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Background: Collective excitations of nuclei and their theoretical descriptions provide an insight into the structure of nuclei.
Replacing traditional phenomenological interactions with unitarily transformed realistic nucleon-nucleon interactions increases
the predictive power of the theoretical calculations for exotic or deformed nuclei.

Purpose: Extend the application of realistic interactions to deformed nuclei and compare the performance of different interac-
tions, including phenomenological interactions, for collective excitations in the sd-shell.

Method: Ground-state energies and charge radii of 20Ne, 28Si and 32S are calculated with the Hartree-Fock method. Transition
strengths and transition densities are obtained in the Random Phase Approximation with explicit angular-momentum projection.

Results: Strength distributions for monopole, dipole and quadrupole excitations are analyzed and compared to experimental
data. Transition densities give insight into the structure of collective excitations in deformed nuclei.

Conclusions: Unitarily transformed realistic interactions are able to describe the collective response in deformed sd-shell
nuclei in good agreement with experimental data and as good or better than purely phenomenological interactions. Explicit
angular momentum projection can have a significant impact on the response.

PACS numbers: 21.60.Jz,24.30.Cz,27.30+t,21.30.Fe

I. INTRODUCTION

Excited states are one of the main sources of information
on the structure of atomic nuclei and are the subject of con-
stant research in theory and experiment. Collective excita-
tions constitute a specific class of excitations, which probe
the global structure of the nucleus and allow for a geomet-
ric interpretation in terms of oscillations of intrinsic nuclear
shapes. A well tested approach to describe collective excita-
tions is the Random Phase Approximation (RPA) [1], where
excited states are described by coherent particle-hole excita-
tions starting from a mean-field-type ground state usually ob-
tained within the Hartree-Fock (HF) approximation.

Traditionally, HF and RPA calculations are being per-
formed with phenomenological interactions. The form of such
interactions is guided by symmetry considerations and com-
putational simplicity, and their parameters are typically fitted
to binding energies and radii of a series of nuclei within the
chosen approximation for treating the many-body problem,
e.g., the HF approximation. Popular phenomenological in-
teractions are the various Skyrme forces, e.g. [2–4], and the
Gogny D1S interaction [5]. These interactions allow for effi-
cient HF calculations of nuclear binding energies and other
ground-state properties and typically yield good agreement
with experiment. However, when applying these interactions
in another many-body scheme, like RPA, or to other observ-
ables, like the collective response, their performance might
deteriorate.

An alternative approach, which we follow in this work,
uses unitarily transformed realistic nucleon-nucleon interac-
tions, like the phenomenological Argonne V18 (AV18) [6],
CD Bonn [7] or Nijmegen [8] interactions, or interactions de-
rived from chiral effective field theory (EFT) [9–12]. These
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interactions are not tuned to specific properties of finite nu-
clei and are not determined within a specific approximation
scheme, but rather are fit to two-nucleon phase-shifts and
deuteron properties in exact calculations. Thus, these inter-
actions are universal and can be employed in different many-
body approaches to describe different states and observables
on equal footing. The unitary transformations help to improve
the convergence of the many-body calculations with respect
to the many-body model space. At the same time, the qual-
ity of simple approximations, like the HF approximation, is
improved [13, 21]. The interactions used in this work are
based on the AV18 potential, transformed either with the Uni-
tary Correlation Operator Method (UCOM) or the Similarity
Renormalization Group (SRG) method [13, 22].

During the past decade, routine calculations for deformed
nuclei within the HF and RPA framework have become pos-
sible. So far, these calculations have only been carried out
with phenomenological interactions [14–16]. This work is the
first application of the HF-RPA treatment with unitarily trans-
formed realistic interactions to deformed nuclei. The exten-
sion to intrinsically deformed nuclei opens a new domain of
application away from semi-magic nuclei and allows for a de-
tailed study of the impact of deformation on collective modes.
Due to the symmetry breaking in the mean-field density, the
HF state is no longer an eigenstate of the angular-momentum
operator and the proper symmetry has to be restored by an
explicit angular-momentum projection.

In this work, we study nuclei in the sd-shell. These nuclei
already exhibit strong deformations with only a small num-
ber of nucleons. We focus on three even-even self-conjugate
nuclei, the prolate nuclei 20Ne and 32S, and the oblate nucleus
28Si. 20Ne and 28Si show a purely axial deformation, while 32S
also has a small triaxial component. The deformation in these
nuclei is driven by α-cluster correlations in the ground states,
which makes them a particularly interesting candidate for the
study of deformation effects on the collective response. At the
same time the presence of α-clustering suppresses the pairing
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correlations in these open-shell nuclei, so that a simple HF
approach without explicit pairing is applicable. For these first
calculations we restrict ourselves to axial deformations, which
simplifies the explicit angular-momentum projection signifi-
cantly.

II. HARTREE FOCK METHOD

A. Formalism

To obtain a nuclear ground-state, the starting point for the
RPA, we employ the HF method. We use ls-coupled spherical
harmonic oscillator (HO) states as the computational basis.
An HO state is fully determined by the quantum numbers n,
l, j, m j and mt. In a spherical HF implementation, only states
with different n but equal l, j and m j can mix. Deformed HF
states can be obtained, if the HF single-particle states are also
allowed to contain contributions of different total and orbital
angular-momentum j, m j and l

|αmt〉 =
∑

a

Cαmt
a |a mt〉 . (1)

The HO quantum numbers n, l, j and m j are combined in the
index a. The HF state index α covers the same range as the
HO index a, but does not have the same physical meaning.
If a nucleus attains an axially symmetric deformation, the HF
single-particle states are a superposition of HO states with dif-
ferent n, l, j. The single-particle projection quantum numbers
m j remain good quantum numbers, and their sum in the HF
state, denoted by K, defines the angular-momentum projec-
tion onto the symmetry axis of the intrinsic frame, which is the
only remaining good quantum number in the intrinsic frame
(except for isospin).

To obtain quantities in the lab-frame, where the ground
state is an eigenstate of the total angular-momentum operator
Ĵ2, angular-momentum projection has to be employed [17–
19]. The angular-momentum projected energy of an axially
symmetric nucleus is

EJ =
〈HF|Ĥ P̂J

KK |HF〉

〈HF|P̂J
KK |HF〉

. (2)

The projection operator for axial-symmetry is given by

P̂J
MK =

2 J + 1
2

∫ 1

−1
dJ

MK(β) eiβĴy d(cos β) , (3)

where dJ
MK(β) denotes the reduced Wigner-Functions.

The ground state is obtained by minimizing the projected
ground-state energy in a so called variation-after-projection
approach. This procedure is approximated by carrying out
a number of constrained HF calculations with the modified
Hamiltonian

Ĥ′ = Ĥ − λ Q̂ . (4)

Among these solutions, the one with the lowest projected
ground-state energy is selected. The quadrupole operator Q̂

is a natural choice for the constraint, as this is the domi-
nant collective degree of freedom for axially deformed nu-
clei. We refer to this treatment as approximate variation-after-
projection.

B. Calculation details

The HO basis used for our calculations is truncated with
respect to the principal oscillator quantum number 2 n + l =

e ≤ emax, with an additional truncation for the orbital angular-
momentum l ≤ lmax. Unless stated otherwise, we use emax =

14 and lmax = 10. The ground-state energies for emax = 14 are
converged to within less than 50 keV. The optimal harmonic
oscillator lengths aHO are determined by a minimization of the
ground-state energy over a set of discrete oscillator lengths,
the values used throughout this work are summarized in Tab.
I.

We use a total of four interactions in this work. Three
are based on unitary transformations of the AV18 potential.
UCOM(VAR)2b is a pure two-body interaction, transformed
with the UCOM, where the correlation operators are deter-
mined from a variational approach. It was first published
in 2005 [20] and has since been used in a number of cal-
culations [21, 23–26] and is also described in [13]. Since
the UCOM(VAR)2b interaction does not reproduce the cor-
rect charge radii (cf. section II C), other interactions have
been developed, which go beyond a pure two-body interac-
tion, e.g., the S-SRG3b and S-UCOM(SRG)3b interactions in-
troduced in [27]. The S-SRG3b interaction is transformed via
an SRG flow-evolution. For the S-UCOM(SRG)3b interaction,
the solution of an SRG flow-evolution is used to determine the
correlation operators for the UCOM transformation. In both
interactions, the unitary transformation only acts on partial
waves containing relative S waves, i.e., the 1S 0 and the cou-
pled 3S 1-3D1 partial waves. To include effects of three-body
forces, these interactions also contain a simple phenomeno-
logical three-body contact force V̂3 = C3 δ(r̂1 − r̂2) δ(r̂2 − r̂3).
The strength C3 is adjusted to reproduce the charge radius
systematics for doubly-magic nuclei from 4He to 208Pb, de-
tails can be found in Ref. [27]. First applications of these
interactions in the RPA framework for collective excitations
in spherical nuclei are discussed in Ref. [28]. The contact
interaction is used as a computationally efficient substitute for
realistic three-body forces. In mean-field calculations, contact
interactions of arbitrary particle rank can be reduced to lower-
order interactions which only depend on integer powers of the
ground-state density. The inclusion of realistic three-body in-
teractions, e.g. the ones from chiral EFT, is still extremely
challenging for deformed nuclei. As an example of a popu-
lar phenomenological interaction, we also included the Gogny
D1S interaction [5] into our studies.

C. Results

We start by discussing the HF results for the ground states
of 20Ne, 28Si and 32S with and without angular-momentum
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FIG. 1. (color online) Intrinsic and angular-momentum projected ground-state energy as a function of axial deformation for different interac-
tions. Markers denote actual data points, lines are drawn with a spline approximation, dashed lines indicate insufficient data points. The three
interactions are: UCOM(VAR)2b (A ) and (q ), S-SRG3b ( A ) and (r ), S-UCOM(SRG)3b (

A

) and (t ). This plot uses a basis truncation
of emax = lmax = 10.

20Ne z 28Si z 28Si z 32S z

FIG. 2. (color online) Density distribution for energy minima (oblate and prolate for 28Si) obtained with the S-UCOM(SRG)3b interaction. The
isosurface is located at 40% of maximum density and the maximum densities are 0.169 fm−3 for 20Ne, 0.190 fm−3 for oblate 28Si, 0.162 fm−3

for prolate 28Si and 0.161 fm−3 for 32S.

interaction
UCOM(VAR)2b S-UCOM(SRG)3b

nucleus S-SRG3b Gogny D1S
12C 1.6 1.6 1.6 1.5
16O 1.6 1.6 1.6 1.5
20Ne 1.6 1.6 1.6 1.5
28Si 1.6 1.7 1.7 1.5
32S 1.6 1.7 1.8 1.6
40Ca 1.6 1.8 1.8 1.6

TABLE I. Optimal oscillator lengths (aHO) for the various nuclei and
interactions (in fm).

projection. Figure 1 shows the dependence of the ground-
state energy on the deformation parameter. Here, we used a
truncation of emax = 10 to reduce the computational cost. At
this level, the ground-state energy is converged within 1 MeV,
which is sufficient for the presentation in Fig. 1. The ground-

state energy of 20Ne varies continuously with the deformation,
with a minimum at a strong prolate deformation. For 28Si and
32S, we see some irregularities in the curves, which are an arti-
fact of the constrained minimization procedure. From a prac-
tical point of view this does not pose a problem, as long as the
discontinuities are sufficiently far away from the energy mini-
mum, which is always the case. 28Si shows two practically de-
generate minima, one for oblate and one for prolate deforma-
tion. For the pure two-body interaction UCOM(VAR)2b and
the Gogny D1S interaction [14], the oblate minimum has a
slightly lower energy and both minima are connected through
triaxial deformation. However, this is not the case for the
S-SRG3b and S-UCOM(SRG)3b interactions. Since the oblate
shape of 28Si is well established, we focus on this solution for
our RPA calculations. 32S shows three local minima, one at
oblate deformation, one at a moderate prolate deformation and
one at a strong prolate deformation. For all interactions, the
minimum with the moderate prolate deformation is the abso-
lute minimum and it is well separated from the other minima.
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FIG. 3. (color online) Systematics of the projected ground-state en-
ergy per nucleon and the nuclear charge-radius for the different in-
teractions used in this study: UCOM(VAR)2b (q ), S-SRG3b (t ),
S-UCOM(SRG)3b (r ), Gogny D1S (u ), experiment (u ). Open
symbols intrinsic, filled symbols projected values.

It should be noted that the general dependence of the ground-
state energy on the deformation is very robust under changes
of the underlying interaction.

The intrinsic density distributions for the ground states of
the relevant minima are shown in Fig. 2. Obviously, the in-
trinsic shapes are more complicated than the simple ellipsoids
corresponding to pure quadrupole deformations. The interac-
tions induce α-cluster correlations, which generate deforma-
tions of higher multipole orders as can be seen in the intrinsic
densities.

Figure 3 shows the systematics of the ground-state energy
per nucleon and the nuclear radius. The most prominent fea-
ture of the ground-state energy per nucleon is the difference
of about 4–5MeV between the measured energies and the val-
ues obtained with realistic interactions. This shift is due to
correlations that are not described by a single Slater determi-
nant and cannot be recovered by angular momentum projec-
tion. Since the unitary transformations only account for the
short-range correlations, these missing correlations are driven
by intermediate-range contributions in the interaction. We
have shown in several previous publications that these miss-
ing correlations can be described by many-body perturbation
theory and that the inclusion of low-order perturbative correc-
tions to the energy leads to a good systematic agreement of
the ground-state energies with experiment [13, 20, 27]. We
have also shown that the RPA does describe these ground-
state correlations very well and that the inclusion of the RPA
correlation energy (ring summation) leads to a good agree-
ment with the experimental ground-state energies for closed-
shell nuclei [29]. The contributions to the correlation energy
resulting from long-range correlations related to deformation
are recovered by the angular-momentum projection and are
significantly smaller than the intermediate-range correlations.

In case of the charge-radii, the missing correlations only
play a minor role and the difference between the intrinsic and
projected radii is negligible. For spherical nuclei, the two-

plus three-body interactions S-SRG3b and S-UCOM(SRG)3b
are in good agreement with experiment (see also [27]). While
the radii of 20Ne and 32S are still described rather well, the
results for 28Si are about 10% above the measured radii.

Figure 3 also contains data obtained with the Gogny D1S
interaction. Since the interaction is fitted to binding energies,
these are reproduced very accurately. The radii of deformed
nuclei are comparable to those obtained with the S-SRG3b and
S-UCOM(SRG)3b interactions.

III. RANDOM PHASE APPROXIMATION FOR
DEFORMED NUCLEI

A. Formalism

In the standard RPA, excitations are described as one-
particle one-hole and one-hole one-particle excitations. The
excitation operator Q̂†ω is given by

Q̂†ω =
∑
mi

Xω
ma â†mâa −

∑
ma

Yω
ma â†aâm , (5)

where indices starting with m denote states above the Fermi
level and those starting with a denote states below. The RPA
ground-state is defined by the relation Q̂ω|RPA〉 = 0 and ex-
cited states are given by |ω〉 = Q̂†ω|RPA〉.

The summation in (5) runs over all possible particle-hole
(ph) pairs defined with respect to the HF ground state. In
the case of deformed ground-states, the number of ph-pairs
cannot be reduced by angular momentum coupling rules, as
j ceases to be a good quantum number. However, for axial
deformations, the number of ph-pairs can still be reduced by
considering the projection quantum number m j and parity. In
a spherically symmetric basis spanning 15 major HO shells,
calculating electric monopole excitations requires 38 ph pairs
for 16O and 72 for 40Ca. If the basis is extended to allow ax-
ially symmetric deformations, these numbers increase to 780
and 1968, respectively.

The amplitudes Xω
ma and Yω

ma are obtained by the equations-
of-motion method and the quasi-boson approximation [19],
which result in the RPA matrix equation A B

B∗ A∗

 Xω

Yω

 = Eω

1 0
0 −1

 Xω

Yω

 , (6)

with

Amanb = 〈HF|[â†aâm, [Ĥ, â†nâb]]|HF〉

= (εm − εa)δmn δab + 〈m, b|Ĥ|a, n〉 ,

Bmanb = −〈HF|[â†aâm, [Ĥ, â
†

bân]]|HF〉

= 〈m, n|Ĥ|a, b〉 .

(7)

Here, a Hamiltonian with only one- and two-body terms is
assumed. If the Hamiltonian also includes a three-body inter-
action V̂3, it has to be separated and the following terms have
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to be added to Eq. (7)

A(3)
manb =

∑
k

〈m, b, k|V̂3|a, n, k〉 ,

B(3)
manb =

∑
k

〈m, n, k|V̂3|a, b, k〉 .
(8)

B. Projected transition matrix element

The reduced transition probability for an electric transition
operator T̂λµ from an initial state |Φ0〉 to the final state |Φω〉 is
defined as

B(Eλ, J0 → Jω) =
1

2 J0 + 1
|(Φ0‖T̂λ‖Φω)|2

=
1

2 J0 + 1

∑
µ

|〈Φ0|T̂λµ|Φω〉|
2 .

(9)

We use the shorthand notation B(Eλ) for J0 = 0 and Jω = λ.
Intrinsic transition amplitudes between the RPA ground-state
and an excited state are calculated with

〈RPA|T̂λµQ̂†ω|RPA〉 ≈ 〈HF|[T̂λµ, Q̂†ω]|HF〉

=
∑
ma

(
Xω

ma 〈HF|T̂λµ â†mâa|HF〉

+ Yω
ma 〈HF|â†aâm T̂λµ|HF〉

)
=

∑
ma

(
Xω

ma 〈a|T̂λµ|m〉 + Yω
ma 〈m|T̂λµ|a〉

)
.

(10)

Transition amplitudes between angular-momentum projected
RPA states, denoted by their total angular-momentum values
J0 and Jω, are given by the following formula [19]

(J0‖T̂λ‖Jω) = (2 J0 + 1) N0 Nω

∑
K0Kω
µ

g(0)
K0

g(ω)
Kω

× (−1)λ+Jω+K0

 J0 Jω λ

−K0 K0 − µ µ


× 〈RPA|T̂λµ P̂Jω

K0−µ,Kω
Q̂†ω|RPA〉 ,

(11)

with the normalization factors N0 and Nω. Similar to Eq. (10),
we express this in terms of the HF ground-state and the X- and
Y-amplitudes

(J0‖T̂λ‖Jω) ≈ (2 J0 + 1) N0 Nω (−1)J0−KHF

×
∑
ma
µ

(
Xω

ma + (−1)Kma Yω
ma

)  J0 λ Jω
−KHF µ KHF − µ


× 〈HF|T̂λµ P̂Jω

KHF−µ,KHF+Kma
â†mâa|HF〉 .

(12)

Notation and further details are discussed in Appendix A. We
like to point out that Eq. (12) is used directly in the calcula-
tions. We do not use any further approximations for either the
overlaps or the integration involved in the angular momentum
projection (the numerical integration is performed using 2048
points).

C. Transition operators

We use the standard form of the electric transition operators
in the long wavelength limit given by [19]

T̂λµ =

A∑
i

ei r̂λi Yλµ(Ω̂i) . (13)

As ususal, the electric transitions are decomposed into a sum
of an isoscalar and an isovector part

T̂λµ =
1
2

(
T̂ IS
λµ + T̂ IV

λµ

)
(14)

T̂ IS
λµ = e

Z∑
i

r̂λi Yλµ(Ω̂i) + e
N∑
i

r̂λi Yλµ(Ω̂i) (15)

T̂ IV
λµ = e

Z∑
i

r̂λi Yλµ(Ω̂i) − e
N∑
i

r̂λi Yλµ(Ω̂i) . (16)

For the electric monopole transitions the generic first-order
transition operator (13) is a constant and thus cannot induce
transitions. Instead the second-order term is generally used

T̂00 =

A∑
i

ei r̂2
i Y00(Ω̂i) . (17)

Since the electric dipole operator is potentially contaminated
by spurious center-of-mass contributions, corrected transition
operators are used [30, 31]

T̂ IS
1µ = e

A∑
i

(
r̂3

i −
5
3 Rms r̂i

)
Y1µ(Ω̂i) , (18)

T̂ IV
1µ = e

N
A

Z∑
i

r̂i Y1µ(Ω̂i) − e
Z
A

N∑
i

r̂i Y1µ(Ω̂i) , (19)

with the mean-square radius Rms of the nucleus.
In principle, the unitary transformation used for the inter-

actions also has to be applied to the transition operators, but
considering missing higher-order correlations in the RPA and
the long-range and low-momentum character of rλ, it is justi-
fied to neglect this transformation. For the UCOM(VAR)2b in-
teraction, it was shown that the correction due to transformed
transition operators is indeed small and not relevant in most
cases [23].

IV. RPA RESULTS

A. Convergence and sensitivity

We start the presentation of the RPA results with a discus-
sion of the model-space convergence and the sensitivity to
the input interaction. Figure 4 shows the convergence with
respect to oscillator length and basis truncation for the ex-
ample of the isoscalar monopole response of 28Si. For ease
of presentation, the discrete RPA transition strengths in this
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FIG. 5. (color online) Response functions for the ISM mode in 28Si
for different interactions: S-UCOM(SRG)3b ( ) , S-SRG3b ( ),
UCOM(VAR)2b ( ) and Gogny D1S ( ).

and the following figures are folded with Lorentzians of width
Γlor = 1 MeV. For energies below ≈ 15 MeV, all curves lie on
top of each other. In the giant resonance region at 20–30MeV,
the finer details of the response differ, but the centroid of the
resonance is well converged. Above 30 MeV, the differences
increase, but the very prominent peak above 30MeV is present
in all calculations. We conclude that the standard basis size
of emax = 14 warrants a sufficient degree of convergence for
the following discussions. The picture is similar for other re-
sponse functions and nuclei.

As a second aspect we study the sensitivity of the response
to the input interaction. Figure 5 again shows the isoscalar
monopole response of 28Si for all interactions used in this
work. The pure two-body interaction UCOM(VAR)2b yields a
rather different response than both two- plus three-body in-
teractions, S-SRG3b and S-UCOM(SRG)3b. It only shares

the general features, i.e., the multi-peak structure, followed
by a smaller resonance, followed by a high-energy peak,
but on a stretched energy scale. This stretching can be un-
derstood in connection to the ground-state radii, which are
underestimated by this interaction. In a simple mean-field
picture, too small radii entail larger spacings of the single-
particle levels and thus a shift of the unperturbed response to
higher excitation energies [23]. The three-body part of the
S-SRG3b and S-UCOM(SRG)3b interactions corrects for the
description of the ground-state radii and leads to smaller en-
ergy spacings of the HF energy-levels near the Fermi level,
which in turn lowers the excitation energies of the collective
peaks. Although the two three-body interactions S-SRG3b
and S-UCOM(SRG)3b yield different HF ground-state ener-
gies (cf. Sec. II), the response functions are very similar and
only differ in details. This shows that the HF ground-state en-
ergy has little impact on the response functions. In the follow-
ing, we limit the presentation to the S-UCOM(SRG)3b inter-
action. The results obtained with the Gogny D1S interaction
are quite different from the other three, but since it constitutes
a completely different approach, this is not unexpected.

B. Structure of the collective response

In a next step we survey the response for the standard col-
lective modes and discuss the role of deformation in more
detail. Figure 6 shows the RPA response of the isoscalar
monopole (ISM), isoscalar dipole (ISD), isovector dipole
(IVD) and isoscalar quadrupole (ISQ) transition operators for
20Ne, 28Si and 32S, calculated with the S-UCOM(SRG)3b in-
teraction. The discrete response in Fig. 6 is color-coded to
identify the different K-components. Since all states with K ,
0 are twofold degenerate, the corresponding lines are doubled
in height. The continuous curves again result from folding
the discrete strengths with Lorentzians of width Γlor = 1MeV.
Note that this width might be very different from the actual es-
cape width, which cannot be described in our RPA approach.

In axial symmetric nuclei, different oscillation modes can
be classified by the projection quantum number K of the to-
tal angular-momentum and the parity Π. Oscillations with
(K,Π) = (0,+) are along the symmetry axis and preserve the
axial symmetry. For the cases studied in this work, they ap-
pear as ISM breathing modes, ISQ β-vibrations or as a mix-
ture of both. Modes with (0,−) and (1,−) only appear for
dipole transitions. As the (0,+) mode, the (0,−) mode is
along the symmetry axis and preserves axial symmetry. How-
ever, due to the negative parity, the density increases in one
half of the nucleus, while it decreases in the other. The (1,−)
mode shows a similar oscillation pattern, but is directed per-
pendicular to the symmetry axis. Therefore, it breaks the ax-
ial symmetry. Spurious center-of-mass motion can appear in
both types of dipole oscillations. Together with the already
mentioned (0,+) mode, the (1,+) and the (2,+) modes make
up ISQ transitions. The (2,+) modes are γ-vibrations and the
(1,+) modes are rotational. As can be seen in Fig. 6, rota-
tional modes do not contribute much to the ISQ response, but
as we will discuss later, a spurious mode can appear.
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FIG. 6. (color online) Response functions for the ISM, ISD, IVD, and ISQ excitations (top to bottom) for 20Ne, 28Si, and 32S (left to right)
obtained in angular-momentum projected RPA calculations with the S-UCOM(SRG)3b interaction. The K-components are: K = 0 ( ),
K = ±1 ( ) and K = ±2 ( ). The convolution ( ) uses Lorentzians with a width of Γlor = 1 MeV.

In prolate nuclei, like 20Ne and 32S, the symmetry axis of
the nucleus is also the longest axis. Therefore, in the mean-
field picture, K = 0 oscillations see a shallow potential and
appear at lower energy than modes with higher K. This be-
havior is most pronounced for IVD and ISQ transitions. IVD
transitions below 20 MeV are dominated by K = 0 modes,
while those above 20 MeV are dominated by K = 1 modes.
The ISQ giant resonance consists almost exclusively of K = 2
modes, and, therefore, can be found at a rather high energy of
20–25 MeV.

In oblate nuclei, like 28Si, the symmetry axis of the nu-
cleus is the shortest axis. Therefore, the situation is the ex-
act opposite to the one found in prolate nuclei. The low-lying
IVD strength is made up exclusively by K = 1 modes, while
K = 0 modes can only be found at very high energies. The
ISQ giant resonance is found at a significantly lower energy

of 15–20 MeV.

C. Comparison to experiment and Gogny D1S interaction

We can now compare the RPA response to experimental
data. In Fig. 7, the isovector dipole response is compared to
data from photonuclear experiments [32–34] and the isoscalar
response is compared to data from α-scattering [35]. Since the
cross-section for dipole transitions is proportional to E ·B(E1),
the response is multiplied with the energy to ease comparison.
The measurements from [35] are given as the fraction of the
energy-weighted sum-rule, so the same scaling applies also
for isoscalar transitions. As we do not consider absolute val-
ues of the transition strengths, all strength plots are normal-
ized to the range from 0 to 1.
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FIG. 7. (color online) Comparison of selected RPA results to measured response functions. The experimental data shown as black histograms
are taken from Refs. [32] (20Ne IVD), [33] (28Si IVD), [34] (32S IVD) and [35] (28Si isoscalar). The folded RPA response (Γlor = 1 MeV) is
shown as colored curves for different interactions with and without projection: projected S-UCOM(SRG)3b ( ), intrinsic S-UCOM(SRG)3b

( ), projected UCOM(VAR)2b ( ), intrinsic UCOM(VAR)2b ( ), projected Gogny D1S ( ) and intrinsic Gogny D1S ( ).

Since the S-SRG3b and S-UCOM(SRG)3b interactions
yield almost identical results, we only show data for the
UCOM(VAR)2b and S-UCOM(SRG)3b interactions. For both
interactions, the qualitative features of the response generally
agree well with measurement, however, the exact energy of
the peaks is not reproduced.

For ISM transitions, Fig. 7a, α-scattering shows a strong
peak between 15 and 20 MeV. While the UCOM(VAR)2b in-
teraction reproduces the position of this peak very well, the
S-UCOM(SRG)3b interaction yields a peak at ≈ 14 MeV.
At energies from 20–35 MeV, the UCOM(VAR)2b and
S-UCOM(SRG)3b interactions show strength, structured into
multiple peaks. In this area, experiment shows a shallow
and broad structure without any distinct peaks. As we can
see in the figure, monopole strength at high energies is
linked to angular-momentum projection. Without the angu-
lar momentum-projection, there would be no strength above
25 MeV. The projected response function obtained with the
Gogny D1S interaction shows almost no low-lying strength,
but a very pronounced peak at 25–30 MeV. In contrast, the
intrinsic response reproduces the measured peak very well.

The measured ISD response, Fig. 7b, shows a few nar-
row peaks around 10 MeV, and a broad structure from 17

to 35 MeV, with significant peaks around 20 MeV. The
UCOM(VAR)2b and S-UCOM(SRG)3b interactions reproduce
this structure, especially for the S-UCOM(SRG)3b interaction,
the agreement with experiment is remarkably good. Results
from calculations done with the Gogny interaction do not re-
produce the measured results.

For the ISQ response, Fig. 7c, the measurement shows
three peaks with increasing height in the range between 10
and 20 MeV, followed by some strength up to 30 MeV. All
interactions, including Gogny D1S, reproduce this shape. De-
pending on the interaction, it is found lower than the measured
peak (S-UCOM(SRG)3b and Gogny D1S) or at higher energy
(UCOM(VAR)2b).

In the case of IVD transitions in 20Ne, Fig. 7d, data is only
available in an energy window from 16 to 28 MeV. Measure-
ment shows three narrow peaks at and below 20 MeV, fol-
lowed by a continuum up to the highest measured energy. Our
calculations for the UCOM(VAR)2b and S-UCOM(SRG)3b in-
teractions show strength distributed from 15 to above 35MeV,
with more distinct peaks around 20 MeV. This is in general
agreement with the measured data. Results for the Gogny
D1S interaction look a little different, but also agree with the
measured data. In the case of 28Si, Fig. 7e, we get very
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FIG. 8. (color online) The left column shows the angular-momentum projected ( ) and intrinsic ( ) ISM and ISQ response functions for
28Si obtained with the S-UCOM(SRG)3b interaction. The middle and right columns depict transition densities for selected excitations, marked
by the arrows in the response plots: (a) transition density for the ISM state at ≈ 14 MeV, (b) transition density for the ISM state at ≈ 33 MeV,
(c) total density ρgs + δρ of the spurious ISQ state at ≈ 3 MeV, and (d) transition density of the ISQ state at ≈ 17 MeV. Contour lines (at 1%,
20%, 40%, 60%, 80% and 99% of ρmax) always show the ground-state density for orientation. The insets show 3D isodensity surfaces of the
respective (transition) density at 40% of the maximum.

similar curves for both, measurement and calculation. Here,
the UCOM(VAR)2b and S-UCOM(SRG)3b interactions show
a double-peak in the region of 20 MeV, followed by strength
up to ≈ 30 MeV. Experiment shows a double-peak with an
energy between the calculated values of the UCOM interac-
tions. The Gogny D1S interaction predicts a peak exactly at
the measured energy, however, it is much too narrow. For 32S,
Fig. 7f, experiment shows a broad peak from 15MeV to about
30MeV. This is reproduced by all interactions. We do not find
any sizable effects of the axial-symmetric approximation for
32S.

In conclusion, the S-UCOM(SRG)3b interaction, includ-
ing a phenomenological three-body interaction yields a good
overall agreement with the experimental response. The agree-
ment is at the same level or sometimes better than for the
purely phenomenological Gogny D1S interaction. Consider-
ing that the RPA is only a first-order approximation, the agree-
ment with experiment is remarkable.

Motivated by this observation, we will present a de-
tailed comparison of deformed RPA calculations for the
S-UCOM(SRG)3b interaction with new high-resolution exper-
iments for the IVD response in a joint publication with the ex-
perimental groups [36]. There we analyze, in particular, the
fine structure of the giant dipole resonance and elucidate the
role of deformation driven by α-clustering through the con-
frontation of high-resolution data with our calculations.

D. Transition densities

Going beyond the response, we can compute the transition
densities for various discrete RPA states in order to get an in-
tuitive geometrical understanding of the dominant excitation
modes. In Fig. 8, we show the intrinsic transition densities
for a few selected transitions of the ISM (a and b) and ISQ
response (c and d). The figures on the left show the angular-
momentum projected and the intrinsic response. For the ISM
response, we see a large effect of the angular-momentum pro-
jection, while the effect on the ISQ response is rather limited.

The strong effect on the ISM response is the consequence
of a mixing of breathing oscillations and β-vibrations through
the angular-momentum projection. The projection generates a
superposition of all possible rotations of the system, weighted
by the angle-dependent Wigner functions to construct a pre-
defined angular momentum. In the case of monopole tran-
sitions, the Wigner function is a constant. Therefore, an
intrinsic β-vibration, like the one at ≈ 33 MeV, Fig. 8b,
(and to some extent the state at ≈ 14 MeV, Fig. 8a), is
converted to a monopole-type breathing oscillation by the
angular-momentum projection. This results in a redistribu-
tion of strength from the ISQ to the ISM channel for these
states, which can best be seen for the state at ≈ 33 MeV.
In this case, the intrinsic ISM transition strength practically
vanishes, whereas the angular-momentum projected strength
provides the second strongest peak in the whole response.
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At this point, a comment is in order on the so-called needle
approximation for the angular-momentum projection, which
is used, e.g., in Refs. [14, 15]. For monopole transitions,
the needle approximation simply reproduces the intrinsic re-
sponse and, thus, misses some major effects of the projection,
as can be seen in Fig. 8.

Another interesting state is the ISQ state at ≈ 3 MeV, Fig.
8c, which has K = 1. This state appears for all deformed nu-
clei in the ISQ response, but is not shown in Fig. 6 and 7. The
angular-momentum projection strongly reduces the strength
of this state. Further investigation shows, that the state has
very large Y-amplitudes—about the same order of magnitude
as the X-amplitudes. This suggest a spurious rotational state,
as is expected for deformed nuclei, which is confirmed by the
transition density. For this state, Fig. 8c shows not the tran-
sition density, but the total density ρgs + δρ. The shape of
the nucleus remains unchanged and it is only rotated around
the y-axis. As this spurious mode is found at an energy sig-
nificantly above zero, it can contaminate other, non-spurious
states with (K,Π) = (1,+). However, since these modes do
not contribute significantly to the ISQ response, this does not
pose a problem for the current studies. Spurious center-of-
mass modes are also found for the (0,−) and (1,−) modes, but
lie at zero energy.

As was already seen in Fig. 6, the ISQ response is domi-
nated by K = 2 transitions, which correspond to γ-vibrations.
Figure 8d shows the transition density of the strongest ISQ
state, which is indeed a perfect γ-vibration.

V. CONCLUSIONS

In this paper, HF and RPA calculations with unitarily trans-
formed realistic interactions for axially-symmetric deformed
nuclei have been carried out for the first time. To obtain
ground-state energies and response functions in the lab-frame,
an explicit angular-momentum projection was employed.

For all studied nuclei, we find a much stronger fragmen-
tation of the resonances than in spherical nuclei. Due to the
angular-momentum projection, the ISM response extends to
energies as high as 40 MeV. For the IVD response, we find
the expected dipole splitting. In prolate nuclei, oscillations
along the symmetry axis are found at lower energies, while
those perpendicular to the symmetry axis are found at higher
energies. In oblate nuclei, the situation is reversed. In case of
the ISD response, we find multiple peaks at high and low ener-
gies. The ISQ response is clearly dominated by γ-vibrations.
The geometry of the individual oscillation modes was studied
via transition densities, which confirmed spurious rotational
states and the effect of the angular-momentum projection on
breathing oscillations and β-vibrations.

In comparison to experiment, the unitarily transformed in-
teractions, in particular the S-UCOM(SRG)3b and S-SRG3b
interactions, which also yield the correct radius systemat-
ics, provide a good overall description of the major collec-
tive modes in our deformed and angular-momentum projected
RPA calculations. The quality of the agreement is compara-
ble to, and sometimes better than results obtained with phe-

nomenological interactions, such as the Gogny D1S interac-
tion. This already shows that a good reproduction of the
ground-state energies at the HF level is neither a necessary
nor a sufficient criterion for a good description of the collec-
tive response.

This study opens multiple lines of research for the future.
Motivated by the good agreement with experiment and the
fact that significant fragmentation is already present in the
RPA response, we will analyze the fine structure of the gi-
ant dipole resonance and compare to new high-resolution data
for the nuclei discussed [36]. This will shed light on the role
of deformation and α-clustering on the fragmentation and fine
structure of giant resonances. Another obvious extension of
the present work is the use of two- plus three-nucleon inter-
actions from chiral EFT. First studies along these lines with
a spherical formulation of the RPA are well advanced. How-
ever, present chiral interactions, even after the inclusion of
the chiral three-nucleon terms, still underestimate the radii of
medium-mass nuclei [37]. It remains to be seen how con-
sistent next-generation chiral Hamiltonians will behave in this
respect. Finally, the extension from first- to second-order RPA
will be a target of future studies. As a first step, second-order
RPA calculations for spherical nuclei including realistic 3N
interactions are already under way [38].
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Appendix A: Angular-momentum projected transition
amplitudes in the RPA framework

The unprojected transition amplitudes to the RPA ground
state are obtained by applying the quasi-boson approximation
[1], followed by straightforward calculation

〈RPA|T̂λµ Q̂†ω|RPA〉 ≈ 〈HF|[T̂λµ, Q̂†ω]|HF〉

=
∑
ma

(
Xω

ma 〈a|T̂λµ|m〉 + Yω
ma 〈m|T̂λµ|a〉

)
. (A1)

It would be desirable to derive the projected RPA transition
amplitudes in a similar manner, directly from the equation for
projected transition amplitudes [19]

(J0‖T̂ λ‖Jω) = (2 J0 + 1) N0 Nω

∑
K0Kω
µ

g(0)
K0

g(ω)
Kω

× (−1)λ+Jω+K0

 J0 Jω λ

−K0 K0 − µ µ


× 〈RPA|T̂λµ P̂Jω

K0−µ,Kω
Q̂†ω|RPA〉 .

(A2)
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However, this is not possible in a consistent and unambigu-
ous way. The canonical way of the RPA is to replace pairs of
operators with their commutators and the RPA ground-state
with the HF ground-state. This treatment is not possible be-
cause of the projection operator. Since the projection operator
projects a fixed set of quantum numbers onto another fixed
set, these quantum numbers would have to change accord-
ing to the order of the operators T̂ λ

µ and Q̂†ω—otherwise the
projection operator would annihilate the states. One could re-
lax the requirement of a commutator and allow anything to
be added that vanishes for the true RPA states, but still gives
a Y-amplitude contribution in the QBA. Then, the quantum
numbers of the projection operator could be changed to match
the other operators. However, this scheme also allows the in-
troduction of an arbitrary phase—and this freedom has to be
exploited if one wants to reproduce the unprojected results for
spherical nuclei. But since this treatment is ambiguous and
leaves much to be desired in terms of simplicity, we opt for a
different, less ambiguous approach.

To calculate the projected transition amplitudes, we again
consider the unprojected intrinsic transition amplitudes. The
complete transition amplitude of multipolarity λ including
normalization factors is given by

〈RPA|T̂ λ|ω〉
√
〈RPA|RPA〉〈ω|ω〉

=
∑
µ

〈RPA|T̂λµ|ω〉
√
〈RPA|RPA〉〈ω|ω〉

=
∑
µ

〈RPA|T̂λµ Q̂†ω|RPA〉√
〈RPA|RPA〉〈RPA|Q̂ω Q̂†ω|RPA〉

.

(A3)

The numerator is given by Eq. (10)

∑
µ

〈HF|[T̂λµ, Q̂†ω]|HF〉 =
∑
µ,ma

(
Xω

ma 〈a|T̂λµ|m〉 + Yω
ma 〈m|T̂λµ|a〉

)
.

(A4)
Assuming real matrix elements, we write the solution in a
form that is more suitable for use in the projected formalism

∑
µ

〈HF|[T̂λµ, Q̂†ω]|HF〉

=
∑
µ,ma

(
Xω

ma 〈HF|T̂λµ â†mâa|HF〉 + Yω
ma (−1)µ〈HF|T̂λ−µ â†mâa|HF〉

)
=

∑
ma

(
Xω

ma + (−1)Kma Yω
ma

) ∑
µ

〈HF| T̂λµ â†mâa|HF〉 .

(A5)

We renamed −µ to µ in the Y-amplitude part and used that K
is a well defined quantum number in axially symmetric nuclei.
Kma denotes the K quantum number of the state â†mâa|HF〉.

To get the projected transition amplitudes, we simply in-
clude the XY-factor in the formula for the projected transition
amplitudes (A2)

(RPA‖T̂ λ‖ω) = (2 J0 + 1) N0 Nω (−1)J0−K0

×
∑
ma

(
Xω

ma + (−1)Kma Yω
ma

) ∑
µ

 J0 λ Jω
−KHF µ KHF − µ


× 〈HF|T̂λµ P̂Jω

KHF−µ,KHF+Kma
â†mâa|HF〉 .

(A6)

Simplifications arising from axial symmetry have already
been applied. We treat the normalization factors accordingly.
The normalization factor from the RPA ground state is given
by

N0 =

√
〈HF|P̂J0

KHF,KHF
|HF〉−1 . (A7)

The unprojected normalization factor for the excited state Nω

is given by

〈RPA|Q̂ω Q̂†ω|RPA〉 ≈ 〈HF|[Q̂ω, Q̂†ω]|HF〉

=
∑
ma

(
Xω

ma Xω
ma − Yω

ma Yω
ma

)
, (A8)

which evaluates to unity due to the orthonormality of the RPA
amplitudes. We, therefore, use the following projected nor-
malization factor Nω

N−2
ω =

∑
ma,nb

(
Xω

ma Xω
nb − Yω

ma Yω
nb

)
× 〈HF|â†mâa P̂Jω

KHF+kam,KHF+knb
â†nâb|HF〉 .

(A9)
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