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Abstract. We investigate giant resonances of spherical nuclei on the basis of
the Argonne V18 potential after unitary transformation within the Similarity
Renormalization Group or the Unitary Correlation Operator Method supplemented by
a phenomenological three-body contact interaction. Such Hamiltonians can provide
a good description of ground-state energies and radii within Hartree-Fock plus low-
order many-body perturbation theory. The standard Random Phase Approximation
is applied here to calculate the isoscalar monopole, isovector dipole, and isoscalar
quadrupole excitation modes of the 4°Ca, °°Zr, and 2°®Pb nuclei. Thanks to the
inclusion of the three-nucleon interaction and despite the minimal optimization effort,
a reasonable agreement with experimental centroid energies of all three modes has been
achieved. The role and scope of the Hartree-Fock reference state in RPA methods are
discussed.
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1. Introduction

The most consistent starting point for nuclear structure theory are nuclear Hamiltonians
derived from quantum chromodynamics (QCD) in the framework for chiral effective field
theory containing two- and three-nucleon interactions [1, 2|. Using these interactions
we can employ unitary transformations, e.g. the Similarity Renormalization Group
(SRG) or the Unitary Correlation Operator Method (UCOM), to pre-diagonalize the
Hamiltonian and to improve the convergence behavior of various many-body approaches.
Recently, this approach was applied successfully to light and medium-mass nuclei in the
context of the No-Core Shell Model [3, 4] and in Coupled-Cluster Theory and related
methods [5, 6, 7, 8].

The computational effort, however, limits the applicability of general three-nucleon
interactions in the unitary transformation as well as in the application in many-body
methods. Furthermore, to provide an appropriate starting point for the investigation of
collective excitations in the framework of the Random Phase Approximation (RPA) the
interaction has to reproduce experimental ground-state radii reasonably well—this has
not yet been achieved on the basis of chiral two- plus three-nucleon interactions beyond
the lightest nuclei. As a preparatory step towards the full inclusion of chiral two- and
three-nucleon interactions, we follow a more pragmatic approach by using the unitarily
transformed Argonne V18 potential [9] supplemented by a phenomenological three-body
contact interaction. This allows us to investigate ground-state properties as well as
collective excitations throughout the nuclear mass range up to 2°Pb. In a previous
paper the influence of phenomenological three-nucleon interactions on the description
of ground-state nuclear properties was investigated [10] and a good simultaneous
description of ground-state energies and radii was achieved. This was not possible with
the pure two-body UCOM interaction employed in earlier studies [11]. We now examine
whether dynamical properties, such as collective modes, show a similar quantitative
improvement compared to previous work [12].

In this work we apply the standard RPA to study collective excitations of closed-
shell nuclei. We will show that the results obtained with the unitarily transformed
Argonne V18 supplemented by a phenomenological three-body contact interaction agree
within 20% with the results for traditional phenomenological potentials like the Gogny
D1S interaction [13]. The characterization of these hybrid Hamiltonians in standard
applications is mandatory to provide a well-defined footing for predictive calculations
like the study of low-energy dipole transitions [14], and investigations in the framework
of quasi-particle RPA (QRPA) [15].

In Sec. 2, we present the formalism and discuss briefly some ground-state properties
of closed-shell nuclei across the whole nuclear chart on the basis of Hartree-Fock and
many-body perturbation theory. In Sec. 3, we study the isoscalar monopole (ISM),
isovector dipole (IVD), and isoscalar quadrupole (ISQ) excitation modes of three chosen
nuclei, °Ca, °Zr, and 2°®Pb. We provide a critical discussion in Sec. 4.
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a [fm?] | Csy [GeV fm®]
UCOM(SRG) | 0.16 1.6
S-UCOM(SRG) | 0.16 2.2
SRG 0.10 4.3
S-SRG 0.10 2.0

Table 1. Optimal parameter sets for the different two- plus three-body interactions.

2. Formalism and ground-state properties

The UCOM and the SRG provide two different approaches for generating soft phase-
shift equivalent two-body interactions. These two methods have already been discussed
extensively (see [16] and refs. therein). Based on the Argonne V18 potential we
will apply four different classes of unitarily transformed interactions in the following:
UCOM(SRG), S-UCOM(SRG), SRG, and S-SRG which were introduced in [10]. These
transformed two-body interactions are supplemented by a simple three-body contact
interaction

Van = Cax 6@ (7 — 7%)6@) (7 — 7%4) (1)

with variable strength C5y. The m-scheme matrix elements of the contact interaction
can be evaluated on-the-fly, which is of great computational advantage. As single-
particle basis the eigenstates of the harmonic oscillator are employed. For calculations
beyond the mean-field level we have to introduce a regularization of the contact
interaction which is achieved by restricting the total oscillator energy of the three-
particle state: (2ny + l1) + (2ny + o) + (2n3 + I3) < FE3max, where n and [ are the
principal and the angular momentum quantum numbers of the harmonic oscillator
states, respectively [10].

For a first characterization of the four different two- plus three-body interactions,
the Hartree-Fock (HF) approximation and many-body perturbation theory are used
to calculate ground-state energies and charge radii for selected closed-shell nuclei from
“He to 2°Pb. The formal inclusion of the three-body contact interaction in these two
methods has been discussed in detail in Ref. [10]. The single-particle basis is truncated
with respect to the principal oscillator quantum number e = 2n + [, which is restricted
to e < emax = 14 with an additional constraint for the orbital angular momentum
quantum number [ < [, = 10. The oscillator parameter ago is chosen for each
nucleus separately such that the experimental charge radius is reproduced by a shell-
model Slater determinant built from harmonic oscillator single-particle states. We have
observed that for these values of ayo and for ey., = 14 the HF ground-state energies
deviate by less than 0.1% from their minimum with respect to ago and that the mean
square radius is stable against variations of ago. Thus the HF energy and radius are
well converged for such large values of epay.

Figure 1 shows the ground-state energies per nucleon and charge radii for closed-
shell nuclei across the whole nuclear chart. The three-body cut-off parameter is set to
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Es3max = 20 for all four interactions (cf. [10]). The strength of the three-body contact
interaction is used to adjust the charge radii to the experimental values. As observed
in Fig. 1 the strength Csx can be chosen such that the radii are well reproduced across
the whole mass range by all four interactions. This is a remarkable result considering
the simplistic structure of the three-body interaction. The optimal values for C3y are
summarized in Table 1 together with the corresponding flow parameters.

We point out that, at present, chiral NN+3N interactions still do not provide a good
description of the radii beyond the lightest nuclei [17]. In other words, the systematics
shown in Fig. 1 for such a basic observable cannot be reproduced at present with the most
advanced chiral Hamiltonians. This observation makes the use of a phenomenological
three-nucleon correction an appealing option.

The HF energies reproduce the systematics of the experimental values except for an
almost constant shift, which is due to the missing effects of long-range correlations that
cannot be described at the mean-field level. The influence of long-range correlations
can be taken into account via second-order many-body perturbation theory (MBPT)
[11]. Here, we apply perturbation theory only to the two-body part of the interaction
(cf. [10]). The effect on charge radii is negligible, but for the energies the inclusion
of the second-order perturbative corrections leads to a substantial improvement (open
symbols in Fig. 1). The agreement with the experimental data is not yet perfect, i.e.
the differences vary from 0.2 to 2.4 MeV per nucleon, but one has to keep in mind that
the energy corrections are not yet fully converged with respect to the single-particle
model space size. Furthermore, we only consider the second-order estimate and have no
information about the influence of higher orders [20, 21].

E/A[MeV]

Fen [ fm]
o W ESN 9]
T
I

4He 240  40Cc, 48N 60N 88gy 100g, 132G, 208py,
160 34Si 48Ca 56Ni 78Ni QOZI. 114Sr1 146Gd
Figure 1. (Color online) Ground-state energies per nucleon and charge radii of
selected closed-shell nuclei resulting from HF calculations (filled symbols) and MBPT
(open symbols) based on the UCOM(SRG) (o), SSUCOM(SRG) (M), SRG (®), and
S-SRG (A) interactions using the optimal parameter sets (cf. Tab. 1). Bars indicate
experimental values [18, 19].
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In case of the UCOM(SRG) interaction one observes that the energy corrections for
some nuclei, mainly the heavier nickel isotopes and '°°Sn, do not follow the general trend.
The origin of this behavior lies in the corresponding HF single-particle spectra, where
some level spacings are collapsed leading to divergent contributions to the perturbative
corrections. Therefore, these data points are not shown here.

The dependence of the MBPT results on E3 ., when a three-body term is included,
especially of the ground state energy, is discussed in Ref. [10]. The calculations of
excitation properties discussed next do not depend on Fs5.x.

3. Giant Resonances

For investigating collective excitations we apply the standard Random Phase
Approximation (RPA) (cf. e.g. [12]). In the framework of the HF approximation
and the standard RPA the three-body contact interaction is equivalent to the density-
dependent two-body interaction [22, 23, 24|

Vilel = 2 (14 2) of

—

e LAY 2)

which is used in the RPA implementation for computational reasons. The only difference
to the HF plus MBPT calculations discussed above is the absence of the cut-off E3 .
in RPA. The HF calculations providing the basis for RPA are also performed using the
density-dependent form of the three-body interaction without the cut-off. As the HF
energies are independent of F3,.« the chosen implementation has no influence on the
RPA results. Although we use density-dependent two-body interaction in RPA we will
still refer to it as three-body contact interaction.

Next, we investigate three excitation modes, namely isoscalar monopole (ISM),
isovector dipole (IVD), and isoscalar quadrupole (ISQ) excitations, of °Ca, %°Zr, and
208Ph. The different two- plus three-body interactions introduced above

As a first benchmark we consider the exhaustion of the classical sum rules. We
validate our implementation by using the Gogny D1S interaction, whose momentum
dependent terms are of zero range: the ISM and ISQ classical sum rules are then fulfilled
within 1% or better. In the case of transformed AV18 interactions, the exhaustion of the
classical ISM sum rule lies between 90.5% for “°Ca calculated with the UCOM(SRG)
interaction and 98.4% for 2°Pb calculated with the S-SRG interaction. The exhaustion
of the ISQ sum rule lies between 98.4% for 2*Pb calculated with the SRG interaction
and 102.9% for °Ca calculated with the UCOM(SRG) interaction. The deviations from
the classical IS sum rules are mostly a consequence of the non-localities of the finite-
range interactions used [25]. When including the three-body interaction we use a larger
flow parameter in order to compensate for the additional repulsion. The larger flow
parameter generates stronger non-localities in the transformed two-body interaction,
which in turn influence the exhaustion of the classical sum rules. It is expected that
the Thomas-Reiche-Kuhn sum rule for the IVD mode is significantly enhanced due to
the non-localities of the applied interactions. Indeed, the smallest percentage that we
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Figure 2. (Color online) Comparison of HF (---) and RPA (——) response functions
calculated with the pure two-body S-UCOM(SRG) interaction, (a)-(c), and the two-
body S-UCOM(SRG) plus three-body contact interaction, (d)-(f), for 2°®Pb. The ISM,
IVD, and ISQ response functions are given in units of 10° fm* /MeV, €2 fm? / MeV, and
103¢2 fm*/ MeV, respectively.

found for the Thomas-Reiche-Kuhn sum rule was 168.3%, for 4°Ca based on the SRG
interaction. Finally, we have found that the energy of the spurious dipole state never
exceeds 20keV in the present cases.

In Figure 2 we compare the HF and RPA response functions for all three excitation
modes calculated with the S-UCOM(SRG) interaction for 2*Pb. The response functions
are obtained via a convolution of the calculated discrete strength distribution with a
Lorentzian function with a width of 2MeV. Fig. 2(a)-(c) shows the response functions
obtained with the pure two-body S-UCOM(SRG) interaction using the flow parameter
o = 0.04fm* while the response functions depicted in Fig. 2(d)-(f) were obtained with
the two-body S-UCOM(SRG) interaction plus the three-body contact interaction with
a = 0.16 fm* and Csy = 2.2GeV fm® (cf. Tab. 1). The HF response is spread wide in
case of both isoscalar modes while it is rather compressed for the isovector excitation. In
comparison, the RPA response is compressed significantly and shifted to lower excitation
energies in the isoscalar channels which leads to strongly collective excitation modes,
the giant resonances. In case of the ISQ mode one observes the excitation of a low-lying
27 state in addition to the giant resonance. The RPA response of the IVD excitation is
shifted to higher excitation energies with respect to the HF response, i.e. the residual
interaction is attractive in the IS channels and repulsive in the IV channel.

Comparing the HF response functions obtained with the pure two-body interaction
with those resulting from the two- plus three-body interaction reveals that the inclusion
of the three-body interaction leads to a compression of the response for all considered
excitation modes. This compression can be understood by considering the HF single-
particle spectra which are spread wide when calculated with a pure two-body interaction
(see also [26]). The repulsion of the three-body interaction increases the level density
and thus leads to a compression of the HF response.

The RPA response calculated with the two- plus three-body interaction is
concentrated in a narrower resonance structure compared to the response functions
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Figure 3. (Color online) Comparison of giant resonances calculated with the different
two- plus three-body interactions: UCOM(SRG) (---), SSUCOM(SRG) (—), SRG
(---), and S-SRG (— ). The ISM, IVD, and ISQ response functions are given in units
of 103 fm*/MeV, e? fm?/MeV, and 1032 fm*/ MeV, respectively. Arrows indicate
experimentally extracted centroid energies [27, 28, 29, 30, 31, 32, 33, 34].

obtained with the pure two-body interaction for all three excitation modes.
Furthermore, the centroids are shifted to lower energies: the ISM centroid is shifted
by 1MeV while the IVD and ISQ centroids are moved by 3 MeV, respectively. An
important mechanism lowering the energies is the compression of the HF spectra, as
discussed also in Ref. [15]. The overall effect seems weaker for the monopole resonance.
A possible partial explanation is that the addition of the three-body term accompanies
a modification of the flow parameter and therefore the non-local terms of the two-body
interaction. The latter may affect the IVD and ISQ resonances more strongly than the
three body term, while a more balanced effect is at work in the case of the compression
mode.

Figure 3 summarizes the response functions that were obtained with the four
different two- plus three-body interactions for *°Ca, °Zr, and ?°*Pb including centroid
energies extracted from experiment. All four interactions yield comparable results
with only minor differences and are in reasonable agreement with the experimental
centroids. The energies of the giant dipole and quadrupole resonances tend to be
overestimated, but much less so than with the pure two-body UCOM interaction [12].
The systematic nature of these deviations hint at the role of higher-order configurations
beyond RPA [35, 36]. We shall return to this issue in Sec. 4.

The calculated centroid energies are compared to the experimental values and to
calculations based on the Gogny D1S interaction in Table 2. In most of the 36 cases
the centroids are within 20% of the experimental value. The SRG interaction performs
particularly well, while the largest deviations are observed for the UCOM(SRG). Our
results are similar in quality with existing results using phenomenological energy density
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(@) | (b) | () | (d) | Exp.| (e)
ISM  “°Ca | 19.81 | 18.57 | 18.91 | 17.92 | 19.18 | 21.06
M7y 116.73 | 16.40 | 17.37 | 15.81 | 17.81 | 17.53
208ph | 12.88 | 12.93 | 14.41 | 12.35 | 14.18 | 13.19
IVD 49Ca | 25.86 | 23.22 | 20.34 | 22.61 | 21.9 | 22.70
D7y 12220 | 20.79 | 18.46 | 20.27 | 17.9 | 19.82
208Ph | 17.88 | 16.96 | 15.72 | 16.44 | 13.6 | 16.21
ISQ %°Ca | 22.54 | 20.06 | 19.02 | 19.92 | 17.8 | 17.69
N7y | 18.49 | 17.45 | 16.75 | 17.38 | 14.2 | 12.70
208Ph | 14.07 | 13.66 | 13.43 | 13.54 | 10.9 | 9.36
Table 2. Centroid energies in MeV obtained with the (a) UCOM(SRG), (b) S-

UCOM(SRG), (c) SRG, and (d) S-SRG interactions, compared to experimental values
[27, 28, 29, 30, 31, 32] and the (e) Gogny D1S interaction.

functionals, e.g. the Gogny D1S interaction listed in Table 2.

The results obtained with the SSUCOM(SRG) and the S-SRG interactions are very
similar in all aspects confirming the similarities between these two interactions that were
already observed earlier [10]. Remarkably, the inclusion of a simplistic contact three-
body force suffices to cure the pathologies observed in the results with the two-body SRG
interaction [10] and to produce good results. The strength of the three-nucleon term for
this interaction is larger than, but of the same order of magnitude as, the strength of the
corresponding term for the other three interactions and, even so, weak compared with
three-nucleon or density-dependent terms accompanying phenomenological functionals,
as discussed in Ref. [15].

4. Discussion and Outlook

The good overall agreement of the calculated response with experiment is obtained
despite the systematic deviation of the HF energy (without MBPT corrections) from the
experimental binding energy. The same remarkable observation was made in [15]. It is
well known that an excellent description of nuclear energies by phenomenological energy
density functionals based on HF does not guarantee a good description of collective
states within RPA. For example, they usually require a high nucleon effective mass,
which leads to a strong underestimation of the IVD energy. Our present and previous
results [15] consistently confirm that the HF or HF-Bogolyubov ground-state energy has
little to do with the dynamical behavior of the system under study, as described by RPA
or quasi-particle RPA. Instead it is more important to obtain a good description of the
radii and the ground-state energies including long-range correlations, e.g. in many-body
perturbation theory or RPA. This is a point worth elaborating on.

It can be argued, that the RPA approach is inconsistent if the HF reference state
does not describe well the ground-state properties. It has been observed, indeed, that
the energies of the RPA ground state and the HF reference state can be significantly
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different [37]. In this respect we note that 1) explicit use of a correlated RPA reference
state has a rather weak effect on the description of giant resonances [38] and that 2) it is
in a sense a more consistent approach, if the interaction used describes well the ground
states within a (converged) perturbative and beyond-mean-field approach. We point
out that phenomenological interactions which describe well nuclei within HF would fail
badly in extended many-body theories.

Ideally, a correlated, beyond-mean-field wavefunction should be used as a reference
state and excitation configurations should be built consistently on such a correlated
ground state, taking the depletion of the Fermi sea into account [39]. Nontheless, it is in
line with the philosophy of the equations-of-motion method to employ an approximate
ground state (e.g., HF), conditionally. The condition is that the expectation values
of the relevant low-rank operators (in the many-body sense), resulting from (double)
commutators of higher-rank ones, not be sensitive to correlations. The relevant operators
in the present cases pertain to long-range spatial properties like radii, which, indeed,
are insensitive to correlations.

First-order RPA need not be the final converged result. It is expected that higher-
order configurations will shift the resonances to lower energies. We have seen that the
energies of the major giant resonances are overestimated in the present approach. It
is therefore a very interesting possibility that, for example, second-order RPA (SRPA)
can provide more converged and accurate results. There are two issues to be addressed
in this respect: First, SRPA based on an uncorrelated reference state is inconsistent
and leads to instabilities [40]; nonetheless, it has been demonstrated that the SRPA
results on IVD and ISQ giant resonances are not sensitive to the treatment of ground-
state correlations [41, 26] (contrary to low-lying states). Second, it remains to be seen
whether the three-body term, which would introduce a large number of non-zero matrix
elements in the B matrix of SRPA [42], can moderate the resonance shift, as compared
to the large shifts observed using a two-body interaction. Clearly the above issues and
possibilities are worth exploring further.

In conclusion, we have investigated giant resonances using unitarily transformed
two-nucleon interactions supplemented by a simple phenomenological three-body
contact interaction. For the three considered nuclei, *°Ca, ?°Zr, and 2°®Pb we achieved
a reasonable agreement with experimental centroid energies, where the SRG interaction
yielded the smallest deviations. A reasonable description of charge radii was found
important to obtain a good starting point for RPA calculations. The present study
represents an intermediate step towards a consistent inclusion of chiral two- plus
three-nucleon interactions for the study of collective excitations with various methods
including ground state correlations or higher-order configurations. Following this
benchmark, several studies are in progress beyond HF-RPA, aiming at the quantitative
description of collective phenomena in closed and open-shell nuclei. Apart from
computational challenges, the systematic reproduction of ground-state radii will be a
key issue when working with such Hamiltonians.
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