved Hamiltonian with respect to a generalized one-particle one-hole excitations and the
expectation value with respect to the reference state itself

�p

q

(s) := È�| ãq

p

H (s) ãp

q

|�Í ≠ È�| H (s) |�Í (4.239a)

= ≠n̄2
p

n2
q

�pq

pq

+ n̄2
p

n
q

fp

p

≠ n̄
p

n2
q

f q

q

+ E (n̄
p

n
q

≠ 1) + O(⁄(2)) (4.239b)

and analogously for the generalized two-particle two-hole excitation

�pr

qs

(s) := È�| ãqs

pr

H (s) ãpr

qs

|�Í ≠ È�| H (s) |�Í (4.239c)

=
3

n̄
p

n̄
r

n
q

n
s

(1
2 n̄

p

n̄
r

�pr

pr

+ 1
2n

q

n
s

�qs

qs

≠ n̄
p

n
s

�ps

ps

≠ n̄
p

n
q

�pq

pq

)

+ n̄
p

n̄
r

n
q

n
s

(n̄
p

fp

p

≠ n
q

f q

q

) + 1
2E (n̄

p

n̄
r

n
q

n
s

≠ 1) + O(⁄(nØ2))
4

+ [pq ¡ rs]

(4.239d)

where we suppressed the flow-parameter dependence of the matrix elements for brevity. Note
that the Epstein-Nesbet energy di�erences also depend on the flow parameter s. In practical
calculations, we have to truncate terms containing two- or higher-body irreducible two-body
density matrices. For completeness, we give more precise formulae including ⁄(2) in ap-
pendix B.3. Furthermore, the energy di�erences are per definition symmetric with respect
to exchange among the upper or lower indices, i.e., �pr

qs

= �rp

qs

= �pr

sq

. But they are neither
symmetric nor antisymmetric with respect to exchange of the upper with the lower indices,
i.e., �pr

qs

”= ±�qs

pr

and �p

q

”= ±�q

p

.
Finally, we remark that we make use of the following averaging

�pmpqmq
pmpqmq

¥ 1
ĵ2

p

ĵ2
q

ÿ

mpmq

�pmpqmq
pmpqmq

(4.240)

= 1
ĵ2

p

ĵ2
q

ÿ

JM

J�pq

pq

ÿ

mpmq

3
j

p

j
q

m
p

m
q

----
J

M

43
j

p

j
q

m
p

m
q

----
J

M

4
(4.241)

= 1
ĵ2

p

ĵ2
q

ÿ

J

Ĵ2J�pq

pq

(4.242)

in order to derive a J-coupled version of the matrix elements of the White and Imaginary-
Time generator.
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4.6.4. Brillouin Generator

The matrix elements of all generators introduced so far are constructed with the aid of the
o�-diagonal matrix elements (4.234), which include irreducible three- and four-body density
matrices. While storage of the irreducible three-body density matrix might be feasible for
specific choices of the reference state, the inclusion of four-body densities is computationally
extremely expensive. Consequently, we have been forced to introduce truncations such that
decoupling conditions given in (4.232) can no longer be guaranteed, in general. Thus, a
di�erent strategy is desired that avoids densities beyond the three-body rank and drives the
Hamiltonian approximately into the desired shape formulated in the decoupling conditions.

For that purpose, let us split the decoupling conditions (4.232) into two terms as follows5

0 = È�|H (Œ)ãp

q

|�Í = 1
2

1
È�|

#
H (Œ), ãp

q

$
|�Í + È�|

)
H (Œ), ãp

q

*
|�Í

2
(4.243a)

0 = È�|H (Œ)ãpr

qs

|�Í = 1
2

1
È�|

#
H (Œ), ãpr

qs

$
|�Í + È�|

)
H (Œ), ãpr

qs

*
|�Í

2
(4.243b)

...

We can easily show that if the decoupling conditions are fulfilled, then each term on the right-
hand side, i.e., the expectation value of the commutator and the anticommutator with respect
to the reference state, has to vanish separately due to the Hermiticity of the Hamiltonian.

The basic idea is now to suppress the expectation value of the commutator6 with respect
to the reference state in a controlled manner using IM-SRG by defining the matrix elements
of the so-called Brillouin generator as [Her+16]

÷p

q

:= È�|
#
H , ãp

q

$
|�Í (4.244a)

÷pr

qs

:= È�|
#
H , ãpr

qs

$
|�Í . (4.244b)

A trivial fixed point of the IM-SRG evolution is reached when the generator vanishes, i.e.,
÷p

q

= 0 and ÷pr

qs

= 0, which corresponds to the irreducible Brillouin conditions [MK01; KM02;
KM04]—where the name of the generator comes from. Note that this does not ensure
the decoupling conditions because of the remaining anticommutator. Since the irreducible
Brillouin conditions are equivalent to the stationarity conditions of the energy functional
E [|�Í] := È�|H (Œ)|�Í through a unitary variation, we have good reasons to expect that
the anticommutator is suppressed as well [Her+16]. There is empirical evidence for their
reduction [Her+16].

However, we get rid of higher-rank densities as desired. We can see that by calculating the
expectation value of the commutator with the aid of the formulae derived in appendix A.3.2

5This following relation AB = 1

2

!#
A, B

$
+

)
A, B

*"
holds for any operators A and B .

6Note that the expectation value of the anticommutator cannot be used for the definition of the generator
since it is invariant under exchange of the upper and lower indices.
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yielding

÷p

q

=
5
fp

q

n
q

+ 1
2

ÿ

rst

�rp

st

⁄st

rq

6
≠ [p ¡ q] (4.245a)

÷pr

qs

=
5331

2
ÿ

t

fp

t

⁄tr

qs

+ 1
4�pr

qs

n̄
p

n̄
r

n
q

n
s

+ 1
8(1 ≠ n

p

≠ n
r

)
ÿ

tu

�pr

tu

⁄tu

qs

+ 1
2(n

p

≠ n
s

)
ÿ

tu

�pt

us

⁄ur

qt

+ 1
4

ÿ

tuv

�rt

uv

⁄uvp

tqs

4

≠ [p ¡ r]
4

≠ [q ¡ s]
6

≠ [pr ¡ qs]. (4.245b)

Like the multi-reference IM-SRG(2) flow equations (4.28), these expressions only depend
linearly on irreducible two- and three-body density matrices, ⁄(2) and ⁄(3), which makes
untruncated implementations feasible as desired. Finally, we give the J-coupled version in
natural orbitals for an e�cient implementation

÷p

q

=
5
fp

q

n
q

+ 1
2

1
ĵ2

p

ÿ

rstJ

Ĵ2 J�rp

st

J⁄st

rq

6
≠ [p ¡ q] (4.246a)
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ÿ
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ÿ
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tu

J⁄tu
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2(n
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)
ÿ

tuJ

Õ
Ĵ Õ2
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j
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J

j
q

j
s

J Õ

J
J

Õ�ps̄

ut̄

J

Õ
⁄

ut̄

qr̄

+ 1
4

ÿ

mpmrmqms

3
j

p

j
r

m
p

m
r

----
J

0

43
j

q

j
s

m
q

m
s

----
J

0

4 ÿ

tuv

ÿ

mtmumv

�rmr tmt
umu vmv

⁄
umu vmv pmp
tmt qmq sms

4

≠ (≠)J≠jp≠jr [p ¡ r]
4

≠ (≠)J≠jq≠js [q ¡ s]
6

≠ [pr ¡ qs]. (4.246b)

Note that the last term has not been simplified. In order to obtain these J-coupled expres-
sions, we made the same assumptions done for the derivation of J-coupled multi-reference
IM-SRG(2) flow equations in section 4.3. As a reminder, the assumptions are that the one-
particle density matrix as well as the irreducible two- and higher-body density matrices are
scalar, i.e., spherical tensors of rank zero. This condition is only fulfilled if the reference state
has vanishing total angular momentum (see appendix C.3).
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4.6.5. Decay Scales

In this section, we derive the basic relation that motivates the construction of some gener-
ators, like the Wegner, White and Imaginary-Time. Furthermore, we study the decoupling
properties of the generators, i.e., how they suppress the o�-diagonal matrix elements for
large enough values of the flow parameter s. We demonstrate how to derive the decay scales
explicitly for the White generator.

We construct Hd as a Hermitian operator by choosing an orthonormal basis

{|�Í , |�1Í , |�2Í , . . .} (4.247)

and defining

Hd(s) := E(s) |�ÍÈ�| +
ÿ

i

Ẽ
i

(s) |�
i

ÍÈ�
i

| (4.248a)

with

E(s) = È�|H (s)|�Í (4.248b)

Ẽ
i

(s) := È�
i

|H (s)|�
i

Í . (4.248c)

Note that this basis is an eigenbasis of Hd by construction and |�Í denotes the reference state.
Furthermore, we emphasize that the energies Ẽ

i

are not the eigenvalues of the Hamiltonian H .
The states {|�1Í , |�2Í , . . .} span a subspace of the A-body Hilbert space that is orthogonal to
the reference state, analogously to the subspace spanned by all basis states |�p

1

...

q

1

...

Í containing
at least a one-particle one-hole excitation. The o�-diagonal piece can simply be written as

Hod(s) =H (s) ≠ Hd(s). (4.249)

For the matrix elements of the o�-diagonal and diagonal Hamiltonian in this eigenbasis we
obtain

È�|Hd |�
i

Í =0 (4.250a)

È�
i

|Hd |�
j

Í =Ẽ
i

”i

j

(4.250b)

È�|Hod |�Í = È�
i

|Hod |�
i

Í = 0. (4.250c)

Furthermore, the anti-Hermiticity of the generator implies

È�|÷|�Í = È�
i

|÷|�
i

Í = 0. (4.251)

Inserting the identity operator in the eigenbasis of the diagonal Hamiltonian,

1 = |�ÍÈ�| +
ÿ

k

|�
k

ÍÈ�
k

| , (4.252)

and making use of the aforementioned expressions, we can determine the derivative of a
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non-diagonal matrix element

È�|dH

ds
|�

i

Í = È�|
#
÷, H

$
|�

i

Í (4.253)

= È�|÷|�Í È�|H |�
i

Í ≠ È�|H |�Í È�|÷|�
i

Í
+

ÿ

k

(È�|÷|�
k

Í È�
k

|H |�
i

Í ≠ È�|H |�
k

Í È�
k

|÷|�
i

Í) (4.254)

=0 ≠ E È�|÷|�
i

Í
+

ÿ

k

(È�|÷|�
k

Í Ẽ
i

”k

i

≠ È�|Hd |�
k

Í
¸ ˚˙ ˝

=0

È�
k

|÷|�
i

Í)

+
ÿ

k

(È�|÷|�
k

Í È�
k

|Hod |�
i

Í ≠ È�|Hod |�
k

Í È�
k

|÷|�
i

Í) (4.255)

= ≠ È�|÷|�
i

Í (E ≠ Ẽ
i

)

+
ÿ

k

(È�|÷|�
k

Í È�
k

|Hod |�
i

Í ≠ È�|Hod |�
k

Í È�
k

|÷|�
i

Í). (4.256)

This is a basic relation for the motivation of several generators and the analysis of their decay
properties. We will explicitly demonstrate how this works for a White-type of generator. A
natural choice based on the previous equation is given by

È�|÷|�
i

Í :=È�|Hod |�
i

Í
E ≠ Ẽ

i

(4.257a)

È�
k

|÷|�
j

Í :=È�
k

|Hod |�
j

Í
Ẽ

k

≠ E
j

(1 ≠ ”k

j

). (4.257b)

Here, the denominator ensures the anti-Hermiticity of the generator. Note that the definition
of the White generator from (4.237) is di�erent from this White-type generator, but mimics its
behavior for large values of the flow parameter, which is what we are interested in. Consider
the following many-body matrix element of the derivative of the Hamiltonian

È�|dH

ds
|�

i

Í = ≠ È�|Hod |�
i

Í
E ≠ Ẽ

i

(E ≠ Ẽ
i

)

+
ÿ

k ”=i

( 1
E ≠ Ẽ

k

≠ 1
Ẽ

k

≠ Ẽ
i

) È�|Hod |�
k

Í È�
k

|Hod |�
i

Í (4.258)

= ≠ È�|Hod |�
i

Í +
ÿ

k ”=i

2Ẽ
k

≠ Ẽ
i

≠ E

(E ≠ Ẽ
k

)(Ẽ
k

≠ Ẽ
i

)
È�|Hod |�

k

Í È�
k

|Hod |�
i

Í . (4.259)

Assuming that the evolved Hamiltonian is su�ciently close to an attractive fixed point for
s Ø s0, we can show that the second term is negligible compared to the first one. For that
purpose let us first consider the (Frobenius) norm of the o�-diagonal piece, which is expected
to go to zero. Hence, we can suppress it below an arbitrarily given positive number ‘2 > 0:

||Hod||2 =tr((Hod)†Hod) (4.260)

= È�|HodHod |�Í +
ÿ

i

È�
i

|HodHod |�
i

Í (4.261)
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= È�|Hod |�Í È�|Hod |�Í +
ÿ

k

È�|Hod |�
k

Í È�
k

|Hod |�Í

+
ÿ

i

È�
i

|Hod |�Í È�|Hod |�
i

Í +
ÿ

ik

È�
i

|Hod |�
k

Í È�
k

|Hod |�
i

Í (4.262)

=0 + 2
ÿ

i

|È�
i

|Hod |�Í|2 +
ÿ

ik

|È�
i

|Hod |�
k

Í|2 < ‘2. (4.263)

Since all summands are positive, each term has to smaller than ‘2 separately

|È�
i

|Hod |�Í|2 < ‘2 (4.264)

|È�
i

|Hod |�
k

Í|2 < ‘2. (4.265)

Assuming that the energies E and Ẽ
i

are approximately constant for su�ciently large flow
parameter s > s0, we can conclude that the second term in (4.259) goes faster to zero than
the first one. This is because the second term goes like ‘2 while the first one goes like ‘1.
Thus, neglecting these terms in (4.259), we obtain a first-order di�erential equation for the
o�-diagonal piece

È�|dH

ds
|�

i

Í = dÈ�|Hd |�
i

Í
ds¸ ˚˙ ˝
=0

+dÈ�|Hod(s)|�
i

Í
ds

!¥ ≠ È�|Hod(s)|�
i

Í . (4.266)

The solution for s > s0 is given by

È�|Hod(s)|�
i

Í ¥ È�|Hod(s0)|�
i

Í · exp [≠(s ≠ s0)] . (4.267a)

Similar analysis for the other generators, Wegner and Imaginary-Time, that can be found in
[Her17], yields

È�|Hod(s)|�
i

Í ¥ È�|Hod(s0)|�
i

Í · exp
Ë
≠(E ≠ Ẽ

i

)2(s ≠ s0)
È

(4.267b)

È�|Hod(s)|�
i

Í ¥ È�|Hod(s0)|�
i

Í · exp
Ë
≠|E ≠ Ẽ

i

|(s ≠ s0)
È

, (4.267c)

respectively. Thus, we see that the Wegner and Imaginary-Time generators yield proper
renormalization-group transformations, in the sense that matrix elements of states with large
energy di�erences to the ground state |E ≠Ẽ

i

| decay exponentially at smaller flow parameters
s than states with small |E ≠ Ẽ

i

|. The White generator, on the other hand, acts on all matrix
elements simultaneously. If we are only interested in the limit s æ Œ, this should not make
a di�erence. For the Brillouin generator, we could not find its behavior in literature so far.
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4.7. Observables

In this section, we discuss how to extract observables beside the ground-state energy within
the framework of multi-reference IM-SRG.

4.7.1. General Idea

Suppose we have a Hermitian operator O associated to an observable. The aim is to calculate
the expectation value of this operator with respect to an eigenstate |�

i

Í of the Hamiltonian
H , that can be rewritten with the aid of the unitary transformation U (s) to

È�
i

|O|�
i

Í = È�
i

|U (s)U †(s)O(s)U (s)U †(s)|�
i

Í = È�
i

(s)|O(s)|�
i

(s)Í (4.268)

with the unitarily transformed operator

O(s) := U †(s)OU (s) (4.269)

and the transformed state

|�
i

(s)Í := U †(s) |�
i

Í (4.270)

which is an eigenstate of the transformed Hamiltonian H (s) = U †(s)H (0)U (s). The latter
statement can be proved easily

H (s) |�
i

(s)Í = U †(s)H (0) U (s)U †(s)
¸ ˚˙ ˝

=1

|�
i

Í = E
i

U †(s) |�
i

Í = E
i

|�
i

(s)Í (4.271)

where |�
i

Í is an eigenstate of the initial Hamiltonian with the corresponding eigenvalue E
i

.
Now, the key point is that in multi-reference IM-SRG(A) evolution the reference state |�Í

becomes an eigenstate of the evolved Hamiltonian if the flow parameter s goes to infinity,
i.e.,

È�
i

|O|�
i

Í = lim
sæŒ

È�|O(s)|�Í . (4.272)

Consequently, we are forced to consistently evolve the operator in order to extract observables
associated with this operator within the multi-reference IM-SRG(A) framework according to
the right-hand side of (4.268). But note that we cannot exactly control which eigenstate we
target in multi-reference IM-SRG, as aforementioned.

In practical calculations of multi-reference IM-SRG, we do not explicitly construct the
unitary transformation, instead, we use the flow-equation approach which can be formulated
for this operator as well

dO(s)
ds

=
#
÷(s), O(s)

$
(4.273)
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where the dynamical anti-Hermitian generator ÷(s), obtained from the evolution of the Hamil-
tonian, governs the unitary transformation. Thus, we have to solve the flow equation for the
operator and the Hamiltonian (4.5) simultaneously. In contrast, the Magnus formulation of
the (multi-reference) IM-SRG is an alternative way to construct the unitary transformation
directly [Bla+09; MPB15].

Finally, we give an overview of the procedure how to extract observables in numerical
calculations in multi-reference IM-SRG(2). Assuming that the operator written in second-
quantized form in vacuum representation has a maximum particle rank of two

O = A +
ÿ

–
—

B–

—

a–

—

+ 1
4

ÿ

–“
—”

C–“

—”

a–“

—”

(4.274)

with known zero, one- and two-body matrix elements A, B–

—

and C–“

—”

, we transform it into
reference-state representation using the same reference state |�Í as for the Hamiltonian ac-
cording to (3.65). If the operator also contains three-body pieces, their e�ects can be included
using the MR-NO2B approximation as described in section 3.3.4. The matrix elements of
this operator need to be transformed to the natural-orbital basis as given in (4.24) to use the
formulae derived in this chapter. Afterwards, we work out the commutators yielding the same
results as for the Hamiltonian. The m-scheme results in natural orbitals are basically given
in (4.28) which are valid for any kind of operator. The J-scheme results in natural orbitals
from formulae (4.89) are computationally very e�cient, but only valid for scalar operators,
i.e., spherical tensors of rank zero. Hence, we are limited to scalar operators, which include,
for instance, the mean-square-radius operator and the electric monopole transition operator
that will be the subject of sections 4.7.2 and 4.7.3. For non-zero rank tensors, the J-scheme
formulation must be generalized.

4.7.2. Radii

The definition of mean-square-radius operator in particle-number-conserving theories7, which
is the case here, is defined as

rms := 1
A

Aÿ

i=1

1
r̨(i) ≠ R̨

22
(4.275)

with the absolute coordinate vector operator of the i-th particle acting non-trivially only in
the i-th subspace of the A-body Hilbert space

r̨(i) = 1 ¢ . . . ¢ 1 ¢ r̨
¸˚˙˝

i-th place

¢1 ¢ . . . ¢ 1

¸ ˚˙ ˝
A

(4.276)

7In particle-number non-conserving theories the prefactor 1

A need to be raised to a Hermitian operator A≠1.
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and the center-of-mass vector operator for A nucleons with the same mass

R̨ := 1
A

Aÿ

i=1
r̨(i). (4.277)

With the abbreviation of the two-body relative distance vector operator between the j-th
and i-th particle

r̨(ij) := r̨(i) ≠ r̨(j), (4.278)

we obtain after some basic simplification steps for the mean-square-radius operator

rms = 1
A2

Aÿ

i<j

r̨ 2(ij), (4.279)

which is a quasi two-body operator that depends on the total number of particles A. Hence,
it can be rewritten in second quantization

rms = 1
4

ÿ

pr
qs

1
A2 Èpr| r̨ 2(12) |qsÍ apr

qs

. (4.280)

Note that this operator contains zero-, one-, two-body pieces in reference-state representation.
The point-proton and point-neutron mean-square radius are defined as

r
fims := 1

Z

Aÿ

i=1

1
r̨(i) ≠ R̨

22
�

fi

(i) (4.281a)

r
‹ms := 1

N

Aÿ

i=1

1
r̨(i) ≠ R̨

22
�

‹

(i) (4.281b)

where Z and N denote the number of protons (fi) or neutrons (‹), respectively. Furthermore,
�

fi

(i) and �
‹

(i) represent the one-body projection operator on the corresponding particle
species

�
fi

(i) := 1
2 + ·

z

(i) (4.282a)

�
‹

(i) := 1
2 ≠ ·

z

(i) (4.282b)

where ·
z

(i) is the z-component of isospin operator of the i-th particle.
After some simplification steps, we obtain for the point-proton and point-neutron mean-

square-radius operator

r
fims = 1

A2

Aÿ

i<j

r̨ 2(ij)
1

2A

Z

�
fifi

(ij) + A

Z

(�
fi‹

(ij) + �
‹fi

(ij))
2

≠ rms (4.283a)

r
‹ms = 1

A2

Aÿ

i<j

r̨ 2(ij)
1

2A

N

�
‹‹

(ij) + A

N

(�
‹fi

(ij) ≠ �
fi‹

(ij))
2

≠ rms (4.283b)
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with the two-body projection operator �
–—

(ij) := �
–

(i)�
—

(j) and –, — œ {fi, ‹}. Hence,
both the point-proton and point-neutron mean-square radius are quasi two-body operators
like the mean-square-radius operator.

Using these operators, we can define several associated observables, for instance, the root-
mean-square radius—also called point mass radius—of a nucleus in an eigenstate |�

i

Í, given
by

Rrms :=
Ò

È�
i

|rms|�i

Í, (4.284)

and analogously for the point-proton and point-neutron root-mean-square radii

R
firms :=

Ò
È�

i

|r
fims|�i

Í (4.285)

R
‹rms :=

Ò
È�

i

|r
‹ms|�i

Í. (4.286)

Note that these quantities do not carry the index i of the eigenstate |�
i

Í, for brevity.
We obtain the charge radius of the nucleus in an eigenstate |�

i

Í by applying the corrections
due to the mean-square charge radii of the proton r2

fi

and neutron r2
‹

[Kam97]

Rch :=
Û

R2
firms + r2

fi

+ N

Z
r2

‹

=
Û

R2
firms + 0.743 fm2 ≠ N

Z
0.116 fm2, (4.287)

where we took the experimental data from [Ber+12]. The Darwin-Foldy term, which is a
relativistic correction, is neglected since it is one order of magnitude smaller than r2

fi

and r2
‹

.

4.7.3. Electromagnetic Monopole Transition

Electromagnetic transitions are the response of a nucleus to an external electromagnetic
field, where the field is assumed to be weak such that non-linear e�ects can be neglected.
The strategy is to decompose the external electromagnetic field into multipoles, and the
total response of the nucleus can be viewed as the superposition of the responses due to
each multipole. Electromagnetic transition operators are classified into electric and magnetic
transitions based on the angular momentum L of the photon, being the particle dual of the
electromagnetic field, and the parity given by (≠)L for electric and (≠)L+1 for magnetic
type of transitions. Note that the distinction between electric and magnetic types might be
misleading since transitions are neither purely electric nor magnetic.

Since we are limited to scalar operators, i.e., spherical tensors of rank zero, due to our cur-
rent implementation of the IM-SRG evolution, we can only study electromagnetic monopole
transitions that cannot change the total angular momentum and parity between the initial
and final state. In contrast to electric monopole transitions, which are possible via internal
conversion where the nucleus de-excites by emitting an electron from the atomic shell [RS80],
magnetic monopole transitions are fundamentally forbidden because there are no magnetic
monopoles in nature.

Expressions for the transition operators are usually derived by first-order time-dependent
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perturbation theory and in a long wavelength limit, i.e., the wavelength of the electromagnetic
field ⁄

“

is large compared to the nuclear radius rnucl. The validity of this approximation can
be analyzed based on the following consideration: On the one hand, the wavelength of the
electromagnetic field is related to its energy E

“

via

⁄
“

= 2fi~c

E
“

(4.288)

with c denoting the speed of light and ~ the Planck’s constant. On the other hand, a stable
nucleus has approximately a constant density and, therefore, the nuclear radius rnucl can be
approximated by the following empirical formula

rnucl = 1.25 fm · A1/3. (4.289)

Hence, the condition ⁄
“

∫ rnucl leads to

E
“

π 2fi~c

1.25 fm · A≠1/3 = 991.2 MeV · A≠1/3. (4.290)

Thus, the larger the number of nucleons, the smaller the range of photon energies where this
condition can be justified. For systems up 40 nucleons, that is a particular interest of this
work, this condition reads as E

“

π 290 MeV which is fulfilled for the typical spectroscopy
of low-lying states in sd-shell nuclei we are interested in.

In this subsection, we derive the formulae widely used in the literature for the electric
transition operator Q

LML
with M

L

being the z-component of the total angular momentum
L of the photon. The starting point is the formula for the electric multipole moment given
by [RS80]

E
LML

:=(2L + 1)!!
qL(L + 1)

⁄
d3r fl(r̨) ˆ

ˆr

5
rj

L

(qr)
6
Y

LML(Ë, Ï) (4.291)

+ (2L + 1)!!
cqL≠1(L + 1)

⁄
d3r r̨ · j̨(r̨) j

L

(qr)Y
LML(Ë, Ï) (4.292)

which is not an operator type of expression. Here, q denotes the momentum transfer, j
L

the
spherical Bessel function of order L, Y

LML spherical harmonics and fl is the electric charge
density. In the second term, j̨, c and denote the electric current density, speed of light, and
the imaginary unit, respectively. Lastly, the symbol (2L + 1)!! := (2L + 1) · (2L ≠ 1) · . . . · 3 · 1
is the so-called double factorial.

We note that the second term is neglected in the long-wavelength limit, i.e., qr π 1, since
the leading term goes like (qr)L+1, whereas the leading term of the first term goes like (qr)L.
This can be seen once we expand the spherical Bessel function. For that purpose, let us
expand the ordinary Bessel function for small arguments as

J
–

(x) =
Œÿ

j=0

(≠)j

j! �(j + – + 1)

3
x

2

42j+–

, (4.293)
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with � being the Euler’s gamma function and writing out the first two summands, we get

= 1
�(– + 1)

3
x

2

4
–

≠ 1
�(– + 2)

3
x

2

42+–

± . . . (4.294)

= 1
�(– + 1)

3
x

2

4
–

3
1 ≠ �(– + 1)

4�(– + 2)x2 ± . . .
4

. (4.295)

Making use of �(z + 1) = z�(z) for any real number z, we obtain

= 1
–�(–)

3
x

2

4
–

3
1 ≠ 1

4(– + 1)x2 ± . . .
4

. (4.296)

With these results we can expand the spherical Bessel function for a non-negative integer
L œ {0, 1, . . .}

j
L

(qr) :=
Ú

fi

2qr
J

L+ 1
2
(qr) (4.297)

=
Ú

fi

2qr

1
(L + 1

2)�(L + 1
2)

3
qr

2

4
L+ 1

2
3

1 ≠ 1
4(L + 3

2)
(qr)2 ± . . .

4
(4.298)

since L is integer it follows �(L + 1
2) = (2L≠1)!!

Ô
fi

2L

=
Ú

fi

2qr

2L

(L + 1
2)(2L ≠ 1)!!

Ô
fi

3
qr

2

4
L+ 1

2
3

1 ≠ 1
4(L + 3

2)
(qr)2 ± . . .

4
(4.299)

= (qr)L

(2L + 1)(2L ≠ 1)!!

3
1 ≠ 1

2(2L + 3)(qr)2 ± . . .
4

, (4.300)

making use that (2L + 1)(2L ≠ 1)!! = (2L + 1)!!

= (qr)L

(2L + 1)!!

3
1 ≠ 1

2(2L + 3)(qr)2 ± . . .
4

. (4.301)

Plugging this result into (4.291) yields

E
LML =(2L + 1)!!

qL(L + 1)

⁄
d3r fl(r̨) ˆ

ˆr

5
r

(qr)L

(2L + 1)!!

3
1 ≠ 1

2(2L + 3)(qr)2 ± . . .
46

Y
LML(Ë, Ï)

(4.302)

=
⁄

d3r fl(r̨)rLY
LML(Ë, Ï) ≠ (L + 3)

2qL(L + 1)(2L + 3)

⁄
d3r fl(r̨)(qr)L+2Y

LML(Ë, Ï) ± . . . .

(4.303)

Let us consider the monopole term, i.e., L = M
L

= 0, leading to

E00 =
⁄

d3r fl(r̨)Y00(Ë, Ï) ≠ 1
2

⁄
d3r fl(r̨) (qr)2Y00(Ë, Ï) (4.304)

= 1Ô
4fi

⁄
d3r fl(r̨) ≠ q2

2
Ô

4fi

⁄
d3r fl(r̨) r2 (4.305)
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= 1Ô
4fi

Ze ≠ q2

2
Ô

4fi

⁄
d3r fl(r̨)r2 (4.306)

where we made use that Y00(Ë, Ï) = 1Ô
4fi

and the integral over the electric charge density
gives the total charge of the nucleus Ze since we have Z protons carrying the elementary
charge e.

For non-relativistic point-like nucleons, we can raise this expression to operators by intro-
ducing the electric charge density operator

fl(r̨ Õ) = e
Aÿ

i=1
�

fi

(i)”
!
r̨ Õ ≠ r̨ Õ(i)

"
(4.307)

with

r̨ Õ(i) := r̨(i) ≠ R̨. (4.308)

Here, ” is the delta distribution, r̨(i) is the absolute coordinate vector operator of the i-th
particle (4.276), and R̨ is the center-of-mass vector operator (4.277), and �

fi

(i) denotes the
one-body projection operator on the protons (4.282a). The presence of the center-of-mass
coordinate ensures translational invariance of the electromagnetic transition operators.

Finally, inserting the electric charge density in the expression (4.306) and integrating yields

E00 = 1Ô
4fi

Ze1 ≠ q2e

2
Ô

4fi

Aÿ

i=1
�

fi

(i)
1
r̨(i) ≠ R̨

22
. (4.309)

Since the first term of the electric monopole transition is proportional to the identity operator,
it cannot induce transitions between two di�erent states. Furthermore, we separate the
nuclear-physics part from the kinematics of the virtual photon (which determines q2) and
define the electric monopole transition operator as

Q00 :=e
Aÿ

i=1
�

fi

(i)
1
r̨(i) ≠ R̨

22
= e

Aÿ

i=1

1
r̨(i) ≠ R̨

22
�

fi

(i) = eZr
fims (4.310)

which is proportional to the point-proton mean-square radius (4.281a). Note that the pref-
actor 1

2
Ô

4fi

is missing in our definition of electric monopole transition operator which is only
important if we want to compare our results to other calculations.
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Chapter 5

No-Core Shell Model and
Importance Truncation

In this chapter, we present the no-core shell model (NCSM) as a many-body method. Af-
terwards, we briefly describe the importance-truncated NCSM which is an extension of the
NCSM.

5.1. No-Core Shell Model

The NCSM is one of the most powerful and universal ab initio many-body methods that be-
longs to the class of configuration-interaction approaches [BNV13; Nav+09]. All nucleons are
considered active in contrast to typical shell-model-type of approaches. NCSM is variational
for a given Hamiltonian, i.e., it provides an upper bound for all absolute energies of the exact
eigenstates.

It is built on a representation of the Schrödinger equation as a large-scale matrix eigenvalue
problem, using an expansion of the eigenstates in an orthonormal basis of A-body states |�

i

Í,

|�
n

Í =
ÿ

i

c(n)
i

|�
i

Í (5.1)

with the expansion coe�cient c(n)
i

.
Inserting this into to the stationary Schrödinger equation (3.94), and multiplying by È�

j

|
from the left, we obtain

ÿ

j

È�
j

| H |�
i

Í c(n)
i

= E
n

c(n)
i

, (5.2)

which is an eigenvalue problem for the matrix representation of the Hamiltonian H
ji

: =
È�

j

| H |�
i

Í. Since the Hilbert space is infinite dimensional in general, we need to introduce
some truncations.
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The basis states |�
i

Í are antisymmetrized A-body product states, also called Slater deter-
minants or configurations

|�
i

Í := |p1p2 . . . p
A

Í
i

(5.3)

built from single-particle states |pÍ. A typical choice of the single-particle basis is the harmonic
oscillator (HO)

B1 :=
Ó

|pÍ := |ñ
p

(l
p

1
2)j

p

m
p

1
2m

tpÍ : p œ {1, 2, . . .}
Ô

(5.4)

which is orthonormal. Here, ñ
p

œ {0, 1, . . .} is the radial quantum number, the angular-
momentum l

p

œ {0, 1, . . .} and spin-1
2 quantum number are coupled to the total angular

momentum j
p

œ {|l
p

≠ 1
2 |, |l

p

≠ 1
2 | + 1, . . ., l

p

+ 1
2} with its projection quantum number

m
p

œ {≠j
p

, ≠j
p

+1, . . ., j
p

}, and the z-component of the isospin-1
2 quantum number encodes

whether this single-particle state belongs to a neutron m
tp = ≠1

2 or a proton m
tp = +1

2 .
Other single-particle bases, for instance Hartree Fock (HF) discussed in chapter 2 or natural
orbitals [CMV12], can be used as well—which are all orthonormal bases, too. In this work,
we will exploit the HO and HF single-particle bases.

The many-body basis must be truncated to render the problem numerically tractable, as
aforementioned. For that purpose, we introduce the single-particle energy quantum number1

e
p

:= 2ñ
p

+ l
p

. (5.5)

Furthermore, we assign each configuration |�
i

Í an energy quantum number by simply adding
the single-particle energy quantum numbers of all states occupied in this configuration, i.e.,

e(|�
i

Í) :=
ÿ

pœB
1

(ap|�
i
Í”=0)

e
p

. (5.6)

Obviously, there is at least one configuration |�minÍ with the lowest energy quantum number
that we call base determinant

e(|�minÍ) Æ e(|�
i

Í) for all i. (5.7)

Note that the base determinant is not unique in open-shell systems. However, we can define
for a given configuration a new quantity called number of excitation quanta

N(|�
i

Í) := e(|�
i

Í) ≠ e(|�minÍ) (5.8)

which is a non-negative integer. The truncation on the many-body level then may be realized

1For the single-particle basis HF and natural orbitals, this is an artificial quantity.
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... ... ...

Figure 5.1.: We schematically illustrate the truncations of the many-body basis for the NCSM
calculations. Starting from an energetically lowest configuration, called base
determinant, which is not unique in open-shell systems, we construct the model
space by exciting particles to unoccupied states. If one or more of the newly-
occupied states belong to energetically higher orbitals, we associate the total
number of excitation quanta N with the configuration formed this way. The
model space is truncated for a given Nmax by including only those states with
N Æ Nmax. A configuration with N = 0 is formed by permuting particles among
states belonging to the same orbit (left panel). Configurations with N = 2 can
be constructed for instance by either exciting one particle by two orbitals or two
particles by one orbit each (middle panel).

using Nmax giving the maximum number of allowed excitation quanta

B(N
max

)
NCSM := {|�

i

Í : N(|�
i

Í) Æ Nmax}. (5.9)

A graphical illustration is shown in figure 5.1.
Additionally, we can reduce the number of basis states based on the symmetry of the

Hamiltonian of the nuclear system: On the one hand, since the Hamiltonian is rotationally
invariant, the nuclear energy levels are degenerate with respect to the angular momentum
projection which is an additive quantum number

M
J

(|�
i

Í) =
ÿ

pœB
1

(ap|�
i
Í”=0)

m
p

(5.10)

and we can restrict the space to a specific M
J

—typically the smallest allowed value M
J

=
0 (M

J

= +1
2) for even (odd) number of particles. On the other hand, using the parity

conservation of the Hamiltonian

fi(|�
i

Í) =
Ÿ

pœB
1

(ap|�
i
Í”=0)

(≠1)lp (5.11)

we also restrict the model space to basis states of either natural or unnatural parity. Here,
natural-parity states has the same parity as the parity of the uncorrelated ground state
predicted by the naive shell model, while unnatural-parity states do not. If we are only
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interested in natural (unnatural) parity eigenstates, we need only to consider configurations
with even (odd) number of excitation quanta N .

In conventional NCSM calculations, the HO basis in combination with the Nmax-truncation
is used. The main advantages of this choice are the computational e�ciency and the exact
factorization of the eigenstates |�

n

Í in intrinsic |�
n,int.Í and center-of-mass (CM) |�

n,cmÍ
parts

|�
n

Í = |�
n,int.Í ¢ |�

n,cmÍ (5.12)

avoiding mixing CM and intrinsic excitations. To get rid of CM excitations in the spectrum,
we add a CM Hamiltonian of the form [RGP09]

Hcm = 1
2mA

P̨
2 + mA�2

2 R̨
2 ≠ 3

2~� (5.13)

with

P̨ :=
Aÿ

i=1
p̨(i) (5.14)

R̨ := 1
A

Aÿ

i=1
r̨(i), (5.15)

acting on the CM momentum P̨
2 and CM coordinates R̨

2 of A particles with the same mass
m to the intrinsic one. Hence, the total Hamiltonian in our calculations is given by

H = H int + —Hcm, (5.16)

where the parameter — controls the strength of the CM part. Consequently, states with a CM
components di�erent from the harmonic-oscillator ground state are shifted to higher energies
and removed from the part of the spectrum we are interested in.

NCSM calculations are limited by the dimension of the model space that grows factorially
with increasing the number of nucleons A, and the model-space size Nmax that needs to be
increased in order to reach convergence. Nowadays, linear dimensions of 1010 are the upper
limit of tractable matrices during the computations, such that NCSM calculations for 16O can
practically be performed only in relatively small model spaces (Nmax Æ 8) where convergence
has not yet been reached [Var+09; Rot09]. In the next step, the importance-truncated NCSM,
in which the NCSM model space can be reduced with guidance of the multi-configuration
many-body perturbation theory, will be introduced.

We solve the eigenvalue problem of the finite matrix for a few low-lying eigenstates us-
ing the Lanczos-type algorithms [Lan50; SN69; Whi72], yielding energies and eigenvectors
that can be used to compute any secondary observable. The truncations of the many-body
space establish the crucial departure from an exact treatment of the Schrödinger equation.
Hence, in practically calculation, we have to demonstrate that the truncations do not a�ect
the observables of interest. This convergence is the critical condition for determining the
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uncertainties of the method and also the limiting factor in practical applications. Several
tools are being used to extend reach of the NCSM, e.g., through additional truncations of the
many-body model space [RN07; Rot09] or through a pre-diagonalization of the Hamiltonian
by a unitary transformation [Rot+11; JNF09; Ôku54; SL80]. Without these extensions, the
NCSM is typically limited to 4He [Rot+14; JNF11].

5.2. Importance Truncation

The importance-truncated NCSM reduces the NCSM model space to a tractable size without
losing precision of the eigenvalues and eigenstates compared to an NCSM calculation [Rot09].
The starting point is an NCSM model space

M := span
3

B(N
max

)
NCSM

4
(5.17)

and so-called reference states2 |�Õ
n

Í œ MÕ ™ M. The reference states |�Õ
n

Í are approximations
of the target states, which will be calculated later, to have the correct angular momentum.
To ensure this requirement, |�Õ

n

Í are determined in NCSM-type calculation in MÕ.
In order to quantify the importance of the basis states which are included in M, but

excluded from MÕ, the first perturbative correction of |�Õ
n

Í

|�Õ(1)
n

Í = ≠
ÿ

|�iÍ”œMÕ

È�
i

| H |�Õ
n

Í
‘
i

≠ ‘Õ
n

|�
i

Í (5.18)

is considered, where ‘
i

is the unperturbed energy of the basis states |�
i

Í ”œ MÕ, and ‘Õ
n

is the
expectation value with respect to |�Õ

n

Í of the Hamiltonian H .
Afterwards, the coe�cient

Ÿ(n)
i

:= ≠È�
i

| H |�Õ
n

Í
‘
i

≠ ‘Õ
n

(5.19)

is used as an a priori importance measure of the basis state |�
i

Í ”œ MÕ. Only basis states
with an importance measure |Ÿ(n)

i

| above a threshold Ÿmin for at least one reference state are
retained in the model space. Hence, diagonalization of the matrix can be carried out in this
smaller space. A variation of the threshold Ÿmin allows an a posteriori extrapolation of Ÿmin

towards zero to recover the contribution of the discarded basis states.
The procedure for the importance truncation of the model space can be extended to an

iterative method: We start with a particular model space and the reference states calculated
in an NCSM-tractable model space, and reduce the model space by means of the importance
measure (5.19). By diagonalizing the Hamiltonian matrix within the importance-truncated
model space, a set of eigenstates are obtained that can be used for the next larger model
space. This procedure is iterated while making progress to larger model spaces. The reduc-

2Do not be confused with the reference state |�Í introduced in previous chapters which does not enter the
consideration in this chapter.

103



5. No-Core Shell Model and Importance Truncation

tion of the model space facilitates calculations in ranges that are not manageable in NCSM.
For instance, calculations for 16O in the model space Nmax = 10—not tractable in the frame-
work of NCSM—are computationally possible in importance-truncated NCSM because of the
tremendous reduction of the model-space size. Even calculations within a model space up
to Nmax = 22 and beyond are tractable in importance-truncated NCSM while this limit is
set by the available two-body matrix elements and not by the importance-truncated NCSM
calculation itself [Rot09].

104



Chapter 6

Merging In-Medium Similarity
Renormalization Group and
No-Core Shell Model

In this chapter, we merge the multi-reference in-medium similarity renormalization group
(IM-SRG) and the no-core shell model (NCSM) introduced in the previous chapters to define
the in-medium no-core shell model (IM-NCSM). In section 6.1, we give a brief motivation
why we merge them. Furthermore, we give a prescription how to merge them discussed in
section 6.2. Finally, in section 6.3, we show the Hamiltonian matrix in a many-body basis in
order to illustrate how well the IM-NCSM works.

6.1. Motivation

We motivate combining the two many-body methods, IM-SRG and NCSM, by confronting
the advantages and limitations of each method. The complementarity of both approaches
makes it ideal for merging these techniques.

Let us start with the NCSM, which is limited to light nuclei due to the factorial growth of
the model space. It is computationally very demanding to obtain model-space convergence.
For larger systems the model-space sizes needed are beyond the reach of current computers.
In contrast to that, using the IM-SRG, we can easily access heavy nuclei due to the soft
computational scaling with particle number A of the nucleus. A very nice feature of the
IM-SRG is that the Hamiltonian is decoupled in the A-body basis, which will be explicitly
demonstrated later on.

However, the IM-SRG is not an exact ab initio method due to additional truncations
and is not variational. As explained in detail in section 4.7, it is designed for ground-state
observables only. The description of excited states and spectroscopic observables are not
straightforward. Moreover, it is limited to even nuclei due to the J-coupled implementation
for scalar operators. On the other hand, the NCSM is a (quasi)-exact method enabling easy
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access to excited states, and, therefore, spectroscopy does not incur significant additional
computational cost since we get also the eigenstates of the Hamiltonian from the diagonal-
ization. Finally, it is not limited to even nuclei as the IM-SRG.

By merging these two techniques we get a powerful method which exploits the advantages
of both techniques, and we can overcome some limitations.

6.2. In-Medium No-Core Shell Model

In this section, we describe how to merge the multi-reference IM-SRG and the NCSM to
define the IM-NCSM approach. This procedure consists of three major steps as depicted
schematically in figure 6.1:

1. We perform an NCSM calculation to obtain a reference state |�Í for the specific nu-
cleus of interest in a small model space with truncation parameter N ref

max, called the
reference-space size. We choose N ref

max = 0 model spaces unless otherwise stated, which
are multidimensional in open-shell nuclei. The lowest eigenstate with the appropriate
quantum numbers serves as reference state.

2. We normal order the Hamiltonian with respect to the reference state |�Í, which is
multi-determinantal in general, and solve the J-coupled multi-reference IM-SRG flow
equations (4.89). For each value of the flow parameter s, the flow equations yield
a normal-ordered Hamiltonian H (s). Thus, we generate a family of Hamiltonians in
which multi-particle multi-hole excitations are successively decoupled from the reference
state.

3. The IM-SRG-evolved Hamiltonians are used in NCSM calculations for a range of trun-
cation parameters Nmax. These calculations provide ground- and excited-state energies,
as well as the respective eigenvectors. The eigenvectors can be used to evaluate other
observables that have been transformed consistently in an IM-SRG evolution.

For simplicity, we refer to this scheme as in-medium no-core shell model (IM-NCSM), be-
cause the key point is the use of an in-medium decoupled Hamiltonian in the NCSM. The
IM-NCSM scheme has a number of important advantages over simple IM-SRG or NCSM cal-
culations. The initial NCSM calculation can be performed for arbitrary open-shell systems
and we can control the complexity of the reference state |�Í via the parameter N ref

max. The
entire N ref

max space is decoupled from the rest of the model space, and remaining couplings
within that space, caused by the IM-SRG truncations, are handled by the subsequent NCSM
diagonalization. The decoupling dramatically accelerates the convergence of the subsequent
NCSM calculation, which will be demonstrated in the next section. Furthermore, we obtain
ground- and excited-state wave functions that can be used for calculating observables. Since
we have a continuous mapping between the initial and the decoupled Hamiltonian, we can
probe and quantify the e�ects of the truncations of the IM-SRG flow equations by varying
the flow parameter s.
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6.2. In-Medium No-Core Shell Model

Figure 6.1.: Schematic overview of the merging procedure of the IM-NCSM. We diagonalize
the Hamiltonian in small model space in NCSM and the ground state basically
defines the reference state which enters the evolution of the Hamiltonian and—if
requested—other operators. This step serves as a pre-diagonalization in A-body
space. Finally, we diagonalize the IM-SRG evolved Hamiltonian, obtain the
eigenstates and then extract observables.

In the interest of clarity, we compare the IM-NCSM with the so-called valence-space IM-
SRG [Str+16]. Both methods are two-stage approaches where an IM-SRG evolution is used to
adapt the Hamiltonian for a subsequent diagonalization in a truncated space. Furthermore,
they inherit advantages and problems from this second step, the valence-space shell model or
no-core shell model, respectively. Therefore, the step from IM-SRG for valence-space interac-
tion to IM-NCSM is of similar importance and impact as the step from the phenomenological
shell model to the no-core shell model in the early 1990s.

More specifically, there are several unresolved problems in the valence-space IM-SRG, which
by construction cannot occur in the IM-NCSM. For instance, the ground-state energies ob-
tained in the initial IM-SRG for valence-space interaction applications show a systematic
overbinding as the number of valence nucleons increases. This problem has been addressed
recently though a heuristic modification of the density matrix entering the normal-ordering
procedure [Str+17]. This modification is meant to circumvent a rigorous multi-determinantal
reference state for the nucleus under consideration. In the IM-NCSM, we start with a multi-
determinantal reference state from an NCSM calculation and perform a full multi-reference
IM-SRG evolution in a strict ab initio sense. Furthermore, the valence-space IM-SRG has only
been applied successfully to valence spaces covering a single major shell thus far. Attempts
to extend the valence space to multiple shells have failed due to uncontrolled behavior in
the IM-SRG evolution. Therefore, many interesting phenomena, e.g., the physics of intruder
configurations, cannot be described in the valence-space IM-SRG at present. In addition,
the presence of a core and the current issues with extending the valence space inhibits a
systematic study of the model-space convergence that is mandatory for a stringent ab initio
approach. The IM-NCSM is a no-core method using the total number of excitation quanta,
Nmax, as the only model-space truncation parameter. The convergence of all observables
with increasing Nmax is investigated explicitly in each calculation, providing model-space
uncertainty estimates for all results.
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6.3. Decoupling of the Hamiltonian Matrix in Many-Body Basis

In order to gain an intuitive understanding of the IM-NCSM, let us consider the Hamiltonian
matrix in a many-body basis (5.9), for instance one constructed for 12C. In this section, we
limit ourselves to natural parity eigenstates of the Hamiltonian in an Nmax = 4 model space,
and total angular momentum projection of M

J

= 0. Because of the parity conservation
of the Hamiltonian, we need to include only configurations with even number of excitation
quanta N = 0, 2 and 4. Hence, the many-body basis of this subspace, schematically shown
in figure 6.2, sorted with respect to their number of excitation quanta is given by

B(4)
NCSM =

€

Nœ(0,2,4)

Q

a
€

iœ(0,1,...)

1
|�(N)

i

Í
2

R

b (6.1)

=
3

|�(0)
0 Í , |�(0)

1 Í , . . . , |�(2)
0 Í , |�(2)

1 Í , . . . , |�(4)
0 Í , |�(4)

1 Í , . . .
4

, (6.2)

where the upper index of the basis states indicates the exact number of excitation quanta N

with respect to the energetically lowest configurations, and the lower index enumerates them.
The single-particle energy truncation is set to emax = 12. As mentioned before, this basis is
orthonormal, i.e., È�(N)

i

|�(N Õ)
j

Í = ”i

j

”N

N

Õ . The number of natural parity configurations with
total angular momentum projection M

J

= 0 for 12C with exactly zero, two and four excitation
quanta is 51, 17 674 and 1 101 201, respectively. In general, the Nmax = 0 model space for
open-shell nuclei is multidimensional, here 51 for 12C, but one dimensional in closed-shell
nuclei.

Since the Nmax = 4 model space is 1 118 926 (=51+17 674+1 101 201) dimensional, for
a graphical illustration of the Hamiltonian matrix we have to restrict ourselves to those
configurations with the strongest coupling to the N = 0 configurations. One possible way to

.........

Figure 6.2.: Schematic illustration of the many-body basis B(4)
NCSM containing up to four exci-

tation quanta. Note that odd number of excitation quanta N are not necessary,
if we are interested only in natural parity states of 12C which is the case here.
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Figure 6.3.: Illustration of the initial Hamiltonian in the many-body basis containing exactly
0, 2 and 4 excitations quanta (left panel), and in a many-body basis where the
N = 0 configurations, |�(0)

i

Í , are replaced with the Nmax = 0 eigenstates, |�(0)
i

Í,
of the initial Hamiltonian (right panel), where the reference state is the first
basis state |�Í = |�(0)

0 Í. We take all N = 0 configurations and those each fifty
N = 2 and N = 4 configurations that have the largest coupling to the N = 0
configurations measured by (6.3). The absolute values are encoded in colors: the
brighter the color the larger its value, where black indicates vanishing absolute
value. Obviously, the Nmax = 0 block of the initial Hamiltonian is diagonal
in the basis containing the Nmax = 0 eigenstates. The other blocks have been
transformed as well.

quantify this coupling is

c(N)
i

:=
ÿ

j

|È�(0)
j

|H |�(N)
i

Í|. (6.3)

We take those fifty configurations with the largest value of c(N)
i

for each N > 0. In the left
panel of figure 6.3 we show the absolute value of the initial Hamiltonian matrix elements in
this truncated many-body basis with up to four excitation quanta. The absolute values are
encoded in colors: the brighter the color the larger its value, where black indicates vanishing
absolute value.

In order to bring the reference state into the game, we replace the N = 0 configurations
by Nmax = 0 eigenstates. For that purpose, we diagonalize the initial Hamiltonian in the
Nmax = 0 model space, i.e.,

�(0) H �(0) |�(0)
i

Í = E(0)
i

|�(0)
i

Í . (6.4)

Here �(0) denotes the projection operator on the Nmax = 0 subspace, and E(0)
i

is the eigen-
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protons neutrons

Figure 6.4.: We analyze the reference state for 12C constructed in Nmax = 0 subspace to em-
phasize its multi-determinantal character. On the x-axis is depicted the quantity
X

p

from (6.7) for protons (left panel) and neutrons (right panel) separately. This
quantity is exactly one and zero for core (blue) and virtual states, respectively,
while it is something in between for active (red) ones. Since the p-shell is par-
tially occupied, the reference state is indeed multi determinantal. We used the
spectroscopic notation “(ñ

p

+ 1)L
jp” where ñ

p

œ {0, 1, . . .} is the radial quantum
number, j

p

the total-angular-momentum quantum number, and L œ (s, p, d, . . .)
encodes the angular momentum quantum number l

p

œ (0, 1, 2, . . .) of the state |pÍ.
On the left side is additionally depicted the energy quantum number e

p

= 2ñ
p

+l
p

.

value associated to the eigenstate |�(0)
i

Í of the Hamiltonian in the Nmax = 0 subspace.
Replacing the N = 0 configurations |�(0)

i

Í from above with these N = 0 eigenstates yields

BÕ(4)
NCSM :=

3
|�(0)

0 Í , |�(0)
1 Í , . . . , |�(2)

0 Í , |�(2)
1 Í , . . . , |�(4)

0 Í , |�(4)
1 Í , . . .

4
(6.5)

which is still an orthonormal basis since Hermitian operators have an orthonormal eigenbasis.
The reference state |�Í for the IM-SRG evolution is chosen as the lowest eigenstate in the

Nmax = 0 subspace with the appropriate quantum numbers; let us assume

|�Í := |�(0)
0 Í . (6.6)

We emphasize once again that the reference state is a multi-determinantal state with this
choice. To confirm this statement, we show in figure 6.4 the quantity

X
p

:=
ÿ

i

(ap|�(0)

i
Í”=0)

|È�(0)
i

|�Í|2 (6.7)
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Figure 6.5.: The lower panel shows the zero-body part of the flowing Hamiltonian E(s) (black
solid line) and the lowest eigenvalue of H (s) obtained in IM-NCSM calculations
in an Nmax=0 (•), 2 (⌅) and 4 ( H) model space. The upper panels show the
flowing Hamiltonian in a truncated many-body basis for di�erent values of s. All
calculations use a Hartree-Fock basis with emax = 12 and ~� = 20 MeV.

where the sum runs over all configurations in which the given single-particle state |pÍ is occu-
pied. Obviously, this quantity is exactly one and zero for core and virtual states, respectively,
while it is something in between for active ones. The multi-determinantal character of the
reference state is manifested in partially occupied p-shell.

Not surprisingly, the Hamiltonian matrix represented in the basis (6.5) is diagonal in
Nmax = 0 subspace, the other blocks need to be transformed as well. A representation
of the initial Hamiltonian in this basis is given on the right panel of figure 6.3.

While performing the IM-SRG evolution, let us track some important characteristics of
this matrix as a function of the flow parameter s on a logarithmic scale (see lower panel
in figure 6.5). First, the expectation value of the evolved Hamiltonian with respect to the
reference state |�Í, which is identical to the zero-body part of the Hamiltonian in reference-
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Figure 6.6.: Zoom into the Nmax = 0 block of the evolved Hamiltonian matrix to a specific
value of the flow parameter s = 1.0 MeV≠1. The first line of the Hamiltonian
matrix indicates those matrix elements that couple the reference state to other
Nmax = 0 eigenstates.

state representation, i.e.,

E(s) = È�|H (s)|�Í , (6.8)

which is the first entry in the Hamiltonian matrix by construction. Second, the smallest
eigenvalue in Nmax = 0 subspace, which coincides with E(s) for small flow parameters since
the reference state is already an eigenstate obtained in Nmax = 0 subspace according to (6.6).
Third, the lowest eigenvalue obtained in the Nmax = 2 and 4 model spaces, spanned by states
up to two and four excitation quanta, respectively.

Taking a closer look at matrix elements that couple the reference state to N = 2 and 4
configurations, we can clearly see that these matrix elements are suppressed and that strength
is shifted into the Nmax = 0 subspace (see upper panels in figure 6.5). Hence, for su�ciently
large flow-parameter values the lowest eigenvalue obtained in the Nmax = 0, 2 and 4 model
spaces is practically the same. However, these quantities do not stabilize as a function of
the flow parameter due to induced many-body contributions. Nevertheless, this is proof that
IM-SRG successfully decouples the reference state from states with N > 0, here 2 and 4, i.e.,

È�| H (s) |�(2)
i

Í ¥ 0 (6.9)

È�| H (s) |�(4)
i

Í ¥ 0 (6.10)

for su�ciently large flow parameter s. Similarly, we observe that other eigenstates obtained
in the Nmax = 0 subspace are also decoupled from states with N > 0, which we believe is a
useful by-product of the IM-SRG(2) truncation.

Furthermore, we observe from figure 6.5 that the expectation value of the evolved Hamil-
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tonian, E(s), and the lowest Nmax = 0 eigenvalue di�er from each other for large flow
parameters. To investigate this issue, let us zoom into the Nmax = 0 subspace of the evolved
Hamiltonian at s = 1 MeV≠1 (see figure 6.6). Keeping in mind that the reference state is the
first basis state by construction, we can clearly see that several of the Nmax = 0 eigenstates
of the initial Hamiltonian couple to the reference state. In other words, the initial reference
state |�Í is not an eigenstate of the final Hamiltonian anymore. Therefore, E(s) loses its in-
terpretation as ground-state energy and we have to explicitly diagonalize H (s). The coupling
of the reference state to other Nmax = 0 basis states is related to the IM-SRG(2) truncation
that neglects the induced many-body contributions.

We remark that these coupling matrix elements should be suppressed in IM-SRG(A), i.e.,
È�| H (s) |�(0)

j

Í sæŒ≠æ 0 for j Ø 1 . In this case, there is nice connection to the decoupling
pattern depicted in figure 4.6 stating that the reference state has to be decoupled from the
generalized n-particle n-hole states in order to have the reference state become an eigenstate of
the final Hamiltonian. We know that the generalized n-particle n-hole states with 1 Æ n Æ A

span the same subspace as the basis states from BÕ(Nmax

)
NCSM \{|�Í} in the limit that Nmax goes

to infinity (see figure 6.7). Therefore, we can express any generalized n-particle n-hole states
with 1 Æ n Æ A as a linear combination of all states from BÕ(Nmax

)
NCSM \{|�Í} in the above-

mentioned limit, and vice versa. Consequently, the coupling matrix elements of the reference
state to other basis states from BÕ(Nmax

)
NCSM \{|�Í} would be suppressed in the limit that Nmax

goes to infinity if and only if the conditions (4.232) are fulfilled.

Figure 6.7.: We compare the many-body bases from (4.173) (right panel) and (6.1) (left panel)
to make the connection to the schematic decoupling pattern of figure 4.6. See
text for details.
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Introduction to Part III

In this part, we present ground-state and excitation energies as well as radii and electric
monopole transitions obtained within the framework of the in-medium no-core shell model
(IM-NCSM) introduced in chapter 6.

We study the dependence of the IM-NCSM ground-state energies on several parameters
in chapter 7, e.g., model-space truncations, oscillator frequency, choice of the generator and
reference-space size. Afterward, we benchmark our results by comparing to other many-body
methods like the NCSM. We also consider some selected magnesium and sodium isotopes.

In chapter 8, we investigate the IM-NCSM excitation energies of the carbon and oxygen
isotopes. An interesting e�ect is found for the second 0+ state in 12C known to be a clus-
ter state and called the Hoyle state. Moreover, we consider the excitation energies of the
magnesium and sodium isotopes to address island-of-inversion physics.

We turn back our focus on the Hoyle state in 12C and analyze radii and electric-monopole-
transition properties to the ground state in chapter 9.

For reasons of e�ciency, we use a J-coupled formulation of the multi-reference in-medium
similarity renormalization group (IM-SRG) that requires a reference state with vanishing
total angular momentum, our discussions up to now are limited to nuclei with even particle
numbers. However, the theoretical framework is completely generic and a generalization
to odd-mass nuclei is possible via an implementation of the IM-SRG for non-scalar tensor
operators. We introduce the particle-attached particle-removed extension of the IM-NCSM
and show results for some selected nitrogen isotopes in chapter 10.
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Chapter 7

Ground-State Energy

In this chapter, we focus on the ground-state energies of several nuclei in the framework of
the in-medium no-core shell model (IM-NCSM).

In section 7.1, we study the dependence of IM-NCSM ground-state energies on several
parameters, like the model-space truncations, oscillator frequency, choice of the generators
and the reference-space size. Furthermore, we benchmark our results throughout the even
carbon and oxygen isotopic chain against exact results from the large-scale no-core shell
model (NCSM) in section 7.2. We also compare the ground-state energies with results ob-
tained in the multi-reference IM-SRG using spherical particle-number projected Hartree-Fock-
Bogoliubov reference states [Her+13a]. Moreover, we study the island-of-inversion region in
neutron-rich sodium and magnesium isotopes (see section 7.3).

All calculations in this work use the chiral nucleon-nucleon (NN) interaction at next-
to-next-to-next-to-leading order by Entem and Machleidt with cuto� �NN = 500 MeV/c
[EM03] and local three-nucleon (3N) interaction at next-to-next-to-leading order with �3N =
400 MeV/c [Nav07; Rot+14]. This interaction together with the kinetic-energy operator build-
ing the Hamiltonian are softened by a free-space similarity-renormalization-group (SRG)
evolution at the three-body level to – = 0.08 fm4 [Rot+11; BFP07; JNF09; Rot+14; Heb12;
Wen13]. Details on the SRG evolution and the treatment of the 3N contributions can be found
in [Rot+14]. We truncate the initial three-body matrix elements in the total HO energy quan-
tum number E3 max = 14 in order to control the memory requirements [Rot+12; Her+13a;
Her+13b; Bin+13; Bin+14]. This Hamiltonian has been used in numerous applications with
great success [Her+13a; Bin+14]. However, it is known to significantly underestimate nuclear
charge radii. This has remained a puzzle [Lap+16] and motivated researcher to develop new
interactions, e.g., N2LOsat interaction [Eks+15].
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7. Ground-State Energy

7.1. Parameter Dependences

In order to extract the ground-state energy of a given nucleus in an ab initio manner, we
have to explicitly demonstrate the convergence with respect to all model-space truncations.
In the framework of the IM-NCSM, these are the single-particle energy truncation emax and
the largest allowed excitation quanta Nmax serving as a truncation on a many-body level.

Furthermore, since both single-particle bases, HO and HF, depend intrinsically on the
oscillator frequency ~�, we have to demonstrate the robustness of the ground-state energy
with respect to variation of this parameter.

Typically, we use a reference state for the multi-reference IM-SRG evolution obtained by
diagonalizing the initial Hamiltonian in a feasible model space truncated with N ref

max. In
section 7.1.4, we check if the results are independent of the choice of N ref

max.
Moreover, the multi-reference IM-SRG evolution can be performed using di�erent gener-

ators. The specific choices determine the path on the manifold of the unitarily equivalent
Hamiltonians to the initial one during the IM-SRG evolution, as shown graphically in fig-
ure 4.7. We analyze if the results are indeed independent of the choice of the generator as
expected from theory (see section 7.1.3).

7.1.1. Model-Space Convergence

N
max

-Convergence during the IM-SRG Evolution

We start by investigating the model-space convergence of the lowest eigenvalue of the evolved
Hamiltonian for selected open-shell nuclei. In figure 7.1, the ground-state energies of 12C and
20O obtained in IM-NCSM calculations using the HF basis are shown as a function of the
flow parameter s for several values of Nmax and a fixed value of the single-particle energy
truncation emax = 12. Furthermore, we use the Imaginary-Time generator for the IM-SRG
evolution. For comparison, we also show the zero-body piece of the flowing Hamiltonian, i.e.,
the expectation value E(s) = È�|H (s)|�Í that should converge against an eigenvalue of the
Hamiltonian in standard applications of the IM-SRG in the limit of s æ Œ.

Let us consider the convergence with respect to the model-space truncation Nmax of the
subsequent NCSM calculations. For small flow parameters, we recover the results of a direct
NCSM calculation with the initial normal-ordered Hamiltonian in HF basis. The ground-state
energies exhibit extremely slow Nmax-convergence, which makes an extrapolation challenging.
Since the energy quantum numbers (5.5) of the HF single-particle basis do not correspond to
the HF single-particle energies, they are artificial. Thus, the Nmax-truncated model space,
where these artificial energy quantum numbers enter, might not include the relevant many-
body configurations.

We conclude that the Nmax-truncation, which has been motivated by the HO level scheme,
is incompatible with the HF single-particle basis. However, increasing the flow parameter
leads to extremely enhanced Nmax-convergence of the subsequent NCSM calculation. This
even reaches a point where all model-space truncations, including Nmax = 0, yield the same
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energy eigenvalue. In particular, this is the case for s > 0.2 MeV≠1 and s > 0.15 MeV≠1 for
12C and 20O, respectively. This is related to the fact that the IM-SRG decouples the reference
state from all basis states at higher Nmax (cf. figure 6.5).

Let us focus on the role of the expectation value E(s) of the IM-SRG evolved Hamiltonian
H (s) with respect to the reference state, which is the energetically lowest eigenstate obtained
in N ref

max = 0 model space at s = 0 MeV≠1. In the initial stages of the evolution, this quantity
agrees with the lowest eigenvalue of the evolved Hamiltonian. This means that the reference
state remains an eigenstate of H (s) in Nmax = 0 to a good approximation. However, in
some cases, the lowest eigenvalue of the evolved Hamiltonian is below E(s) in the later stages
of the flow, i.e., the reference state is not an Nmax = 0 eigenstate anymore. This is not
surprising since the IM-SRG transformation changes the structure of the Nmax = 0 block of
the Hamiltonian such that the reference state still couples to other Nmax = 0 eigenstates,
as already illustrated in figure 6.6. Therefore, E(s) loses its interpretation as ground-state
energy and we have to explicitly diagonalize H (s). The e�ect on the energies is much stronger
for the ground-state energy of 12C than for 20O.

Let us consider the many-body contributions that are discarded due to the truncation
of the IM-SRG flow equations at the normal-ordered two-body level. Their e�ect can be
estimated by comparing to importance-truncated NCSM results in the HO basis that include
explicit 3N interactions, i.e., without the NO2B approximation. For 20O, we find a deviation
of less than 2.3 MeV (2%), which is in line with previous multi-reference IM-SRG calculations
[Her+13a]. For 12C, which is a special case, the deviations are larger, slightly above 4%,
and we observe a distinctive drop for s > 0.3 MeV≠1 after a plateau of stable and well-
converged energies, signaling a systematic growth of induced many-body contributions. Note
that the discrepancies in the energy include the discarded residual normal-ordered three-
body contribution at the initial Hamiltonian as well as the neglected induced many-body
contributions due to the IM-SRG(2) truncation that violates the unitarity of the evolution in
the A-body system. Earlier studies have shown that the truncation of the initial Hamiltonian
in NO2B approximation alone causes a deviation of approximately 1% [Rot+12; GCR16].

To extract the final ground-state energy in the framework of the IM-NCSM, we select a
maximum flow parameter smax within the plateau for which stable convergence is observed
at su�ciently small Nmax. Additionally, we consider the energy much earlier in the evolu-
tion, i.e., at smax/2. The range from smax/2 to smax in the IM-SRG flow (cf. figure 7.1)
provides an uncertainty estimate for the energy at a given Nmax. If the evolution is stable
and saturates, this uncertainty is very small. Only if the evolution fails to stabilize or the
Nmax-convergence is incomplete, the uncertainty will be non-negligible. We will use this
uncertainty quantification protocol for all observables.

We explicitly stress that the variational principle with respect to Nmax applies at each
value of the flow parameter s separately. But because of the IM-SRG(2) truncation that
violates the unitarity in the A-body system, as aforementioned, we observe discrepancies
between Nmax-converged results at di�erent values of the flow parameters. Furthermore, we
note that 20O is representative for the majority of nuclei discussed here, while 12C is the most
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challenging case considered in this work.
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Figure 7.1.: We analyze the Nmax-convergence of the IM-NCSM ground-state energy in 12C
and 20O as a function of the flow parameter s while fixing the single-particle
energy truncation to emax = 12. The di�erent symbols represent the ground-
state energy obtained in various model spaces: Nmax=0 (•), 2 (⌅), 4 ( H), 6 ( ⌅),
8 (F), 10 (H) and 12 ( H). The black solid line indicates the expectation value
of the evolved Hamiltonian H (s) with respect to the reference state, E(s). The
horizontal gray line represents the Nmax-extrapolated ground-state energy using
the importance-truncated NCSM with the explicit 3N interaction, i.e., without
the NO2B approximation. The vertical gray band represents the range of flow
parameters smax/2 to smax for the quantification of uncertainties (see text). We
use an HF basis and the Imaginary-Time generator. (published in [Geb+17])

122



7.1. Parameter Dependences

Finally, we present the IM-NCSM ground-state energies in a slightly di�erent way to empha-
size the tremendous acceleration of the Nmax-convergence due to the IM-SRG evolution. In
figure 7.2, the ground-state energies of 12C and 20O are shown as a function of the model-space
size Nmax for a set of values for the flow parameter s.

The Nmax-convergence is extremely slow for small values of the flow parameter s making an
Nmax-extrapolation di�cult, which is related to the incompatibility of an HF single-particle
basis with the Nmax-truncation, as aforementioned. This problem does not occur in the HO
basis, but the HO basis shows a disadvantageous behavior with respect to variation of the
oscillator frequency, which will be analyzed in section 7.1.2. However, the Nmax-convergence is
drastically enhanced with increasing value of the flow parameter, as already seen in figure 7.1.
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Figure 7.2.: We analyze the Nmax-convergence of the IM-NCSM ground-state energy for
emax = 12 at di�erent values of the flow parameter s. Increasing the flow parame-
ter leads to enhanced Nmax-convergence. At s = 0 MeV≠1, the Nmax-convergence
is extremely slow such that Nmax-extrapolation is di�cult. In contrast to that,
for s = 0.2 MeV≠1 all results including the one obtained in Nmax = 0 yield the
same value. We use an HF basis and the Imaginary-Time generator.
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e
max

-Convergence at di�erent stages of the IM-SRG Evolution

So far, we have analyzed the Nmax-convergence at a fixed value of the single-particle energy
truncation emax = 12. To extract ground-state energies in the sense of an ab initio calculation,
we have to explicitly demonstrate the convergence with respect to the single-particle energy
truncation emax as well. For that purpose, we analyze the ground-state energy as a function
of the single-particle energy truncation emax for di�erent values of the many-body truncation
Nmax at two di�erent values of the flow parameter as shown in figure 7.3. We consider the
emax-convergence for the ground-state energies of the initial input Hamiltonian corresponding
to the flow parameter s = 0 MeV≠1 (left-hand panels). Additionally, we consider the IM-SRG
evolved Hamiltonian for the flow parameter s = 0.2 MeV≠1 (right-hand panels). In this case,
the IM-SRG evolution has already reached the decoupled regime, i.e., the reference state is
su�ciently decoupled from the other basis states orthogonal to it.

We observe that the ground-state energy obtained in an Nmax = 0 model space is nearly
independent of emax for the initial Hamiltonian. This is a clear indication that the low-
lying HF single-particle states relevant for the construction of the Nmax = 0 model space in
12C, i.e., the lowest s- and p-shells for protons and neutrons, are converged. This leads to
stable HF energy on a mean-field level of ≠49.7408 MeV, ≠50.5058 MeV and ≠50.9082 MeV
for emax = 4, 6 and 12, respectively.

For the initial Hamiltonian, we observe that the ground-state energies systematically in-
crease for fixed value of Nmax > 0 as a function of emax signaling that higher-lying HO
single-particle states still contribute to the low-lying HF single-particle states beyond the
already converged lowest s- and p-orbitals. Based on this observation, we conclude that the
many-body truncation Nmax is not well suited for the many-body basis built of HF single-
particle states, as discussed before.

However, there is no fundamental reason not to use the Nmax-truncation for a many-body
basis composed of HF single-particle states as long as we can demonstrate the convergence
with respect to all truncations, which is the case once we perform the IM-SRG evolution. In
this case, we observe a perfectly monotonic convergence with respect to the single-particle
energy truncation emax. The results for all Nmax are identical for emax Ø 10, as already seen
in figures 7.1 and 7.2 for emax = 12. We emphasize that this convergence is not related to
the variational principle with respect to single-particle energy truncation emax, since the HF
basis and, thus, the input Hamiltonian change for di�erent single-particle energy truncations
emax.

Based on this analysis, we conclude that emax = 12 is su�cient to extract converged
ground-state energies of carbon and oxygen isotopes. Care should be taken when going to
heavier systems, where emax = 12 might not be su�cient. In this case, the emax-convergence
needs to be revisited.
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Figure 7.3.: We analyze the emax-convergence of the IM-NCSM ground-state energies of the
initial Hamiltonian (left panel) obtained in di�erent model spaces Nmax = 0, 2, 4.
Additional, we consider the evolved Hamiltonian to a specific flow parameter
0.2 MeV≠1 (right panel). The upper and lower panels correspond to 12C and 20O
nuclei, respectively. We use an HF basis and the Imaginary-Time generator.
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7.1.2. Oscillator Frequency

So far, we have applied an HF single-particle basis. To justify this choice, we analyze the
ground-state energy of 12C as a function of the oscillator frequency ~� for di�erent model-
space truncations (emax, Nmax) at three di�erent stages of the IM-SRG evolution in HF and
HO basis, which is depicted in figure 7.4.

The ground-state energies—and other observables—exhibit a dependence on the model-
space truncations (emax, Nmax) and, in particular, the oscillator frequency ~�, which is ex-
pected to vanish once complete model-space convergence is reached. In traditional NCSM
calculations, which employ the HO basis without emax-truncation, we search for regions with
the fastest Nmax-convergence and the smallest dependence on ~�. For the ground-state en-
ergy in the range of the so-called optimal frequency, we observe a minimum as a function of the
oscillator frequency ~� [Rot09; Bin+13]. However, we note that the optimal frequency range
can vary for di�erent observables and isotopes. An exact HF calculation would completely
eliminate the ~�-dependence, but due to the emax-truncation there is a residual dependence
on the oscillator frequency, which is expected to be smaller than in HO case. Consequently,
an HF basis has an enlarged region of optimal frequency as already seen in [Her+16].

HF Basis

Let us start with the investigations of the IM-NCSM results for ground state of 12C using
an HF basis shown in the upper panels of figure 7.4. At all stages of the IM-SRG evolution,
the ~�-dependence in Nmax = 0 is very weak for su�ciently large value of the single-particle
energy truncation emax Ø 6. This is related to the converged low-lying single-particle states
relevant for the construction of the Nmax = 0 model spaces. But the ~�-variation in Nmax =
2 space—at the initial stage of the IM-SRG evolution—does not have a minimum in this
~� region. In the intermediate stage the ground-state energy is lowered for all parameters
compared to the initial stage. Furthermore, emax-dependence becomes apparent in Nmax = 0
leading to a spreading of the ground-state energies. In the final stage of the IM-SRG evolution
the ground-state energy is independent of the oscillator frequency ~� for su�ciently large
value of single-particle energy truncation emax Ø 8 and all Nmax as expected.

HO Basis

Let us turn our investigations to the ~�-dependence using the HO basis shown in the lower
panels of figure 7.4. In the initial stage, we observe that all emax results for fixed Nmax are
identical since the emax-truncation is inactive in the HO basis in contrast to an HF basis.
More importantly, there is a minimum at ~� = 20 MeV for the ground-state energies obtained
in all Nmax model space. The ground-state energy in an Nmax = 0 model space in HO basis is
above the one obtained when using the HF basis because an HF basis provides an optimized
single-particle basis (see chapter 2 for more details). This is not true anymore for the ground-
state energies obtained in an Nmax = 2 model space, which are lower in the HO case compared
to HF. This is a consequence of the already mentioned incompatibility of the Nmax-truncation
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with HF basis. In contrast to this, the Nmax-convergence for the HO basis is much better
than for the HF case in the initial stage. In the intermediate stage, the minimum is still
at ~� = 20 MeV. Moreover, we observe that the emax-truncation, which was inactive in the
initial stage, becomes apparent. This is because the IM-SRG evolution is di�erent in each
model space defined by emax leading to ground-state energies obtained in Nmax that depend
on emax. In the final stage, the energy minimum at ~� = 20 MeV disappears in this ~�
region. This indicates an incompatibility of the IM-SRG(2) truncation with the HO basis,
in the sense that neglected many-body contribution have di�erent signs depending on the
oscillator frequency leading to the disappearance of the minimum. Therefore, we use an HF
basis for further investigations.
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Figure 7.4.: We analyze the robustness of the IM-NCSM ground-state energy in 12C with re-
spect to variation of the oscillator frequency ~� for di�erent model-space param-
eters (emax, Nmax) at three di�erent stages of the IM-SRG evolution in HF (upper
panels) and HO (lower panels) basis. We use the Imaginary-Time generator.
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7.1.3. Impact of the Generators

We also analyze the impact of using di�erent generators in the IM-SRG evolution on the
ground-state energy. For this analysis, we fix the single-particle energy truncation to emax = 6
in order to reduce the computational cost, but the model space is su�ciently large to capture
the main e�ects.

A many-body basis constructed from HF single-particle states in combination with the
Nmax-truncation breaks translational invariance, i.e., the total wavefunction does not fac-
torize into an intrinsic and center-of-mass (CM) part. To investigate this e�ect, we analyze
the expectation value of the CM Hamiltonian (5.13), which measures the degree of CM con-
taminations [RGP09]. According to the Hellmann-Feyman theorem [Fey39], stating that
the derivative of the expectation value of the Hamiltonian with respect to — is equal to the
expectation value of the Hamiltonian derived with respect to —, i.e.,

d
d—

È�(—)|H (—)|�(—)Í = È�(—)| d
d—

H (—)|�(—)Í . (7.1)

Here, the expectation value is understood with respect an eigenstate of the Hamiltonian,
which implicitly depends on —. In our case, the derivative of the Hamiltonian (5.16) with
respect to — is equal to the CM Hamiltonian. Since the expectation value of this Hamiltonian
should be independent of —, states with small CM contaminations yield small expectation
values.

The evolution of the CM Hamiltonian is shown in the four lower panels of figure 7.5 for 12C.
To analyze the generators in more detail, we show the zero-body part of the Hamiltonian E(s)
and the step size as well as the total number of steps of the ordinary-di�erential-equation
(ODE) solver as a function of the flow parameter in figure 7.6 for 12C. We use an explicit
Runge-Kutta-Fehlberg (RKF45) algorithm with adaptive step-size control from the GNU
Scientific Library [GSL17; Gou09], which is relevant to reduce the number of ODE steps and,
thus, the computing time. Furthermore, the evolution of the CM Hamiltonian is shown in
the four lower panels of figure 7.7 for 20O.

The ground state in both nuclei, 12C and 20O, is experimentally found as well as predicted
by our Hamiltonian to be a 0+ state. The total angular momentum of the corresponding
state in the framework of the IM-NCSM is calculated simply by taking the expectation value
of the total-angular-momentum operator with respect to the eigenstates.

Analysis of 12C

The four upper panels in figure 7.5 show the lowest eigenvalue of the evolved Hamiltonian
obtained in Nmax = 0, 2 and 4 model spaces for 12C and the expectation value of the IM-
SRG evolved Hamiltonian with respect to the reference state E(s). The ground-state energy
converges against the same value within the plateau region of the energy flow for all generators
except for the Brillouin one. The curve of the flow given by E(s) varies for the di�erent
generators, and with it also the shape of the plateau. For the Brillouin generator, we can
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hardly identify a plateau region. The largest plateau region can be seen for the Wegner
generator, but it is di�cult to compare the generators among each other since the units of
the IM-SRG flow parameter s di�er for each generator. For the Imaginary-Time and Brillouin
generators it is MeV≠1. For the Wegner generator it is MeV≠2 while for the White generator
the flow parameter is dimensionless.

The Imaginary-Time and White generators show a similar behavior throughout the IM-
SRG evolution, especially for flow parameters beyond the plateau region. This might be
related to the fact that both generators have quite similar operator structure (see (4.237) for
their definitions). For the Wegner generator, we observe a pronounced plateau region in the
flow parameter, where the ground-state energy is perfectly converged with respect to Nmax.
Going to larger flow parameters, the numerical instabilities grow rapidly, manifested in the
abrupt drop in the ODE step size and large total number of ODE steps during the evolution.
This leads to completely uncontrolled behavior where even the Nmax-convergence is no longer
available.

Let us turn our focus to the four lower panels in figure 7.5 showing the expectation value
of the consistently IM-SRG evolved CM Hamiltonian with respect to the eigenstate of the
IM-SRG evolved Hamiltonian. The CM Hamiltonian is by construction a positive definite
operator, i.e., the expectation value of this operator with respect to any normalized state is
always positive. In the initial stage, this holds for all generators. However, the expectation
value of the CM Hamiltonian becomes negative for large values of the flow parameter. This
is due to the induced many-body contributions to the evolved CM Hamiltonian neglected
during the IM-SRG evolution. These neglected contributions can have positive as well as
negative sign.

However, the CM contaminations seem to be reduced with increasing Nmax except in the
flow-parameter region where the evolution is numerically unstable. This can be seen for the
Wegner and Brillouin generators for very large values of the flow parameter.

The expectation value of the evolved CM Hamiltonian obtained for all generators is below
0.6 MeV, i.e., relatively small, in the well-behaved region of the IM-SRG evolution. We
conclude that this quantity—in addition to the energies—can be taken as an indicator for
the emergence of truncation artifacts in the IM-SRG evolution.

To analyze the performance of the generators in more detail, we analyze the following
quantities as a function of the flow parameter depicted in figure 7.6 for 12C:

• As a reference, we show again the IM-NCSM ground-state energies for di�erent gener-
ators as well as the expectation value of the flowing Hamiltonian with respect to the
reference state, E(s), obtained in di�erent model-spaces sizes Nmax.

• The second panel illustrates the squared norm of the one- and two-body part of the
o�-diagonal Hamiltonian for each generator defined as

ÎfodÎ2 := tr
3

fod · fod†
4

=
ÿ

p
q

----
1
fod

2
p

q

----
2

(7.2a)
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Î�odÎ2 := tr
3

�od · �od†
4

=
ÿ

pr
qs

----
1
�od

2
pr

qs

----
2

(7.2b)

where the definition of the matrices fod and �od can be found in (4.234).

• For each of the generators, the lower two panels show the step size of the ODE solver
and the total number of evaluations of the commutator of the generator and the Hamil-
tonian, which corresponds to the right-hand side of the IM-SRG flow equation.

We remark that the latter quantities depend on several other parameters of the ODE solvers,
which we do not discuss in detail here, since we are interested in a qualitative analysis.

For the Imaginary-Time and White generators, the squared norm of the two-body part of
the o�-diagonal Hamiltonian is suppressed by three orders of magnitude during to the IM-
SRG evolution, and stabilizes below 10 MeV2. In contrast to that the one-body part remains
nearly unchanged throughout the IM-SRG evolution. The Wegner generator is capable to
suppress ÎfodÎ2 and Î�odÎ2 slightly below 10 MeV2 and 102 MeV2, respectively. In untrun-
cated IM-SRG(A), the o�-diagonal matrix elements are supposed to converge against zero
for these generators by construction. In practical calculations, this is not the case due to
the IM-SRG(2) truncation and neglected higher-body densities in the definitions of the o�-
diagonal matrix elements (4.234), leading to incomplete generators. However, the remaining
o�-diagonal matrix elements, i.e., those not suppressed in the IM-SRG evolution, have neg-
ligibly low impact on the ground-state energies beyond Nmax = 0 space for su�ciently large
flow parameters as depicted in the upper panel of figure 7.6. In other words, the remaining
couplings matrix elements of the reference state to its excitations are treated through the
subsequent NCSM diagonalization, yielding ground-state energies converged with respect to
Nmax, already in Nmax = 0, due to the IM-SRG evolution. This is a great success.

The Brillouin generator has to be considered di�erently regarding the suppression of the
o�-diagonal matrix elements. In contrast to the other generators, the Brillouin generator—
even though we have not neglected irreducible three-body densities in the implementation
(4.244)—is not directly constructed to suppress the o�-diagonal matrix elements1. Hence, it
not surprising that o�-diagonal matrix elements cannot be suppressed, namely the squared
norm of the two-body part Î�odÎ2 is even above 102 MeV2, while ÎfodÎ2 stays almost con-
stant. However, using the Brillouin generator—analogously to the other generators—we
obtain converged ground-state energies. This is what really matters in practical calculations.

The step size h of the ODE solver changes during the IM-SRG evolution due to the adaptive
character of the ODE solver. This quantity first increases and stabilizes during the IM-SRG
evolution for Imaginary-Time and Brillouin generators. For the Wegner generator, we identify
a kink in the step size h of the ODE solver at s Ø 0.2 MeV≠2 leading to decreased step sizes.
This e�ect is much more significant for the Brillouin generator, where the step size drops
down abruptly at s Ø 0.7 MeV≠1 and the number of ODE steps increases extremely at the

1There is the expectation value of the anticommutator that cannot be suppressed directly with the Brillouin
generator. See section 4.6.4 for more details.
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same time. These are clear signals that numerical instabilities a�ect the solutions.
However, the Brillouin generator does not destroy the Nmax-convergence contrary to the

Wegner generator. Furthermore, the zero-body part of the evolved Hamiltonian, E(s),
throughout the IM-SRG evolution is identical to the ground-state energy obtained in the
same model space as the reference state is constructed, i.e., Nmax = N ref

max = 0. This is a
nice feature of the Brillouin generator, which might be related to its interpretation as the
gradient of the energy with respect to the parameters of the unitary transformation at each
step of the flow [Her+16]. Unfortunately, there is not a pronounced plateau region apparent
since the eigenvalues obtained in an Nmax model spaces fall creepingly with increasing flow
parameter s.

Analysis of 20O

In figure 7.7, we analyze the impact of the generators on the ground-state energy (upper
panels) in 20O and the expectation value of the consistently evolved CM Hamiltonian with
respect to the eigenstates of the IM-SRG evolved Hamiltonian (lower panels).

The ground-state energy obtained with the Imaginary-Time, White and Brillouin genera-
tors are in perfect agreement within the plateau region.

As already seen in 12C case, the expectation value of the Hamiltonian with respect to the
reference state, E(s), using the Brillouin generator is always identical to the ground-state
energy of the IM-SRG evolved Hamiltonian. For the Imaginary-Time and White generators,
we observe a small discrepancy of less than 1 MeV.

Contrary to the other generators, numerical instabilities appear in the IM-SRG evolution
using the Wegner generator before Nmax-convergence can be reached. Again the expectation
value of the CM Hamiltonian captures this uncontrolled behavior and blows up for s Ø
2 ◊ 10≠3 MeV≠2.
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Figure 7.5.: We analyze the impact of the di�erent generators on the IM-NCSM ground-state
energies (upper four panels) and the expectation value of the CM Hamiltonian
with respect to the eigenstate of the evolved Hamiltonian (lower four panels) for
12C obtained in the model spaces Nmax=0 (•), 2 (⌅), 4 ( H). The horizontal
dashed line indicates the converged energy obtained with the Imaginary-Time
generator. We use an HF basis with emax = 6.
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Figure 7.6.: Depicted are the ground-state energies (first panel) in Nmax=0 (•), 2 (⌅), 4 ( H)
model spaces, squared norm of the one- (green dashed line) and two-body (red
solid line) part of the o�-diagonal Hamiltonian (7.2) (second panel), step size h
(third panel) and the number of ODE steps (forth panel) for di�erent generators.
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Figure 7.7.: We analyze the impact of the di�erent generators on the IM-NCSM ground-state
energies (upper four panels) and the expectation value of the CM Hamiltonian
with respect to the eigenstate of the evolved Hamiltonian (lower four panels) in
20O obtained in the model spaces Nmax=0 (•), 2 (⌅), 4 ( H). The horizontal
dashed line indicates the converged energy obtained with the Imaginary-Time
generator. We use an HF basis with emax = 6.
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7.1.4. Reference-Space Size

We construct the reference state |�Í, which enters the IM-SRG evolution, by diagonalizing
the initial Hamiltonian within a small model space truncated with respect to the parameter
N ref

max, which we call the reference-space size. Up to now, we have chosen N ref
max = 0 for

the reference-space size. It is necessary to show that our results are independent of the
parameter N ref

max. For that purpose let us construct the reference state as the energetically
lowest eigenstate of the initial Hamiltonian obtained in model spaces for di�erent values
of N ref

max and analyze the lowest eigenvalue of the IM-SRG evolved Hamiltonian in di�erent
model spaces Nmax = 0, 2 and 4. Furthermore, we depict the expectation value E(s) of the
IM-SRG evolved Hamiltonian with respect to the given reference state.

The results are shown in figure 7.8 using the Imaginary-Time generator for 12C (upper
panels) and 20O (lower panels). In order to limit the computational cost, we set the single-
particle energy truncation to emax = 6.

The main observation is that the ground-state energies obtained in di�erent model spaces
for Nmax = 0, 2 and 4 are extremely robust with respect to variation of the reference-space
size N ref

max.
We observe that the expectation value of the IM-SRG evolved Hamiltonian with respect

to the reference state obtained in an N ref
max model space, E(s), tracks the corresponding

lowest eigenvalue obtained in Nmax with the condition Nmax = N ref
max. The reason is that

the reference state is already an eigenstate of the initial Hamiltonian obtained in the same
subspace where the subsequent diagonalization is performed. However, this statement holds
up to a value for the flow parameter s where E(s) and the corresponding lowest eigenvalue
obtained in N ref

max = Nmax model space drift apart. The larger the reference-space size, the
earlier this drifting in the IM-SRG evolution appears, e.g., for N ref

max = 0, 2 and 4, the drifting
starts for s Ø 0.07 MeV≠1, 0.04 MeV≠1 and 0.02 MeV≠1, respectively.

Note that increasing the reference-space size N ref
max leads to increased computational cost,

such that we could not perform the calculation for 20O using an N ref
max = 4 reference state.

The bottleneck was our J-coupled implementation of the multi-reference normal-ordered two-
body approximation in HF basis. For instance, our code needed for N ref

max = 4 reference state
of 12C using emax = 6 approximately two orders of magnitude more computing time compared
to N ref

max = 0 or 2. All calculations have been done on the same local computer architecture
to guarantee comparability. Recently, we have parallelized our code using message passing
interface, which decreases the computing wall time tremendously. However, all observations
are in accordance with the 12C case up to N ref

max = 2. Hence, there is currently no necessity
to perform the calculations for 20O with N ref

max = 4.
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Figure 7.8.: We analyze the dependence of the IM-NCSM ground-state energy obtained in
the model spaces Nmax=0 (•), 2 (⌅), 4 ( H) for 12C (upper panels) and 20O (lower
panels) on the reference-space size N ref

max as a function of the flow parameter s
using the Imaginary-Time generator. We use an HF basis with emax = 6. The
horizontal dashed line is shown to guide the eye.

7.2. Carbon and Oxygen Isotopes

In the previous section, we have studied in detail the dependence of IM-NCSM calculations
on several parameters. In summary, we have found that the model-space sizes with Nmax = 4
and emax = 12 are su�cient to obtain converged ground-state energies for 12C and 20O
nuclei. Furthermore, we conclude that an HF basis should be preferred to the HO basis,
since it is robust with respect to variations of the oscillator frequency ~�. Additionally, we
have observed that the Imaginary-Time generator is the best compromise between robustness
and e�ciency, while the Wegner and Brillouin generators su�er from numerical instabilities.

With this in mind, we analyze the IM-NCSM ground-state energies of even carbon and oxy-
gen isotopes using an HF single-particle basis with ~� = 20 MeV and model-space truncation
parameters Nmax = 4 and emax = 12 . The results are summarized in figure 7.9 and compared
to importance-truncated NCSM calculations up to Nmax = 12 including all 3N contributions,
i.e., without the use of the NO2B approximation. The latter use a simple exponential extrap-
olation with an uncertainty of up to 1 MeV for the most neutron-rich isotopes. We also show
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multi-reference IM-SRG results obtained with spherical number-projected HF-Bogoliubov
reference states [Her+13a].

Let us consider the carbon chain, where we observe relatively large deviations among the
three methods. Here, the isotope 12C appears as the most distinct case, where IM-NCSM
and multi-reference IM-SRG with HF-Bogoliubov reference states already di�er by roughly
6%. In contrast to that the methods agree perfectly for 14C. Going to neutron rich systems,
the relative deviation among the methods increases up to 5%. Also, the deviation to the
experimental data increases. It is known that this Hamiltonian used in this work overbinds
the ground-state energies for medium-mass nuclei. However, all many-body methods using
the same input Hamiltonian underestimate the experimental ground-state energy.

In contrast to the carbon isotopes, the results for the oxygen isotopes of all three methods
agree very well. The maximum deviations between IM-NCSM and NCSM is around 1.8% for
the heaviest isotopes. Similar deviations have been observed with valence-space interactions
obtained from the IM-SRG [Str+17]. All many-body methods correctly reproduce the neutron
dripline at 24O, i.e., oxygen isotopes with more than 16 neutrons are unstable with respect
to neutron decay.
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Figure 7.9.: Ground-state energies for even carbon and oxygen isotopes obtained from the
IM-NCSM for Nmax = 4 and emax = 12 with ~� = 20 MeV (⌅) in comparison to
importance-truncated NCSM calculations with explicit 3N interactions (•) and
the multi-reference IM-SRG with HF-Bogoliubov reference states ( H) [Her+13a].
Experimental values are indicated by black bars [KAE17]. The uncertainty for
the IM-NCSM results due to flow-parameter dependence is negligible on this
scale. (published in [Geb+17])
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7.3. Magnesium and Sodium Isotopes

After benchmarking the IM-NCSM against the exact NCSM calculations and multi-reference
IM-SRG using HF-Bogoliubov reference states, we can now access heavier systems, where
exact diagonalizations are not available anymore. We consider some selected magnesium and
sodium isotopes as a challenging case. Why these isotopes are of interest will become clear
in section 8.3. We should keep in mind that the input Hamiltonian for heavier systems than
oxygen overbinds with respect to experiment [Bin+14].

First, let us analyze the evolution of the IM-NCSM ground-state energies of 30,32Mg shown
in figure 7.10. The IM-SRG evolution is very robust and stabilizes for flow parameters
between 0.2 MeV≠1 and 0.4 MeV≠1 for both nuclei. Our results overbind the experimental
ground-state energies by 9 MeV(3.6%) and 7 MeV(2.7%) for 30Mg and 32Mg, respectively.
Taking into account that the input Hamiltonian has been fixed to systems composed of up
to three nucleons these are impressive results.

Let us focus our discussion on the sodium isotopes, where the situation is more complicated
compared to all previous cases. The reason is that the experimental total-angular-momentum
quantum numbers of the ground states are di�erent from zero for 26,28,30Na. Consequently,
the reference state, which in our implementation of the IM-SRG evolution has to be a 0+

state, is not the ground state of the nucleus under consideration.
In figure 7.11, we show the energetically lowest eigenvalue of the evolved Hamiltonian for

26,28,30Na and the expectation value of the flowing Hamiltonian with respect to the reference
state E(s). For 26,28Na, we can clearly observe that these two quantities, the lowest eigenvalue
and E(s), already di�er in the initial stage of the IM-SRG evolution by about 2 MeV from
each other. The reason is that the initial Hamiltonian does not produce a 0+ ground state in
N ref

max = 0 for 26,28Na, but our implementation of IM-SRG evolution requires a 0+ reference
state, as aforementioned (see chapters 4 and 6). Fortunately, we can find an excited 0+ state
in both cases, which we can use as a reference state. Hence, the lowest eigenvalue and E(s)
cannot be identical already at the beginning of the IM-SRG evolution. However, in all sodium
isotopes we do not reproduce the ground state correctly (not shown in figure 7.11). We obtain
2+ eigenstates for 26,28Na and a 0+ eigenstate for 30Na, whereas the experimental values are
3+, 1+ and 2+ for 26,28,30Na, respectively. This issue will be revisited when discussing the
excitation energies in section 8.3.
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Figure 7.10.: We analyze the IM-NCSM ground-state energy of 30Mg and 32Mg as a function
of the flow parameter s. The di�erent symbols represent the ground-state energy
obtained in various model spaces: Nmax=0 (•) and 2 (⌅). The black solid line
indicates the expectation value of the evolved Hamiltonian H (s) with respect
to the reference state, E(s). The horizontal black dashed line illustrates the
experiment ground-state energy. The vertical gray band represents the range of
flow parameters smax/2 to smax for the quantification of uncertainties as already
discussed earlier. We use an HF basis with emax = 12.
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Figure 7.11.: Depicted is the energetically lowest eigenvalue of the IM-SRG evolved Hamil-
tonian for some selected sodium isotopes as a function of the flow parameter s.
The di�erent symbols represent the results obtained in various model spaces:
Nmax=0 (•) and 2 (⌅). The black solid line indicates the expectation value of
the evolved Hamiltonian H (s) with respect to the reference state, E(s). The
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Chapter 8

Excitation Spectra

So far, we have considered only ground-state energies, but the in-medium no-core shell-
model (IM-NCSM) calculations produce excited states and excitation energies without need
for additional calculations.

In this chapter, we first analyze the flow-parameter dependence and the Nmax-convergence
of IM-NCSM excitation energies of 12C and 20O, and show as a benchmark typical excitation
spectra for selected carbon and oxygen isotopes (see section 8.1). However, 12C remains
a very exciting case, where the second 0+—the so-called Hoyle state [Bur+57], which is
experimentally known to be a cluster state—shows very interesting behavior. We investigate
this state in more detail in section 8.2. Finally, we explore the island-of-inversion physics for
a few selected sodium and magnesium isotopes section 8.3.

8.1. Carbon and Oxygen Isotopes

In figure 8.1, the evolution of the excitation energies for the low-lying states of 12C and 20O
are presented for di�erent model-space truncations Nmax and with a fixed, but su�ciently
large, single-particle energy truncation emax = 12. In the subsequent NCSM calculation, we
add the center-of-mass (CM) Hamiltonian (5.13), evolved consistently in the IM-SRG, to the
intrinsic Hamiltonian in order to remove spurious CM excitations from the spectrum [GL74].

We observe that the rate of convergence of the excitation energies is not improved for
most of the cases considered here. Moreover, the decoupling of the reference state from all
excitations causes the excitation energies to converge monotonically from above for su�ciently
large flow parameters. This is related to the fact that the variational principle with respect to
Nmax for a fixed given Hamiltonian always applies to absolute energies of all states. Once the
ground-state energy is converged, excitation energies also become variational with respect to
Nmax. This is not the case for the initial Hamiltonian in general.

The excitation energies in 20O are almost independent of the flow parameter once we reach
Nmax = 4, and show a perfect convergence in the same flow-parameter range as the ground-
state energy indicated by the gray band in figure 7.1. The excitation energies in 12C also
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stabilize in the same range, but they start increasing as a consequence of the pronounced drop
of the ground-state energy. The dependence of the excitation energies on the flow parameter
is weak once we reach Nmax = 4—as long as we do not exceed smax estimated from the
evolution of the ground-state energy.

A remarkable exception is the first excited 0+ state in 12C, which falls from roughly 14 MeV
to 8 MeV for flow parameters where the decoupling of the ground state happens. In contrast,
the excitation energies of the other states remain relatively stable. This 0+ state at 14 MeV
is well known from standard NCSM calculations, and it cannot be converged in large-scale
NCSM calculations [Mar+14]. Due to this extremely slow model-space convergence in stan-
dard NCSM calculations, it is believed to represent the Hoyle state, which has been proposed
by Sir Fred Hoyle [Bur+57]. This state is crucial for the emergence of heavy elements in the
universe, and is the resonance just above the triple-alpha threshold in 12C.

Theoretical investigations made within the framework of fermionic molecular dynamics
[Che+07; Nef12] and lattice e�ective field theories [Epe+11; Epe+12] successfully describe
this state as a three-alpha cluster state. The latter one su�ers from the artifacts of lattice
spacing by the discretization of space and time.

However, in our calculations, the IM-SRG evolution seems to decouple multi-particle multi-
hole excitations—needed to describe the Hoyle state—from the reference space, such that the
Nmax = 0 result is already closer to experiment than the largest possible conventional NCSM
calculations. Further investigations of this state are presented in section 8.2. We have also
evaluated other signatures of the first excited 0+ state, e.g., mass and charge radii as well as
the electric monopole transition matrix element to the ground state discussed in chapter 9.

In figure 8.2, we study the excitation spectra of selected carbon and oxygen nuclei including
their Nmax-convergence obtained in IM-NCSM and large-scale NCSM calculations. The bands
in the IM-NCSM results from the uncertainty estimate determined in the range smax/2 to
smax, where smax is taken from the evolution of the ground-state energies. Both methods
agree perfectly for the excitation energies of states that are robust and well converged. This
shows that impact of all truncations on this quantity is small. As for 12C, we find an excited
0+ state in the IM-NCSM for 16C which lies at higher energy in the conventional NCSM.
Some higher lying states, however, show a slower Nmax-convergence indicating an intrinsic
structure that probes pieces of the Hamiltonian that are not completely decoupled. This
might be an interesting aspect for further optimizations of the IM-SRG generators.
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8.2. Analysis of the Hoyle State in 12C

In the previous section, we have observed that the second 0+ state in 12C behaves di�erently
as a function of the flow parameter compared to other low-lying states. As a reminder, this
state drops down from approximately 14 MeV to 8 MeV during the IM-SRG evolution. This
state is known to be the Hoyle state experimentally and is very problematic to converge in
standard NCSM calculations [Mar+14].

In this section, we present a detailed analysis of this state. First, we confirm that the
absolute and excitation energies of this state are not CM contaminated. This is done by
testing the robustness of these quantities with respect to variation of the parameter — that
controls the strength of CM Hamiltonian in the total Hamiltonian for the solution of the
eigenvalue problem. Furthermore, we investigate the impact of the generators on this state.
Finally, we explore the variation of the excitation energies as well as the absolute energy with
the reference-space size N ref

max.

Center-of-Mass Contamination

In exact theories, the total many-body state |�Í of the nucleus factorizes into an intrinsic part
|�intÍ and a CM part |�cmÍ describing the dynamics of the CM. This decoupling ensures that
any intrinsic state of the nucleus is translationally invariant, as dictated by the symmetries of
the Hamiltonian [RGP09]. Consequently, all intrinsic observables must be free of spuriousities
caused by the CM component of the system.

In general, the exact factorization of the total many-body state as formulated in (5.12) is
not fulfilled in truncated many-body calculations. The traditional NCSM, where we combine
the HO single-particle basis with the Nmax-truncation, ensures this factorization [NKB00].
However, this is not the case for an HF basis. In order to quantify the CM contamination,
we simultaneously evolve the intrinsic Hamiltonian H int(s) as well as the CM Hamiltonian
Hcm(s) (5.13) while only the intrinsic Hamiltonian enters the construction of the generator.
Diagonalizing the total Hamiltonian given by

H (s; —) = H int(s) + —Hcm(s), (8.1)

we obtain the eigenstates and eigenvalues

H (s; —) |�(s; —)Í = Etot(s; —) |�(s; —)Í . (8.2)

The intrinsic energy is defined by

Eint(s; —) := Etot(s; —) ≠ — È�(s; —)|Hcm(s)|�(s; —)Í . (8.3)

which should be independent of the parameter — if the condition (5.12) is fulfilled.
In order to test the second 0+ state in 12C for CM contamination, we analyze the following

quantities obtained in various Nmax model spaces at three di�erent stages of the IM-SRG
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8. Excitation Spectra

evolution as a function of — shown in figure 8.3:

• its absolute (intrinsic) energy E, which is equivalent to Eint(s; —),

• its excitation energy Eú,

• the expectation value of the consistently evolved CM Hamiltonian with respect to the
second 0+ eigenstate of the total Hamiltonian, ÈHcmÍ := È�(s; —)|Hcm(s)|�(s; —)Í,

• the di�erence of the intrinsic energies obtained with and without the CM Hamiltonian
introduced in [RGP09], i.e.,

�Eint := Eint(s; —) ≠ Eint(s; 0). (8.4)

Let us analyze the results in the initial stage of the IM-SRG evolution depicted in the left-
hand columns of figure 8.3. We observe that the absolute as well as the excitation energy
of the second 0+ state obtained in Nmax = 0 and 2 are completely independent of —. In
contrast to that, the Nmax = 4 results show a modest dependence on — signaling spuriousity
for small parameters — Æ 0.1, which is eliminated by increasing —. The same can also be seen
for the expectation value of the CM Hamiltonian. Here, even the Nmax = 2 results have CM
contaminations which also go to zero for su�ciently large values of —. Contrary to that, the
quantity �Eint jumps from 0 MeV to 5 MeV in Nmax = 4 model space and stays relatively
constant, while the results obtained in Nmax = 0 and 2 are not a�ected much.

However, performing the IM-SRG evolution drives �Eint to less than 200 keV for all values
of Nmax and — Ø 0.1 showing that the CM contamination is negligibly small (cf. right panels
of figure 8.3). This confirms our observation for the expectation value of the CM Hamiltonian
which is driven to zero. Moreover, it is in line with our interpretation that we can suppress
CM contaminations by adding a consistently evolved HO Hamiltonian to the intrinsic one.

For further investigations, we recommend to set the parameter — = 1.0. All calculations
including the ground-state energies up to this point have been performed with this recom-
mended value for —.
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Figure 8.3.: We analyze the absolute and excitation energies of the second 0+ state, expec-
tation values of the CM Hamiltonian with respect to this state and �Eint from
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Impact of the Choice of the Generator

Now that we have shown that the second 0+ state in 12C is free of CM contaminations, we
investigate if there is a dependence on the generators.

We analyze the impact of the generators on the excitation energy of the second 0+ state
in 12C in figure 8.4. The Imaginary-Time and White generators show the same behavior, the
excitation energy of the second 0+ state drops to 8 MeV. Going to larger values of the flow
parameter increases the excitation energy. This is related to the fact that the ground-state
energy decreases in energy after the plateau at the end of the IM-SRG evolution due to
neglected induced many-body contributions, which become significant.

In contrast to that, the Wegner and Brillouin generators show a completely di�erent be-
havior. They push the excitation energy to higher values. These results for the Wegner and
Brillouin generators should be handled with caution, since the ground-state energy is not
under control for 12C as already seen in figure 7.5. Numerical instabilities for Wegner and
induced-many body contribution for Brillouin complicate extracting converged ground-state
energies before reaching stable results as discussed in section 7.1.3.

Let us turn our investigations to the absolute energy of the second 0+ state and the
expectation value of the CM Hamiltonian with respect to that state depicted in the four
upper and lower panels of figure 8.5, respectively. Similarly to the excitation energies, the
absolute energies obtained with the Imaginary-Time and White generators are consistent and
stabilize at approximately ≠83 MeV, while the other two generators behave di�erently.

For the Wegner generator, the energies obtained in Nmax = 4 model space show a min-
imum around s ¥ 4 ◊ 10≠4 MeV≠2. This might be an indication that induced many-body
contributions become apparent before the ground-state energy is stable. Hence, these results
should be treated cautiously. However, the energies stabilize around ≠72 MeV which is higher
compared to the results obtained with the Imaginary-Time and White generators. Using the
Brillouin generator, the absolute energies of the second 0+ state are not even converged with
respect to Nmax, signaling that this state is not decoupled from other states. Consequently,
these results should be considered with caution as well.

The expectation value of the CM Hamiltonian with respect to this second 0+ state is
relatively small indicating that our results do not su�er from CM contamination. As for
ground-state energies, care should be taken if we go to large values of the flow parameter
using the Wegner or Brillouin generator, where numerical instabilities become significant in
the IM-SRG evolution.
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Variation of the Reference-Space Size

The reference state |�Í used for the IM-SRG evolution is the ground state of the initial
Hamiltonian obtained in a model space with small N ref

max. In section 7.1.4, we have already
confirmed that the IM-NCSM ground-state energies are independent of the choice of the
reference-space size N ref

max. Now, it is interesting to study whether this parameter has an
impact on the absolute energy of the second 0+ state.

In figure 8.6, we analyze the absolute energy of the second 0+ state in 12C on the reference-
space size N ref

max. These calculations were performed using the Imaginary-Time generator with
a fixed single-particle energy truncation emax = 6 and oscillator frequency ~� = 20 MeV.
Furthermore, we add a consistently evolved CM Hamiltonian with — = 1.0 to get rid of
spuriousities.

We can clearly see that the absolute IM-NCSM energies of the second 0+ state are in-
dependent of the reference-space size N ref

max. This result is compatible with the observation
made for the ground-state energy in figure 7.8.

In chapter 9, we continue investigating this state by calculating its electric monopole tran-
sition to the ground state, which are more sensitive to the structure of nuclei compared to
energies. Additionally, we consider the mass and charge radii of this state.
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Figure 8.6.: We analyze the absolute energy of the second 0+ state in 12C on the model-
space truncation parameter N ref

max of the reference state which is the ground
state. These calculations were performed using the Imaginary-Time generator
with a fixed single-particle energy truncation emax = 6 and oscillator frequency
~� = 20 MeV. Furthermore, we add a consistently evolved CM Hamiltonian with
— = 1.0 to get rid of spuriousities.
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8.3. Island of Inversion: Magnesium and Sodium Isotopes

Introduction and Motivation

The well-known nuclear magic numbers are a very important and powerful concept in nuclear
structure. They are derived from the nuclear shell model, which is the foundation for the
appearance of energy gaps in the single-particle spectrum. They coincide with large energy
gaps in the single-particle energy spectra near the Fermi energy, i.e., the single-particle states
are fully occupied with protons or neutrons up to an energy just below these energy gaps.
However, investigations showed that the magic numbers are not fixed throughout the nuclear
chart [Sch11]. There are regions in the nuclear chart, called “island of inversion”, where the
shell-model magic numbers can vanish and new ones can appear.

We give some examples from the literature related to this nuclear phenomenon: The ev-
idence for a new magic number N = 34 has been confirmed in 54Ca [Ste+13]. Another
prominent example is the appearance of the magic shell gap in the neutron-rich oxygen iso-
topes at N = 16 (24O) [Hof+08; Kan+09]. Finally, the magic number N = 20 disappears in
very neutron rich neon, sodium and magnesium isotopes [Wim+10]. We focus on the sodium
and magnesium isotopes.

In figure 8.7, the nuclear chart is depicted where the valley of stable nuclei (black squares)
and those predicted to lie inside the driplines (open blue symbols) can be seen. Outside the
driplines nuclei become unstable to proton or neutron decay. The red shaded area depicts the
region where the shell-model magic numbers (2, 8, 20, 28, ...) are broken. The nuclei 32,34Mg
and 31≠33Na lie within this island-of-inversion region. Since we are limited to even nuclei, we
decided to investigate the neutron-rich 32Mg in our framework to explore island-of-inversion
physics. To see the transition when going from ’standard’ to ’island-of-inversion’ nuclei we
consider also 30Mg. Additionally, we study the 26,28,30Na isotopes.

Finally, let us complete our motivation for the island-of-inversion physics by considering
the number of publications between 1970 and 2010 shown in figure 8.8. These numbers show
the enormous interest that increased dramatically since the mid 90’s. However, until today,
for studying the structure of exotic nuclei, which is the case for very neutron-rich nuclei,
one often needs to modify conventional nuclear models to account for intruder physics for
instance [Zho17]. Therefore, it is of great interest to tackle those nuclei within an ab initio
framework. The latter is exactly what we can do now after establishing the IM-NCSM.
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Figure 8.7.: Depicted is the nuclear chart: valley of stable nuclei (black squares) and those
predicted to lie inside the proton and neutron drip lines (open blue symbols)
The red shaded area depicts the region where the shell-model magic numbers are
broken. This region is called island of inversion. (figure taken from [Bro10])

Figure 8.8.: Shown is the number of publications between 1970 and 2010 related to island-of-
inversion physics. The interest on this subject increased dramatically since mid
90’s. (figure taken from [Sch11])
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As a reminder, we have already investigated the ground-state energies of the nuclei, 30,32Mg
and 26,28,30Na, within the framework of IM-NCSM in section 7.3. For both magnesium iso-
topes, we can reproduce the ground-state energies with a reasonable accuracy. In particular,
the quantum numbers of the ground states have been predicted by the input Hamiltonian in
agreement with experiment. In contrast to this, the total angular quantum numbers of the
ground states in the considered sodium isotopes could not be reproduced.

Magnesium Isotopes

The excitation energies of the low-lying states in 30,32Mg as a function of the flow parameter
are shown in figure 8.9. The experimental data are depicted in the right-hand panels. The
states whose quantum numbers have not been identified uniquely so far are shown as gray
horizontal bars.

We analyze the total angular momentum for the ground state predicted by the input
Hamiltonian to be a 0+ state which is in agreement with experiment.

The energy splitting between the first and second 4+ states in 30Mg is too high, whereas
these states are degenerated experimentally. Moreover, the level ordering is not correct, e.g.,
the second 2+ is above the first 4+ which should be reversed actually.

We turn our discussion to 32Mg, where the situation looks quite di�erent. The whole
spectrum is compressed to lower energies compared to 30Mg. To be more quantitative, we
consider the excitation energy of the first eigenstate—that is the first 2+ state—which is
a good indicator since it provides a very strong signature of shell evolution [CC08]. In
experimental excitation energy decreases from 1.48 MeV to 0.89 MeV when going from 30Mg
to 32Mg, which is in line with our results obtaining 1.24 MeV for 30Mg and 0.86 MeV for 32Mg.
Keeping in mind that 32Mg is magic nuclei, this e�ect is the opposite of what is expected
for approaching a magic number. This reflects the fact that 32Mg is an island-of-inversion
nucleus.

Furthermore, the 2+ and 4+ states are in very good agreement with experiment, e.g., the
4+ state is approximately 350 keV too low in energy compared to experiment while the 2+

state is on top of the experimental value.
An interesting fact is that there are no other states below 5.6 MeV for 32Mg predicted by

the input Hamiltonian, but experimentally there is a bunch of states whose quantum numbers
have not been determined uniquely. In particular, the experimentally observed second 0+

has not been predicted by our Hamiltonian. The same holds for 30Mg. For both isotopes,
the reference state is the lowest eigenstate of the initial Hamiltonian obtained in N ref

max = 0
space. Consequently, we may miss intruder physics which is crucial to describe this missing
state adequately. It is an open question whether a reference state from N ref

max = 2 space could
solve this problem.
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Figure 8.9.: The left panels show the IM-NCSM excitation energies of low-lying states in
selected sodium isotopes as a function of the flow parameter obtained in the
model spaces Nmax = 0 (•, dotted line) and 2 (⌅, dashed line). In both cases,
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ground-state energy is already converged. The states whose quantum numbers
are unknown are depicted in gray horizontal bars. We use an HF basis with
emax = 12.
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Sodium Isotopes

The left panels of figure 8.10 show the IM-NCSM excitation energies of the low-lying states
with respect to the experimentally known ground states in selected sodium isotopes as a
function of the flow parameter obtained in di�erent model spaces Nmax. We emphasize that
the excitation energies are depicted with respect to the state identified as the ground state
in experiment. These are the 3+, 1+ and 2+ states for 26Na, 28Na and 30Na, respectively.
The experimental data are depicted in the right-hand columns. The states whose quantum
numbers have not been identified are depicted in gray horizontal bars.

The excitation energies are less than 1 MeV which makes a reliable determination of the
excitation energies basically impossible since the CM contamination quantified via the expec-
tation value of the consistently evolved CM Hamiltonian is at the same order, in particular,
0.5 MeV which is significant here. In contrast to that, for the magnesium isotopes the CM
contamination was negligible. We observe an enhanced dynamic, e.g., level crossings, in the
IM-SRG evolution of the excitation energies in 26,30Na. As aforementioned, we do not repro-
duce the ground states in any of the considered isotopes, i.e., there is always another lower
lying state than the experimentally identified ground state. In 26Na, we do at least observe
all states that have been seen experimentally, but in a di�erent order. For 30Na, there is
a 0+ state below the true ground state that does not exist in experiment. We note that
experimental data for 28Na are very rare.

Conclusion

We have made first pilot studies to address island-of-inversion physics in magnesium and
sodium isotopes within the IM-NCSM framework.

For the magnesium isotopes, we are able to reproduce the ground-state energies and low-
lying 2+ state in a good agreement with experiment. Based on the decreased excitation energy
of 2+ state in 32Mg compared to 30Mg, we could confirm the island-of-inversion character
of the isotope 32Mg observed experimentally. A remaining challenge is the second 0+ state
that cannot be seen in our calculations. This might be related to intruder physics, which is
crucial to describe this state adequately. It is interesting to study whether a reference state
from N ref

max = 2 space captures the intruder physics missing in our reference state.
The sodium isotopes considered here have extremely compressed spectra complicating an

adequate description. The accuracy level needed to make accurate predictions for these sys-
tems go beyond our current capability. There are uncertainties originating from the Hamil-
tonian and the many-body techniques due to truncations. The excitation energies depend
highly on the flow parameter signaling a di�cult structure of these systems. Even the total
angular momentum of the ground states have not been reproduced.
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Figure 8.10.: The left panels show the IM-NCSM excitation energies of low-lying states with
respect to the experimentally known ground state in selected sodium isotopes
as a function of the flow parameter obtained in the model spaces Nmax = 0 (•,
dotted line) and 2 (⌅, dashed line). The experimental data are depicted in the
right panels. The states whose quantum numbers are unknown are depicted in
gray horizontal bars. We use an HF basis with emax = 12.
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Chapter 9

Radii and Electric Monopole
Transitions for the Hoyle State in
12

C

Let us turn our focus to the second 0+ state in 12C, the Hoyle state. To extract more
information on this state, we perform calculations for charge and mass radii as well as the
monopole transition matrix elements from this state to the ground state in the framework of
IM-NCSM, including a consistent multi-reference IM-SRG evolution of the relevant operators.
We refer the reader to (4.284) and (4.287) for the exact expressions for charge and mass radii,
respectively. The electric monopole transition matrix element is given by the transition matrix
element of the operator defined in (4.310) with respect to the states of interest, i.e., in this
case the Hoyle and the ground state

|M(E0; 0+
2 æ 0+

1 )| := | È0+
1 |Q00|0+

2 Í |. (9.1)

We remind that the electric monopole transition operator is Hermitian and scalar, i.e., it is
a spherical tensor of rank zero.

The prime observables to identify the Hoyle state are radii and electric monopole transi-
tions. Due to its triple-alpha structure, this state has a large spatial extent. From experiment
we know that the charge radius of the Hoyle state is about 0.4 fm larger than the ground state
[Dan+09]—even though it is controversial how to assign a radius to a resonance state. The
electric monopole transition matrix element to the ground state is less controversial, which
is around 5.5 e fm2 [Ajz90]. Recent lattice e�ective field theory calculations at leading order
obtain a radius which is about 0.2 fm larger than the ground state, and an electric monopole
matrix element of around 3(1) e fm2 [Epe+12]. Calculations in fermionic molecular dynamics
yield a radius about 1.0 fm larger than the ground state and an electric monopole transition
matrix element of 6.53 e fm2 [Che+07].

The IM-NCSM results are summarized in figure 9.1. We show the dependence of the
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9. Radii and Electric Monopole Transitions for the Hoyle State in 12C

excitation energy of the second 0+ state, the point mass and the charge radii of both 0+

states, as well as the electric monopole transition matrix element between them as a function
of the flow parameter. The gray band indicates the range of flow parameters before truncation
artifacts appear in the ground-state energy (cf. discussion on the ground-state energy in
chapter 7).

The dependence of these observables on the flow parameter is astonishing. The mass
Rrms and charge Rch radii of the second 0+ state start to increase quickly once the excitation
energy starts to decrease. Similarly, the electric monopole transition matrix element increases
rapidly. Before reaching the flow parameters where truncation artifacts appear, the radii have
increased by 0.1 fm and the monopole transition matrix element by a factor of 2.5. Obviously,
the IM-SRG decoupling e�ciently maps the physics ingredients relevant for the description of
the Hoyle state into a tiny Nmax = 0 space. Increasing the model space confirms the correct
trend to enhanced mass and charge radii of the Hoyle state.

Unfortunately, we are currently unable to provide stable and converged results for these
observables, since the IM-SRG truncation e�ects set in before these observables become
independent of the flow parameter. The systematics indicate that radii and transition matrix
elements would continue to increase with increasing flow parameter. We have confirmed that
similar pictures emerge for the excitation energy with other choices for the single-particle
basis as well as the Imaginary-Time and White generators. For the Wegner and Brillouin
generators, we have problems with numerical instabilities as discussed in section 8.2. In order
to make an accurate prediction for the properties of the Hoyle state, we need to improve on
the truncation of the IM-SRG flow equations.

Nonetheless, the present calculations already indicate that the IM-NCSM has the potential
to quantitatively describe the Hoyle state. They provide a strong motivation to continue the
investigation of this and related states in the IM-NCSM and to develop e�cient corrections
for the omitted many-body terms in the flow equations.
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Figure 9.1.: Depicted is the excitation energy of the 0+
2 state and the mass Rrms and charge

Rch radii of the first two 0+ states. The dashed black line indicates the experi-
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monopole transition matrix element |M(E0; 0+
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using an N ref

max = 0 reference state. We use an HF basis with emax = 12.
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Chapter 10

Particle-Attached Particle-Removed
Extension of IM-NCSM

In this chapter, we introduce a simple and straightforward formalism to extend the IM-NCSM
to odd nuclei, i.e., nuclei that have a odd total number of particles A. Firstly, we describe the
idea and general strategy of the particle-attached particle-removed extension of IM-NCSM
abbreviated as p◆p-IM-NCSM. Afterwards, we benchmark the p◆p-IM-NCSM calculations in
some selected even nitrogen isotopes that can be also addressed in the ’standard’ IM-NCSM
framework serving as a reference point. Finally, we show results for the ground-state as well
as excitation energies for those isotopes.

General Strategy

Let us recall where the limitation of the IM-NCSM framework to even nuclei originates
from. For reasons of e�ciency, we use a J-coupled formulation of the multi-reference IM-
SRG that assumes a reference state with vanishing total angular momentum, as discussed
in chapter 4. We stick to this type of reference states, which imply a restriction of the IM-
NCSM calculations to even particle numbers A. However, we emphasize that the theoretical
framework is completely general and we would only need a more general implementation of
the IM-SRG evolution for non-scalar tensors, which is a tough task.

The question is how we can overcome the restriction to even nuclei with less e�ort. One
simple and straightforward answer results from the following idea. Since the IM-SRG evolu-
tion is a unitary transformation, the IM-SRG evolved Hamiltonian for a given nucleus, the
parent nucleus, can be used to target any other nucleus, the target nucleus. Note that the
unitarity is violated in practical calculations due to omitted many-body contribution which
must be quantified in some way.

We refer to this extension as the p◆p-IM-NCSM whose strategy is schematically shown in
figure 10.1. We generate a family of IM-SRG evolved Hamiltonians using a reference state
of a specific even parent nucleus and, subsequently, target nuclei that di�er only by few
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10. Particle-Attached Particle-Removed Extension of IM-NCSM

nucleons from this parent nucleus. Thus, we perform an NCSM calculation for the target
nucleus using the IM-SRG evolved Hamiltonians of the parent nucleus to extract ground-
state and excitation energies of the target nucleus. A great advantage compared to the
coupled-cluster approach is that the IM-SRG evolved Hamiltonians are Hermitian such that
they can be fed directly into subsequent many-body methods like NCSM. The philosophy we
pursue here is comparable to the particle-attached or particle-removed equations-of-motion
coupled-cluster approach [Jan+11; PGW09] or the equation-of-motion extension of the IM-
SRG [PMB17; Par+17]. Nevertheless, our framework is extremely simple from a conceptional
and computational point of view.

Figure 10.1.: Schematic overview of the particle-attached particle-removed extension of the
IM-NCSM. We diagonalize the Hamiltonian using NCSM for the parent nu-
cleus, and its ground state defines the reference state which enters the IM-SRG
evolution of the Hamiltonian in the parent nucleus. This step is a unitarity
transformation in an A-body system. Hence, we can diagonalize the IM-SRG
evolved Hamiltonian in the target nuclei of interest, and can extract observables.

Benchmarking Ground-State Energies of Even Nitrogen

To benchmark the p◆p-IM-NCSM formalism, we target odd-odd nuclei that can be also tar-
geted directly in the IM-NCSM since these nuclei have even number of total particle number
A. Furthermore, let us restrict ourselves to neighboring isobars as parent nuclei to avoid
complication with the choice of the particle number A in the kinetic-energy operator, which
has a direct dependence on A.

Since we have already demonstrated that the IM-NCSM calculations for the carbon and
oxygen isotopes are robust and well converged (see section 7.2), let us target the ground-state
as well as excitation energies of the nitrogen isotopes 16,18,20N starting from the neighboring
isobars 16,18,20C and 16,18,20O shown schematically in figure 10.2. For example, to target 16N
we perform the IM-SRG evolution using the ground-states of the nuclei 16C as well as 16O as
reference states obtained in N ref

max = 0 model spaces to generate a family of IM-SRG evolved
Hamiltonians. These calculations correspond to a proton-attached neutron-removed and a
neutron-attached proton-removed formalism in case of 16C and 16O, respectively. Since the
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Figure 10.2.: Schematic overview how we tackle the target nitrogen isotopes starting from the
carbon and oxygen isobars in the framework of the p◆p-IM-NCSM. In the cases
of the carbon (green arrow) and oxygen (blue arrow) isobars as parent nuclei,
we have the proton-attached neutron-removed and neutron-attached proton-
removed formalism, respectively. Note that we can directly address 16,18,20N
isotopes in the IM-NCSM framework without the extension, while these results
serve as a reference point to benchmark p◆p-IM-NCSM.

nitrogen isotopes 16,18,20N have odd number of protons and neutrons Z = 7 and N = 9, 11, 13,
respectively, we can additionally target them directly in the framework of IM-NCSM which
serves as a reference point for our results.

In figure 10.3, the lowest eigenvalues of the IM-SRG evolved Hamiltonian are depicted for
16,18,20N using isobaric carbon and oxygen as well as nitrogen as parent nuclei. The notation
written in the upper right corner of the each sub-figure, e.g., 16C æ 16N, means that we
tackle the target nucleus 16N using 16C as parent nucleus. For all calculations we use an HF
basis with emax = 6 for convenience and ~� = 20 MeV.

In the initial stage of the IM-SRG evolution, i.e., s Æ 10≠4 MeV≠1, the ground-state energies
of the target nuclei in a fixed model space Nmax are independent of the choice of the parent
nuclei. This implies that we can even use reference states where a proton is replaced by a
neutron or vice versa, and the results for the target nuclei remain unchanged. This goes
beyond the observation made for the robustness of the multi-reference normal-ordered two-
body approximation with respect to variation of the parameter N ref

max as demonstrated in
[GCR16].

Performing the IM-SRG evolution, we obtain perfectly Nmax-converged IM-NCSM ground-
state energies (middle panels) using the corresponding nitrogen nuclei as parent nuclei which
is the standard way how we extract ground-state energies in the IM-NCSM framework. Even
the zero-body part of the Hamiltonian in reference-state representation (black line) which is
identical to the expectation value of the Hamiltonian with respect to the reference state, E(s),
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10. Particle-Attached Particle-Removed Extension of IM-NCSM

is very robust even though the reference state is not the energetically lowest eigenstate of the
initial Hamiltonian. This is the second excited eigenstate for 16N, and the forth eigenstates
for 18N and 20N, that are 0≠ states in all cases. This is also the reason why the zero-body
part of the Hamiltonian in reference-state representation, E(s), slightly deviates from the
lowest eigenvalues obtained in Nmax = 0 model space for 18,20N even throughout the IM-SRG
evolution, but especially for small flow parameter.

The neutron-attached proton-removed IM-NCSM ground-state energies using the corre-
sponding carbon isobars as parent nuclei do agree perfectly with the results obtained with
the ’standard’ way. In contrast to that, the proton-attached and neutron removed IM-NCSM
ground-state energies, i.e., using the IM-SRG evolved Hamiltonian in the corresponding oxy-
gen parent nucleus, do not produce Nmax-converged results even though the IM-NCSM results
stabilize for large enough value of the flow parameter s. This might be related to fact that
the oxygen isotopes have a pronounced proton shell closure, which is inappropriate for the
decoupling pattern of the nitrogen isotopes.
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Figure 10.3.: The lowest eigenvalue the IM-SRG evolved Hamiltonian for 16,18,20N within the
particle-attached particle-removed IM-NCSM obtained in various model spaces
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are identical, we additionally show the zero-body part of the Hamiltonian E(s)
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Benchmarking Excitation Spectra in Even Nitrogen

We benchmark the excitation energies of the even nitrogen isotopes. In figure 10.4, we show
the excitation energies of 16,18,20N using carbon (left-hand panels) and oxygen (right-hand
panels) isobars and the target nuclei itself (middle panels) as parent nuclei. Let us emphasize
that ground and excited states are obtained on equal footing. The bands indicate the residual
flow-parameter dependence in the range from smax/2 to smax with bars, indicated by gray
band in figure 10.3. The flow parameter is chosen in the region where the ground-state
energy is relatively stable with respect to the flow parameter smax = 0.5 MeV≠1 for all cases.
Additionally, we analyze the total angular momentum of the states.

First, let us focus on the ground states, which are correctly reproduced in comparison to
experiment in all considered nitrogen isotopes for all parent nuclei—at least if the model
space Nmax is su�ciently large. The total angular momentum of the ground state of 16N
using 16N itself as parent nucleus obtained in Nmax = 0 and 2—which is 1≠—is not in agree-
ment with the results using 16C and 16O as parent nuclei predicting both a 2≠ ground state.
But once we go to a larger model space, e.g., Nmax = 4, the 2≠ state drops down in excita-
tion energy such that it becomes the ground state. These results are also consistent to the
available experimental data in [NND17] measuring 2≠ and 1≠ for 16N and 18N, respectively.
Unfortunately, there is no experimental data available for 20N. In this case, we predict a 2≠

ground state independent of the choice of the parent nucleus.
Let us turn our focus on the low-lying excited states. On the one hand, all states are

reproduced consistently to each other independent of the choice of the parent nucleus. On
the other hand, extracting the value of the excitation energies is extremely di�cult due to
induced many-body contributions and the scale of the excitation energies that is currently
beyond our accuracy.

Remarkably, the carbon isobars as parents nuclei produce quite stable and Nmax-converged
results. In contrast to that the results obtained with the oxygen show large flow-parameter
dependence for the target nuclei 18,20N. This is not really surprising since the ground-state
energies are not converged yet with respect to Nmax as already seen in figure 10.3.

The excitation spectra for 16N and 18N obtained with the various parent nuclei are in
quite good agreement regarding the level ordering if the model space is large enough, but the
energy splitting between the states is not consistent.
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Summary and Outlook

In this work, we have established the in-medium no-core shell model (IM-NCSM) for nuclear-
structure calculations. This method merges the multi-reference in-medium similarity renor-
malization group (IM-SRG) and the no-core shell model (NCSM) in a consistent manner.
The basic idea is to transform the Hamiltonian via the IM-SRG to decouple a given reference
state obtained from an initial NCSM calculation from its excitations. This Hamiltonian is
then used in subsequent NCSM calculations.

In a first step, we have analyzed the sensitivity of the IM-NCSM ground-state energies on
several parameters such as the model-space truncations, oscillator frequency, choice of the
generators as well as the reference-space size. We have explicitly demonstrated that relatively
small model spaces are su�cient in the subsequent NCSM calculations to extract converged
ground-state energies. The convergence acceleration in these calculations is attributed to the
IM-SRG evolution that decouples the reference state from its excitations. We have analyzed
a Hartree-Fock (HF) and the harmonic-oscillator (HO) single-particle bases. An HF basis
reduces the dependence of the IM-NCSM ground-state energies on the oscillator frequency
dramatically, as expected. In contrast to this, the HO basis seems to be incompatible with the
IM-SRG(2) truncations leading to disappearance of the minimum in the energies as a function
of the oscillator frequency. Moreover, we have examined the impact of the generators. The
Imaginary-Time and White generators show similar behavior during the IM-SRG evolution,
which can be related to their similar operator structure. For the Wegner generator, numerical
instabilities can appear complicating reliable extraction of converged ground-state energies.
Analogously, for the Brillouin generator we can hardly identify a plateau region for the
flow parameters, which is related to the creeping induced many-body contributions. The
dependence on the reference-space size has been found to be negligibly low such that the
smallest value is su�cient.

Based on this analysis, we have fixed the parameters to systematically analyze ground-
state energies in carbon and oxygen chains. We have compared our results against large-
scale NCSM calculations and multi-reference IM-SRG calculations using spherical number-
projected HF-Bogoliubov reference states. For the oxygen isotopes, we have obtained perfect
agreement among the three methods. Furthermore, the neutron dripline in the oxygen iso-
topes has been reproduced consistently to experiment. In contrast to that, we have observed
relatively large deviations in the carbon isotopes. The largest deviation at the level of 10 %
has been found for 12C, which is the most distinct case.
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After benchmarking and establishing the IM-NCSM framework, we have explored ground-
state energies of magnesium and sodium isotopes, where exact diagonalizations are not avail-
able anymore. Our results for 30,32Mg overbind by less than 4 % relative to experiment.
Furthermore, the total-angular-momentum quantum numbers of the ground states could be
reproduced correctly, while it is not the case for the sodium isotopes. By considering the
excitation spectra of the sodium isotopes, we have observed that the accuracy requirements
needed to describe these systems adequately are beyond our current reach. Inaccuracies in
our calculations are rooted both in the many-body methods and the input Hamiltonian itself,
which make reliable determination di�cult.

We have studied excitation energies for the low-lying states of 12C and 20O, where the rate
of convergence is not enhanced in general, but the excitation energies converge monotonically
since the ground-state energies are converged. An interesting e�ect has been found for the
second 0+ state in 12C, known to be a cluster state and called the Hoyle state, that cannot
be converged in standard NCSM calculations. A remarkable outcome of this work is that
the excitation energy of this state drops during the IM-SRG evolution from about 14 MeV to
8 MeV in good agreement to experiment, while the other excitation energies remain stable.
We have calculated key signatures of this state, e.g., mass and charge radii as well as the
electric monopole transition to the ground state. The present calculations already indicate
that the IM-NCSM has the potential to quantitatively describe the Hoyle state. They provide
a strong motivation to continue the investigation of this and related states in the IM-NCSM
and to develop e�cient corrections for the omitted many-body terms in the flow equations.

To explore island-of-inversion physics, we have investigated the magnesium isotope 32Mg
which is known to lie inside the island-of-inversion region. The ground-state energy has been
reproduced with a reasonable accuracy with respect to experiment, and its total angular
momentum is consistent to experiment, too. Furthermore, the low-lying states have been
reproduced correctly whereas the excited 0+ state, that has been seen in experiment, could
not be reproduced in our calculations. An outstanding issue is whether this state can be seen
when we use a reference state containing information about higher-lying orbitals. In this way,
we could include intruder physics which might help to solve this problem.

The results for the sodium isotopes imply that the input Hamiltonian is not adequate to
describe these systems accurately. It might be interesting to investigate these sodium isotopes
using other interactions. One is provided by the Low Energy Nuclear Physics International
Collaboration (LENPIC) [Bin+16] enabling an order-by-order analysis of e�ective-field-theory
uncertainties. Another interesting choice is given by the next-to-next-to-leading order satu-
rated (N2LOsat) interactions [Eks+15] that contain heavier systems in the fitting procedure.

However, the analysis regarding the island of inversion must be done systematically, which
has not been done in this work. Our investigations included only ground and excitation
energies, it is also of great interest to calculate and analyze other observables related to island-
of-inversion physics, e.g., dipole or quadrupole electromagnetic transitions. This requires the
IM-SRG evolution of non-scalar operators.

We have introduced and tested a simple and straightforward way how to extend the IM-
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NCSM to odd-mass nuclei using the particle-attached particle-removed formalism. The reason
for this limitation is that we used a J-coupled formulation of the multi-reference IM-SRG for
reasons of e�ciency, which assumes a reference state with vanishing total angular momentum.
This implies a restriction of the IM-NCSM calculations to even particle numbers. As a
benchmark, we targeted the odd-odd nitrogen isotopes using carbon and oxygen isobars as
parent nuclei. These nitrogen isotopes are ideal since we could additionally target them
directly in the framework of IM-NCSM. The ground-state energies of the nitrogen isotopes
agree well when using the carbon and nitrogen nuclei as parent nuclei, which is not the case
for the oxygen isotopes. A possible reason might be the strong proton shell closure in the
oxygen isotopes, which is inappropriate for the decoupling of the ground states of the nitrogen
isotopes.

It would be also very interesting to tackle a given nuclei using an isotope as parent nuclei
that correspond to particle-attached or particle-removed only procedure, i.e., targeting 15C
using 14C or 16C. Alternatively, we could extend the applicability of IM-NCSM to odd nuclei
by allowing a reference state that does not have a vanishing total angular momentum. For
that purpose, the whole framework including the angular-momentum-coupling of the IM-
SRG flow equations needs to be revisited. This requires the implementation of the IM-SRG
evolution for non-scalar operators. Alternatively, we can use the existing formulation and
implementation by decomposing the density matrices into spherical tensors and neglecting
all non-scalar parts (see appendix C more details).

Finally, a parallelization of the IM-SRG code via message passing interface is recommended
to increase the applicability of the IM-NCSM, especially for the evolution of non-scalar op-
erators using non-scalar density operators in order to investigate electromagnetic transitions
in open-shell nuclei.
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Appendix A

Normal Ordering—Derivations

A.1. Products of Normal-Ordered Operators

Throughout this section, we derive the expressions for products of normal-ordered operators
with the aid of the theorem 3.3, called generalized Wick’s theorem. The results obtained
here will be needed in appendix A.2 for calculating the commutator between those operators
which are relevant for the multi-reference in-medium similarity renormalization group method
discussed in chapter 4. We make use of the following relations:
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and the antisymmetry with respect to exchange among the upper and lower indices of the
normal-ordered two-body operator and of the irreducible two-body density matrix element,
respectively,
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and the Hermiticity of the irreducible two-body density matrix element
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Product of 1B and 1B

The product of two normal-ordered one-body operator yields
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= ãpr

qs

≠ “p

s

ãr
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Product of 2B and 1B

According to the generalized Wick’s theorem for this case only terms containing 3-, 2-, 1-
and 0-body operators can appear, denoted in the upper square brackets:
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(ãpr

qs

ãt
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⁄pr

us

+ “̄t

s

⁄pr

qu

≠ “p

u

⁄rt

sq

≠ “r

u

⁄pt

qs

+ ⁄prt

qsu

. (A.13)

Finally, we get

ãpr

qs

ãt

u

= + ãprt

qsu

+ “̄t

q

ãpr

us

+ “̄t

s

ãpr

qu

≠ “p

u

ãtr

qs

≠ “r

u

ãpt

qs

+ (“̄t

s

“r

u

+ ⁄rt

su

)ãp

q

≠ (“̄t

s

“p

u

+ ⁄pt

su

)ãr

q

+ (“̄t

q

“p

u

+ ⁄pt

qu

)ãr

s

≠ (“̄t

q

“r

u

+ ⁄rt

qu

)ãp

s

≠ ⁄rt

sq

ãp

u

≠ ⁄pt

qs

ãr

u

≠ ⁄pr

us

ãt

q

≠ ⁄pr

qu

ãt

s

+ “̄t

q

⁄pr

us

+ “̄t

s

⁄pr

qu

≠ “p

u

⁄rt

sq

≠ “r

u

⁄pt

qs

+ ⁄prt

qsu

(A.14)

Product of 1B and 2B

Analogously, we can write this product as

ãt

u

ãpr

qs

= (ãt

u

ãpr

qs

)[3] + (ãt

u

ãpr

qs

)[2] + (ãt

u

ãpr

qs

)[1] + (ãt

u

ãpr

qs

)[0] (A.15)

with

(ãt

u

ãpr

qs

)[3] :=ãtpr

uqs

(A.16)

(ãt

u

ãpr

qs

)[2] :=“̄p

u

ãtr

qs

+ “̄r

u

ãpt

qs

≠ “t

q

ãpr

us

≠ “t

s

ãpr

qu

(A.17)

(ãt

u

ãpr

qs

)[1] := + (“t

s

“̄r

u

+ ⁄rt

su

)ãp

q

≠ (“t

s

“̄p

u

+ ⁄pt

su

)ãr

q

+ (“t

q

“̄p

u

+ ⁄pt

qu

)ãr

s

≠ (“t

q

“̄r

u

+ ⁄rt

qu

)ãp

s

≠ ⁄rt

sq

ãp

u

≠ ⁄pt

qs

ãr

u

≠ ⁄pr

us

ãt

q

≠ ⁄pr

qu

ãt

s

(A.18)

(ãt

u

ãpr

qs

)[0] := ≠ “t

q

⁄pr

us

≠ “t

s

⁄pr

qu

+ “̄p

u

⁄rt

sq

+ “̄r

u

⁄pt

qs

+ ⁄tpr

uqs

. (A.19)
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Finally, we get

ãt

u

ãpr

qs

=ãtpr

uqs

+ “̄p

u

ãtr

qs

+ “̄r

u

ãpt

qs

≠ “t

q

ãpr

us

≠ “t

s

ãpr

qu

+ (“t

s

“̄r

u

+ ⁄rt

su

)ãp

q

≠ (“t

s

“̄p

u

+ ⁄pt

su

)ãr

q

+ (“t

q

“̄p

u

+ ⁄pt

qu

)ãr

s

≠ (“t

q

“̄r

u

+ ⁄rt

qu

)ãp

s

≠ ⁄rt

sq

ãp

u

≠ ⁄pt

qs

ãr

u

≠ ⁄pr

us

ãt

q

≠ ⁄pr

qu

ãt

s

≠ “t

q

⁄pr

us

≠ “t

s

⁄pr

qu

+ “̄p

u

⁄rt

sq

+ “̄r

u

⁄pt

qs

+ ⁄tpr

uqs

(A.20)

Product of 2B and 2B

It is useful to separate the terms in subterms according to the particle rank

ãpr

qs

ãtv

uw

=(ãpr

qs

ãtv

uw

)[4] + (ãpr

qs

ãtv

uw

)[3] + (ãpr

qs

ãtv

uw

)[2] + (ãpr

qs

ãtv

uw

)[1] + (ãpr

qs

ãtv

uw

)[0]
. (A.21)

The four-body piece is simply

(ãpr

qs

ãtv

uw

)[4] :=ãprtv

qsuw

, (A.22)

the three-body piece is given by

(ãpr

qs

ãtv

uw

)[3] := + “̄t

q

ãprv

usw

+ “̄t

s

ãprv

quw

+ “̄v

s

ãprt

qwu

+ “̄v

q

ãprt

wsu

≠ “p

u

ãrtv

sqw

≠ “p

w

ãrtv

suq

≠ “r

u

ãptv

qsw

≠ “r

w

ãptv

qus

. (A.23)

The two-body piece will be separated into further subterms

(ãpr

qs

ãtv

uw

)[2] := (ãpr

qs

ãtv

uw

)[2,I] + (ãpr

qs

ãtv

uw

)[2,II] + (ãpr

qs

ãtv

uw

)[2,III] (A.24)

(ãpr

qs

ãtv

uw

)[2,I] := + (“̄t

q

“̄v

s

≠ “̄t

s

“̄v

q

+ ⁄tv

qs

)ãpr

uw

+ (“p

u

“r

w

≠ “p

w

“r

u

+ ⁄pr

uw

)ãtv

qs

(A.25)

(ãpr

qs

ãtv

uw

)[2,II] := + (“p

w

“̄v

q

+ ⁄pv

qw

)ãrt

su

+ (“p

u

“̄t

q

+ ⁄pt

qu

)ãrv

sw

+ (“p

u

“̄v

s

+ ⁄pv

su

)ãrt

qw

+ (“p

w

“̄t

s

+ ⁄pt

sw

)ãrv

qu

+ (“r

w

“̄v

s

+ ⁄rv

sw

)ãpt

qu

+ (“r

u

“̄t

s

+ ⁄rt

su

)ãpv

qw

+ (“r

u

“̄v

q

+ ⁄rv

qu

)ãpt

sw

+ (“r

w

“̄t

q

+ ⁄rt

qw

)ãpv

su

≠ (“p

u

“̄v

q

+ ⁄pv

qu

)ãrt

sw

≠ (“p

w

“̄t

q

+ ⁄pt

qw

)ãrv

su

≠ (“p

w

“̄v

s

+ ⁄pv

sw

)ãrt

qu

≠ (“p

u

“̄t

s

+ ⁄pt

su

)ãrv

qw

≠ (“r

u

“̄v

s

+ ⁄rv

su

)ãpt

qw

≠ (“r

w

“̄t

s

+ ⁄rt

sw

)ãpv

qu

≠ (“r

w

“̄v

q

+ ⁄rv

qw

)ãpt

su

≠ (“r

u

“̄t

q

+ ⁄rt

qu

)ãpv

sw

(A.26)
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(ãpr

qs

ãtv

uw

)[2,III] := ≠ ⁄tv

sw

ãpr

qu

≠ ⁄tv

us

ãpr

qw

≠ ⁄tv

qw

ãpr

us

≠ ⁄tv

uq

ãpr

ws

≠ ⁄rv

uw

ãpt

qs

≠ ⁄rt

wu

ãpv

qs

≠ ⁄pv

uw

ãrt

qs

≠ ⁄pt

wu

ãrv

qs

≠ ⁄rv

sq

ãtp

uw

≠ ⁄rt

sq

ãpv

uw

≠ ⁄pv

qs

ãtr

uw

≠ ⁄pt

qs

ãrv

uw

≠ ⁄pr

ws

ãtv

uq

≠ ⁄pr

us

ãtv

qw

≠ ⁄pr

qw

ãtv

us

≠ ⁄pr

qu

ãtv

sw

. (A.27)

Analogously, the one-body piece will be separated into

(ãpr

qs

ãtv

uw

)[1] := + (ãpr

qs

ãtv

uw

)[1,I] + (ãpr

qs

ãtv

uw

)[1,II] + (ãpr

qs

ãtv

uw

)[1,III]

+ (ãpr

qs

ãtv

uw

)[1,IV] + (ãpr

qs

ãtv

uw

)[1,V]
, (A.28)

where the subterm IV and V do not contribute to
#
C(2), D(2)$ in appendix A.2.3

(ãpr

qs

ãtv

uw

)[1,I] :=“̄tv

qs

A(“r

w

ãp

u

) + “pr

uw

A(“̄t

s

ãv

q

) (A.29)

with two-hole and two-particle density matrix elements “̄tv

qs

and “pr

uw

, respectively. The other
terms are

(ãpr

qs

ãtv

uw

)[1,II] := + (+“̄v

s

⁄rt

qw

+ “̄t

q

⁄rv

sw

≠ “̄v

q

⁄rt

sw

≠ “̄t

s

⁄rv

qw

)ãp

u

+ (≠“̄v

s

⁄rt

qu

≠ “̄t

q

⁄rv

su

+ “̄v

q

⁄rt

su

+ “̄t

s

⁄rv

qu

)ãp

w

+ (≠“̄v

s

⁄pt

qw

≠ “̄t

q

⁄pv

sw

+ “̄v

q

⁄pt

sw

+ “̄t

s

⁄pv

qw

)ãr

u

+ (+“̄v

s

⁄pt

qu

+ “̄t

q

⁄pv

su

≠ “̄v

q

⁄pt

su

≠ “̄t

s

⁄pv

qu

)ãr

w

+ (+“r

u

⁄pv

sw

+ “p

w

⁄rv

su

≠ “r

w

⁄pv

su

≠ “p

u

⁄rv

sw

)ãt

q

+ (≠“r

u

⁄pv

qw

≠ “p

w

⁄rv

qu

+ “r

w

⁄pv

qu

+ “p

u

⁄rv

qw

)ãt

s

+ (≠“r

u

⁄pt

sw

≠ “p

w

⁄rt

su

+ “r

w

⁄pt

su

+ “p

u

⁄rt

sw

)ãv

q

+ (+“r

u

⁄pt

qw

+ “p

w

⁄rt

qu

≠ “r

w

⁄pt

qu

≠ “p

u

⁄rt

qw

)ãv

s

(A.30)

(ãpr

qs

ãtv

uw

)[1,III] := + (“̄t

s

⁄vr

wu

+ “̄v

s

⁄tr

uw

)ãp

q

+ (“̄t

q

⁄vp

wu

+ “̄v

q

⁄tp

uw

)ãr

s

≠ (“̄t

q

⁄vr

wu

+ “̄v

q

⁄tr

uw

)ãp

s

≠ (“̄t

s

⁄vp

wu

+ “̄v

s

⁄tp

uw

)ãr

q

+ (“p

u

⁄rv

sq

+ “r

u

⁄pv

qs

)ãt

w

+ (“p

w

⁄rt

sq

+ “r

w

⁄pt

qs

)ãv

u

≠ (“p

w

⁄rv

sq

+ “r

w

⁄pv

qs

)ãt

u

≠ (“p

u

⁄rt

sq

+ “r

u

⁄pt

qs

)ãv

w

+ (“̄v

q

⁄rp

sw

+ “̄v

s

⁄pr

qw

)ãt

u

+ (“̄t

q

⁄rp

su

+ “̄t

s

⁄pr

qu

)ãv

w

≠ (“̄t

q

⁄rp

sw

+ “̄t

s

⁄pr

qw

)ãv

u

≠ (“̄v

q

⁄rp

su

+ “̄v

s

⁄pr

qu

)ãt

w

+ (“p

u

⁄vt

ws

+ “p

w

⁄tv

us

)ãr

q

+ (“r

u

⁄vt

wq

+ “r

w

⁄tv

uq

)ãp

s

≠ (“r

u

⁄vt

ws

+ “r

w

⁄tv

us

)ãp

q

≠ (“p

u

⁄vt

wq

+ “p

w

⁄tv

uq

)ãr

s

(A.31)

(ãpr

qs

ãtv

uw

)[1,IV] := ≠ ⁄rtv

sqw

ãp

u

≠ ⁄rtv

suq

ãp

w

≠ ⁄ptv

qsw

ãr

u

≠ ⁄pvt

qsu

ãr

w

≠ ⁄prv

usw

ãt

q

≠ ⁄prv

quw

ãt

s

≠ ⁄prt

wsu

ãv

q

≠ ⁄prt

qwu

ãv

s

(A.32)

(ãpr

qs

ãtv

uw

)[1,V] := ≠ ⁄tvp

uws

ãr

q

≠ ⁄tvp

uwq

ãp

s

+ ⁄rtv

suw

ãp

q

+ ⁄ptv

quw

ãr

s

≠ ⁄prt

qsw

ãv

u

≠ ⁄prv

qsu

ãt

w

+ ⁄prv

qsw

ãt

u

+ ⁄prt

qsu

ãv

w

. (A.33)
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The zero-body piece is separated in

(ãpr

qs

ãtv

uw

)[0] := + (ãpr

qs

ãtv

uw

)[0,I] + (ãpr

qs

ãtv

uw

)[0,II] + (ãpr

qs

ãtv

uw

)[0,III]

+ (ãpr

qs

ãtv

uw

)[0,IV] + (ãpr

qs

ãtv

uw

)[0,V] + (ãpr

qs

ãtv

uw

)[0,VI] (A.34)

where the subterms III, IV and VI do not contribute to the commutator of
#
C(2), D(2)$. The

subterms read

(ãpr

qs

ãtv

uw

)[0,I] := + “p

u

“r

w

“̄t

q

“̄v

s

+ “p

w

“r

u

“̄v

q

“̄t

s

≠ “p

w

“r

u

“̄t

q

“̄v

s

≠ “p

u

“r

w

“̄t

s

“̄v

q

(A.35)

(ãpr

qs

ãtv

uw

)[0,II] := + “p

u

“̄t

q

⁄rv

sw

+ “r

w

“̄v

s

⁄pt

qu

+ “p

w

“̄v

q

⁄rt

su

+ “r

u

“̄t

s

⁄pv

qw

≠ “p

w

“̄t

q

⁄rv

su

≠ “r

u

“̄v

s

⁄pt

qw

≠ “p

w

“̄v

s

⁄tr

uq

≠ “r

u

“̄t

q

⁄vp

ws

≠ “p

u

“̄v

q

⁄rt

sw

≠ “r

w

“̄t

s

⁄pv

qu

≠ “r

w

“̄v

q

⁄tp

us

≠ “p

u

“̄t

s

⁄vr

wq

≠ “r

w

“̄t

q

⁄pv

us

≠ “r

u

“̄v

q

⁄pt

ws

≠ “p

u

“̄v

s

⁄tr

qw

≠ “p

w

“̄t

s

⁄rv

uq

+ “̄t

q

“̄v

s

⁄pr

uw

+ “̄v

q

“̄t

s

⁄pr

wu

+ “p

u

“r

w

⁄tv

qs

+ “r

u

“p

w

⁄tv

sq

(A.36)

(ãpr

qs

ãtv

uw

)[0,III] := + ⁄pt

qu

⁄rv

sw

+ ⁄pv

qw

⁄rt

su

≠ ⁄pt

qw

⁄rv

su

≠ ⁄pv

qu

⁄rt

sw

≠ ⁄vp

ws

⁄tr

uq

≠ ⁄tp

us

⁄vr

wq

+ ⁄tv

qs

⁄pr

uw

+ ⁄tp

sw

⁄rv

uq

+ ⁄tr

qw

⁄pv

us

(A.37)

(ãpr

qs

ãtv

uw

)[0,IV] := ≠ ⁄tp

uw

⁄rv

sq

≠ ⁄tv

uq

⁄rp

sw

≠ ⁄pt

qs

⁄vr

wu

≠ ⁄pr

qu

⁄vt

ws

≠ ⁄vp

wu

⁄rt

sq

≠ ⁄vt

wq

⁄rp

su

≠ ⁄pv

qs

⁄tr

uw

≠ ⁄pr

qw

⁄tv

us

(A.38)

(ãpr

qs

ãtv

uw

)[0,V] := + “̄v

s

⁄ptr

quw

+ “̄t

s

⁄pvr

qwu

+ “̄t

q

⁄rvp

swu

+ “̄v

q

⁄rtp

suw

≠ “r

w

⁄ptv

qus

≠ “r

u

⁄pvt

qws

≠ “p

u

⁄rvt

swq

≠ “p

w

⁄rtv

suq

(A.39)

(ãpr

qs

ãtv

uw

)[0,VI] :=⁄prtv

qsuw

. (A.40)

A.2. Commutators of Normal-Ordered Operators

A.2.1. Without Contraction

Commutator of 1B and 1B

#
ãp

q

, ãr

s

$
=ãp

q

ãr

s

≠ ãr

s

ãp

q

(A.41)

=ãp

q

ãr

s

≠ [pq ¡ rs] (A.42)

= ãpr

qs

≠ “p

s

ãr

q

+ “̄r

q

ãp

s

+ “p

s

“̄r

q

+ ⁄pr

qs

≠
1
ãrp

sq

≠ “r

q

ãp

s

+ “̄p

s

ãr

q

+ “r

q

“̄p

s

+ ⁄rp

sq

2
(A.43)

=0 + (“̄r

q

+ “r

q

)ãp

s

≠ (“̄p

s

+ “p

s

)ãr

q

+ “p

s

“̄r

q

≠ “r

q

“̄p

s

+ 0 (A.44)

=”r

q

ãp

s

≠ ”p

s

ãr

q

+ ”r

q

“p

s

≠ ”p

s

“r

q

(A.45)
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Commutator of 2B and 1B

Defining

(
#
ãpr

qs

, ãt

u

$
)[i] := (ãpr

qs

ãt

u

)[i] ≠ (ãt

u

ãpr

qs

)[i] (A.46)

we can write

#
ãpr

qs

, ãt

u

$
=ãpr

qs

ãt

u

≠ ãt

u

ãpr

qs

(A.47)

=(
#
ãpr

qs

, ãt

u

$
)[2] + (

#
ãpr

qs

, ãt

u

$
)[1] + (

#
ãpr

qs

, ãt

u

$
)[0]

. (A.48)

We obtain

(
#
ãpr

qs

, ãt

u

$
)[2] = + “̄t

q

ãpr

us

+ “̄t

s

ãpr

qu

≠ “p

u

ãtr

qs

≠ “r

u

ãpt

qs

≠
1
“̄p

u

ãtr

qs

+ “̄r

u

ãpt

qs

≠ “t

q

ãpr

us

≠ “t

s

ãpr

qu

2
(A.49)

=(“̄t

q

+ “t

q

)ãpr

us

+ (“̄t

s

+ “t

s

)ãpr

qu

≠ (“p

u

+ “̄p

u

)ãtr

qs

≠ (“r

u

+ “̄r

u

)ãpt

qs

(A.50)

=”t

q

ãpr

us

+ ”t

s

ãpr

qu

≠ ”p

u

ãtr

qs

≠ ”r

u

ãpt

qs

(A.51)

(
#
ãpr

qs

, ãt

u

$
)[1] = + (“̄t

s

“r

u

+ ⁄rt

su

)ãp

q

≠ (“̄t

s

“p

u

+ ⁄pt

su

)ãr

q

+ (“̄t

q

“p

u

+ ⁄pt

qu

)ãr

s

≠ (“̄t

q

“r

u

+ ⁄rt

qu

)ãp

s

≠ ⁄rt

sq

ãp

u

≠ ⁄pt

qs

ãr

u

≠ ⁄pr

us

ãt

q

≠ ⁄pr

qu

ãt

s

≠
3

+ (“t

s

“̄r

u

+ ⁄rt

su

)ãp

q

≠ (“t

s

“̄p

u

+ ⁄pt

su

)ãr

q

+ (“t

q

“̄p

u

+ ⁄pt

qu

)ãr

s

≠ (“t

q

“̄r

u

+ ⁄rt

qu

)ãp

s

≠ ⁄rt

sq

ãp

u

≠ ⁄pt

qs

ãr

u

≠ ⁄pr

us

ãt

q

≠ ⁄pr

qu

ãt

s

4
(A.52)

= + (“̄t

s

“r

u

≠ “t

s

“̄r

u

)ãp

q

≠ (“̄t

s

“p

u

≠ “t

s

“̄p

u

)ãr

q

+ (“̄t

q

“p

u

≠ “t

q

“̄p

u

)ãr

s

≠ (“̄t

q

“r

u

≠ “t

q

“̄r

u

)ãp

s

(A.53)

= + (”t

s

“r

u

≠ “t

s

”r

u

)ãp

q

≠ (”t

s

“p

u

≠ “t

s

”p

u

)ãr

q

+ (”t

q

“p

u

≠ “t

q

”p

u

)ãr

s

≠ (”t

q

“r

u

≠ “t

q

”r

u

)ãp

s

(A.54)

(
#
ãpr

qs

, ãt

u

$
)[0] = + “̄t

q

⁄pr

us

+ “̄t

s

⁄pr

qu

≠ “p

u

⁄rt

sq

≠ “r

u

⁄pt

qs

+ ⁄prt

qsu

≠ (≠“t

q

⁄pr

us

≠ “t

s

⁄pr

qu

+ “̄p

u

⁄rt

sq

+ “̄r

u

⁄pt

qs

+ ⁄tpr

uqs

) (A.55)

=(“̄t

q

+ “t

q

)⁄pr

us

+ (“̄t

s

+ “t

s

)⁄pr

qu

≠ (“p

u

+ “̄p

u

)⁄rt

sq

≠ (“r

u

+ “̄r

u

)⁄pt

qs

(A.56)

=”t

q

⁄pr

us

+ ”t

s

⁄pr

qu

≠ ”p

u

⁄rt

sq

≠ ”r

u

⁄pt

qs

. (A.57)
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Finally, we obtain

#
ãpr

qs

, ãt

u

$
= + ”t

q

ãpr

us

+ ”t

s

ãpr

qu

≠ ”p

u

ãtr

qs

≠ ”r

u

ãpt

qs

+ (”t

s

“r

u

≠ “t

s

”r

u

)ãp

q

≠ (”t

s

“p

u

≠ “t

s

”p

u

)ãr

q

+ (”t

q

“p

u

≠ “t

q

”p

u

)ãr

s

≠ (”t

q

“r

u

≠ “t

q

”r

u

)ãp

s

+ ”t

q

⁄pr

us

+ ”t

s

⁄pr

qu

≠ ”p

u

⁄rt

sq

≠ ”r

u

⁄pt

qs

. (A.58)

Commutator of 1B and 2B

Making use of the antisymmetry of the commutator, we find

#
ãt

u

, ãpr

qs

$
= ≠

#
ãpr

qs

, ãt

u

$
(A.59)

= ≠ ”t

q

ãpr

us

≠ ”t

s

ãpr

qu

+ ”p

u

ãtr

qs

+ ”r

u

ãpt

qs

≠ (”t

s

“r

u

≠ “t

s

”r

u

)ãp

q

+ (”t

s

“p

u

≠ “t

s

”p

u

)ãr

q

≠ (”t

q

“p

u

≠ “t

q

”p

u

)ãr

s

+ (”t

q

“r

u

≠ “t

q

”r

u

)ãp

s

≠ ”t

q

⁄pr

us

≠ ”t

s

⁄pr

qu

+ ”p

u

⁄rt

sq

+ ”r

u

⁄pt

qs

. (A.60)

Commutator of 2B and 2B

In principle, this commutator can be derived using the result obtained above

#
ãpr

qs

, ãtv

uw

$
=

3ÿ

i=0
(
#
ãpr

qs

, ãtv

uw

$
)[i]

=
3ÿ

i=0
(ãpr

qs

ãtv

uw

)[i] ≠ [prqs ¡ tvuw], (A.61)

but we won’t write it out completely because of the large number of terms.

A.2.2. Partially Contracted

Let’s define the operators

A(1) :=
ÿ

p
q

Ap

q

ãp

q

(A.62)

B(1) :=
ÿ

r
s

Br

s

ãr

s

(A.63)

C(2) :=
ÿ

pr
qs

Cpr

qs

ãpr

qs

(A.64)

D(2) :=
ÿ

tv
uw

Dtv

uw

ãtv

uw

(A.65)

that do not necessarily have to be Hermitian or anti-Hermitian. Matrix elements of the
two-body operators Cpr

qs

and Dpr

qs

are assumed to be antisymmetric with respect to exchange
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among the upper and lower indices, respectively, i.e.

Cpr

qs

= ≠Crp

qs

= ≠Cpr

sq

= +Crp

sq

(A.66)

Dpr

qs

= ≠Drp

qs

= ≠Dpr

sq

= +Drp

sq

(A.67)

Commutator of 1B and 1B—Partially Contracted

#
A(1), ãr

s

$
=

ÿ

p
q

Ap

q

#
ãp

q

, ãr

s

$
(A.68)

=
ÿ

p
q

Ap

q

(”r

q

ãp

s

≠ ”p

s

ãr

q

+ ”r

q

“p

s

≠ ”p

s

“r

q

) (A.69)

=
ÿ

p

Ap

r

ãp

s

≠
ÿ

q

As

q

ãr

q

+
ÿ

p

Ap

r

“p

s

≠
ÿ

q

As

q

“r

q

(A.70)

Commutator of 1B and 2B—Partially Contracted

(
#
ãp

q

, ãrt

su

$
)[2] = ≠ ”p

s

ãrt

qu

≠ ”p

u

ãrt

sq

+ ”r

q

ãpt

su

+ ”t

q

ãrp

su

(A.71)

(
#
ãp

q

, ãrt

su

$
)[1] = ≠ (”p

u

“t

q

≠ “p

u

”t

q

)ãr

s

+ (”p

u

“r

q

≠ “p

u

”r

q

)ãt

s

≠ (”p

s

“r

q

≠ “p

s

”r

q

)ãt

u

+ (”p

s

“t

q

≠ “p

s

”t

q

)ãr

u

(A.72)

(
#
ãp

q

, ãrt

su

$
)[0] = ≠ ”p

s

⁄rt

qu

≠ ”p

u

⁄rt

sq

+ ”r

q

⁄tp

us

+ ”t

q

⁄rp

su

(A.73)

ÿ

p
q

Ap

q

(
#
ãp

q

, ãrt

su

$
)[2] =

ÿ

p
q

Ap

q

1
≠”p

s

ãrt

qu

≠ ”p

u

ãrt

sq

+ ”r

q

ãpt

su

+ ”t

q

ãrp

su

2

= ≠
ÿ

q

(As

q

ãrt

qu

+ Au

q

ãrt

sq

) +
ÿ

p

(Ap

r

ãpt

su

+ Ap

t

ãrp

su

) (A.74)

ÿ

p
q

Ap

q

(
#
ãp

q

, ãrt

su

$
)[1] =

ÿ

p
q

Ap

q

3
≠ (”p

u

“t

q

≠ “p

u

”t

q

)ãr

s

+ (”p

u

“r

q

≠ “p

u

”r

q

)ãt

s

≠ (”p

s

“r

q

≠ “p

s

”r

q

)ãt

u

+ (”p

s

“t

q

≠ “p

s

”t

q

)ãr

u

4
(A.75)

= ≠
A

ÿ

q

Au

q

“t

q

≠
ÿ

p

Ap

t

“p

u

B

ãr

s

+
A

ÿ

q

Au

q

“r

q

≠
ÿ

p

Ap

r

“p

u

B

ãt

s

≠
A

ÿ

q

As

q

“r

q

≠
ÿ

p

Ap

r

“p

s

B

ãt

u

+
A

ÿ

q
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q

“t

q

≠
ÿ

p

Ap

t

“p

s

B

ãr

u

(A.76)
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ÿ

p
q

Ap

q

(
#
ãp

q

, ãrt

su

$
)[0] =

ÿ

p
q

Ap

q

1
≠”p

s

⁄rt

qu

≠ ”p

u

⁄rt

sq

+ ”r

q

⁄tp

us

+ ”t

q

⁄rp

su

2
(A.77)

= ≠
ÿ

q

(As

q

⁄rt

qu

+ Au

q

⁄rt

sq

) +
ÿ

p

(Ap

r

⁄tp

us

+ Ap

t

⁄rp

su

) (A.78)

Finally, we obtain

#
A(1), ãrt

su

$
=

ÿ

p
q

Ap

q

#
ãp

q

, ãrt

su

$
(A.79)

= ≠
ÿ

q
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q

ãrt
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ÿ
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su

+ Ap
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ÿ
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q

≠
ÿ

p
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t
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u

B

ãr

s

+
A

ÿ

q
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q

“r

q

≠
ÿ

p
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B

ãt
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q
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≠
ÿ
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q
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≠
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t
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B

ãr
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≠
ÿ

q
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⁄rt
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+ Au

q

⁄rt
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) +
ÿ
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(Ap

r

⁄tp
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+ Ap

t

⁄rp

su

). (A.80)

Commutator of 2B and 1B—Partially Contracted

Let us consider now the commutator between a two-body operator that is a linear combination
of normal-ordered two-body operators, and a normal-ordered one-body operator as follows

#
C(2), ãt

u

$
=1

4
ÿ

pr
qs

Cpr

qs

#
ãpr

qs

, ãt

u

$
(A.81)

= + 1
4

ÿ

pr
qs

Cpr

qs

(
#
ãpr

qs

, ãt

u

$
)[2] + 1

4
ÿ

pr
qs

Cpr

qs

(
#
ãpr

qs

, ãt

u

$
)[1] + 1

4
ÿ

pr
qs

Cpr

qs

(
#
ãpr

qs

, ãt

u

$
)[0]

.

(A.82)

The two-body piece is

1
4

ÿ

pr
qs

Cpr

qs

(
#
ãpr

qs

, ãt

u

$
)[2] =1

4
ÿ

pr
qs

Cpr

qs

1
”t

q

ãpr

us

+ ”t

s

ãpr

qu
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u

ãtr

qs

≠ ”r

u

ãpt

qs

2

=1
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Q
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ÿ

pr
s

Cpr
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ãpr

us

+
ÿ

pr
q

Cpr

qt

ãpr

qu

≠
ÿ

r
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Cur

qs

ãtr
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≠
ÿ

p
qs

Cpu

qs

ãpt

qs

R

db

=1
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Q
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ÿ

pr
s

Cpr
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ãpr

us

+
ÿ

pr
s

Cpr

st

ãpr

su

≠
ÿ

r
qs

Cur

qs

ãtr

qs

≠
ÿ

r
qs

Cru
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ãrt
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R

db

=1
2

Q
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ÿ

pr
s

Cpr
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ãpr

us

≠
ÿ

r
qs

Cur

qs

ãtr

qs

R

db

=1
2

ÿ

pr
q

1
Cpr

tq

ãpr

uq

≠ Cuq

pr

ãtq

pr

2
, (A.83)
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the one-body piece reads

1
4

ÿ

pr
qs

Cpr

qs

(
#
ãpr
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, ãt

u

$
)[1] =1

4
ÿ

pr
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Cpr
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3
+ (”t

s
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≠ “t
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”r

u

)ãp

q

≠ (”t

s
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q

+ (”t

q
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u
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s
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u
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4
(A.84)
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4

3
+

ÿ

pr
qs

Cpr
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≠
ÿ

pr
qs

Crp

qs

(”t

s

“r

u

≠ “t

s

”r

u

)ãp
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u
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q

≠
ÿ
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(”t

s
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u

≠ “t
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4
(A.85)

=
ÿ

pr
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Cpr

qs

(”t

s

“r

u

≠ “t

s

”r

u

)ãp

q

(A.86)

where we made use of the antisymmetry in the upper and lower indices, respectively, of the
matrix elements Cpr

qs

. The zero-body piece is

1
4

ÿ

pr
qs

Cpr

qs

(
#
ãpr

qs

, ãt

u

$
)[0] =1

4
ÿ

pr
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1
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q
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u

⁄rt
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(A.87)
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+
ÿ
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≠
ÿ

r
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Cur
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≠
ÿ

p
qs

Cpu
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db (A.88)

=1
4
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ÿ
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Cpr
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+
ÿ
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qt
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≠
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p
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⁄pt
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≠
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p
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Cpu
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db (A.89)

=1
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Q
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ÿ
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qt
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qu

≠
ÿ

p
qs

Cpu

qs

⁄pt

qs

R

db (A.90)

=1
2

ÿ

pr
q

1
Cpr

qt

⁄pr

qu

≠ Cqu

pr

⁄qt

pr

2
. (A.91)

Putting everything together yields

#
C(2), ãt

u

$
=1

2
ÿ

pr
q

1
Cpr

tq

ãpr

uq

≠ Cuq

pr

ãtq

pr

2

+
ÿ

pr
qs

Cpr

qs

(”t

s

“r

u

≠ “t

s

”r

u

)ãp

q

+ 1
2

ÿ

pr
q

1
Cpr

qt

⁄pr

qu

≠ Cqu

pr

⁄qt

pr

2
. (A.92)

188



A.2. Commutators of Normal-Ordered Operators

Commutator of 2B and 2B—Partially Contracted

We skip this case for two reasons: On the one hand, this case is extremely expensive and not
directly needed in this work. On the other hand, for the calculation of

#
C(2), D(2)$ which

is the relevant case for this work (discussed in appendix A.2.3), we can rely on the result of
ãpr

qs

ãtv

uw

that has already been elaborated in appendix A.1.

A.2.3. Fully Contracted

Note that the commutators
#
C(2), A(1)$,

#
A(1), C(2)$ and

#
C(2), D(2)$—we refer to them as

fully-contracted commutators since there is no external index left anymore—can be derived
using the partially-contracted formulae obtained in appendix A.2.2. But for the method of
equating the coe�cients of the two-body part needed for the flow equation in (4.11) it is not
recommended to rename particular indices among each other fixed by the left-hand side of
the flow equation.

To be more concrete: Assuming the indices p, r, q and s are the ones fixed by the left-hand
side of the flow equation, it useful not to exchange these indices among each other, e.g., p

with r, q, s and the same for the index q which should not be renamed to p, r, s.
Otherwise, after the equating the coe�cients, we might loose the symmetry of the operator

defined by the considered commutator. This symmetry can be restored manually but it can
be extremely costly. Not to do it manually, we prefer to go back to the commutators obtained
in appendix A.2.1 and derive the following expressions from there on as done for the partially-
contracted ones. This remark does not apply to the commutator of

#
A(1), B(1)$ since it does

not contain a two-body part. Furthermore, for the equating the coe�cients the commutators
need to be written in a convenient and suitable form, e.g., with a prefactor of 1

4 in front of
the two-body piece.

Putting it another way, the expressions, to which we have to apply the method of equating
the coe�cients, has the following form

1
4

ÿ

pr
qs

cpr

qs

ãpr

qs

!=
ÿ

pr
qs

dpr

qs

ãpr

qs

, (A.93)

where the coe�cient cpr

qs

is antisymmetric with respect to exchange among the upper and
lower indices, respectively, which is not the case for the coe�cient dpr

qs

. The key point is
that the normal-ordered operators are antisymmetric with respect to exchange among the
upper and lower indices, respectively, which we need to take into account for the equating
the coe�cients. For that purpose, we rewrite the right-hand term in a complicated way

= 1
4

ÿ

pr
qs

(dpr

qs

ãpr

qs

+ drp

sq

ãrp

sq

+ drp

qs

ãrp

qs

+ dpr

sq

ãpr

sq

) (A.94)
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and make use of the antisymmetry of the normal-ordered operator leading to

= 1
4

ÿ

pr
qs

1
dpr

qs

+ drp

sq

≠ drp

qs

≠ dpr

sq

2
ãpr

qs

. (A.95)

Hence, the method of equating the coe�cients yields cpr

qs

= dpr

qs

+ drp

sq

≠ drp

qs

≠ dpr

sq

, which
preserves the symmetry of the coe�cients cpr

qs

. In this example, the coe�cients cpr

qs

and dpr

qs

represent the two-body parts of the left- and right-hand side of operator flow equation (4.5),
respectively.

Commutator of 1B and 1B—Fully Contracted

Using the results obtained above, and simplifying the term yields

#
A(1), B(1)$ =

ÿ

p
q

Ap

q

Br

s

#
ãp

q

, ãr

s

$
(A.96)

=
ÿ
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q
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s

1
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q

ãp

s

≠ ”p

s

ãr

q

+ ”r

q

“p

s

≠ ”p

s

“r

q

2
(A.97)

=
ÿ
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1
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s
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q

”r

s

ãp

q

≠ Ar

q
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s

”r

s

ãp

q

2
+

ÿ
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1
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s
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q

≠ Ar

q

Bp

s

2
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s

“p

q

(A.98)

=
ÿ

p
q

A
ÿ

r

1
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r

Br

q

≠ Ar

q

Bp

r

2B

ãp

q

+
ÿ

pr
q

1
Ap

r

Br

q

≠ Ar

q

Bp

r

2
“p

q

. (A.99)

Commutator of 2B and 1B—Fully Contracted

Our goal is the calculation of the commutator

#
C(2), A(1)$ =1

4
ÿ

prt
qsu

Cpr

qs

At

u

#
ãpr

qs

, ãt

u

$
(A.100)

= + 1
4

ÿ

prt
qsu

Cpr
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u

(
#
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, ãt

u

$
)[2]

+ 1
4

ÿ

prt
qsu

Cpr
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u

(
#
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, ãt

u

$
)[1]
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4

ÿ

prt
qsu
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u

(
#
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u

$
)[0]

. (A.101)

Consider the two-body piece. By renaming the summation indices, we get

1
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ÿ
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u

(
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, ãt

u
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4
ÿ
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q
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The one-body piece is given by
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q

. (A.107)

Simplifying the zero-body piece yields
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ãpr

qs

, ãt
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Finally, we obtain
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Commutator of 1B and 2B—Fully Contracted

By means of the antisymmetry of the commutator, we can make use of the previous result
yielding

#
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Commutator of 2B and 2B—Fully Contracted

Here, we use a di�erent technique:
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with the following definition
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Obviously, the multiply-indexed object Gprtv
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has the following properties

Gprtv

qsuw

= ≠Grptv

qsuw

= ≠Gprtv

squw

= ≠Gprvt

qsuw

= ≠Gprtv

qswu

(A.123)
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Note that the four-body piece vanishes according to proposition 3.1.
Hence, consider the three-body piece
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(ãpr

qs
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The two-body piece is given by
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The first subterm yields
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)ãpr

qs

(A.131)

= 1
16 · 2

ÿ

prtv
qsuw

Gprtv

uwqs

(“̄t

u

“̄v

w

≠ “t

u

“v

w

)ãpr
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The second subterms is given by
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after some simplification steps, we obtain
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It is not recommended to rename the indices q and s among each other, as aforementioned,
because they are indices fixed by the left-hand side of the flow equation per convention for
equating the coe�cients. Otherwise, the operator defined by

#
C(2), D(2)$ would not have the

right symmetry. These notes are relevant for equating the coe�cients of the flow equations.
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The following term vanishes:
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The first subterm of the one-body piece can be simplified to
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The second subterm of the one-body piece yields
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)ãp

u

+ (≠“̄v

s

⁄rt

qu

≠ “̄t

q

⁄rv

su

+ “̄v

q

⁄rt

su

+ “̄t

s

⁄rv

qu

)ãp
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The third subterm of the one-body piece is given by
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)ãv

u

≠ (“p

w

⁄rv

sq

+ “r

w

⁄pv

qs

)ãt
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The fourth subterm of the one-body piece does not contribute to the commutator, namely
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The last term of the one-body piece vanishes as well
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Let us consider the zero-body piece where the first subterms can be simplified to
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The second subterm of the zero-body piece reads
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The third subterm of the zero-body piece vanishes
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The same is true for the fourth term of the zero-body piece
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after some simplification steps, we obtain
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The fifth subterm of the zero-body piece can be written as

1
16

ÿ

prtv
qsuw

Gprtv

qsuw

(ãpr
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ãtv

uw

)[0,V]

= 1
16

ÿ

prtv
qsuw

Gprtv

qsuw

3
+ “̄v

s

⁄ptr

quw

+ “̄t

s

⁄pvr

qwu

+ “̄t

q

⁄rvp

swu

+ “̄v

q

⁄rtp

suw

≠ “r

w

⁄ptv

qus

≠ “r

u

⁄pvt

qws

≠ “p

u

⁄rvt

swq

≠ “p

w

⁄rtv

suq

4
(A.175)

= 1
16 · 4

ÿ

prtv
qsuw

Gprtv

qsuw

(“̄v

s

+ “v

s

)⁄ptr

quw

(A.176)

=1
4

ÿ

prtv
qsuw

Gprtv

qsuw

”v

s

⁄ptr

quw

. (A.177)

The sixth subterm of the zero-body piece vanishes
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A. Normal Ordering—Derivations

A.3. Expectation Values

In this section, we derive expectation values of products of reference-state normal-ordered
operators with respect to a given many-body state |�Í which is the reference state used for
the normal ordering. We introduce a shorthand notation for the expectation of an operator
X with respect to the reference state

+
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,
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A.3.1. Expectation Values of Products—Partially Contracted
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A.3.2. Expectation Values of Commutators—Partially Contracted
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A.3. Expectation Values
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u

$,
=1

4
ÿ

pr
qs

Cpr

qs

(
#
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, ãt

u

$
)[0] = 1

2
ÿ

pr
q

1
Cpr

qt

⁄pr

qu

≠ Cqu

pr

⁄qt

pr

2
(A.193)

+#
C(2), ãtv
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A.3.3. Expectation Values of Commutators—Fully Contracted
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Appendix B

Multi-Reference In-Medium
SRG—Derivations

B.1. J-Coupling of the Flow Equations in Natural Orbitals

B.1.1. J-Coupling of the Two-Body Terms

Let us start with two-body part. Since the first term has already been considered in sec-
tion 4.3.2, we start with the second term.

The third line of (4.28a) defines the second term, and can be written in a compact and
fully symmetrized form
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Performing J-coupling yields
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The remaining lines of (4.28a) define the last term
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The J-coupling then yields
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Averaging over the M quantum number does not change the term and we get
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Using (16) in [VMK88, p. 339] and inserting the inverse Pandya transformation (4.50) yields
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Ĵ2

Ĵ2
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The sum over J1 and J2 can be simplified using relation (25) on p. 467 in [VMK88]
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B.1.2. J-Coupling of the One-Body Terms

For the J-coupling of the one-body terms we will proceed as follows: We write each term
in a way that is proportional to the factor ”j

1

j

2

”m

1

m

2

. Consequently, the remaining term is the
m-independent matrix element that we are looking for. Only for a specific term we will make
use of the averaging procedure.

The first term has already been considered in section 4.3.2. The second and third lines in
(4.28b) can be combined to
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ĵ2
1

”j

1

j

2

”m

1

m

2

ÿ

J

ÿ

rt

Ĵ2
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where the projection-quantum-number independent part is given by
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The expression in the fourth line of (4.28b) can be summarized to
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yielding
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The last line in (4.28b) contains three structurally di�erent terms that are specific for the
multi-reference case. The term IV is defined as the first subterm
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The second subterm in last line of (4.28b) can be simplified to
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4 Ĵ2

5 Ĵ2
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For this case, we make use of the averaging procedure as formulated in (4.44) to extract the
m-independent part
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With the aid of proposition B.1, which will be proved later on, we obtain
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In the last step, we used the following identity that can be proved with the aid of some
relations from [VMK88]:
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ÿ

m

1

ÿ

mrmtmsmwmv

ÿ

J

4

J

5

J

6

ÿ

M

4

M

5

M

6

Ĵ2
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4 Ĵ2
5 Ĵ2
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Proof. Since all relations necessary to prove this identity are taken from [VMK88], we note
the page, equation number above the equal sign (=) to shorten the notation.
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4 Ĵ2
5 Ĵ2
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Ĵ2
7 Ĵ2
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4 Ĵ2

5 Ĵ2
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Ĵ2
7 Ĵ2
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3 Ĵ2
5

I
j

s

j1 J7

j
t

j
r

J1

J I
j

s

j
w

J5

j
v

j
r

J2

J I
j

v

j
t

J6

j1 j
w

J3

J

◊
I

j
r

j
t

J7

J6 J5 j
v

J I
j1 j

s

J7

J5 J6 j
w

J

(≠)jr+js+jw+j

1

+J

5

+jt+jv+J

6

+J

1

+J

7 (B.57)

p.466 (18)=
ÿ

J

6

ÿ

M

6

ÿ

J

7

Ĵ2
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The last two subterms in the last line of (4.28b) can be combined to
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Using proposition B.2 where its proof has been outsourced, we obtain
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Hence, the m-independent is given by the following expression
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The crucial simplification step has been relocated to the following proposition:

213



B. Multi-Reference In-Medium SRG—Derivations

Proposition B.2.
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B.1.3. J-Coupling of the Zero-Body Terms

As a reminder, we note that the irreducible two-body density matrix is Hermitian, i.e.
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Renaming the indices in the second term yields
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Making use of (4.57) and the Hermiticity of the irreducible density matrix (B.78) yields
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B.2. Properties of n-Particle n-Hole Excitations

In this section, we give the proof for the statement of proposition 4.1. As a reminder, the
statement reads as follows:
Any n-particle n-hole excitation vanishes

|�p

1

...pn
q

1

...qn
Í = 0 (B.91)

• if at least one of the lower indices is a virtual index, i.e., q
k

œ V for any k œ {1, 2, . . . , n},

• if at least one of the upper indices is a core index, i.e., p
k

œ C for any k œ {1, 2, . . . , n}.

Proof. The first statement is based on the fact that all density matrix elements vanish (4.163)
and the (vacuum normal-ordered) n-body operator annihilates the reference state (4.162) if
one of the lower indices is a virtual index.

Before proving the second statement let us go through the basics of summing over the
permutation set S

n

. For any function g depending on the composition of two permutations,
fi and ‡, we know that the sum over one of the permutation can be written as

ÿ

fiœSn

g(‡fi) =
ÿ

fiœSn

g(fi) (B.92)

since the sum still runs over all elements of the permutation set S
n

. This implies immediately

ÿ

fiœSn

ÿ

‡œSn

g(‡fi) = n!
ÿ

fiœSn

g(fi) (B.93)

due to the fact that S
n

contains n! di�erent elements. Let us generalize this type of summa-
tions if the inner sum includes additional k di�erent constraints of the following form

ÿ

fiœSn

ÿ

‡œSn
‡fi(l

1

)=fi(l
1

)

‡fi(l
2

)=fi(l
2

)

...
‡fi(lk)=fi(lk)

g(‡fi) = (n ≠ k)!
ÿ

fiœSn

g(fi). (B.94)

with 1 Æ k Æ n and pairwise di�erent indices l1, l2, . . . , l
k

œ {1, 2, . . . , n}. Finally, we can split
the sum over the permutation in di�erent ways. Once the permutation set S

n

is expressed
as a union of two disjoint subsets, i.e., S

n

= Q
t

T , the sum over the permutation splits as
follows

ÿ

fiœSn

g(fi) =
ÿ

fiœQ

g(fi) +
ÿ

fiœT

g(fi). (B.95)

Two examples of this type are

ÿ

fiœSn

g(fi) =
ÿ

fiœSn
fi(1)=1

g(fi) +
ÿ

fiœSn
fi(1) ”=1

g(fi) (B.96)
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ÿ

fiœSng(fi)
=

nÿ

l=1

ÿ

fiœSn
fi(l)=1

g(fi) (B.97)

since the permutation set S
n

can be expressed as a disjoint union S
n

= {fi œ S
n

|fi(1) =

1} t{fi œ S
n

|fi(1) ”= 1} and S
n

=
n€

l=1
{fi œ S

n

|fi(l) = 1}.

Now let us turn to the proof of the second statement that if one of the upper indices is a
core index the n-particle n-hole excitations vanish. This statment will be proved inductively.
The basis step for n = 1 follows immediately from (4.165) and (4.168)

|�i

q

Í = ai

q

|�Í ≠ “i

q

|�Í = ”i

q

|�Í ≠ ”i

q

|�Í = 0. (B.98)

Let us consider the induction step where we assume the induction hypothesis, saying that
the j-particle j-hole excitations for j Æ n ≠ 1 vanish if one of the upper indices is a core,
is true. The goal is then to show that the n-particle n-hole excitations vanish based on the
induction hypothesis. Without loss of generality, let us assume that

p1 œ C (B.99)

otherwise make use of the property (4.171) to bring the core index at the first place. Let us
write the following expression in terms of sum over permutations using the definition of the
index antisymmetrizer (3.50) and the basic formulae for the sum over permutations1

A(“p

1

q

1

|�p

2

...pn
q

2

...qn
Í) = 1

(1!(n ≠ 1)!)2
ÿ
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ÿ
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(1)

qfi(1)
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(2)

...pfiÕ
(n)

qfi(2)

...qfi(n)

Í (B.100)

splitting the sum over fiÕ into two disjoint summation according to (B.96)

= 1
(n ≠ 1)!2

ÿ
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3 ÿ
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Í
4

(B.101)

where the second term vanishes due to the induction hypothesis, yielding

= 1
(n ≠ 1)!2

ÿ
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Í (B.102)

1The symmetry factor from (3.50) is one in this case.
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where the sum over fiÕ gives just a factor (n ≠ 1)! because the summand is symmetric under
transposition of the last n ≠ 1 indices due to the sign of the permutation of fiÕ and (4.171)

= 1
(n ≠ 1)!

ÿ

fiœSn

sgn(fi)”p

1

qfi(1)
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Í . (B.103)

Now, let us consider the n-particle n-hole excitation
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writing the j = 1 summand of the second term explicitly
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Substituting (B.103) for the first term on the second line and summarizing
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where the first term can be rewritten with the aid of (4.170) to
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=
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3 1
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. (B.108)

We will bring these two terms in the same shape while neglecting the sum over j because
they will cancel each other for each j. Considering only the first term without the sum over
j and introducing two constraints on the permutations since the index antisymmetrizer does

218



B.2. Properties of n-Particle n-Hole Excitations

not act on the lower and upper index of Kronecker’s delta we obtain

1
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ÿ
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where the sum over ‡ including one constraint yields a factor (n ≠ 1)! according to (B.94)
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Let us simplify the second term in (B.108) without the sum over j
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Splitting the summation over fiÕ into disjoint subsets of permutations (B.97) yields
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where the last term vanishes due to the induction hypothesis and the sum over l in the first
term gives a factor j since the summand is symmetric under transposition of the first j upper
indices
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Rewriting the j-particle density matrix element with one upper core index via (4.167) gives
a factor 1

(j≠1)! and introducing (n ≠ j) constraints not to permute the indices on the (n ≠ j)-
particle (n ≠ j)-hole excitation yields
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where the sum over ‡ gives just a factor j! = (n ≠ (n ≠ j))! according to (B.94)
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Simplifying the prefactor, we have
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which cancels the first term in (B.110) for each j.
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B.3. Epstein-Nesbet Energy Di�erences
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1ã1
2 |�Í ≠ 1

2
(B.118)

È�| ã2
1ã1
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221



B. Multi-Reference In-Medium SRG—Derivations
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ã12
34 |�Í

=
3

+ n̄1n̄2n3n4(1
2 n̄1n̄2�12

12 + 1
2n3n4�34

34 ≠ n̄1n4�14
14 ≠ n̄1n3�13

13)

+ n̄2n̄2n4n4⁄13
13�24

24 + n̄1n̄2n3n4⁄14
23�14

23 + n̄2n̄2n3n3⁄14
14�23

23 + n̄1n̄2n3n4⁄13
24�13

24

+ 1
2 n̄1n̄1n̄2n̄2⁄34

34�12
12 + 1

2n3n3n4n4⁄12
12�34

34

≠ 2n̄2n̄2n3n4⁄14
13�24

23 ≠ 2n̄1n̄2n4n4⁄31
32�41

42

+ 2n̄2n3n4n4⁄12
13�42

43 + 2n̄1n4n4n3⁄21
23�41

43 + 2n̄1n̄2n̄2n4⁄31
34�21

24 + 2n̄1n̄1n̄2n4⁄23
43�12

14

+ 2n̄1n̄2n3n4
ÿ

p

⁄1p

32�p1
32 + 2n̄1n̄2n3n4

ÿ

r

⁄14
3r

�14
r3

≠ 2n̄1n3n3n4
ÿ

r

⁄21
2r

�13
r3 + 2n̄1n̄1n3n4

ÿ

p

⁄2p

23�p1
31

+ 2n̄1n̄2n3n3
ÿ

r

⁄41
4r

�13
r3 ≠ 2n̄1n̄1n̄2n3

ÿ

p

⁄4p

43�p1
31

+ 2n̄2n̄2n3n4
ÿ

p

⁄1p

13�p2
32 ≠ 2n̄2n3n4n4

ÿ

p

⁄1p

13�p4
34

≠ 2n̄1n̄2n̄2n4
ÿ

r

⁄31
3r

�12
r2 + 2n̄1n̄2n4n4

ÿ

r

⁄31
3r

�14
r4

+ 2n̄1n̄2n3n4
ÿ

p

⁄1p

42�p1
42 ≠ 2n̄1n3n4n4

ÿ

p

⁄2p

32�p4
43

≠ 2n̄1n̄2n̄2n3
ÿ

r

⁄14
4r

�21
r2 + 2n̄1n̄2n3n4

ÿ

r

⁄24
3r

�24
r3

≠ 2n̄1n3n4n4
ÿ

r

⁄21
2r

�14
r4 ≠ 2n̄1n̄2n̄2n3

ÿ

p

⁄4p

43�p2
32

+ 2n̄1n̄2n3n4
ÿ

pr

1
⁄3p

1r

�p3
r1 + ⁄4p

1r

�p4
r1

2

+ 1
2 n̄1n̄2n3n4

A
ÿ

pq

⁄pq

12�pq

12 +
ÿ

rs

⁄34
rs

�34
rs

B

+ 2n̄1n̄2n3n4

A
ÿ

p

⁄4p

12�p4
12 +

ÿ

r

⁄34
2r

�34
r2

B

+ n̄1n̄2n̄2n3
ÿ

qr

⁄4q

4r

�2q

2r

+ n̄1n3n4n4
ÿ

ps

⁄2p

2s

�4p

4s

+ n̄1n̄2n3n4

A
ÿ

rs

⁄24
rs

�24
rs

+
ÿ

qr

⁄3q

r4�3q

r4 +
ÿ

ps

⁄p2
1s

�p2
1s

+
ÿ

rs

⁄23
rs

�23
rs

B

+ n̄1n̄2n4n4
ÿ

ps

⁄p3
s3�p4

4s

+ n̄2n̄2n3n4
ÿ

qr

⁄1q

1r

�2q

r2

≠ n̄2n3n4n4
ÿ

ps

⁄1p

1s

�p4
4s

≠ n̄1n̄2n̄2n4
ÿ

qr

⁄3q

3r

�2q

r2

≠ n̄1n̄2n3n4

3 ÿ

pqr

⁄pq

r4�pq

r4 +
ÿ

pqr

⁄p2
rs

�p2
rs

44
+ [13 ¡ 24] (B.126)

223





Appendix C

Spherical-Tensor Decomposition

The main goal of this chapter is to decompose the density operators into spherical tensor
components, i.e, to express them as a linear combination of spherical tensor operators. The
next section gives a brief introduction to spherical tensor operators.

C.1. Spherical Tensor Operators

An operator T
K

= (T
KQ

)
Qœ(≠K,≠K+1,...,K) is called a spherical tensor operator of rank K if

all components of this operator fulfill the following conditions

#
J

z

, T
KQ

$
= ~QT

KQ

(C.1)
#
J±, T

KQ

$
= ~’±(K, Q)T

K,Q±1 (C.2)

with

’±(K, Q) :=
Ò

(K ± Q + 1)(K û Q). (C.3)

and J
z

and J± denote the z-component and ladder operator associated with total-angular-
momentum vector operator J̨ .

In second quantization, we can write the z-component and ladder operator

J
z

=~
ÿ

pmp

m
p

a†
pmp

a
pmp

(C.4)

J± =~
ÿ

pmp

’û(j
p

, m
p

)a†
pmp

a
p,mpû1. (C.5)

As an example let us consider the fermionic particle creation and annihilation operators.

Proposition C.1. The fermionic particle creation a†
rmr

and (modified) annihilation oper-
ators a

rmr
:= (≠)jr+mr a

r,≠mr
are spherical tensors of rank j

r

. Note that the annihilation
operator a

rmr
without the prefactor is not.
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C. Spherical-Tensor Decomposition

Proof. We need to verfiy the relations (C.1) and (C.2) for both operators. Let us start with
the creation operator, where the commutator with the z-component of the total-angular-
momentum vector operator yields

#
J

z

, a†
rmr

$
=~

ÿ

pmp

m
p

#
a†

pmp
a

pmp
, a†

rmr

$
(C.6)

=~
ÿ

pmp

m
p

(0 + a†
pmp

”p

r

”mp
mr

) (C.7)

=~m
r

a†
rmr

(C.8)

and with the ladder operator

#
J±, a†

rmr

$
=~

ÿ

pmp

’û(j
p

, m
p

)
#
a†

pmp
a

p,mpû1, a†
rmr

$
(C.9)

=~
ÿ

pmp

’û(j
p

, m
p

)(0 + a†
pmp

”r

p

”
mp
mr±1) (C.10)

=~’û(j
r

, m
r

± 1) a†
r,mr±1 (C.11)

=~a†
r,mr±1 ◊

Y
]

[


(j

r

≠ (m
r

+ 1) + 1)(j
r

+ (m
r

+ 1))


(j
r

+ (m
r

≠ 1) + 1)(j
r

≠ (m
r

≠ 1))
(C.12)

=~’±(j
r

, m
r

± 1)a†
r,mr±1. (C.13)

Analogously, we obtain for the (modified) annihilation operator

#
J

z

, a
rmr

$
=~

ÿ

pmp

m
p

(≠)jr+mr
#
a†

pmp
a

pmp
, a

r,≠mr

$
(C.14)

=~
ÿ

pmp

m
p

(≠)jr+mr (≠”p

r

”
mp
≠mr

a
pmp

+ 0) (C.15)

= ≠ ~(≠m
r

)(≠)jr+mr a
r,≠mr

(C.16)

= + ~m
r

a
rmr

. (C.17)

Finally, the commutator with the ladder operator yields

#
J±, a

rmr

$
=~

ÿ

pmp

’û(j
p

, m
p

)(≠)jr+mr
#
a†

pmp
a

p,mpû1, a
r,≠mr

$
(C.18)

=~
ÿ

pmp

’û(j
p

, m
p

)(≠)jr+mr (≠”p

r

”
mp
≠mr

a
p,mpû1 + 0) (C.19)

=~’û(j
r

, ≠m
r

)(≠)jr+(mr±1)a
r,≠(mr±1) (C.20)

=~a
r,mr±1 ◊

Y
]

[


(j

r

≠ (≠m
r

) + 1)(j
r

+ (≠m
r

))


(j
r

+ (≠m
r

) + 1)(j
r

≠ (≠m
r

))
(C.21)

=~’±(j
r

, m
r

)a
r,mr±1 (C.22)

which proves the above statement.
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C.2. Wigner-Eckart Theorem

Finaly, we can construct an (irreducible) spherical tensor of rank K from two (irreducible)
spherical tensors of rank K1 and K2 using the definition of the Clebsch-Gordan coe�cient
[VMK88, p. 63]:

[T
K

1

¢ T
K

2

]
KQ

:=
ÿ

Q

1

Q

2

3
K1 K2

Q1 Q2

----
K

Q

4
T

K

1

Q

1

T
K

2

Q

2

. (C.23)

C.2. Wigner-Eckart Theorem

The Wigner–Eckart theorem says that any matrix element for the Q-th component of a
spherical tensor operator with rank K falls apart into a product of a geometrical factor,
given by a Clebsch-Gordan coe�cient, and a ’physical’ factor, i.e., it reads in the convention
given in [VMK88] as follows

È„jm|T
KQ

|„ÕjÕmÕÍ =(≠)2K

1
ĵ

3
jÕ K

mÕ Q

----
j

m

4
(„j|T

K

|„ÕjÕ) (C.24)

=(≠)2K+j

Õ≠m

Õ 1
K̂

3
jÕ j

mÕ ≠m

----
K

≠Q

4
(„j|T

K

|„ÕjÕ) (C.25)

where the ’physical’ factor is indicated by the reduced matrix element

(„j|T
K

|„ÕjÕ) (C.26)

that is independent of the projection quantum numbers m, mÕ and Q. Here, „ denotes all
quantum numbers of the corresponding state except for j and m.

A spherical tensor operator T 0 = (T 00) of rank zero is a called a scalar operator since
it commutes with all components of the angular-momentum operator. The Wigner-Eckart
theorem for a scalar operator yields

È„jm|T 00|„ÕjÕmÕÍ = 1
ĵ

”j

j

Õ”m

m

Õ(„j|T 0|„Õj) (C.27)

implying that the matrix elements of a scalar operator are diagonal in j and m, and inde-
pendent of the projection quantum numbers m and mÕ.

C.3. Spherical Density Operators

Let us start with a generalized definition of the (transition) one-body density matrix elements

“pmp
qmq

(jm, jmÕ) := È�, jm|a†
pmp

a
qmq

|�, jmÕÍ (C.28)
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C. Spherical-Tensor Decomposition

with respect to given many-body states |�, jmÍ with fixed total angular quantum number j,
but considering all possible orientations of the projection quantum number

m œ {≠j, ≠j + 1, . . . , j}. (C.29)

In order to express the one-body density operator, which will be defined based on the gen-
eralized (transition) one-body density matrix elements, as a linear combination of spherical
tensor operators which will become clear later on. However, these states are eigenstates of
the squared and z-component total angular momentum with a fixed quantum number j,
respectively, i.e.,

J̨
2 |�, jmÍ =~j(j + 1) |�, jmÍ (C.30)

J
z

|�, jmÍ =~m |�, jmÍ . (C.31)

With the aid of the one-body density matrix elements, we can define a corresponding operator
in second quantization which we call one-body density operator

“[1](jm, jmÕ) :=
ÿ

p
q

ÿ

mp
mq

“pmp
qmq

(jm, jmÕ)apmp
qmq

(C.32)

=
ÿ

p
q

ÿ
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mq

È�, jm|a†
pmp

a
qmq

|�, jmÕÍ a†
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a
qmq

(C.33)

=
ÿ

p
q

ÿ

KQ

È�, jm|[a†
p

¢ a
q

]
KQ

|�, jmÕÍ [a†
p

¢ a
q

]
KQ

(C.34)

(C.25)=
ÿ

p
q

ÿ

KQ

(≠)2K+j≠m

Õ 1
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3
j j

mÕ ≠m

----
K

≠Q

4
(�, j|[a†

p

¢ a
q

]
K

|�, j) [a†
p

¢ a
q

]
KQ

.

(C.35)

This motivates the following definition of an operator called spherical one-body density oper-
ator of rank K

“[1]
KQ

(j) := 1
ĵ2

ÿ

mm

Õ
(≠)2K+j≠m

Õ
3

j j

mÕ ≠m

----
K

≠Q

4
“[1](jm, jmÕ) (C.36)

which vanishes for K > 2j because of the Clebsch-Gordan coe�cient. Note that we have
some freedom in the definition of this operator. It still remains to show that this definition
indeed yields a spherical tensor operator of rank K. Let us first rewrite the above definition
to

“[1]
KQ

(j) =
ÿ

pq

1
ĵ2K̂

(�, j|[a†
p

¢ a
q

]
K

|�, j) [a†
p

¢ a
q

]
KQ

. (C.37)
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C.3. Spherical Density Operators

The commutators with the z-component of the total-angular-momentum operator yields

#
J

z

, “[1]
KQ

(j)
$

=
ÿ

pq

1
ĵ2K̂

(�, j|[a†
p

¢ a
q

]
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#
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$
(C.38)

=
ÿ

pq

1
ĵ2K̂

(�, j|[a†
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¢ a
q

]
K

|�, j)~Q[a†
p

¢ a
q

]
KQ

(C.39)

=~Q “[1]
KQ

(j) (C.40)

where we used that [a†
p

¢ a
q

]
K

is already a spherical tensor operator of rank K. Analogously,
we obtain

#
J±, “[1]

KQ

(j)
$

=
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pq

1
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(�, j|[a†
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¢ a
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]
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(C.41)

=
ÿ

pq

1
ĵ2K̂

(�, j|[a†
p

¢ a
q

]
K

|�, j)~’±(K, Q)[a†
p

¢ a
q

]
K,Q±1 (C.42)

=~’±(K, Q) “[1]
K,Q±1(j) (C.43)

which implies that the spherical one-body density operator is indeed a spherical tensor of
rank K.

For practical calculations, we have to express the m-scheme matrix elements for the Q-
th component of the spherical one-body density operator with rank K as a function of the
one-body density matrix elements

Èpm
p

|“[1]
KQ

(j)|qm
q

Í = 1
ĵ2

ÿ

mm

Õ
(≠)2K+j≠m

Õ
3

j j
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K

≠Q

4
Èpm
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|“[1](jm, jmÕ)|qm
q

Í (C.44)

= 1
ĵ2

ÿ

mm

Õ
(≠)2K+j≠m

Õ
3

j j

mÕ ≠m

----
K

≠Q

4
“pmp

qmq
(jm, jmÕ). (C.45)

The special case where the many-body state |�, jmÍ has vanishing total angular momentum
j = 0, yields

Èpm
p

|“[1]
KQ

(0)|qm
q

Í = ”0
K

”0
Q

“pmp
qmq

(00, 00) (C.46)

implying that the one-body density operator is a scalar operator, as expected. Finally, the
scalar part of the spherical one-body density operator, i.e., K = 0, for any value of the total
angular momentum j is given by

Èpm
p

|“[1]
00(j)|qm

q

Í = 1
ĵ2

ÿ

m

“pmp
qmq

(jm, jm) (C.47)

which justifies the prefactor 1
ĵ

2

in definition (C.36).
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Finally, by writing down the inverse relation of (C.36)

“[1](jm, jmÕ) =ĵ2 ÿ

KQ

(≠)2K+j≠m

Õ
3

j j

mÕ ≠m

----
K

≠Q

4
“[1]

KQ

(j) (C.48)

we can clearly see that the one-body density operator is decomposed in spherical tensor
operators, i.e., it is expressed as a linear combination of a spherical tensor operators which
was the goal of the chapter. Analogously, we can do the spherical-tensor decomposition for
the two-body density operator which we are going to discuss next.

The (transition) two-body density matrix elements with respect to the states |�, jmÍ

“pmprmr
qmqsms

(jm, jmÕ) := È�, jm|a†
pmp

a†
rmr

a
qmq

a
sms

|�, jmÕÍ . (C.49)

define the (transition) two-body density operator
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This motivates the following definition of the spherical two-body density operator
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ĵ2

ÿ

mm

Õ
(≠)2K+j≠m

Õ
3

j j

mÕ ≠m
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which is indeed a spherical tensor operator of rank K.
Likewise, we can generalize this definition to the spherical n-body density operator
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Here, we defined the n-body density operator

“[n](jm, jmÕ) := 1
(n!)2
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with the n-body density matrix elements of the state |�, jmÍ
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Glossary

Notations
x generic operator
x̨ generic vector
x̨ generic vector operator
X generic matrix

|0Í physical vacuum
|�Í single-reference state
|�Í multi-reference state

N |0Í normal-ordering operator with respect to |0Í
N |�Í normal-ordering operator with respect to |�Í
N normal-ordering operator with respect to |�Í
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commutator of A and B
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Acronyms

QCD quantum chromodynamics
NN nucleon nucleon
3N three nucleon
HF Hartree Fock
HO harmonic oscillator
CM center of mass

CC coupled cluster
SRG similarity renormalization group
NCSM no-core shell model
IM-SRG (multi-reference) in-medium similarity renormalization group
IM-NCSM in-medium no-core shell model
p◆p-IM-NCSM particle-attached particle-removed IM-NCSM

V-NO vacuum normal ordered
SR-NO single-reference normal ordered
MR-NO multi-reference normal ordered
MR-NO2B multi-reference normal-ordered two-body

ODE ordinary di�erential equation
RKF Runge Kutta Fehlberg
BLAS Basic Linear Algebra Subprograms

LENPIC Low Energy Nuclear Physics International Collaboration
N2LOsat next-to-next-to-leading order saturated
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