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We discuss the approximate inclusion of three-nucleon interactions into ab initio nuclear structure calcula-
tions using a multi-reference formulation of normal ordering and Wick’s theorem. Following the successful
application of single-reference normal ordering for the study of ground states of closed-shell nuclei, e.g., in
coupled-cluster theory, multi-reference normal ordering opens a path to open-shell nuclei and excited states.
Based on different multi-determinantal reference states we benchmark the truncation of the normal-ordered
Hamiltonian at the two-body level in no-core shell-model calculations for p-shell nuclei, including 6Li, 12C and
10B. We find that this multi-reference normal-ordered two-body approximation is able to capture the effects of
the 3N interaction with sufficient accuracy, both, for ground-state and excitation energies, at the computational
cost of a two-body Hamiltonian. It is robust with respect to the choice of reference states and has a multitude
of applications in ab initio nuclear structure calculations of open-shell nuclei and their excitations as well as in
nuclear reaction studies.

Introduction. Over the past few years one of the major ad-
vances for many ab initio many-body approaches, particularly
for medium-mass nuclei, was the inclusion of three-nucleon
(3N) interactions. They arise naturally in nuclear interactions
constructed in chiral effective field theory [1–3] and are in-
evitable when working with softened Hamiltonians obtained,
e.g., from a similarity renormalization group (SRG) transfor-
mation [4–7]. Generally, a systematic and consistent inclusion
of 3N interactions are a prime goal of modern nuclear struc-
ture and reaction theory.

Compared to many-body calculations with two-nucleon
(NN) forces only, the inclusion of 3N interactions leads to
a significant increase of the computational and formal com-
plexity of the many-body problem. In some cases, like the no-
core shell model (NCSM) [8], the formal inclusion is straight-
forward, but the increase of the computational cost is signif-
icant [9]. In other cases, like coupled-cluster (CC) theory
for nuclear ground states [10, 11], the complexity of the ba-
sic many-body equations and of the numerical solution both
increase dramatically. Similarly, in calculations of contin-
uum and scattering observables, e.g., in the NCSM combined
with the resonating-group method (NCSM/RGM) [12–14] or
the NCSM with continuum (NCSMC) [15, 16], the inclusion
of explicit 3N interactions is feasible only in simple cases
[17, 18].

Therefore, approximation schemes are highly desirable that
include the physics of 3N interactions at the cost of a calcula-
tion with only NN interactions. To this end, effective or phe-
nomenological NN interactions that are adjusted to capture
some physics aspects of the 3N force have been constructed
in the past. A more systematic way to derive such approxima-
tions starts from the normal-ordered form of the Hamiltonian
with respect to an A-body reference state.

Normal ordering of products of creation and annihilation
operators with respect to non-trivial reference states is an im-
portant technical element in the formulation of a number of
modern many-body approaches. Two of the most successful
ab initio approaches for medium-mass nuclei, CC theory [19–

22] and the in-medium similarity renormalization group (IM-
SRG) [23, 24], are constructed in a normal-ordered formula-
tion from the outset. In addition to the formal advantages of
working with normal-ordered products, normal-ordering also
presents a natural starting point for the approximate inclusion
of multi-nucleon interactions. Already the normal-ordered
zero-, one- and two-body terms of the Hamiltonian contain
contributions of the initial 3N interaction. Thus, by truncating
the Hamiltonian beyond the normal-ordered two-body level,
we take into account parts of the 3N interaction, while retain-
ing the computational complexity of a calculation with only
two-body terms.

This normal-ordered two-body (NO2B) approximation has
been successfully applied in recent many-body calculations,
particularly in the medium-mass regime [10, 25–28]. We have
studied the quality of the NO2B approximation in NCSM and
CC calculations for ground states of closed-shell nuclei by di-
rect comparison to calculations with explicit 3N interactions
within the same many-body framework. Within the NCSM
we have tested the NO2B approximation for 4He and 16O and
found deviations from the ground-state energies obtained with
explicit 3N interaction on the order of 2% and 1%, respec-
tively [29]. We also extended CC theory to include explicit
3N interaction at the singles and doubles level [11, 22] and
with non-iterative triples corrections [30]. This enabled a di-
rect benchmark of the NO2B approximation in the medium-
mass regime, which robustly confirmed that this approxima-
tion agrees with ground-state results with the explicit 3N in-
teractions to better than 1%. Given the other uncertainties in
medium-mass approaches, this is acceptable for many appli-
cations.

In this work, we generalize and test the NO2B approxi-
mation to ground-state and excitation energies of open-shell
nuclei through a generalization of normal ordering to multi-
determinantal reference states. After discussing the formal-
ism we will benchmark the multi-reference normal-ordered
two-body (MR-NO2B) approximation in NCSM calculations
for the ground and excited states of p-shell nuclei, comparing
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directly to calculations with explicit 3N interactions.
Normal-Ordered Hamiltonian. In the simplest formula-

tion, a product of creation and annihilation operators is nor-
mal ordered if the creators are to the left of all annihilators. In
the following we use a convenient short-hand notation for cre-
ation operators ap := a†p and annihilation operators ap defined
with respect to a complete orthonormal single-particle basis
{|p〉}. Furthermore, we write the particle-hole operators

aprt...
qsu... := aparat · · · auasaq (1)

for single-particle indices covering the full single-particle ba-
sis. These particle-hole operators are naturally in normal or-
der with respect to the vacuum state |0〉 and the expectation
value of these normal-ordered products with the vacuum state
vanishes. This is a necessary criterion for normal-ordered
products with respect to a specific reference state. This vac-
uum normal-order corresponds to the standard representation
of second quantized operators, as they are used, e.g., in NCSM
calculations. Specifically for the operator of a 3N interaction,
the vacuum normal-ordered form is given by

V3N =
1

36

∑
prt
qsu

vprt
qsu aprt

qsu (2)

with antisymmetrized three-body matrix elements
vprt

qsu := 〈prt|V3N |qsu〉.
The more interesting case, however, is normal ordering

with respect to an A-body reference state. Assuming the sim-
ple case of an A-body reference state |Φ〉 given by a sin-
gle Slater determinant built from A occupied single-particle
states, this leads to the standard picture of particle-hole ex-
citations on top of the reference state. Particle states are un-
occupied in the reference states and hole states are occupied.
The notion of normal ordering needs to be extended to guar-
antee that expectation values of any string of normal-ordered
operators in the reference state vanishes. To this end, parti-
cle creation and hole annihilation operators are to the left of
particle annihilation and hole creation operators, defining the
single-reference normal ordering.

One can convert from vacuum to single-reference normal
order by explicit use of the anticommutation relations for
fermionic creation and annihilation operators or, more ele-
gantly, through Wick’s theorem [31]. We have formulated and
benchmarked the use of the single-reference normal ordering
and the NO2B approximation for closed-shell nuclei in detail
in Ref. [29] using NCSM calculation and in Refs. [11, 30]
using the CC framework.

The single-reference formulation of normal ordering is
linked directly to the notion of particle and hole states. For
the generalization to more complicated reference states |Ψ〉,
given by a superposition of many Slater determinants, a dis-
tinction of particle and hole states is not possible anymore.
Therefore, normal ordering for multi-determinantal reference
states operates on a more formal level and we rely entirely on
generalizations of Wick’s theorem.

We adopt the multi-reference version of the Wick’s theo-
rem proposed and proven by Kutzelnigg and Mukherjee [32,
33]. The nontrivial contractions correspond to the irreducible
n-body density matrix elements encoding information about
n-body correlations in the reference state, which can be ex-
pressed in terms of the m-body density matrix elements

γ
p1 p2...pm
q1q2...qm = 〈Ψ| ap1 p2...pm

q1q2...qm |Ψ〉 (3)

with m ≤ n. Applying the multi-reference Wick’s theorem to
rewrite the particle-hole operators ap

q , apr
qs , aprt

qsu of Eq. (1) in
terms of multi-reference normal-ordered particle-hole opera-
tors ãp

q , ãpr
qs , ãprt

qsu, we obtain after simplifications [32]

ap
q = ãp

q + γ
p
q ,

apr
qs = ãpr

qs + A(γp
q ãr

s) + γ
pr
qs ,

aprt
qsu = ãprt

qsu + A(γp
q ãrt

su) + A(γpr
qs ãt

u) + γ
prt
qsu ,

(4)

where A is the index antisymmetrizer as defined in Ref. [34]
generating a totally antisymmetric sum of all possible permu-
tations within the upper and lower indices avoiding duplicates.

Inserting (4) into the second-quantized form of the 3N in-
teraction (2), we obtain the 3N interaction in multi-reference
normal-ordered form

V3N = w +
∑

p
q

wp
q ãp

q +
1
4

∑
pr
qs

wpr
qs ãpr

qs +
1

36

∑
prt
qsu

wprt
qsu ãprt

qsu (5)

with

w =
1
36

∑
prt
qsu

vprt
qsuγ

prt
qsu , wp

q =
1
4

∑
rt
su

vprt
qsuγ

rt
su ,

wpr
qs =

∑
t
u

vprt
qsuγ

t
u , wprt

qsu = vprt
qsu .

(6)

The matrix elements of the multi-reference normal-ordered
n-body contributions emerging from the 3N interaction are
given by simple summations of the original three-body matrix
elements contracted with density matrices. Inserting the den-
sity matrices obtained for a single-determinant reference state
immediately reduces these expressions to the known single-
reference expressions [11, 29].

By omitting the normal-ordered three-body contribution in
(5) we define the MR-NO2B approximation of the 3N inter-
action

VMR-NO2B
3N = w +

∑
p
q

wp
q ãp

q +
1
4

∑
pr
qs

wpr
qs ãpr

qs . (7)

For approaches like the NCSM that do not naturally use a
normal-ordered formulation, we can invert the relations (4)
to convert the above expression back to vacuum normal order
and obtain

VMR-NO2B
3N = v̄ +

∑
p
q

v̄p
q ap

q +
1
4

∑
pr
qs

v̄pr
qs apr

qs (8)
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with

v̄ =
1

36

∑
prt
qsu

vprt
qsu

(
γ

prt
qsu − 18γp

qγ
rt
su + 36γp

qγ
r
sγ

t
u

)
,

v̄p
q =

1
4

∑
rt
su

vprt
qsu

(
γrt

su − 4γr
sγ

t
u
)
, v̄pr

qs =
∑

t
u

vprt
qsuγ

t
u .

(9)

We remark that we do not need the three-body density ma-
trix element explicitly since the term including the three-body
density matrix element in the zero-body part can be identified
as the expectation value of the 3N interaction in the reference
state, which can be computed directly. The one- and two-
body density matrices can be easily computed using standard
NCSM technology.

Calculation Details. The starting point of our calculations
is a Hamiltonian based on the NN or NN+3N interaction
from chiral effective field theory. We use the NN interaction
at next-to-next-to-next-to-leading (N3LO) from Entem and
Machleidt [35] and the 3N interaction at N3LO in local form
from Navrátil [36]. The low-energy constants have been fitted
to the ground-state energy and β-decay half-life of 3N sys-
tems [37]. Both Hamiltonians will be transformed by means
of the SRG in three-body space, in order to enhance conver-
gence behavior with respect to the many-body model space
[4, 38]. Here, we consider two types of SRG-evolved Hamil-
tonians: The NN+3N-induced Hamiltonian omits the chiral
3N interaction from the initial Hamiltonian, but keeps all in-
duced 3N terms throughout the transformation; the NN+3N-
full Hamiltonian starts with the initial chiral NN+3N Hamil-
tonian and retains all terms up to the three-body level in the
SRG transformation. The 3N-interaction terms in both Hamil-
tonians have quite different characteristics, which makes them
useful for benchmarking the MR-NO2B approximation.

For each of these Hamiltonians, we apply the MR-NO2B
approximation with respect to nucleus-specific reference
states. These reference states are given by the ground state
obtained from full NCSM calculations in small model spaces,
characterized by Nref

max, including explicit three-body interac-
tions. In order to analyze the dependence on the reference
state, we vary the truncation parameter Nref

max and, thus, obtain
a sequence of reference states and a corresponding sequence
of MR-NO2B approximations. Note that for closed-shell nu-
clei the MR-NO2B approximation with Nref

max = 0 is equivalent
to the single-reference version of the NO2B approximation.

Finally, we use the MR-NO2B matrix elements in
importance-truncated no-core shell model (IT-NCSM) cal-
culations for ground and excited states of p-shell nuclei up
to large model-space truncations Nmax. To remove spurious
center-of-mass excitations from the low-energy spectra we
add a harmonic oscillator center-of-mass Hamiltonian. In or-
der to benchmark the MR-NO2B approximation we compute
the same observables in the IT-NCSM including explicit 3N
interactions. These calculations are significantly more expen-
sive, since the explicit three-body terms reduce the sparsity of
the many-body Hamilton matrix, i.e., increase the number of
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FIG. 1. (color online) IT-NCSM absolute ground-state energies of
4He (top) and 16O (bottom) as function of Nmax for the NN+3N-
induced (left) and NN+3N-full (right) Hamiltonian with the SRG
flow parameter α = 0.08 fm4 and ~Ω = 20 MeV. The levels con-
nected by a dashed line correspond to the complete 3N interaction,
the circles to MR-NO2B approximations for a range of Nref

max pa-
rameters: Nref

max = 0, 2, 4, 6 (from left to right). The insets for the
NN+3N-full calculations show results with a perturbative inclusion
of the residual normal-ordered 3N term as red boxes (see text). Ex-
perimental ground-state energies are taken from [41].

non-zero matrix elements by at least an order of magnitude
[9]. Details on the IT-NCSM can be found in Refs. [39, 40].

Closed-Shell Nuclei. We start with a direct comparison
of IT-NCSM ground-state energies for the closed-shell nuclei
4He and 16O. These nuclei have been already investigated
in the framework of the single-reference NO2B approxima-
tion [29]. The multi-reference formulation can go beyond this
single-determinant reference and explore the impact of im-
proved reference states for larger Nref

max, which systematically
approach the converged ground state of the nucleus.

In Fig. 1 we present the absolute ground-state energies of
4He and 16O as function of Nmax calculated for the NN+3N-
induced and NN+3N-full Hamiltonian with the SRG flow pa-
rameter α = 0.08 fm4. All MR-NO2B results are in good
agreement with the calculations including explicit 3N terms,
the largest relative deviations are at the level of 1%.

Closer inspection of the results with increasing Nref
max shows

that there is no universal systematics. For 4He the agreement
with the full calculation improves when going from Nref

max = 0
to 2, but for 16O the agreement gets slightly worse in case of
the NN+3N-induced Hamiltonian. Generally the dependence
on the reference state, i.e. on Nref

max is small, indicating that the
MR-NO2B approximation is robust with respect to variations
of the reference state. To improve on the MR-NO2B approxi-
mation, we can attempt to include the residual normal-ordered
three-body terms perturbatively by adding their expectation
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FIG. 2. (color online) IT-NCSM absolute (top) and relative (bottom)
spectrum of 6Li as function of Nmax for the NN+3N-induced (left)
and NN+3N-full (right) Hamiltonian with the SRG flow parameter
α = 0.08 fm4 and ~Ω = 20 MeV. The solid levels connected by a
dashed line correspond to the complete 3N interaction, the circles to
MR-NO2B approximations for a range of Nref

max parameters: Nref
max =

0, 2, 4, 6 (from left to right). Experimental excitation energies are
taken from [42].

value obtained with the MR-NO2B eigenstates. The results
for selected cases are shown in the insets in Fig. 1. This cor-
rection does improve the agreement with the full calculation,
but generally cannot remove the difference completely, as evi-
dent from the 16O results. The remaining different has to be at-
tributed to differences in the MR-NO2B eigenstates compared
to the eigenstates of the complete Hamiltonian. Furthermore,
we note that for these and all following cases, the expectation
values of total angular momentum and harmonic-oscillator
center-of-mass Hamiltonian obtained with the MR-NO2B ap-
proximation and with explicit 3N interactions do agree within
the numerical accuracy of the IT-NCSM, indicating rotational
and translational invariance of the MR-NO2B Hamiltonian.

Open-Shell Nuclei. The multi-reference formulation now
allows us to address open-shell nuclei as well. We will in-
vestigate the ground-state and excitation energies of 6Li, 12C
and 10B as a representative set of p-shell nuclei. The reference
state for the MR-NO2B approximation is always the ground
state from full NCSM calculations with small Nref

max, also for
the calculation of the excited states. Thus, we will address
two aspects: the quality of the MR-NO2B approximation for
the description of the ground-state in open-shell systems and
the quality of the normal-ordering based on the ground state
as reference for the description of excited states.

Figure 2 shows the absolute energies of 6Li for the four
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FIG. 3. (color online) Same as Fig. 2 for 12C with Nref
max = 0, 2, 4

(from left to right).

lowest natural-parity states as well as the excitation energies
as function of Nmax. The calculations are carried out using the
IT-NCSM for the NN+3N-induced and NN+3N-full Hamil-
tonian with the SRG flow parameter α = 0.08 fm4. As for
the closed-shell cases we use different Nref

max to vary the com-
plexity of the reference state and compare to direct IT-NCSM
calculations with explicit 3N interactions.

For the absolute energies we observe an excellent agree-
ment of the various levels of the MR-NO2B approximation
with the calculations including the 3N interactions explicitly.
Particularly, there is no difference in the quality of the descrip-
tion of the ground state and the excited states. This point is
important given the fact that the normal ordering is performed
for a reference state that is constructed as an approximation
for ground state and does not include information about the
excited states.

As function of Nref
max the absolute energies of all states show

the same systematics and, as a result, the excitations show
a smooth and very weak dependence on the reference state.
As for the ground states of closed-shell nuclei, we generally
do not observe a systematic improvement of the MR-NO2B
results with increasing Nref

max.
To test the MR-NO2B approximation in nuclei with a more

complicated structure, we consider the low-lying natural-
parity states in 12C and 10B shown in Figs. 3 and 4, respec-
tively. Previous investigations have shown that several states
in these nuclei are sensitive to the chiral 3N interaction [4, 43]
and, thus, are critical tests for the MR-NO2B approximation.
Also, these calculations are more challenging from the point
of view of the importance truncation and threshold extrap-
olations. We have benchmarked the IT-NCSM against full
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FIG. 4. (color online) Same as Fig. 2 for 10B with ~Ω = 16 MeV and
Nref

max = 0, 2, 4 (from left to right).

NCSM calculations for 12C in a previous publication [44]
showing that the uncertainties due to the threshold extrapo-
lation in the IT-NCSM are small on the scales discussed here
and that they can be estimated reliably. For the excitation en-
ergies, we expect maximum extrapolation uncertainties on the
order of 0.1 MeV for the largest Nmax considered here. This is
insignificant for 12C but not completely negligible for 10B.

For 12C the agreement of the MR-NO2B approximation
with the full calculations is at a similar level as for the sim-
pler nucleus 6Li. The absolute energies show the same trends
for ground and excited states as function of Nref

max and, conse-
quently, the excitation energies show a mild dependence on
the reference state. As before, larger Nref

max do not necessarily
improve the MR-NO2B approximation. Generally, the MR-
NO2B approximation works very well and the deviations for
the results with explicit 3N interactions are at the same level
as the uncertainties due to Nmax-convergence and threshold
extrapolation.

At the same time, the computational cost for the IT-NCSM
calculations with the MR-NO2B approximation is an order of
magnitude lower than for the full 3N calculations, because of
a significant reduction of the number of non-zero matrix ele-
ments in the many-body Hamilton matrix, which entails small
importance truncated spaces. For the Nmax = 10 calculations
shown in Fig. 3 the total CPU time for the IT-NCSM calcula-
tion reduces by a factor 10 and the maximum memory foot-
print by a factor 20.

The most challenging test case is clearly 10B. Being an odd-
odd nucleus, the excitation energies are smaller and deviations
become more significant. Moreover, it is known that for the

present chiral Hamiltonian, the 3N interaction is responsible
for changing the ordering of the two lowest states [45]. Using
the chiral NN interaction only, the 1+ states emerges as ground
state in contradiction to experiment and only the inclusion of
the chiral 3N interaction leads to the correct 3+ ground state.
Thus the 3N force has a drastic impact on the spectrum and
it is unclear whether the MR-NO2B approximation is able to
capture this effect.

The results for 10B depicted in Fig. 4 show that the MR-
NO2B approximation can cope with these situations with a
somewhat reduced accuracy. The absolute energies obtained
in the MR-NO2B approximation deviate by up to 1 MeV from
the full 3N results with uncertainties due to the IT-NCSM
threshold extrapolations up to 0.3 MeV. For the excitation
energies the deviations are significantly smaller, particularly
for the NN+3N-induced Hamiltonian where the absolute de-
viations are at the same level as for the simpler nuclei. For
the NN+3N-full Hamiltonian, the deviations of the excitation
energies reach 0.5 MeV and show a stronger dependence on
Nref

max. However, the MR-NO2B approximations always give
the correct level ordering and, thus, capture the most impor-
tant effects of the 3N interaction. Moreover, the larger depen-
dence on the reference state and Nref

max can serve as an indicator
for the reduced quality of the MR-NO2B approximation.

Conclusions. We have introduced and studied the MR-
NO2B approximation for the efficient inclusion of the 3N in-
teractions in nuclear structure calculations for ground and ex-
cited states of open-shell nuclei. Through direct comparison
with IT-NCSM calculations including the full 3N interactions
explicitly we have demonstrated the robustness and accuracy
of this approximation. The absolute energies of ground and
excited states for closed- and open-shell nuclei typically agree
with the full 3N results at the 1% level, with the exception
of very light nuclei (e.g., 4He) and particularly fragile states
(e.g., 10B). The description of excited states exhibits the same
quality and systematics as the ground states although the nor-
mal ordering only involves a reference state representative for
the ground state. This, together with the small dependence
on the specific choice of the reference states, i.e., the Nref

max,
demonstrates the robustness of the MR-NO2B approximation
for the 3N interaction.

These findings have important implications for a range of
many-body applications. In the context of the NCSM and
IT-NCSM the MR-NO2B approximation gives access to nu-
clei that are computationally out of reach with explicit 3N
interactions. Due to the significant reduction of the num-
ber of non-zero matrix elements in the many-body Hamilton
matrix, nuclei in the lower half of the sd-shell become ac-
cessible in the IT-NCSM at manageable computational cost.
The MR-NO2B approximation for 3N interactions also facili-
tates continuum and reaction calculations in the NCSM/RGM
and NCSMC, which are too demanding with explicit 3N
terms. For medium-mass approaches, particularly the IM-
SRG [25, 46, 47], which are formulated with normal-ordered
operators from the outset, the quality of the MR-NO2B ap-
proximation directly affects the accuracy of the whole many-
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body framework. Our findings for excited states also open
the door towards studies of excitation spectra with evolved
Hamiltonians from the IM-SRG, e.g., through subsequent
equations-of-motion or configuration-interaction calculations.
Furthermore, the normal-ordering framework can be directly
extended to 4N interactions, making the inclusion of chiral
4N forces that emerge at order N3LO possible for a variety of
many-body approaches.
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Phys. Rev. Lett. 107, 072501 (2011).
[5] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75,

061001 (2007).
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P. Navrátil, Phys. Rev. Lett. 109, 052501 (2012).

[30] S. Binder, P. Piecuch, A. Calci, J. Langhammer, P. Navrátil, and
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