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We propose an importance-truncation scheme for the large-scale nuclear shell model that extends its range
of applicability to larger valence spaces and mid-shell nuclei. It is based on a perturbative measure for the
importance of individual basis states that acts as an additional truncation for the many-body model space in
which the eigenvalue problem of the Hamiltonian is solved numerically. Through a posteriori extrapolations
of all observables to vanishing importance threshold, the full shell-model results can be recovered. In addi-
tion to simple threshold extrapolations, we explore extrapolations based on the energy variance. We apply the
importance-truncated shell model for the study of 56Ni in the p f valence space and of 60Zn and 64Ge in the p f g9/2

space. We demonstrate the efficiency and accuracy of the approach, which pave the way for future applications
of valence-space interactions derived in ab initio approaches in larger valence spaces.

PACS numbers: 21.60.Cs, 21.10.-k, 27.50.+e

Introduction. The nuclear valence-space shell model is
one of the work horses in nuclear structure theory. It is very
successful for the description of spectra and spectroscopic ob-
servables over a large range of nuclei and plays an important
role in guiding and interpreting experiments from stable to
exotic nuclei [1–17]. Two critical aspects in the application
of the shell model (SM) are the construction of the effective
valence-space interaction as well as corresponding effective
operators and the solution of the eigenvalue problem in the
model space of the valence nucleons.

Traditionally, effective valence-space interactions are con-
structed using renormalized nucleon-nucleon interactions
combined with phenomenological fits of matrix elements to
nuclei within the valence space [1, 3, 18, 19]. Though this
phenomenological approach allows for a rather accurate de-
scription, it lacks a rigorous connection to the underlying
nuclear interaction and does not provide a consistent frame-
work for the treatment of observables other than the energy.
Recently, a set of novel approaches to systematically derive
valence-space interactions and operators have emerged [20–
23]. They offer new insights into valence-space interactions
and can be linked to ab initio calculations.

Once the valence-space interaction is specified, the SM re-
duces to the solution of a large-scale matrix eigenvalue prob-
lem. Its dimension grows combinatorially with the number of
valence orbitals and nucleons. Starting with valence spaces
covering the p f -shell, the m-scheme model spaces reach di-
mensions beyond 109 around mid-shell, which is approach-
ing the limits of present computational approaches for sparse
eigenvalue problems. When going to valence spaces covering
more than one major shell, the model-space dimension poses a
severe limitation to the applicability of the SM. In these cases
additional truncations or more sophisticated methods like the
Monte Carlo shell model (MCSM) [24, 25] or a density ma-
trix renormalization group treatment of the SM [26] have to
be employed.

We propose the importance-truncated shell model (IT-SM)
to overcome this limitation. It combines the SM with an
importance-truncation scheme that is successfully applied in

no-core configuration-interaction approaches for some time
[27]. In addition we use refined extrapolation schemes based
on the energy variance to reduce the uncertainties of the IT-
SM calculations. Together, importance truncation and ex-
trapolation provide an accurate tool for systems and valence
spaces beyond the reach of standard SM calculations.

Importance Truncation. The importance truncation is a
physics-driven, adaptive truncation of the many-body model
space based on a measure for the importance of individual
basis states for the description of a specific set of eigen-
states of a given Hamiltonian. The importance measure is de-
fined through the amplitude of the individual basis states in
the expansion of the eigenstates, obtained a priori in lowest-
order many-body perturbation theory. By imposing a thresh-
old with respect to this importance measure we define an
importance-truncated model space tailored specifically for
the target eigenstates and Hamiltonian under consideration.
Eventually, variations of the importance threshold and extrap-
olations to vanishing threshold can be used to extract observ-
ables in the limit of the full model space. This scheme is
applied very successfully in the context of the no-core shell
model (NCSM) [27, 28].

The construction of the importance-truncated space is
based on a set of reference states |Ψ(m)

ref 〉, which are obtained
from a previous diagonalization in a small space, that repre-
sent the target eigenstates. The basis states that contribute
to the reference states |Ψ(m)

ref 〉 span the reference space Mref.
We estimate the importance of basis states |Φν〉 outsideMref
by means of the amplitudes κ(m)

ν = − 〈Φν|H |Ψ(m)
ref 〉 /∆εν of

the first-order perturbative correction to |Ψref〉, where the en-
ergy denominator ∆εν corresponds to the unperturbed single-
particle excitation energy of the basis state |Φν〉. Only basis
states with importance measure |κ(m)

ν | larger than a given im-
portance threshold κmin for at least one reference state |Ψ(m)

ref 〉

are included in the importance-truncated model space.
In the case of a two-body Hamiltonian, the simple first-

order importance measure cannot probe basis states that differ
by more than a two-particle-two-hole (2p2h) excitation from
any state in Mref. Therefore, we embed the construction of
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the importance-truncated space into an iterative scheme. For
the valence-space SM, we use the number of valence parti-
cles above the orbits that are (partially) occupied in the lowest
energy configurations to define a truncation parameter Tmax.
For Tmax = 0, all Slater determinants with valence nucleons
distributed in the lowest accessible orbits are in the model
space. For Tmax = 2, up to two valence nucleons are pro-
moted to higher-lying orbits—this model space can be gener-
ated through 1p1h and 2p2h excitations on top of the Tmax = 0
space. Thus, we combine a sequential increase of the trunca-
tion parameter Tmax with the importance-selection procedure.
This sequential IT-SM scheme is analogous to the sequential
IT-NCSM scheme discussed in Ref. [27].

The complete IT-SM calculation proceeds as follows: We
start with a conventional SM calculation for small Tmax, e.g.
Tmax = 0, and select a set of target eigenstates. We define the
reference states |Ψ(m)

ref 〉 by filtering the important components
of these eigenstates through a so-called reference threshold
Cmin with respect to the amplitudes from the SM calculation.
With these reference states we construct importance-truncated
spaces with Tmax = 2 for a sequence of importance thresholds
κmin. In each space we solve the eigenvalue problem and com-
pute the relevant observables. The eigenvectors for the largest
importance-truncated space define the new reference states,
again imposing a reference threshold Cmin, for constructing
the importance-truncated spaces for Tmax = 4. This proce-
dure can be iterated until Tmax reaches the number of valence
particles and thus probes the full model space. In the limit
(κmin,Cmin) → 0, this algorithm is guaranteed to reproduce
the results in the full model space at each Tmax.

The results of IT-SM calculations for different thresholds
κmin and Cmin are depicted in Fig. 1. As a test case, we consider
56Ni in a p f valence space using the gxpf1a interaction [29].
The full m-scheme dimension of this model space is 1.09×109,
which is at the limit of routine SM calculations. The results
presented in Fig. 1 show the dimensions and the lowest en-
ergy eigenvalues as function of κmin. Note that the energy axis
is extremely magnified and spans only 80 keV. The dimen-
sions of the importance-truncated spaces are reduced drasti-
cally, by about two orders of magnitude as compared to the
full SM space. At the same time, the absolute energies in
the largest importance-truncated spaces, corresponding to the
smallest κmin and Cmin thresholds, differ by only about 10 keV
from the full SM. This demonstrates the efficiency of the im-
portance truncation—it separates the 107 basis states that de-
termine the bulk of the energy from the 109 basis states that
are responsible for the residual 10 keV.

Threshold Extrapolation. We can approximately account
for the effects of basis configurations excluded from the
importance-truncated spaces by an a posteriori extrapolation
of the observables. The simplest extrapolation addresses the
importance threshold κmin. Since the energy eigenvalues de-
pend smoothly on κmin we can fit simple functions to the set of
energies obtained for different κmin values and extract the en-
ergies for κmin → 0. Since we do not have a theoretical model
for the functional dependence on the importance thresholds,
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FIG. 1. (color online) Dimension of the importance-truncated model
space (a) and ground-state energy relative to the core (b) for 56Ni in
the p f valence space as a function of the importance threshold for
reference thresholds Cmin = {1 (l), 2 ( �), 3 (�)}×10−4 and Tmax = 16
using the gxpf1a interaction. The model space has been constructed
for the simultaneous description of the six lowest eigenstates. For the
threshold extrapolation we use polynomials of order two and three.
The red lines denote the full m-scheme dimension and the ground-
state energy of the full SM [2].

we use simple polynomials, typically of order two to four.
Varying the order of the polynomials gives an estimate for
the uncertainty of this threshold extrapolation. In Fig. 1(b) we
have included examples for fits with second and third-order
polynomials for the ground-state energies of 56Ni. Note that
the uncertainty of the κmin extrapolation is small compared to
the residual dependence on the reference threshold Cmin.

This simple threshold extrapolation does not require addi-
tional computations and can be applied to all observables on
equal footing (cf. Fig. 5). However, it exclusively addresses
the importance threshold κmin and uncertainties of the poly-
nomial extrapolations can be sizeable. One can improve on
this by including additional information on the excluded ba-
sis states, e.g., through a second-order perturbative estimate
of their contribution to the energy, as done successfully in the
IT-NCSM (see Ref. [27] for details).

Variance Extrapolation. As an alternative to the simple
threshold extrapolation, we consider a more elaborate ex-
trapolation scheme based on the energy variance ∆E2 =

〈Ψ|H2|Ψ〉 − 〈Ψ|H|Ψ〉2, which was used in the SM context be-
fore [30–33]. By construction, the energy variance vanishes
for the exact eigenstates and, thus, serves as a measure for
the distance of an approximate state obtained in a truncated
subspace from the energy eigenstate in the full space. As dis-
cussed in Ref. [34], the energy is expected to show a predom-
inantly linear dependence on the energy variance, with sub-
leading quadratic corrections. We thus have a simple model
and a robust two- or three-parameter fit function at hand that
provides accurate extrapolations.

The calculation of the energy variance implies the evalua-
tion of the expectation value 〈Ψ|H2|Ψ〉. In our implementa-
tion, we rewrite the four-body operator H2 in normal-ordered
form obtaining zero- to four-body contributions in case of a
Hamiltonian constructed from a two-body valence-space in-
teraction plus Lawson-type center-of-mass Hamiltonian. The
individual contributions are computed on the fly, where the
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FIG. 2. (color online) Energy-variance extrapolation of the ground-
state energy relative to the core for 56Ni obtained in IT-SM using
the gxpf1a interaction. In panel (a) results for different reference
thresholds Cmin = {1 (l), 2 ( �), 3 (�)} × 10−4 for Tmax = 16 are
shown. In panel (b) calculations for different truncations Tmax =

{4(l), 6( �), 8(�), 10(:)} with Cmin = 1×10−4 are depicted. The red
lines denote the exact ground-state energy extracted from [2].

four-body part is the costliest. We remark that the limiting
factor for the calculation of the energy variance is not mem-
ory but computing time. For typical applications, the com-
puting time of the energy variance is an order of magnitude
larger than the computing time of the corresponding IT-SM
calculation.

The energy variance captures nontrivial information on the
full model space through the expectation value 〈Ψ|H2|Ψ〉.
This is seen by inserting an identity operator represented
in the full model space in between the product of the two
Hamiltonians—the variance explicitly probes the coupling to
states outside of the truncated subspace. In practical calcula-
tions we can choose the target space we wish to extrapolate to.
The most obvious choice, the full model space spanned by all
Slater determinants that can be constructed from all possible
combinations of single-particle valence states, is employed
unless otherwise stated. In this way, the energy-variance ex-
trapolation remedies all truncations used in the IT-SM calcu-
lation, i.e., the κmin,Cmin, and Tmax truncations. Therefore, the
variance extrapolation is much more powerful than the simple
threshold extrapolation. However, other target spaces are pos-
sible, e.g., a Tmax truncated many-body space. In this case, the
variance extrapolation will only account for the κmin and Cmin
truncations.

In Fig. 2 the variance extrapolation of the ground-state en-
ergy of 56Ni is illustrated, where panel (a) shows κmin se-
quences for different reference thresholds Cmin and panel (b)
shows κmin sequences for different Tmax truncations. The first
remarkable observation is that the κmin sequences for different
Cmin fall onto a straight line. Consequently the variance ex-
trapolations for the different Cmin give the same result. The
variance-extrapolated energy is in excellent agreement with
the result for the full space reported in Ref. [2]. Even with an
additional Tmax truncation, as shown in Fig. 2(b), the results
beyond Tmax = 6 fall onto the same line. For severe trunca-
tions, e.g. Tmax = 4, we observe larger energy variances that
cannot be extrapolated reliably.
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FIG. 3. (color online) Energy-variance (a) and threshold (b) extrap-
olation of the energies of the six lowest natural-parity states of 56Ni
using the gxpf1a interaction with Cmin = {1 (l), 2 ( �), 3 (�)} × 10−4

and Tmax = 16. For the variance and threshold extrapolations, poly-
nomials of order two and three have been employed, respectively.
The red lines show the full SM results extracted from [2].

The advantages of the variance extrapolation are that a sim-
ple and robust fit model is available and that the extrapolation
remedies all truncations inherent to an IT-SM calculation. The
disadvantage is that substantial computational effort goes into
the evaluation of the energy variance, typically the compu-
tation of the variance needs more computing time than the
complete IT-SM calculation.

Applications. Using the IT-SM with threshold and vari-
ance extrapolation we now discuss the spectroscopy of 56Ni in
the p f shell with the gxpf1a interaction [29]. We demonstrate
the robustness of the IT-SM by comparing energies and elec-
tromagnetic observables with full SM results obtained with
the Antoine code [1, 35, 36] or extracted from Ref. [2].

Figure 3 shows the excitation spectrum of 56Ni for three
different reference thresholds as function of energy variance
and importance threshold. On the scale of typical excitation
energies the κmin and Cmin dependence is very weak. Both,
the variance- and the threshold-extrapolated energies are in
excellent agreement with the full SM results where available.
The second 0+ state, however, shows a quite distinct behavior.
Its κmin and Cmin dependences are stronger than for all other
states and the energy variances are significantly larger. This
indicates a particularly complicated structure, in this case due
to deformation, resulting in many small components in the
basis expansion of the eigenstate and, thus, a less accurate
approximation in the importance-truncated space. The sim-
ple threshold extrapolation does not capture the contribution
of all these small components and cannot correct for the size-
able Cmin dependence. The variance extrapolation, however,
provides a reliable extrapolation and even restores the correct
level ordering in excellent agreement with the full SM. Partic-
ularly for these fragile states, the variance extrapolation offers
significant advantages.
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FIG. 4. (color online) Natural-parity spectrum of 56Ni as a function
of Tmax in terms of absolute energies relative to the core computed in
the IT-SM with Cmin = 1 × 10−4 using the gxpf1a interaction. The
right-hand columns show the results of an energy-variance extrapo-
lation (∆E2) and the full SM energies extracted from [2].

Figure 4 summarizes the extrapolated energies for the low-
est six natural parity states of 56Ni. The results of threshold
extrapolations for a sequence of Tmax-truncated calculations
are shown in the main part of the plot, followed by the spec-
trum obtained from the variance extrapolation with Tmax = 8
and the full SM result [2]. Starting from Tmax = 8 the spec-
trum is rather stable and in good agreement with the full SM
results, except for the second 0+ state discussed above. The
energy-variance extrapolation for Tmax = 8 yields excellent
agreement with the full SM for all states.

Since the IT-SM also provides the eigenstates in the
importance-truncated space, we have access to all other ob-
servables, particularly to electromagnetic moments and transi-
tions relevant for spectroscopy. For each κmin we compute the
observable of interest using the respective eigenvector. Figure
5 illustrates the dependence of the quadrupole moment and the
B(E2) transition strength from the first 2+ state to the ground
state in 56Ni on the importance threshold and the energy vari-
ance. Also these observables show a smooth dependence on
κmin and allow for simple polynomial extrapolations to vanish-
ing importance threshold. There is a mild dependence of the
κmin-extrapolated results on Cmin which is of the same mag-
nitude as the uncertainty of the κmin extrapolation. The next
step in this sequence, Cmin = 0, would recover the full refer-
ence space, and the difference between the κmin-extrapolated
results for Cmin = 2 × 10−4 and Cmin = 1 × 10−4 indicates the
residual effect, which is smaller than the uncertainty of the
κmin extrapolation and thus irrelevant. Within these small un-
certainties, the extrapolated quadrupole moment and B(E2)
transition strength are in excellent agreement with full SM
calculations proving that spectroscopic observables are also
directly accessible in the IT-SM. However, the corresponding
energy-variance extrapolations using linear and quadratic fit
functions do not improve these results. The variance extrapo-
lation for electromagnetic observables is lacking the rigorous
formal foundation that it has for energies and a simple linear
dependence is neither guaranteed nor observed. Moreover, for
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FIG. 5. (color online) Threshold dependence and extrapolation for
the quadrupole moment of the 2+

1 state (a) and the B(E2 : 2+
1 → 0+

1 )
transition strength (c) for 56Ni. The wave functions have been
obtained in an IT-SM calculation using the gxpf1a interaction for
Tmax = 8 and the reference thresholds Cmin = {1 (l), 2 ( �), 3 (�)} ×
10−4. The red lines represent the full SM results obtained with the
Antoine code [1, 35, 36]. Panels (b) and (d) illustrate the correspond-
ing energy-variance extrapolations with respect to the target Tmax = 8
model space using linear and quadratic fit functions. For the transi-
tion strength, the mean energy variance of the states considered is
used.

electromagnetic transitions the energy variances of two states
need to be combined into one control parameter for the extrap-
olation in a heuristic way. As in [30], we use the mean of the
energy variances of the two states as control parameter. It is
evident from Fig. 5 (b) and (d) that the sequences for different
Cmin approximately collapse onto one line, however, the sys-
tematic deviations are larger than for the energies (cf. Fig. 2).
A linear fit does not yield an adequate reproduction of the
points and clearly misses the exact result. The quadratic fit re-
veals a strong dependence on Cmin for the quadrupole moment
and also overestimates the result. In conclusion, the energy
variance extrapolation for these electromagnetic observables
is less robust and accurate and computationally more expen-
sive than the simple threshold extrapolation.

We conclude this discussion with a first application of the
IT-SM in a valence space covering more than one major shell.
This will be an important future field of application of the
IT-SM in conjunction with the new valence-space interactions
derived in ab initio approaches. We consider a p f g9/2 valence
space using the pfg9b3 interaction [37, 38] and study 60Zn
and 64Ge with full model-space dimensions of 2.2 × 1013 and
1.7 × 1014, respectively. Since these extended model spaces
are susceptible to center-of-mass spuriosities, we use a Law-
son prescription to diagnose center-of-mass contaminations
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FIG. 6. (color online) Lowest natural-parity states of 60Zn (a) and
64Ge (b) computed in the IT-SM for Cmin = 2×10−4 using the pfg9b3
interaction with subsequent threshold extrapolation for different val-
ues of Tmax. The right-hand columns show the results obtained from
the energy-variance extrapolation (∆E2) of the Tmax = 6 results.
The dashed line shows an approximation for the energy of the 2+

state calculated from the excitation energy obtained in the IT-SM for
Tmax = 10 and the ∆E2-extrapolated ground-state energy. For 64Ge,
the MCSM results [32, 33] are shown for comparison.

[39]. Particularly 64Ge has been studied before in the MCSM
[32, 33] using the same interaction. Very recently, a study us-
ing the density-matrix renormalization group with the SM tar-
geted the same nucleus and valence space [26]. These compet-
ing approaches highlight the difficulty of these calculations.

Figure 6 shows the absolute energies of the lowest states in
60Zn and 64Ge extracted from a simple threshold extrapolation
for a sequence of Tmax truncated spaces and from an energy-
variance extrapolation. Whereas the spectra seem converged
at Tmax = 8 for 60Zn there is still some dependence on Tmax for
64Ge. Moreover, for 64Ge the variance extrapolation gives the
ground-state energy about 0.5 MeV lower than the threshold-
extrapolated energy at Tmax = 10, due to effects of the Cmin
and Tmax truncations ignored in the threshold extrapolations.
The sensitivity to these truncations results from the strong de-
formation of 64Ge, which requires many small components
in the SM basis expansion to be described. The variance ex-
trapolation captures these subtle effects and yields excellent
agreement with the MCSM results [32, 33].

Conclusions. We have introduced the IT-SM approach
and demonstrated its ability to extend the reach of valence-
space SM calculations into the domain of large valence spaces
and mid-shell nuclei. In addition to the threshold extrapola-
tion, we adopted an extrapolation in terms of the energy vari-
ance for the first time in the IT context. Generally, the thresh-
old extrapolation provides sufficiently accurate energies and
electromagnetic observables at no extra computational cost.
In specific cases, e.g. for states governed by deformation, the
energy-variance extrapolation provides better accuracy for en-
ergies at significant extra cost.

The IT-SM framework is ideally suited to study valence
spaces spanning two or more major shells with effective in-
teractions derived in an ab initio framework, such as the in-
medium similarity renomalization group [20, 21] or the Lee-
Suzuki approach [22, 23]. Together, these new developments

offer unique perspectives for detailed nuclear structure inves-
tigations beyond the reach of the conventional SM.

We thank G. Martı́nez-Pinedo for useful discussions and
T. Otsuka for providing us with the pfg9b3 interaction. This
work is supported by the DFG through contract SFB 634,
the Helmholtz International Center for FAIR (HIC for FAIR),
and the BMBF through contract 06DA7047I. The authors
gratefully acknowledge computing time granted by the CSC
Frankfurt (LOEWE-CSC) and the computing center of the TU
Darmstadt (LICHTENBERG).

∗ christina.stumpf@physik.tu-darmstadt.de
[1] E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, and

A. P. Zuker, Rev. Mod. Phys. 77, 427 (2005).
[2] M. Horoi, B. A. Brown, T. Otsuka, M. Honma, and

T. Mizusaki, Phys. Rev. C 73, 061305 (2006).
[3] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. Kuo,

Prog. Part. Nucl. Phys. 62, 135 (2009).
[4] T. Otsuka, T. Suzuki, M. Honma, Y. Utsuno, N. Tsunoda,

K. Tsukiyama, and M. Hjorth-Jensen, Phys. Rev. Lett. 104,
012501 (2010).

[5] S. M. Lenzi, F. Nowacki, A. Poves, and K. Sieja (2010)
arXiv:1009.1846 [nucl-th].

[6] S. M. Lenzi, F. Nowacki, A. Poves, and K. Sieja, Phys. Rev. C
82, 054301 (2010).

[7] W. A. Richter, B. A. Brown, A. Signoracci, and M. Wiescher,
Phys. Rev. C 83, 065803 (2011).

[8] K. Kaneko, Y. Sun, T. Mizusaki, and M. Hasegawa, Phys. Rev.
C 83, 014320 (2011).

[9] K. Sieja and F. Nowacki, Phys. Rev. C 85, 051301 (2012).
[10] A. Poves, E. Caurier, F. Nowacki, and K. Sieja, Phys. Scr. T

150, 014030 (2012).
[11] J. D. Holt, T. Otsuka, A. Schwenk, and T. Suzuki, J. Phys. G

39, 085111 (2012).
[12] B. A. Brown, Phys. Rev. Lett. 111, 162502 (2013).
[13] W. M. Spinella and C. W. Johnson, Phys. Rev. C 90, 014315

(2014).
[14] Y. Tsunoda, T. Otsuka, N. Shimizu, M. Honma, and Y. Utsuno,

Phys. Rev. C 89, 031301 (2014).
[15] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev.

C 89, 024319 (2014).
[16] K. Langanke and G. Martinez-Pinedo, J. Phys. Conf. Ser. 580,

012033 (2015).
[17] H. Naı̈dja, F. Nowacki, and K. Sieja, Acta Phys. Pol. B 46, 669

(2015).
[18] T. Kuo and G. Brown, Nucl. Phys. 85, 40 (1966).
[19] M. Hjorth-Jensen, T. T. Kuo, and E. Osnes, Phys. Rep. 261,

125 (1995).
[20] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev. C

85, 061304 (2012).
[21] S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder,

A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett. 113,
142501 (2014).

[22] G. R. Jansen, J. Engel, G. Hagen, P. Navratil, and A. Signo-
racci, Phys. Rev. Lett. 113, 142502 (2014).

[23] E. Dikmen, A. F. Lisetski, B. R. Barrett, P. Maris, A. M. Shi-
rokov, and J. P. Vary, Phys. Rev. C 91, 064301 (2015).

[24] M. Honma, T. Mizusaki, and T. Otsuka, Phys. Rev. Lett. 75,
1284 (1995).

mailto:christina.stumpf@physik.tu-darmstadt.de
http://arxiv.org/abs/1009.1846


6

[25] T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y. Utsuno,
Prog. Part.Nucl. Phys. 47, 319 (2001).
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