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We present the first ab initio construction of valence-space Hamiltonians for medium-mass nuclei
based on chiral two- and three-nucleon interactions using the in-medium similarity renormalization
group. When applied to the oxygen isotopes, we find good agreement with experimental ground-
state energies, including the flat trend beyond the drip line at 24O. Similarly, even-parity spectra
in 21,22,23,24O are in excellent agreement with experiment, and we present predictions for excited
states in 25,26O. The results exhibit a weak dependence on the harmonic-oscillator basis parameter
and give a good description of spectroscopy within the standard sd valence space.

PACS numbers: 21.30.Fe, 21.60.Cs, 21.60.De, 21.10.-k

Introduction. With the next generation of rare-
isotope beam facilities, the quest to discover and under-
stand the properties of exotic nuclei from first principles
represents a fundamental challenge for nuclear theory.
This challenge is complicated in part because the proper
inclusion of three-nucleon (3N) forces plays a decisive
role in determining the structure of medium-mass nuclei
[1, 2]. While ab initio many-body methods based on nu-
clear forces from chiral effective field theory (EFT) [3–5]
have now reached the medium-mass region and beyond
[6–19], restrictions in the nuclei and observables accessi-
ble to these methods have limited their scope primarily
to ground-state properties in semi-magic isotopic chains.

For open-shell systems with many valence nucleons,
rather than attempting to solve the full A-body prob-
lem, it is profitable to follow the shell-model paradigm by
constructing and diagonalizing an effective Hamiltonian
in which the active degrees of freedom are the Av valence
nucleons confined to a few orbitals near the Fermi level.
Both phenomenological and microscopically based imple-
mentations of the shell model have been used with great
success to understand and predict nuclear structure, in-
cluding the evolution of shell structure with changing nu-
cleon numbers, properties of ground and excited states
and electroweak transitions [20–22].

Recent microscopic shell-model studies have revealed
the impact of chiral 3N forces in predicting ground- and
excited-state properties in neutron- and proton-rich nu-
clei [1, 2, 23–27]. Despite the novel insights gained from
these studies, they make approximations which are dif-
ficult to benchmark. This is because the microscopic
derivation of the effective valence-space Hamiltonian re-
lies on many-body perturbation theory (MBPT) [28],
where order-by-order convergence is not clear. Even with
efforts to calculate particular classes of diagrams non-
perturbatively [29], results will still be sensitive to the

harmonic-oscillator frequency ~ω (due to the core), and
the choice of valence space [2, 23, 24].
To overcome these limitations, it was recently shown

how the in-medium similarity renormalization group
(IM-SRG) method, originally developed for ab initio cal-
culations of ground states in closed-shell systems [30], can
be extended to provide a nonperturbative framework to
derive effective valence-space Hamiltonians and opera-
tors. The first proof-of-principle calculations in Ref. [31]
focused on 6Li and 18O without initial 3N forces and
gave promising indications that an ab initio description
of ground- and excited-states for open-shell nuclei may
be possible with this approach. In this Letter, we apply
the IM-SRG starting from chiral nucleon-nucleon (NN)
and 3N forces to the more challenging and physically in-
teresting problem of the oxygen isotopes, where recent
experiments have revealed the emergence of exciting new
physics near and beyond stability [32–36].
In-Medium SRG. The IM-SRG consists of a continu-

ous unitary transformation U(s), parameterized by a flow
parameter s, that drives the Hamiltonian to a band- or
block-diagonal form [37]. This is accomplished by solving
the flow equation

dH(s)

ds
= [η(s), H(s)] , (1)

where η(s) ≡ [dU(s)/ds]U †(s) is the anti-Hermitian gen-
erator of the transformation. With a suitable choice of
η(s), the off-diagonal part of the Hamiltonian, Hod(s),
is driven to zero as the flow parameter s approaches ∞.
The “in-medium” label derives from the fact that we con-
trol the proliferation of induced many-body operators by
normal ordering the Hamiltonian with respect to a finite-
density reference state for eachA-body system of interest.
We truncate Eq. (1) to normal-ordered two-body opera-
tors, which we refer to as the IM-SRG(2) approximation.
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The utility of the IM-SRG stems from the fact that one
can tailor the definition of Hod to drive the Hamiltonian
to a convenient form for a given problem. For instance, to
construct a shell-model Hamiltonian for a nucleus com-
prised of Av valence nucleons outside a closed core, we
define a Hartree-Fock (HF) reference state |Φ〉 for the
core with Ac particles, and split the single-particle basis
in our calculation into hole (h) as well as valence (v) and
non-valence (q) particle states. Since the core is inert in
a shell-model calculation, we must eliminate all matrix
elements which couple |Φ〉 to excitations, just as in the
ground-state calculations discussed in [13, 14, 30]. In ad-
dition, we need to decouple states with Av particles in
the valence space, :a†v1 . . . a

†
vAv

: |Φ〉, from states contain-
ing non-valence, i.e., q states.
Normal-ordering the Hamiltonian with respect to |Φ〉

and working in the IM-SRG(2) truncation

H(s) = E0 +
∑

ij

fij :a†iaj : +
1

4

∑

ijkl

Γijkl :a†ia
†
jalak : ,

(2)
we define [31]

{

Hod
}

= {fph, fpp′ , fhh′ ,Γpp′hh′ ,Γpp′vh ,Γpqvv′}+H.c.
(3)

and use the generator

η =
∑

ij

fod
ij

∆ij
:a†iaj : +

1

4

∑

ijkl

Γod
ijkl

∆ijkl
:a†ia

†
jalak : −H.c. , (4)

where ∆ij and ∆ijkl are Epstein-Nesbet energy denomi-
nators (see Refs. [13, 30, 31]). With this choice of gener-
ator, Hod(∞) → 0, and the shell-model Hamiltonian is
obtained by taking all valence-space matrix elements.
Implementation. For our calculations, we start from

the chiral NN interaction at next-to-next-to-next-to-
leading order (N3LO) by Entem and Machleidt, with cut-
off ΛNN = 500 MeV [4, 38], and soften it by applying a
free-space SRG evolution to lower the momentum resolu-
tion scale, λSRG. Three-nucleon forces which are induced
by the evolution are included consistently; we refer to this
as the NN+3N-induced Hamiltonian in the following. Re-
sults for this interaction correspond to the unevolved NN
interaction, up to truncated induced 4N,. . . ,AN forces
[39, 40]. The NN+3N-full Hamiltonian, in contrast, also
includes an initial local chiral 3N interaction at next-
to-next-to-leading order (N2LO) [41], and is consistently
evolved to λSRG at the 3N level.
As discussed in Refs. [42, 43], we use the cutoff

Λ3N = 400 MeV in the initial 3N interaction to avoid
issues with induced 4N interactions in the free-space
evolution. The SRG-evolved Hamiltonians are trans-
formed into an angular-momentum-coupled basis built
from single-particle spherical harmonic-oscillator states
with quantum numbers e = 2n + l ≤ emax. An addi-
tional cut e1 + e2 + e3 ≤ E3max < 3emax is introduced to

TABLE I. IM-SRG sd-shell SPEs (in MeV) for λSRG =
1.88 fm−1 and ~ω = 24 MeV, compared with MBPT [23]
(NN+3N, see text) and phenomenological USDb values [45].

Orbit NN NN+3N-ind. NN+3N-full MBPT USDb

d5/2 −7.90 −3.77 −4.62 −3.78 −3.93
s1/2 −6.87 −2.46 −2.96 −2.42 −3.21
d3/2 1.41 2.33 3.17 1.45 2.11

manage the storage requirements of the 3N matrix ele-
ments. Throughout this work, we use E3max = 14, which
for resolution scales λSRG = 1.88− 2.24 fm−1 gives con-
verged ground states with uncertainty of less than 1%
[10, 12–14, 18].
The first step in our calculations is solving the HF

equations for a closed-shell core, here 16O. In the Hamil-
tonian, we use the intrinsic kinetic energy,

Tint = T−Tcm =

(

1−
1

A

)

∑

i

p
2
i

2m
−

1

Am

∑

i<j

pi·pj , (5)

with A being the particle number of the target nucleus

rather than the core, in order to account for the change
of the single-particle wavefunctions as Ac → A [44]. The
Hamiltonian is then normal ordered with respect to the
core’s HF reference state, and the resulting in-medium
zero-, one-, and two-body operators serve as the ini-
tial values for the IM-SRG flow equations. The residual
three-body term is neglected, giving rise to the normal-
ordered two-body (NO2B) approximation [7, 10, 12].
The one- and two-body parts of the fully decoupled

(s → ∞) valence-space Hamiltonian are taken as the
single-particle energies (SPEs) and two-body matrix ele-
ments, respectively, to be diagonalized exactly in a stan-
dard shell-model calculation. We restrict ourselves to a
valence space comprised of the d5/2, d3/2, and s1/2 or-
bitals (the sd shell) above an inert 16O core. We specif-
ically show IM-SRG(2) results for Hamiltonians with
λSRG = 1.88 fm−1, because the spectra are insensitive
to variations of the resolution scale. Energy levels for
λSRG = 2.24 fm−1 typically differ by 30 − 50 keV, with
only two instances of deviations of 100 keV. Of greater
interest is the ~ω-dependence of the spectra, because ~ω
is adjusted to the core in phenomenological shell-model
calculations. We illustrate the effect of varying ~ω from
20 MeV to 24 MeV by shaded bands in the following
plots. Since this variation probes the convergence of the
calculation, and is mainly governed by λSRG rather than
the specific input Hamiltonian, we only show these bands
for the NN+3N-full Hamiltonian.
Results. The IM-SRG SPEs for the NN, NN+3N-

induced, and NN+3N-full Hamiltonians are given in Ta-
ble I and compared to those calculated in MBPT, using a
softened N3LO NN interaction and a re-fit N2LO 3N in-
teraction (see Refs. [1, 2, 39] for details), and values from
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FIG. 1. (Color online) Single-particle energy evolution (a) and ground-state energies (b) for A-dependent Hamiltonian with
λSRG = 1.88 fm−1. The range of NN+3N-full results for ~ω = 20, 24 MeV is given by the shaded bands.

the phenomenological USDb Hamiltonian [45]. Similar
to the MBPT calculations, in the NN case, the IM-SRG
SPEs are significantly overbound with λSRG = 1.88 fm−1

(e.g., the d5/2 orbital is 4MeV lower than in USDb). In
the NN+3N-full case, the resulting SPEs are now compa-
rable to MBPT and phenomenology. The d5/2−d3/2 gap
is approximately 2MeV larger in IM-SRG, pointing to a
stronger spin-orbit component, while the d5/2 − s1/2 gap
is similar to that in MBPT, being almost 1MeV larger
than in USDb. The variation of the IM-SRG SPEs with
respect to λSRG = 1.88−2.24 fm−1 and ~ω = 20−24MeV
results in small changes in d5/2 of less than 100 keV and
in d3/2 and s1/2 of less than 300 keV.

Insights into the structure towards the exotic region
can be gained from the evolution of the SPEs as a func-
tion of neutron number, shown in Fig. 1(a). The im-
portance of 3N forces in determining the oxygen dripline
was highlighted in microscopic valence-space calculations
[1, 23] and ab initio ground-state calculations [8, 14, 15].
Here we find a similar mechanism at work: in the
NN+3N-induced case, the d3/2 orbit remains bound
throughout the isotopic chain, in particular past 24O. In
contrast, the repulsive effects of 3N forces shift the d3/2
orbit to a relatively high starting point of 3.17MeV in
17O, while moderating its decrease to neutron-rich iso-
topes, where it becomes bound by only 160 keV in 24O.

We now diagonalize the A-dependent IM-SRG valence-
space Hamiltonian to obtain the ground-state energies,
relative to 16O, of the oxygen isotopes 18−28O. The re-
sults, shown in Fig. 1(b), highlight the predictive power
of IM-SRG as well as the decisive role of 3N forces. For
an SRG-evolved NN interaction with λSRG = 1.88 fm−1

alone, the oxygen isotopes are progressively overbound
throughout the chain due to the neglect of both initial
and induced 3N forces, leading to unrealistic predictions
in the neutron-rich region. Including induced 3N forces
lessens the overbinding, but fails to give the correct loca-
tion of the dripline. With initial 3N forces included, the
agreement with experimental data is remarkably good,

though moderate overbinding is observed past 22O. Fur-
thermore, the flat trend of the ground-state energies be-
yond 24O is similar to the experimental data in 25,26O
[33–35] and agrees well with other many-body calcula-
tions based on chiral NN+3N forces [1, 8, 15, 23]. We
note, however, that 25−28O are weakly bound w.r.t. 24O;
the ground state of 26O lies 90 keV below that of 24O.

This result is in contrast with the multi-reference IM-
SRG (MR-IM-SRG) results of Ref. [14], which give a
robust prediction of the dripline in 24O with the same
Hamiltonian. Overall, the ground-state energies calcu-
lated from the IM-SRG valence-space Hamiltonians are
slightly below those from MR-IM-SRG, which are in very
good agreement with experimental data and other ab ini-

tio methods [14]. Of course, the MR-IM-SRG evolution is
carried out in the target nucleus rather than in the core
with shifted A. Its open-shell reference state accounts
for wavefunction relaxation effects, as well as the pres-
ence of nucleons in the valence-shell during the evolution.
Therefore differences, especially for neutron-rich systems
far from the 16O core, are to be expected, although they
only amount to 2% at most. In the future, we will re-
visit this issue by using 22O and 24O cores with a suitably
adapted IM-SRG generator, and compare our present re-
sults with MR-IM-SRG results for excited states.

In Fig. 1(b), we highlight the insensitivity of the
ground-state energies to a variation of the harmonic-
oscillator parameter from ~ω = 20 MeV to 24MeV by
showing a band for the NN+3N-full Hamiltonian. Dif-
ferences due to this range of ~ω values only become non-
negligible for very neutron-rich systems, growing from
approximately 650 keV in 24O to 1.9MeV in 28O. The
relative independence of calculated observables with re-
spect to ~ω is a striking feature of the nonperturbative
IM-SRG valence-space approach, implying a remarkable
level of convergence already at the IM-SRG(2) level.

We now turn to excitation spectra in the oxygen iso-
topes. Since it is well known that NN forces already give a
reasonable description of low-lying spectra near 16O [28],



4

MBPT     IM-SRG 
 NN+3N-ind

    IM-SRG
  NN+3N-full

 Expt.

0

1

2

3

4
E

ne
rg

y 
(M

eV
)

7/2
+

7/2
+

(7/2
+
)

5/2
+

5/2
+

5/2
+

(5/2
+
)

3/2
+

3/2
+

(3/2
+
)

3/2
+

1/2
+

1/2
+

1/2
+

(1/2
+
)

5/2
+

5/2
+

5/2
+

5/2
+

7/2
+

21
O

FIG. 2. (Color online) Excited state spectrum of 21O for IM-
SRG Hamiltonians based on NN+3N-induced and NN+3N-
full inputs, with ~ω = 20 MeV (dotted) and ~ω = 24 MeV
(solid), compared with MBPT (NN+3N) and experiment [46].

by considering 21−26O we focus on the region of the new
N = 14, 16 magic numbers and beyond stability. It was
shown in Ref. [23] that microscopic valence-space Hamil-
tonians calculated in the standard sd-shell did not ade-
quately reproduce the experimental data, even when 3N
forces were considered. Instead, single-particle orbitals
from above the sd-shell, namely f7/2 and p3/2, when in-
cluded, improved spectroscopy, indicating that a pertur-
bative treatment of these orbitals may not be sufficient.
Given the nonperturbative character of the IM-SRG, we
expect similar improvements already in the sd shell.

We first consider the spectrum of 21O in Fig. 2, which
can be considered as a d5/2 particle coupled to 20O.While
no calculation fully reproduces experiment, MBPT and
IM-SRG predict the correct ordering of the first two ex-
cited states if an initial 3N force is present, but with the
1/2+ too low in MBPT and too high in IM-SRG. Recall
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FIG. 3. (Color online) Excited state spectrum for 22O as in
Fig. 2, with experimental values taken from [46, 47].
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FIG. 4. (Color online) Excited state spectrum of 23O as in
Fig. 2, with experimental values taken from [48, 49].

that the MBPT is based on a softened N3LO interaction
with a re-fit 3N interaction [1, 2], so the difference is due
to the different input Hamiltonians as well as the non-
perturbative IM-SRG approach. The two effects will be
investigated and disentangled in future work. We also
note that the tentative 7/2+ and 5/2+ spin assignments
are reproduced in both calculations, but the ordering is
reversed in IM-SRG compared to MBPT.

We show the calculated IM-SRG 22O spectra com-
pared with MBPT [23] and experiment [46, 47] in Fig. 3.
Without the initial 3N force, the spectrum is too com-
pressed with respect to experiment, where in particular
the 2+1 state is 1.0MeV too low, not reproducing the dou-
bly magic nature of 22O. It is interesting to note, how-
ever, that the correct ordering of the 3+1 and 0+2 states
is reproduced, a feature not seen in either MBPT or the
phenomenological USDb Hamiltonian. When the initial
3N force is included in the IM-SRG, we see significant
improvement, where the final spectrum is very close to
experiment, in contrast to that of the extended-space
MBPT calculations, which reproduce the high 2+1 state
but have too uniform spacing and an incorrect 3+1 − 0+2
ordering.

There are no bound excited states observed in 23O, and
only two higher-lying states, which have been tentatively
identified as 5/2+ and 3/2+, indicating the sizes of the
d5/2− s1/2 and d3/2− s1/2 gaps respectively [48, 49]. We
show the calculated and experimental 23O spectrum in
Fig. 4, where again without the initial 3N force, IM-SRG
does not reproduce this spectrum well, with the 5/2+ be-
ing nearly 1MeV too low, but the 5/2+− 3/2+ gap close
to experiment. Similar to the MBPT calculation, with
the initial 3N force, the 5/2+ energy is almost exactly
that of experiment, only now the 3/2+ is 1MeV too high
rather than 1MeV too low. Due to its position 2MeV
above threshold, however, it is expected that continuum
effects, when included, will lower the energy of this state,
bringing it closer to the experimentally observed value.
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FIG. 5. (Color online) Excited state spectra of 24−26O for
the NN+3N-full Hamiltonian, with ~ω = 20 MeV (dotted)
~ω = 24 MeV (solid), compared to experiment for 24O [32].

As expected from the high 3/2+ state in 23O, we
also predict 24O to be doubly magic, but with a 2+1 en-
ergy 1.2MeV higher than experiment as seen in Fig. 5.
Nonetheless, the 2+ − 1+ spacing is very close to ex-
periment and with continuum effects included, these
states will be lowered. Finally, we present predictions for
excited-state energies in the unbound 25,26O isotopes. We
again find large 1/2+ and 5/2+ excitation energies in 25O,
which are expected to decrease with continuum coupling.
In 26O, we predict one low-lying state below 6MeV: a
2+ just below 2MeV. A tentative identification of an ex-
cited state near 4MeV was reported in [35], but no such
natural-parity state was found in our calculations.

Conclusions. We have presented the first ab initio

construction of a nonperturbative sd-shell Hamiltonian
based on chiral NN and 3N forces. The SPEs and two-
body matrix elements are very well converged with re-
spect to basis size and exhibit a weak ~ω dependence.
Furthermore, a very good description of ground and ex-
cited states is found throughout the chain of oxygen
isotopes in a valence space consisting of only the sd-
shell orbits. This provides the exciting possibility to ex-
tend these calculations to nearby F, Ne, and Mg isotopic
chains and through extending the valence space, will give
access to the island-of-inversion region and potentially
the full sd-shell neutron dripline.
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