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We investigate selected static and transition properties of 12C using ab initio No-Core Shell Model
(NCSM) methods with chiral two- and three-nucleon interactions. We adopt the Similarity Renor-
malization Group (SRG) to assist convergence including up to three-nucleon (3N) contributions.
We examine the dependences of the 12C observables on the SRG evolution scale and on the model-
space parameters. We obtain nearly converged low-lying excitation spectra. We compare results
of the full NCSM with the Importance Truncated NCSM in large model spaces for benchmarking
purposes. We highlight the effects of the chiral 3N interaction on several spectroscopic observables.
The agreement of some observables with experiment is improved significantly by the inclusion of 3N
interactions, e.g., the B(M1) from the first JπT = 1+1 state to the ground state. However, in some
cases the agreement deteriorates, e.g., for the excitation energy of the first 1+0 state, leaving room
for improved next-generation chiral Hamiltonians.

PACS numbers: 21.30.-x,05.10.Cc,13.75.Cs

I. INTRODUCTION

No-Core Configuration Interaction methods have ad-
vanced rapidly in recent years to make it feasible to ac-
curately solve fundamental problems in nuclear structure
and reaction physics (e.g., see Refs. [1–11]). At the same
time, significant theoretical advances regarding the un-
derlying Hamiltonians, constructed within chiral effec-
tive field theory (EFT), provide a foundation for nuclear
many-body calculations rooted in QCD [12, 13]. In order
to improve the convergence behavior of the many-body
calculations we employ a consistent unitary transforma-
tion of the chiral Hamiltonians. Here we use the Sim-
ilarity Renormalization Group (SRG) [14–18] approach
that provides a straightforward and flexible framework
for consistently evolving (softening) the Hamiltonian
and other operators, including three-nucleon interac-
tions [8, 19–21].

The goal of this paper is twofold. First, we aim to pro-
vide results for 12C spectra and other observables using
realistic chiral nucleon-nucleon (NN) plus three-nucleon
(3N) interactions with uncertainty estimates where feasi-
ble. Second, we provide benchmark comparisons between
the full No-Core Shell Model (NCSM) [1–3] and the Im-
portance Truncated No-Core Shell Model (IT-NCSM) [7–
9, 21].

Previous investigations of 12C with chiral NN+3N in-
teractions, softened with the SRG approach, have mainly
focused on the ground-state energy [8, 20] and its con-
vergence properties. One of the directions in which the
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present work extends these earlier efforts is by investigat-
ing a wider set of observables including selected electro-
magnetic transitions and the lowest-lying negative parity
states. Our initial results for the 2+ and 4+ rotational
excited states were presented in Ref. [22].

We limit our investigations to a single form of the chiral
NN+3N interaction. We use the chiral NN interaction
at N3LO with 500 MeV/c cutoff from Ref. [23] together
with the 3N potential at N2LO [24] in the local form of
Ref. [25] with 500 MeV/c cutoff and low-energy constants
determined entirely in the three-nucleon sector [26]. This
is also the Hamiltonian used in Refs. [8, 19–21, 27]. We
evolve this Hamiltonian using the free-space SRG to three
representative flow parameters or momentum scales to
examine the scale-dependence of our results. As in the
earlier applications, we retain the induced many-body
interaction through the three-nucleon level and neglect
induced four- and multi-nucleon interactions.

In Section II, we briefly review the formalism and sum-
marize related results from previous work. The results
for selected 12C observables are presented in Section III.
Section IV presents benchmarks of the IT-NCSM and
NCSM. Finally, Section V summarizes our conclusions
and provides perspectives on future efforts.

II. THEORETICAL BACKGROUND

A. NCSM and IT-NCSM

We employ two related ab initio methods to solve for
the properties of 12C. In the first approach, the NCSM,
we follow Refs. [1–3] where, for a chosen NN and 3N
interaction (either without or with SRG evolution) we
diagonalize the resulting many-body Hamiltonian in a
sequence of truncated harmonic-oscillator (HO) basis
spaces. The basis spaces are characterized by two pa-
rameters: Nmax specifies the maximum number of total
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HO quanta beyond the HO Slater determinant with all
nucleons occupying their lowest-allowed orbitals and ~Ω
specifies the HO energy. The goal is to achieve conver-
gence as indicated by independence of these two basis
parameters, either directly or by extrapolation [4].

In the second approach, the IT-NCSM, we follow
Refs. [7–9, 21] where subspaces of the Nmax-truncated
spaces are dynamically selected according to a measure
derived from perturbation theory. The IT-NCSM uses
this derived importance measure κν for the individual
many-body basis states and retains only states with |κν |
above a threshold κmin in the model space. Through a
variation of this threshold and an a posteriori extrap-
olation κmin → 0 the contribution of discarded states
is recovered. We use the sequential update scheme dis-
cussed in Refs. [7, 21], which connects to the full NCSM
model space and, thus, to the exact NCSM results in the
limit of vanishing threshold. In the following we report
threshold-extrapolated results of the IT-NCSM at each
Nmax including an estimate for the extrapolation uncer-
tainties. In addition, we compare the IT-NCSM results
with the NCSM results in model spaces where we valuate
results from both approaches.

B. Chiral NN+3N Interactions

Chiral EFT has developed into a standard approach
for the construction of NN and 3N interactions with low-
energy constants (LECs) fitted to NN and 3N data. As
mentioned above, we adopt the chiral EFT potential at
N3LO with 500 MeV/c cutoff from Ref. [23] together with
an 3N potential at N2LO [24] in the local form of Ref. [25]
as this Hamiltonian was adopted for a range of ab ini-
tio calculations of light and medium-mass nuclei and,
in particular, was used in previous works for 12C. For
the LECs introduced by the 3N interaction at N2LO, we
adopt the values fitted to the A = 3 binding energies and
tritium half-life [28]. That is, we adopt cD = −0.2 and
cE = −0.205 for a cutoff of 500 MeV/c.

The first paper to report results for 12C with chiral
NN+3N interactions (with a different choice for cD and
cE) is Ref. [29]. That work employed the NCSM with the
Okubo-Lee-Suzuki (OLS) transformation method [30, 31]
to improve convergence and presented natural parity re-
sults up through Nmax = 6 basis spaces. We considerably
extend this span of basis spaces with the present work
and include the lowest unnatural parity states. More-
over, we use the SRG evolution to soften the interaction
instead of the OLS transformation. The SRG-evolved
chiral NN+3N Hamiltonian adopted here was first ap-
plied in IT-NCSM calculations for the ground-state and
excitation spectra of 12C in Ref. [8].

C. SRG Evolution

In the SRG framework the unitary transformation of
an operator, e.g. the Hamiltonian, is formulated in terms
of a flow equation

d

dα
Hα = [ηα, Hα] (1)

with a continuous flow parameter α. The initial condition
for the solution of this flow equation is given by the ’bare’
chiral Hamiltonian. The physics of the SRG evolution is
governed by the anti-hermitian generator ηα. A specific
form widely used in nuclear physics [17, 32] is given by

ηα = m2
N [Tint, Hα] (2)

where mN is the nucleon mass and Tint is the intrin-
sic kinetic-energy operator. This generator drives the
Hamiltonian towards a diagonal form in a basis of eigen-
states of the intrinsic kinetic energy, i.e., towards a diag-
onal in momentum space.

Along with the reduction in the coupling of low-
momentum and high-momentum components by the
Hamiltonian, the SRG induces many-body operators be-
yond the particle rank of the initial Hamiltonian. In prin-
ciple, all the induced terms up to the A-body level are
to be retained in order that the transformation remains
unitary and the spectrum of the Hamiltonian in an exact
A-body calculation is independent of the flow parame-
ter. In practice we have to truncate the evolution at a
low particle rank (typically, two or three nucleons), which
violates formal unitarity. In this situation we can use the
flow parameter as a diagnostic tool to quantify the con-
tribution of omitted many-body terms [8, 21].

Throughout this work, we employ the SRG evolution
at the three-nucleon level and neglect four- and multi-
nucleon induced interactions. For the application in the
NCSM it is convenient to solve the flow equation for
the three-body system using a HO Jacobi-coordinate ba-
sis [21, 33]. The intermediate sums in the three-body
Jacobi basis are truncated at Nmax = 40 for channels
with J ≤ 5/2 and ramp down linearly to Nmax = 24 for
J ≥ 13/2. Based on this and the corresponding solu-
tion of the flow equation in two-body space (using either
a partial-wave momentum- or harmonic-oscillator repre-
sentation) we extract the irreducible two- and three-body
terms of the Hamiltonian for the use in A-body calcula-
tions. A detailed discussion of the SRG evolution in the
3N sector with benchmarks of the truncations involved
can be found in Ref. [21].

D. Computational Aspects of the Many-Body
Calculations

In our many-body calculations, the size of the largest
feasible model space is constrained by the total num-
ber of three-body matrix elements required as well as by
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the number of many-body matrix elements that are com-
puted and stored for the iterative Lanczos diagonaliza-
tion procedure. Through a JT -coupled scheme and an
efficient on-the-fly decoupling during the calculation of
the many-body Hamilton matrix [8, 21, 34, 35], the limit
arising from the handling of 3N matrix-elements has been
pushed to significantly larger many-body model spaces.
At present, for mid p-shell nuclei the number of non-zero
many-body matrix elements defines the maximum Nmax

that can be reached in NCSM calculations.
For the full NCSM calculations we employ the MFDn

code [36–38] that is highly optimized for parallel comput-
ing. The calculations were performed on the Cray XE6
Hopper at NERSC, using up to about 100 TB of mem-
ory across 76,320 cores; and on the Cray XK6 Jaguar
at ORNL, using 180 TB of memory across 112,224 cores,
taking about 40 minutes per ~Ω-value at Nmax = 8 for
8 converged eigenvalues. MFDn has been demonstrated
to scale well on these platforms for these types of runs;
scaling runs have been performed up to 261,120 cores on
the Cray XK6 Jaguar [39].

The IT-NCSM calculations are performed with a ded-
icated code [7, 21] that has been developed to accommo-
date the specific demands of an importance-truncated
calculation in a framework optimized for parallel per-
formance. Due to the reduction of the model-space di-
mension resulting from the importance truncation, typi-
cally by two orders of magnitude, the many-body Hamil-
tonian matrix is significantly smaller and the memory
needs are drastically reduced. An IT-NCSM run target-
ing 8 positive-parity states of 12C in an Nmax = 8 space
for α = 0.0625 fm4 and ~Ω = 20 MeV takes about 10
hours wall time on 160 nodes on the Cray XE6 Hop-
per at NERSC and needs a total of 2.5 TB of memory
for storing the many-body Hamiltonian matrix in the
largest importance-truncated space. This run includes
the construction of the importance-truncated space, the
computation of the many-body Hamiltonian matrix, and
the separate solution of the eigenvalue problems for 15
different values of the importance threshold κmin. Fur-
ther details on the set-up of the IT-NCSM calculations
are discussed in Sec. IV.

III. RESULTS

A. Excitation Spectra of 12C

We first investigate the dependence of the excitation
spectra of 12C on the SRG flow parameter. Starting
from the initial chiral NN+3N interaction, we evolve the
Hamiltonian up to a specific flow-parameter α, consis-
tently including two- and three-body terms, but neglect-
ing SRG-induced four- and multi-nucleon interactions.
Note that even in cases, where we omit the initial chi-
ral 3N interaction for comparison purposes, we always
include the SRG-induced 3N terms in our calculations,
leading to the so-called NN+3N-induced Hamiltonian.
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FIG. 1. (color online) Excitation spectra of 12C with the
chiral NN+3N interactions for three different SRG evolution
scales as a function of Nmax at ~Ω = 20 MeV compared with
experiment. The solid line for each calculated level represents
results with α = 0.0625 fm4. The long dashed line represents
NCSM results with α = 0.08 fm4 and the short dashed line
represents NCSM results with α = 0.04 fm4.

Figure 1 shows the behavior of the excitation en-
ergies obtained in the full NCSM with increasing
Nmax for three values of the SRG flow parameter
α = (0.04, 0.0625, 0.08) fm4, corresponding to momen-
tum scales λSRG = α−1/4 = (2.24, 2.0, 1.88) fm−1. The
spread of converged results with the SRG flow param-
eter will provide an indication of the relevance of the
neglected SRG-induced four- and multi-nucleon interac-
tions. The absolute ground-state energy starts to show a
non-negligible flow-parameter dependence for 12C as dis-
cussed in detail in Refs. [8, 21]. The excitation energies
at fixed ~Ω are rather insensitive to the choice of the flow
parameter. The ground-state and excitation energies, as
well as additional observables, are provided in Table I.

In Fig. 2 we display the excitation spectra of 12C at
two values of ~Ω as a function of Nmax. The spread of
the results with ~Ω indicates the lack of convergence with
respect to increasing Nmax. However, the movement of
the excitation energies with increasing Nmax is consistent
with eventual convergence.

From Figs. 1 and 2 one sees that the convergence pat-
terns are well-enough established to conclude that the
JπT = 2+0 and 4+0 rotational states are reasonably well
reproduced [22]. This is not so surprising in light of re-
cent successful ab initio descriptions of collective motion
in light nuclei [32, 40, 41]. However, the 1+0 is at least
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FIG. 2. (color online) Excitation spectra of 12C with the chiral
NN+3N interactions, for two different ~Ω values, as a func-
tion of Nmax at α = 0.0625 fm4 compared with experiment.
The solid line for each calculated state represents results with
~Ω = 20 MeV. The long dashed line represents results with
~Ω = 16 MeV.

3 MeV too low as seen in previous 12C works using the
NCSM with chiral NN+3N interactions [8, 29]. In ad-
dition, we re-confirm the issue that our basis spaces are
insufficient to reproduce the first excited 0+0 state, the
Hoyle state [42, 43]. Whether the third excited state at
Nmax = 8, our first excited 0+0 state, continues its down-
ward trend towards the Hoyle state at higher Nmax values
remains a challenge for the future.

We note that recent lattice simulations with chiral
EFT interactions through N2LO observe the Hoyle state
at approximately the correct excitation energy [44, 45].
It will be interesting to see if the lattice simulated Hoyle
state remains in good agreement with experiment at chi-
ral N3LO and with a range of lattice spacings. In addi-
tion, it will be interesting to see where the other low-lying
states appear in comparison with experiment.

In order to examine the role of the 3N interaction, we
compare in Fig. 3 the 12C spectra at SRG evolution
scale α = 0.0625 fm4 and ~Ω = 20 MeV obtained with-
out and with initial chiral 3N interactions. In both cases
the SRG evolution is performed up to the three-body
level: without the initial 3N interaction this leads to the
NN+3N-induced Hamiltonian while with the initial 3N
we obtain the NN+3N-full Hamiltonian as used above.
We observe that the impact of the initial chiral 3N in-
teraction is very different for the various excited states.
Whereas the excitation energies of most states are shifted
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FIG. 3. (color online) Excitation spectra of 12C without and
with initial chiral 3N interaction for two different Nmax values,
compared with experiment. These NCSM results are calcu-
lated at ~Ω = 20 MeV for flow-parameter α = 0.0625 fm4.

by about 1 MeV, some states exhibit a much stronger sen-
sitivity to the initial 3N interaction. Among the latter
are the first 1+0 and the first 0+1 states. The excitation
energy of the first 1+0 is reduced by more than 3 MeV by
the 3N interaction and the excitation energy of the first
0+1 state is increased by more than 3 MeV. These large
shifts indicate that these states are strong candidates for
sensitive probes of chiral 3N interactions, particularly for
the next-generation consistent chiral NN+3N Hamiltoni-
ans at N3LO [46]. Note, however, that these excitation
energies are not yet converged as seen in the Nmax and
~Ω-dependence of Fig. 2.

Another noteworthy effect of including the full 3N in-
teraction seen in Fig. 3 is to increase the excitation en-
ergies of the lowest rotational excitations, the 2+0 and
4+0, by about 30%. This increase may be understood as
a similar decrease in the moment of inertia brought about
by the increase in binding energy. Indeed, the ground
state rms radius and quadrupole moments are decreased
by the inclusion of the full 3N interaction as discussed
below.

We note that the results at Nmax = 6 are similar, both
in the locations of excited states and in the changes with
the inclusion of the chiral 3N interaction, with the pre-
vious Nmax = 6 results of Ref. [29]. This similarity is re-
markable considering the different ~Ω values and the dif-
ferent renormalization schemes—Ref. [29] used ~Ω = 15
MeV and the OLS transformation.
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B. Survey of Observables

In addition to the spectra shown in the figures above,
we present in Table I the ground-state energy, selected
excitation energies and a survey of electromagnetic ob-
servables in 12C for one choice of SRG flow-parameter,
α = 0.0625 fm4, and one choice of HO basis frequency,
~Ω = 20 MeV. While many cases were generated to per-
form our systematic survey and prepare the figures, we
have chosen this one representative case, with a moder-
ate value of the SRG evolution scale, to present in more
detail. We tabulate these results in order to stimulate de-
tailed comparisons with other methods and other Hamil-
tonians. In addition, we specify the IT-NCSM results for
the benchmark comparison discussed in detail in the Sec.
IV.
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FIG. 4. (color online) Reduced magnetic dipole transition
matrix element from the 1+1 to the ground state of 12C (in
units of µ2

N ) as a function of Nmax at three different SRG
evolution scales and three different HO basis frequencies. The
solid and dashed lines present the results obtained with and
without the initial chiral 3N interaction, respectively.

In order to more completely understand the basis space
(Nmax, ~Ω) dependence as well as the flow-parameter
dependence of two selected electromagnetic observables,
we present these results as a function of Nmax in Figs. 4
and 5.

The example of the B(M1) from the 1+1 to the ground
state has previously been identified as receiving about
a factor of three enhancement when 3N interactions
are included [50]. This earlier work used the Tucson-
Melbourne TM’(99) interaction [51] in NCSM calcula-
tions up through Nmax = 6 to establish this enhance-
ment. This enhancement has been confirmed with chiral
NN+3N interactions in NCSM calculations also through
Nmax = 6 using the OLS renormalization approach [29].
In Fig. 4 we reconfirm this result with chiral NN+3N
interactions up through Nmax = 8 and show the sensi-
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FIG. 5. (color online) Reduced electric quadrupole transition
matrix element from the 2+0 to the ground state of 12C (in
units of e2 fm4) as a function of Nmax at three different SRG
evolution scales and three different HO basis frequencies. The
solid and dashed lines present the results obtained with and
without the initial chiral 3N interaction, respectively.

tivity to the SRG flow-parameter and to the basis-space
parameters (Nmax,~Ω). Clearly, these dependences are
weak enough that the general conclusion remains—this
B(M1) is strongly enhanced by 3N interactions and the
amount of enhancement is roughly independent of the
adopted Hamiltonian.

Contrasting the favorable convergence picture for the
B(M1), other observables that are sensitive to the ex-
tent of the wavefunction, such as rms radii, quadrupole
moments and B(E2)’s, are not well converged (see Table
I). Of course, the radial extent is sensitive to the bind-
ing energy relative to the first threshold which is the 3α
threshold at about 7 MeV experimentally. This allows an
intuitive interpretation of our results for the B(E2) from
the lowest 2+0 to the ground state, see Fig. 5. One of
the effects of the inclusion of the chiral 3N interaction is
that the 3α threshold is pushed to higher excitation en-
ergies. Without the chiral 3N interaction, both, 4He and
12C are underbound and we find the 3α threshold at too
low excitation energies. The inclusion of the 3N interac-
tion increases the binding energy of 4He and of 12C such
that the 3α threshold is pushed to higher excitation ener-
gies. Not surprisingly, the changes in the B(E2)s are well
correlated with the changes in the binding and threshold
energies. Also, the changes in the B(E2)s are well cor-
related with the changes in the ground state rms radius
and the quadrupole moment of the first 2+0.

One has to keep in mind, however, that two compo-
nents are still missing in the present, state-of-the-art
calculations of electromagnetic observables: First, we
should transform the electromagnetic operators consis-
tently with the Hamiltonian in the SRG evolution. How-
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chiral NN chiral NN+3N Experiment

Nmax (4,5) (6,7) (8,9) (4,5) (6,7) (8,9)

E(0+
1 0) [MeV] -68.123 -73.483 -76.617 -85.756 -92.182 -95.761 -92.161

-68.123 -73.544(40) -76.238(90) -85.756 -92.229(16) -95.662(45)

rp(0
+
1 0) [fm] 2.217 2.263 2.305 2.120 2.136 2.149 2.35(2)

2.217 2.264(1) 2.284(10) 2.120 2.136(1) 2.140(9)

Q(2+
1 0) [e fm2] 4.735 5.107 5.451 3.936 4.136 4.321 6(3)

4.735 5.129(30) 5.191(200) 3.936 4.155(27) 4.232(160)

Ex(2+
1 0) [MeV] 2.918 2.926 2.943 3.939 3.960 3.962 4.439

2.918 2.921(6) 2.881(12) 3.939 3.962(4) 3.980(19)

Ex(0+
2 0) [MeV] 15.008 14.655 14.430 14.122 13.402 12.812 7.654

15.008 14.667(15) 14.436(26) 14.121 13.426(16) 13.066(38)

Ex(1+
1 0) [MeV] 11.886 12.056 12.288 9.017 8.948 8.998 12.710

11.886 12.050(13) 12.116(23) 9.018 8.951(9) 8.891(20)

Ex(4+
1 0) [MeV] 10.704 10.676 10.670 14.250 14.044 13.860 14.083

10.704 10.682(7) 10.703(10) 14.250 14.052(8) 14.015(33)

Ex(1+
1 1) [MeV] 14.819 14.786 14.788 15.787 15.812 15.841 15.110

14.819 14.774(15) 14.712(32) 15.787 15.820(8) 15.833(23)

Ex(2+
2 0) [MeV] 13.834 13.787 13.803 15.206 15.012 14.865 (15.44)

13.834 13.784(9) 13.719(10) 15.206 15.017(4) 14.950(29)

Ex(2+
1 1) [MeV] 15.781 15.916 16.030 15.304 15.416 15.521 16.106

—— —— —— 15.305 15.419(9) 15.430(40)

Ex(0+
1 1) [MeV] 15.359 15.189 15.088 18.978 18.850 18.691 17.760

15.359 15.182(9) 15.020(40) —— —— ——

E(3−1 0) [MeV] -55.010 -61.249 —— -70.460 -77.336 —— -82.520

-55.010 -61.182(150) -62.883(400) -70.460 -77.464(120) -79.961(400)

Ex(3−1 0) [MeV] 13.113 12.234 —— 15.296 14.846 —— 9.641

13.113 12.362(170) 13.355(450) 15.297 14.765(150) 15.701(450)

Ex(1−1 0) [MeV] 16.079 15.079 —— 17.703 17.089 —— 10.844

16.079 15.217(170) 15.937(450) 17.703 16.999(150) 17.688(450)

Ex(2−1 0) [MeV] 17.081 16.182 —— 17.937 17.429 —— 11.828

17.080 16.304(170) 17.059(450) 17.937 17.305(150) 17.905(450)

Ex(4−1 0) [MeV] 16.944 16.122 —— 19.030 18.579 —— (13.352)

16.943 16.282(170) 17.348(450) 19.030 18.508(150) 19.482(450)

B(E2;2+
1 0 → 0+

1 0) [e2 fm4] 5.001 5.834 6.689 3.558 3.885 4.210 7.59(42)

5.001 5.844(18) 6.504(90) 3.558 3.894(8) 4.080(75)

B(M1;1+
1 0 → 0+

1 0) [µ2
N ] 0.0032 0.0030 0.0030 0.0080 0.0079 0.0078 0.0145(21)

0.0032 0.0030(1) 0.0032(2) 0.0079 0.0078(1) 0.0082(3)

B(M1;1+
1 1 → 0+

1 0) [µ2
N ] 0.388 0.343 0.304 1.157 1.139 1.109 0.951(20)

0.388 0.343(1) 0.329(6) 1.157 1.135(5) 1.143(36)

B(E2;2+
1 1 → 0+

1 0) [e2 fm4] 0.308 0.293 0.241 0.437 0.442 0.436 0.65(13)

—— —— —— 0.437 0.440(7) 0.444(18)

TABLE I. Calculated and experimental total energies E, excitation energies Ex, point-proton rms radii rp, quadrupole moments
Q, as well as E2 transitions B(E2), and M1 transitions B(M1) of 12C. The first 3 columns correspond to results for the initial
chiral NN interaction (still including SRG-induced 3N-terms) while the next 3 columns correspond to chiral NN+3N interaction
using an SRG evolution scale α = 0.0625 fm4 (λSRG = 2.0 fm−1) and ~Ω = 20 MeV. Columns of theoretical results are labelled
by pairs of natural and unnatural parity basis spaces characterized by their Nmax values. The first row of each observable is
obtained with the NCSM while the second row is obtained from the IT-NCSM. The uncertainty extracted from the threshold
extrapolation of the IT-NCSM results as discussed in the text are quoted in parenthesis; for Nmax = (4, 5) the full space was
used. The experimental values are taken from Ref. [47–49].



7

ever, so far we only employ the bare operators. Second,
we should include the two-body currents derived in chi-
ral EFT. However, so far we only employ the one-body
part. These two corrections are not likely to affect the
qualitative discussion present here, but they will play a
role in future precision calculations of electromagnetic
observables.

C. Negative Parity States
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FIG. 6. (color online) Excitation energy of the 3−0 in 12C as a
function of (Nmax,Nmax +1) without (dashed lines) and with
(solid lines) initial chiral 3N interaction at three different SRG
evolution scales and three different HO basis frequencies. The
unnatural parity states are computed at Nmax +1 while the
corresponding excitation energy is calculated with respect to
the ground state at Nmax so that a pair of basis spaces defines
each point in this plot.
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FIG. 7. (color online) Negative parity excitation spectra of
12C obtained without and with initial chiral 3N interaction for
two different Nmax values, compared with experiment. These
NCSM results are calculated at ~Ω = 20 MeV for flow param-
eter α = 0.0625 fm4.

Finally, we present in Figs. 6 and 7 results for the
lowest excited states with negative parity in 12C. Fig-
ure 6 displays an array of results for the 3−0 state from
our current investigation, covering the three frequencies
~Ω = 16, 20, and 24 MeV and the three SRG flow pa-
rameters α = 0.04, 0.0625, and 0.08 fm4. Here we show
the energy difference of the 3−0 state and the 0+0 ground
state obtained in Nmax+1 and Nmax spaces, respectively.

There is a sizable spread of the excitation energy of
the 3−0 state in Fig. 6 with both frequency and Nmax,
indicating a slow convergence compared to the typical
positive-parity states, both with and without the initial
3N interaction. Nevertheless, our results indicate that
the initial chiral 3N interaction increases the excitation
energy of the 3−0 state by a few MeV.

The excitation spectra of the lowest negative parity
states relative to the 3−0 state are better converged,
see Fig. 7. Without the chiral 3N interaction the low-
est 1−0 state and even more significantly the 2−0 states
are too high in the negative-parity spectrum. The chi-
ral 3N interaction reduces the excitation energy of both
the 1−0 and 2−0 states, and brings them in better agree-
ment with the experimental data. Our calculations also
indicate that the fourth negative parity state is a 4−0
state, in agreement with the Jπ assignment suggested by
Millener [52].

IV. BENCHMARK OF IT-NCSM WITH NCSM

Apart from the discussion of the spectroscopy and
other observables of 12C obtained with chiral NN+3N
interactions, a second main goal of the present work is to
present a benchmark comparison between NCSM and IT-
NCSM for ground- and excited-state energies and elec-
tromagnetic observables. To this end, Table I contains
the numerical results from NCSM and IT-NCSM calcu-
lations for our selected 12C observables in a pair-wise
comparison.

The general setup of the IT-NCSM calculations pre-
sented here is as follows. For basis spaces up to Nmax =
(4, 5) we use the IT-NCSM code [7, 21] for full NCSM
calculations. The energies for these full-space runs agree
to within 1 keV and the electromagnetic observables to
within 0.1% with the NCSM results obtained with the
MFDn code. This establishes a baseline for the numeri-
cal precision of the two independent codes, which use the
same JT -coupled NN and 3N matrix elements as input.

Beginning at Nmax = 6, the IT-NCSM calculations
involve the importance truncation and threshold extrap-
olation. A detailed discussion of the IT-NCSM can be
found in Refs. [7, 21]. For the positive-parity spectrum,
e.g., we target the 8 lowest eigenstates. For each of them
we define a reference state by using the corresponding
eigenstate obtained in the next-smaller model space and
imposing a reference threshold Cmin = 2 × 10−4 that
eliminated all components with amplitudes below this
threshold. This value is expected to be sufficiently small
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not to affect the final results, for a detailed analysis see
Ref. [21]. These reference states enter into the impor-
tance measure used to identify the relevant basis states
for the description of any one of the 8 target states, i.e., if
the importance measure with respect to at least one ref-
erence state is above the importance threshold κmin the
basis state is kept. We employ a sequence of importance
thresholds κmin = {3, 3.5, 4, ..., 10} × 10−5 and solve for
the eigenvalues within each of the importance-truncated
model spaces separately. Based on the energies and ob-
servables obtained for the different importance-truncated
spaces we perform an extrapolation κmin → 0. We use
a third-order polynomial fit to the results for the full
range of importance thresholds with equal weights. The
uncertainty of the threshold extrapolation is quantified
by changing the order of the polynomial by ±1 and by
excluding the results of the lowest and the lowest two
threshold values. The uncertainties quoted in Table I are
the standard deviations obtained for this set of extrapo-
lations.

The results of the full NCSM in these larger basis
spaces serve as important benchmarks for the IT-NCSM.
In general we observe a very good agreement of the IT-
NCSM results with the full NCSM with deviations below
1% for almost all cases. Beyond assessing this general
agreement, the full NCSM results provide a unique op-
portunity to test the reliability of the uncertainty esti-
mates obtained from the threshold extrapolation protocol
discussed above. It should be noted that we do not ac-
count for the numerical uncertainty in the NCSM result
used as the benchmark. For energies this NCSM uncer-
tainty is expected to be about 1 keV; for electromagnetic
observables the NCSM uncertainty has not been quanti-
fied previously, but based on the excellent agreement of
the full-space results for Nmax = (4, 5) with an indepen-
dent code we expect uncertainties of the order of the last
quoted digit.

Considering all NCSM and IT-NCSM pairs of results in
Table I, we observe that the IT-NCSM agrees within the
quoted uncertainty with the NCSM result in 60% of the
cases. From this observation one might conclude that the
procedure used to quantify the IT-NCSM uncertainties
is reasonable and may be interpreted in a similar way
as a statistical standard deviation. However, there are
specific patterns in the size of the estimated uncertainties
and the agreement with the full NCSM results.

For the excitation energies of the positive-parity states
the estimated IT-NCSM uncertainties resulting from the
threshold extrapolation are below 50 keV and the major-
ity of the IT-NCSM results agree with the full NCSM
within the estimated uncertainty, though the fraction of
cases showing an agreement within the uncertainties de-
creases significantly for Nmax = 8 compared to Nmax = 6.

This is illustrated in Fig. 8, where we display the ex-
citation energies of the positive-parity states obtained in
the full NCSM and with the IT-NCSM; the estimated un-
certainties of the IT-NCSM are indicated by the boxes.
The dashed bars representing the IT-NCSM results al-
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FIG. 8. (color online) Excitation spectra of 12C with the chi-
ral NN+3N interactions, obtained with the NCSM and the
IT-NCSM, as a function of Nmax, and compared with experi-
ment. The solid lines represent the NCSM result and dashed
lines represent the IT-NCSM results, with boxes indicating
the typical threshold-extrapolation uncertainties. These re-
sults are calculated at ~Ω = 20 MeV with the SRG evolution
scale α = 0.0625 fm4. For Nmax = 10, only IT-NCSM cal-
culations targeting the lowest four eigenstates are currently
available.

most always agree within uncertainties with the solid
bars representing the full NCSM. The only case where
the difference is more pronounced is the excited 0+0. The
atypical Nmax dependence of this state already hints at a
complicated structure of the wave function which is dom-
inated by small components—evidently this represents a
more difficult situation for the importance truncation and
threshold extrapolation. For completeness we also show
excitation energies at Nmax = 10, which were obtained in
an IT-NCSM calculation targeting the four lowest eigen-
states.

For the excitation energies of the negative-parity states
relative to the 3−0 state, as shown in Fig. 9, the agree-
ment of the IT-NCSM and the full NCSM is equally good.
Based on the direct threshold extrapolation of the exci-
tation energies within the negative-parity space, the un-
certainties of the IT-NCSM energies are comparable to
the uncertainties of the positive-parity excitation ener-
gies. Note, however, that the uncertainties of excita-
tion energies of the negative-parity states relative to the
positive-parity ground state, as reported in Table I, are
significantly larger. This results from the larger uncer-
tainties of the threshold extrapolations for the absolute
energies of the 3−0 and the 0+0 states needed to deter-
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FIG. 9. (color online) Excitation of the negative parity spec-
tra of 12C with respect to the lowest 3−0 state using the
chiral NN+3N interaction, obtained with the NCSM and the
IT-NCSM, as a function of Nmax, and compared with ex-
periment. The solid lines represent the NCSM result and
dashed lines represent the IT-NCSM results. These results
are calculated at ~Ω = 20 MeV with the SRG evolution scale
α = 0.0625 fm4. For Nmax = 9, only IT-NCSM calculated
eigenstates are currently available.

mine the offset of the negative-parity with respect to the
positive-parity spectrum. The uncertainties in this offset
induce sizeable systematic uncertainties in the excitation
energies of the negative-parity states, as seen in Table I.

For radii and electromagnetic observables the thresh-
old extrapolations typically produce larger error bars,
particularly for long-range observables like the radii or
quadrupole moments and transitions. Nevertheless, even
for these observables, the results in Table I show that
the NCSM and IT-NCSM results fall within the quoted
IT-NCSM uncertainty in the majority of cases.

There is a systematic trend in uncertainties of the IT-
NCSM results when going from Nmax = (6, 7) to Nmax =
(8, 9). First of all, the uncertainty estimates increase
with increasing Nmax. This is due to the fact that the
IT-NCSM space covers a smaller fraction of the complete
Nmax space so that the threshold extrapolation has to ac-
count for the contribution of a larger fraction of discarded
basis states. Second, the fraction of cases in which the IT-
NCSM agrees with the NCSM within the uncertainties is
reduced for Nmax = (8, 9). This might be explained by
uncertainties that are not accounted for by the thresh-
old extrapolation and uncertainty quantification proto-
col. An example are inaccuracies resulting from build-
ing the importance-truncated space for Nmax = (8, 9) on
reference states that already result from an importance-
truncated Nmax = (6, 7) calculation—the uncertainties
inherited from the Nmax = (6, 7) states and the addi-
tional reference threshold Cmin are not yet accounted for
by the Nmax = (8, 9) uncertainty estimate. Since a nu-
merical propagation of these uncertainties is computa-
tionally expensive, one might consider other threshold
extrapolation schemes that are robust in this respect. A
promising candidate is a threshold extrapolation based
on the energy variance [53, 54] and studies along these

lines are in progress.
These benchmark comparisons show that the intrin-

sic uncertainty estimates extracted from the threshold
extrapolation provide a suitable guideline for the accu-
racy of the IT-NCSM results. However, one has to keep
in mind that the estimates do not capture the accumu-
lation of uncertainties throughout a sequence of impor-
tance truncated calculations with increasing Nmax. The
relative size of the uncertainties depends on the observ-
able and the structure of the states. If the resulting un-
certainty appears too large for a specific application, one
may elect to decrease the importance thresholds, which
is guaranteed to improve the results and reduce the ex-
trapolation uncertainties.

V. SUMMARY AND CONCLUSIONS

We have presented ab initio NCSM and IT-NCSM
calculations of 12C using SRG-evolved chiral NN+3N
Hamiltonians. Both, spectra and electromagnetic prop-
erties are examined as a function of the SRG flow-
parameter as well as a function of the model-space pa-
rameters (Nmax,~Ω). We have extended previous investi-
gations with the same Hamiltonian to larger model spaces
and to a larger set of observables. Furthermore, we have
benchmarked the IT-NCSM with the NCSM in model
spaces where the latter is feasible.

For most low-lying positive-parity states the excitation
energies are reasonably well converged, though notice-
able exceptions are the first excited 0+0 state (the Hoyle
state) and the first 0+1 state. Indeed, it is known that
in order to converge the Hoyle state one needs signifi-
cantly larger model spaces. Electromagnetic observables
such as magnetic moments and M1 transition strengths
are also reasonably well converged, but quadrupole mo-
ments and E2 transitions are not yet converged, even in
the largest model spaces that we have considered here.
This should however not be surprising, since the E2 op-
erator is a long-range operator, and hence convergence is
notoriously slow in a HO basis.

The comparison of our theoretical spectra with ex-
periment reveals some remarkable points. For most of
the positive-parity states the excitation energies obtained
without the initial chiral 3N interaction are in good qual-
itative agreement with experiment. Typically the agree-
ment is improved by including the chiral 3N interaction,
in particular for the rotational excitations, the lowest 2+0
and 4+0 states. Also the 0+1 state is very sensitive to the
3N interaction, and in better agreement with experiment
than without the 3N interaction. A surprising exception
is the 1+0 state. It is in good agreement with experi-
ment without the chiral 3N interaction. However, with
the chiral 3N interaction the excitation energy is pushed
about 4 MeV below the experimental value.

The excitation energies of the lowest excited negative-
parity states with respect to the 3−0 state (the lowest
negative-parity state) are also reasonably well converged.
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However, the negative-parity states converge slower than
the positive-parity states in terms of absolute energies,
and hence the excitation energies of the negative-parity
states are not converged with respect to the ground state.
Nevertheless, it appears that the dominant effect of the
chiral 3N interaction on the negative-parity states is an
overall upward shift of the states with respect to the
positive-parity ground state.

The excitation energies of the 1+0 state and the 0+1
state represent valuable test cases for next-generation
(chiral) Hamiltonians. The failure of the present chiral
NN at N3LO plus 3N interaction at N2LO to quanti-
tatively capture the physics of these states represents a
challenge for improved chiral interactions, in particular
the 3N interaction at N3LO [55, 56]. Further detailed
investigations into the structure of these states and their
sensitivity to different existing chiral NN+3N interac-
tions are in progress.

In terms of enlarging the model space, which may be
necessary in order to address these issues, there are alter-
natives to the straightforward but challenging task of en-
larging the HO basis itself. In particular, it may be more
fruitful to adopt another basis with improved infrared
properties such as the Coulomb-Sturmian basis [57–59].
Alternatively, it may be more efficient to remain within
the HO basis (thereby preserving factorization of the
center-of-mass motion) but selecting symmetry-adapted
basis spaces such as those recently advocated for light nu-
clei [41] and especially for 12C [60, 61]. Another avenue
is the explicit treatment of clusters and their relative mo-
tion in the NCSM with continuum (NCSMC) that was
recently formulated and successfully applied to the de-

scription of the unbound nucleus 7He [62].
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