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Abstract. An ab initio (i.e., from first principles) theoretical framework capable of pro-
viding a unified description of the structure and low-energy reaction properties of light
nuclei is desirable to further our understanding of the fundamental interactions among
nucleons, and provide accurate predictions of crucial reaction rates for nuclear astro-
physics, fusion-energy research, and other applications. In this contribution we review
ab initio calculations for nucleon and deuterium scattering on light nuclei starting from
chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio
no-core shell model with continuum. This is a unified approach to nuclear bound and
scattering states, in which square-integrable energy eigenstates of the A-nucleon system
are coupled to (A−a)+a target-plus-projectile wave functions in the spirit of the resonat-
ing group method to obtain an efficient description of the many-body nuclear dynamics
both at short and medium distances and at long ranges.

1 Introduction

Understanding the structure and the dynamics of nuclei as many-body systems of protons and neu-
trons interacting through the strong force is one of the central goals of nuclear physics. As systems
that are amenable for accurate first-principle or ab initio calculations, light nuclei represent an ex-
cellent testing ground in such an effort. Until about eight years ago, with the exception of studies
involving A = 4 nucleons or less, most of the progress in this direction has been achieved through
ab initio calculations of well-bound nuclear states and their properties. However, efforts to general-
ize ab initio many-body techniques to also encompass A > 4 nuclei that are weakly bound, or that
only exist as low-energy resonances, as well as to explain light-nucleus scattering and low-energy
reactions have been growing, driven by new ideas, the rising availability of data on exotic nuclei,
and increased access to high-performance computing. At the same time, effective field theory (EFT)
and renormalization group transformations are providing nuclear theorists with a systematic approach
to, and a much-improved understanding of the nuclear forces, and are yielding increasingly precise
interactions and theoretical uncertainties, which are the basis for accurate predictions. The combina-
tion of these developments is opening the exciting prospect of a predictive and quantified theory of
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light-nucleus reactions important for applications, e.g.: scattering processes widely used in material
science to probe thin films, or analyze the surface of artworks and archeological artifacts; thermonu-
clear fusion reactions crucial for big-bang and stellar nucleosyntesis; or those that power research
facilities directed toward developing fusion energy. For the success of such a program it is essential
to properly understand three key elements and their interplay: the role of nucleon-nucleon (NN) and
three-nucleon (3N) forces; the influence of open channels and continuum degrees of freedom; and
the propagation of the uncertainties in interaction models into error bars on computed observables.
In this contribution we will review recent progress in addressing the first two of these elements by
means of ab initio calculations of light-nucleus structure and dynamics carried out within the no-core
shell model with continuum (NCSMC) approach. In particular, in Sec. 2 we will briefly outline the
main aspects of the NCSMC formalism, while results for nucleon- and deuterium-nucleus dynamics
employing chiral EFT NN+3N forces will be discussed in Sec. 3. Concluding remarks and future
prospects will be presented in Sec. 4.

2 Formalism

To achieve a unified ab initio description of structural and reaction properties of light nuclei, we work
within the theoretical framework of the NCSMC, introduced in Refs. [1] and [2]. In this approach,
the translational-invariant ansatz for the many-body wave function in each partial wave of total an-
gular momentum J, parity π and isospin T , is given by a superposition of square-integrable energy
eigenstates of the compound A-nucleon system and continuous cluster states according to:

|ΨJπT
A 〉 =

∑
α

cJπT
α |AαJπT 〉+

∑
ν

∫
dr r2 γ

JπT
ν (r)

r
Aν|Φ

JπT
νr 〉 . (1)

Here |AαJπT 〉 represent antisymmetric, translation-invariant discrete eigenstates of the A-nucleon
Hamiltonian, labelled by the energy index α. They are obtained ahead of time by means of the
ab initio no-core shell model (NCSM) [3] through the diagonalization of the A-nucleon microscopic
Hamiltonian within a model space spanned by many-body harmonic oscillator (HO) wave functions
with up to Nmax HO excitations above the unperturbed configuration and frequency ~Ω. Further

|ΦJπT
νr 〉 =

[ (
|A − a α1Iπ1

1 T1〉|a α2Iπ2
2 T2〉

)(sT )
Y`(r̂A−a,a)

](JπT ) δ(r − rA−a,a)
rrA−a,a

. (2)

are continuous resonating-group method (RGM) [4, 5] basis states, representing an (A − a)-nucleon
target and a-nucleon projectile (with a ≤ A), whose centers of mass are separated by the relative
coordinate ~rA−a,a, traveling in a 2s+1`J wave of relative motion (with s the channel spin, and ` the
relative momentum of the system). The eigenstates |A − a α1Iπ1

1 T1〉 and |a α2Iπ2
2 T2〉 of each cluster

of nucleons are obtained analogously to, and consistently with those of the A-nucleon system and are
characterized by total angular momentum I1,2, parity π1,2, isospin T1,2, and energy index α1,2. The
index ν = {A−aα1I π1

1 T1; aα2I π2
2 T2; s`} collects all quantum numbers associated with this continuous

basis, and its full antisymmetrization is recovered by introducing an appropriate inter-cluster antisym-
metrizer Aν, which accounts for exchanges of nucleons between target and projectile. The unknown
discrete cJπT

α and continuous γJπT
ν (r) = (N−1/2χ)ν(r) variational amplitudes, are the solutions of the

orthogonalized coupled-channel equations Eα δαα′ (hN−
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which follow from the many-body Schrödinger equation when using the ansatz (1) for the many-body
wave function and projecting over the model space spanned by the |AαJπT 〉 and |ΦJπT

νr 〉 basis states.
In Eq. (3), E denotes the total energy of the system and the two by two block-matrices on the left-
and right-hand side of the equation represent, respectively, the NCSMC Hamiltonian and norm (or
overlap) kernels. The upper diagonal blocks are given by the Hamiltonian (overlap) matrix elements
over the square-integrable part of the basis. In particular, as the basis states are NCSM eigenstates
of the A-nucleon Hamiltonian, these are trivially given by the diagonal matrix of the Eα eigenergies
(the identity matrix). Similarly, those over the orthonormalized continuous portion of the basis appear
in the lower diagonal block and are obtained from the norm (or overlap) RGM kernel Nνν′ (r, r′) =

〈ΦJπT
νr |AνAν′ |Φ

JπT
ν′r′ 〉 and Hamiltonian kernelHνν′ (r, r′)= 〈ΦJπT

νr |AνHAν′ |Φ
JπT
ν′r′ 〉 [6, 7]. The off diagonal

blocks contain the couplings between the two sectors of the basis, with gαν(r)= 〈AαJπT |Aν|Φ
JπT
νr 〉 and

hαν(r) = 〈A λJπT |HAν|Φ
JπT
νr 〉. The scattering matrix (and from it any scattering observable) follows

from matching the solutions of Eq. (3) with the known asymptotic behavior of the wave function at
large distances by means of the microscopic R-matrix method [8, 9].

3 Unified description of structure and reaction observables with chiral
two- and three-nucleon forces

The ab initio NCSMC was initially developed to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian and applied to the description of the unbound 7He nucleus [1, 2]. The ap-
proach was later extended to include explicit 3N forces, which are necessary to obtain a truly accurate
and quantitative description of light-nucleus scattering process [10, 11]. In the following we review
applications of such an extended approach, using an Hamiltonian based on the chiral N3LO NN inter-
action of Ref. [12] and N2LO 3N force of Ref. [13], constrained to provide an accurate description of
the A = 2 and 3 [14] systems and unitarily softened via the similarity-renormalization-group (SRG)
method [15–19] to minimize the influence of momenta higher than a low-momentum resolution scale
of ΛSRG = 2.0 fm−1. In particular, Sec. 3.1 discusses predictions of elastic scattering and recoil of
protons off 4He [20], as well as a study of continuum and 3N-force effects on the energy levels of
9Be [21]. In Sec. 3.2 we review the first application to describe more challenging deuterium-nucleus
dynamics [22], and discuss our ongoing effort to describe deuteron-induced nucleon transfer reactions.

3.1 Nucleon-nucleus scattering

The recent NCSMC study of low-energy cross sections for elastic scattering and recoil of protons from
4He of Ref. [20] is an excellent example of how the combination of efficient ab initio approaches,
accurate nuclear interactions and high-performance computing capabilities can lead to a predictive
theory of light-nucleus reactions important for applications. In this case, accurate 4He(p, p)4He and
1H(α, p)4He angular differential cross sections for a variety of proton/4He incident energies and de-
tection angles are key to the feasibility and quality of ion-beam analysis applications aimed at deter-
mining the concentrations and depth profiles of helium and hydrogen, respectively, at the surface of
materials or in thin films. Starting from SRG-evolved chiral NN+3N forces with ΛSRG = 2.0 fm−1,
accurate results for p−4He scattering were obtained by employing an Nmax = 13, ~Ω = 20 MeV
HO model space, proton-4He binary-cluster basis states including up to the first seven (Iπ1

1 T1 = 0+10,
0+20, 0-0, 2-0, 2-1, 1-1 and 1-0) 4He eigenstates, and the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound nucleus. As can be seen from Fig. 1 the
computed NCSMC angular differential cross sections agree very well with data both for 4He(p, p)4He
and 1H(α, p)4He processes. For comparison, in panels (a) and (b) we also show as black dashed lines
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Figure 1. Computed (lines) 4He(p, p)4H angular differential cross section at forward scattering angle θp = 25◦ (a)
and backscattering angle θp = 141◦ (b) as a function of the proton incident energy compared with measurements
(symbols) from Refs. [23–27], and 1H(α, p)4He angular differential cross section at the proton recoil angles
ϕp = 4◦, 16◦, 20◦, and 30◦(c) as a function of the incident 4He energy compared with data (symbols) from
Refs. [27–35]. The solid lines corresponds to the present NCSMC calculations. Also shown (black dashed lines)
are the results of Ref. [36], i.e. without 5Li square intregrable eigenstates.

the results [36] obtained within a model space spanned by p−4He cluster states alone, that is by re-
taining only the second term of Eq. (1) and solving N−

1
2HN−

1
2 χ = E χ. While the high-energy tail

of the cross section can already be described well working within such more limited model space, the
inclusion of square-integrable eigenstates of the compound 5Li system is essential at lower energy,
where it efficiently compensates for missing higher excitations of the 4He core.

At the same time, a proper treatment of continuum degrees of freedom is also indispensable to
draw reliable conclusions on the influence of 3N forces in the low-lying spectra of loosely bound
systems, such as 9Be, for which all excited states lie above the n+8Be threshold. The positive parity
resonances of this nucleus are in general found too high in energy compared to experiment, in ab
initio calculations that treat them as bound states such in the NCSM study of Ref. [37]. In the same
setting, counter to expectations, the splitting between the lowest 5/2− and 1/2− resonances tends to be
overestimated when 3N effects are included. A recent NCSMC study of 9Be as a linear combination
of 9-body square-integrable eigenstates and 8Be+n binary-cluster states with the 8Be in its ground and
2+ states [21] helped shed some light on the interplay of continuum degrees of freedom and 3N force
effects in this nucleus. As can be seen in Fig. 2, for all energy levels the inclusion of the continuum
significantly improves the agreement with experiment. In particular, the splitting between the 5/2−

and 1/2− levels is substantially reduced when the continuum is included due to a shift towards lower
energies of the 2P1/2 resonance. However, the most dramatic continuum effects were found in the
positive-parity resonances, shown in Fig. 2(b). The 1/2+ and the 3/2+ S -wave resonances are several
MeV lower in the NCSMC, close to their experimental value.

3.2 Deuterium-induced reactions

One of the most challenging and notable applications of the NCSMC accomplished so far is the
simultaneous study of the 6Li ground state and d−4He elastic scattering using NN+3N forces from
chiral effective field theory (softened – as in the previous section – by means of an SRG transformation
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Figure 2. Computed low-lying energy spectrum of 9Be (a)
negative- and (b) positive-parity states compared to experiment.
The chiral NN + 3N Hamiltonian of Ref. [38] with evolution
parameter λ = 2 fm−1 was used. The negative(positive)-parity
NCSMC calculation, coupling 9Be square integrable eigenstates
with 8Be(0+, 2+) binary cluster states, was performed in a
Nmax = 12(11), ~Ω = 20 MeV HO model space. Here Ekin

indicates the center-of-mass energy with respect to the 8Be+n
threshold.

with ΛSRG = 2.0 fm−1) [22]. Unless otherwise stated, all calculations were carried out using the
ansatz of Eq. (1) with fifteen discrete eigenstates of the 6Li system and continuous d-4He(g.s.) binary-
cluster states with up to seven deuteron pseudostates in the 3S 1−

3D1, 3D2 and 3D3−
3G3 channels.

Convergence in the HO expansions was approached at at Nmax = 11, using a frequency of 20 MeV,
around which the 6Li g.s. energy calculated within the square-integrable basis of the NCSM becomes
nearly insensitive to ~Ω [39].

Similar to the proton-4He scattering discussed earlier, also in this case the square-integrable eigen-
states of the compound (here 6Li) system play a crucial role in achieving an accurate description of
the dynamic process. Besides helping to account for the polarization of the 4He, of which we can
(computationally) afford to include only the g.s., here they also contribute to the description of the
projectile distortion. This is exemplified by the fairly rapid convergence, shown in the left panel of
Fig. 3, of the d−4He scattering phase shifts with respect to the number of deuterium pseudostates.
The high quality of the results obtained with the chiral NN+3N forces is corroborated by the good
agreement with experiment of Fig. 3 (right panel), presenting 4He(d, d)4He angular distributions in
the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident energies.

At the same time, the inclusion of continuum degrees of freedom is essential to reach a true un-
derstanding of a nucleus with low breakup threshold such as 6Li, the ground state of which lies only
1.47 MeV (compared to its absolute energy of nearly 32 MeV) below the 4He+d separation energy.
As shown in Fig. 4, combined with the inclusion of the 3N force, the NCSMC yields a rather good
agreement with the observed spectrum. As one should expect, for the ground state and the narrow
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Figure 3. Panel (a): Computed d-4He S - and D-wave phase shifts at Nmax = 9, obtained with fifteen square-
integrable 6Li eigenstates, as a function of the number of 2H pseudostates (up to seven) in each of the 3S 1−

3D1,
3D2 and 3D3−

3G3 channels. The two-body part of the SRG-evolved N3LO NN potential (NN-only) with Λ = 2.0
fm−1 was used. Panel (b): Computed 2H(α, d)4He using the NN+3N Hamiltonian (lines) and measured (symbols)
center-of-mass angular distributions at Ed = 2.93, 6.96, 8.97 [42], and 12 MeV [43], scaled by a factor of 20, 5, 2,
and 1, respectively. All positive- and negative-parity partial waves up to J = 3 were included in the calculations.

3+ resonance the NCSMC energy levels are also in good agreement with those obtained from an ex-
trapolation to Nmax = ∞ of a traditional NCSM calculation. This is a strong indication that the slight
overestimation of the first excited state is likely due to remaining deficiencies in the adopted 3N force
model, particularly concerning the strength of the spin-orbit interaction. However, only within the
NCSMC do the computed wave functions present the correct asymptotic, which for the g.s. are Whit-
taker functions. This is essential for the extraction of the asymptotic normalization constants. The
present calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic D- to S-
state ratio of the 6Li wave function in d+α configuration of −0.027 in agreement with a determination
from 6Li-4He elastic scattering [40]. Contrary to the lighter nuclei, this ratio was still uncertain for
6Li, with different determinations disagreeing even as to its sign [41].

The above accurate studies of nucleon- and deuterium-4He elastic scattering with chiral NN+3N
interactions set the stage for the most advanced ab initio calculation of the 3H(d, n)4He fusion, cur-
rently under way. This study is being carried out within an over-complete NCSMC model space
including n+4He(g.s.) and d+3H(g.s.) continuous basis states, as well as square-integrable discrete
eigenstates of the compound 5He nucleus. Figure 5 shows preliminary results for the n−4He scattering
phase shifts from zero to 24 MeV in the center-of-mass energy. Despite the fairly small size of the
harmonic oscillator basis, the calculation is in close agreement with experiment. In particular, besides
a slight shift of the P-wave resonances to lower energies, the inclusion of d+3H channels leads to the
appearance of a resonance in the 2D3/2 partial wave, just above the d+3H threshold. This is the exit
channel of the deuterium-tritium fusion.
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4 Conclusions and future prospects

A unified ab initio description of light-nucleus structure and reaction properties starting from accurate
NN+3N forces is now becoming possible, thanks in part to the NCSMC approach. This is an ab initio
theory including the continuum which combines the efficient description of short- and medium-range
correlations of the NCSM with the ability of the RGM of describing the scattering physics of a system.
In this contribution, we reviewed recent applications of the approach to the description of elastic
scattering and recoil of protons from 4He, continuum and 3N-force effects on the energy levels of the
9Be, and 6Li structure and d−4He dynamics using chiral NN+3N forces. Building on this work, we are
now pursuing several new applications to light-nucleus structure and reaction properties with chiral
NN+3N forces. The obtained accurate nucleon-4He scattering wave functions are currently being
used as input for the study of the 4He(p, p′γ)4He and 4He(n, n′γ)4He bremsstrahlung, the radiative
process by which a photon is emitted as a result of the nuclear collision between a nucleon and a
4He nucleus. The former is one of the few measured light-nucleus bremsstrahlung cross sections,
while the latter is a necessary preliminary step for the study of the more complicated 3H(d, nγ)4He
bremsstrahlung cross section, which could be used to diagnose plasmas in fusion experiments but is
not known well enough. The general NCSMC framework applicable to targets heavier than 4He is
now being applied to study continuum and 3N force effects on the low-lying spectrum of the 11Be
one-neutron halo nucleus and its photodissociation into n+10Be. The obtained accurate 6Li ground
state and d−4He scattering wave functions set the stage for the first ab initio study of the 2H(α, γ)6Li
radiative capture, responsible for the big-bang nucleosynthesis of 6Li, as well as the calculation of 6Li
g.s. properties including the effect of the continuum degrees of freedom. Finally, we are in the process
of carrying out the first ab initio calculation of the 3H(d, n)4He fusion using chiral NN+3N forces.
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