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We formulate the In-Medium Similarity Renormalization Group (IM-SRG) for open-shell nuclei using a

multi-reference formalism based on a generalized Wick theorem introduced in quantum chemistry. The result-

ing multi-reference IM-SRG (MR-IM-SRG) is used to perform the first ab initio study of even oxygen isotopes

with chiral NN and 3N Hamiltonians, from the proton to the neutron drip lines. We obtain an excellent reproduc-

tion of experimental ground-state energies with quantified uncertainties, which is validated by results from the

Importance-Truncated No-Core Shell Model and the Coupled Cluster method. The agreement between concep-

tually different many-body approaches and experiment highlights the predictive power of current chiral two- and

three-nucleon interactions, and establishes the MR-IM-SRG as a promising new tool for ab initio calculations

of medium-mass nuclei far from shell closures.

PACS numbers: 13.75.Cs,21.30.-x,21.45.Ff,21.60.De,05.10.Cc

Introduction. Neutron-rich nuclei are the focus of the ex-

perimental program of current and next-generation rare iso-

tope facilities. Emerging phenomena such as halos or neu-

tron skins make such nuclei ideal laboratories to study nuclear

interactions in delicately tuned scenarios. These phenomena

are driven by the evolution of shell structure along isotopic

or isotonic chains, and motivate the use of ab initio many-

body calculations to provide a description from first princi-

ples. Such calculations make it possible to confront modern

nuclear Hamiltonians from chiral effective field theory (EFT)

[1, 2] with a wealth of data beyond few-body systems.

For s- and p-shell nuclei, the ab initio No-Core Shell Model

(NCSM) [3, 4] provides the necessary capabilities for stud-

ies of isotopic chains, but for medium-mass nuclei this ap-

proach is not feasible because of its large computational effort.

Many-body techniques with more modest computational scal-

ing, such as the Coupled Cluster (CC) method, can be used

to probe nuclei in the vicinity of shell closures [5–7], but are

usually not applicable for open-shell nuclei far from shell clo-

sures. For such nuclei, a self-consistent Gor’kov formalism

was developed recently [8, 9], but at the present stage this

approach is limited to second-order terms in the many-body

perturbation expansion.

In this Letter, we describe the extension of the In-Medium

Similarity Renormalization Group (IM-SRG) framework of

Refs. [10, 11] to open-shell nuclei by means of a multi-

reference formulation. We use the resulting MR-IM-SRG

in conjunction with two other many-body approaches, the

Importance-Truncated No-Core Shell Model (IT-NCSM) and

the CC method, to perform the first ab initio study of even

oxygen isotopes with chiral NN+3N Hamiltonians.

Formalism. The main tools for the derivation of the MR-

IM-SRG are the generalized normal-ordering and Wick the-

orem introduced by Kutzelnigg and Mukherjee [12]. Let us

denote a string of creation and annihilation operators in ten-

sorial form,

A1...k
l...N

≡ a†1 . . . a
†
k
aN . . . al , (1)

and expand it in terms of components that are normal-ordered

with respect to a given reference state |Φ〉, which can be a su-

perposition of Slater determinants in the multi-reference case

[13]. We obtain

A1...k
l...N

= :A1...k
l...N

: −λ1
l
:A23...k

mn...N
: −λ1

m
:A23...k

ln...N
: + . . .

+ (λ1
l
λ2
m
− λ1

m
λ2
l
+ λ12

lm
) :A3...k

n...N
: + . . . , (2)

where we have introduced irreducible one- and two-body den-

sity matrices λ(1) and λ(2):

λ1
2 ≡ 〈Φ|A1

2 |Φ〉 , λ12
34 ≡ 〈Φ|A12

34 |Φ〉 − λ1
2λ

3
4 + λ1

3λ
2
4 . (3)

The particle rank of the irreducible density matrices is ev-

ident from the single-particle indices. Generally, up to n-

body irreducible density matrices λ(n) appear in the expan-

sion of an n-body operator, which are defined recursively in

terms of density matrices of lower rank and encode informa-

tion about n-body correlations in the reference state [12]. For

an independent-particle state, all of these matrices except λ(1)

vanish identically.

Products of normal-ordered operators can be expanded by

means of a generalized Wick theorem (GWT), e.g.,

:A12
56 ::A34

78 :

= :A1234
5678 : +λ1

7 :A234
568 : −ξ35 :A124

678 : + . . .

+
(

λ1
7λ

2
8 − λ1

8λ
2
7 + λ12

78

)

:A34
56 : −λ12

57 :A34
68 : + . . . , (4)

where ξ12 ≡ λ1
2 − δ12 [14]. In addition to simple contractions

containing λ(1) and ξ(1) which also occur in the standard Wick

theorem, we obtain terms involving λ(2), . . . , λ(n). Each den-

sity matrix must have at least one index from each of the op-

erators in the product — other terms vanish due to the initial

normal-ordering (2), which greatly simplifies the algebra [14].

In the following, we work in natural orbitals, i.e., the eigenba-

sis of λ(1), where

λ1
2 = n1δ

1
2 , ξ12 = −n̄1δ

1
2 ≡ −(1− n1)δ

1
2 , (5)

and the eigenvalues are the occupation numbers 0 ≤ na ≤ 1.
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We now consider the IM-SRG operator flow equation

d

ds
H(s) = [η(s), H(s)] , (6)

which is used to solve the many-body problem by a continu-

ous unitary transformation that decouples the ground-state of

the Hamiltonian H(s) from excitations [10, 11]. Suppress-

ing the flow parameter s for brevity, we apply the general-

ized normal-ordering to H and the generator η, and evaluate

the commutator using the GWT to obtain the zero-, one-, and

two-body MR-IM-SRG flow equations:

dE

ds
=

∑

ab

(na − nb)
(

ηa
b
f b

a
− fa

b
ηb
a

)

+
1

4

∑

abcd

(

ηab
cd
Γcd

ab
− Γab

cd
ηcd
ab

)

nanbn̄cn̄d

+
1

4

∑

abcd

(

d

ds
Γab

cd

)

λab

cd
, (7)

d

ds
f1
2 =

∑

a

η1
a
fa

2 +
∑

ab

ηa
b
Γb1
a2(na − nb)

+
1

2

∑

abc

η1a
bc
Γbc

2a (nan̄bn̄c + n̄anbnc)

+
1

4

∑

abcde

η1a
bc
Γde

2aλ
de

bc
+

∑

abcde

η1a
bc
Γbe

2dλ
ae

cd

−
1

2

∑

abcde

(

η1a2bΓ
cd

ae
λcd

be
− η1a2bΓ

bc

de
λac

de

)

− [η ↔ f,Γ] ,

(8)

d

ds
Γ12
34 =

∑

a

(

η1
a
Γa2
34 + η2

a
Γ1a
34 − ηa3Γ

12
a4 − ηa4Γ

12
3a

−f1
a
ηa234 − f2

a
η1a34 + fa

3 η
12
a4 + fa

4 η
12
3a

)

+
1

2

∑

ab

(

η12
ab
Γab

34 − Γ12
ab
ηab34

)

(1− na − nb)

+
∑

ab

(na − nb)
((

η1a3bΓ
2b
4a − Γ1a

3bη
2b
4a

)

− [1 ↔ 2]
)

,

(9)

where E = 〈Φ|H |Φ〉, and the one- and two-body parts of H ,

denoted by f and Γ, contain in-medium contributions from the

3N interaction because of the normal ordering [10, 11]. The

symbol [η ↔ f,Γ] in Eq. (8) indicates an interchange of the

one- and two-body parts of η and H . To close the system of

flow equations (7)–(9), we truncate three-body operators [11],

as well as a term containing λ(3) in the energy flow equa-

tion (7). We will refer to this truncation as MR-IM-SRG(2).

Note that the two-body flow equations (9) are identical to the

closed-shell case [10, 11].

As our default choice for the generator, we use the ansatz

of White [11, 15]. The required matrix elements of the Hamil-

tonian, such as 〈Φ|H :A12
34 : |Φ〉, which couple the reference

state to excitations, or 〈Φ| :A34
12 : H :A12

34 : |Φ〉, which enter

the energy denominators, can be evaluated using the general-

ized normal ordering. This yields

η12 =
n̄1n2f

1
2

n̄1f1
1 − n2f2

2 + n̄1n2Γ12
12

− [1 ↔ 2] + . . . , (10)

η1234 =
n̄1n̄2n3n4Γ

12
34

n̄1f1
1 + n̄2f2

2 − n3f3
3 − n4f4

4 +G12
34

− [(12) ↔ (34)]

+ . . . , (11)

where

G12
34 = n̄1n̄2Γ

12
12 + n3n4Γ

34
34

−
(

n̄1n3Γ
13
13 + n̄2n4Γ

24
24 + [1 ↔ 2]

)

. (12)

The dots in Eqs. (10) and (11) indicate terms that are linear

in λ(2). Terms containing higher powers of λ(2) or λ(n) with

n ≥ 3 are truncated.

In cases where the flow stalls due to small energy denom-

inators, we use Wegner’s generator η = [H,Hod] as a fall-

back, defining the one- and two-body parts of the off-diagonal

Hamiltonian Hod as

(fod)12 = n̄1n2f
1
2 + [1 ↔ 2] ,

(Γod)1234 = n̄1n̄2n3n4Γ
12
34 + [(12) ↔ (34)] . (13)

This generator is free of numerical instabilities but less ef-

ficient because the flow equations become stiff [10, 11]. In

the limit of a single Slater determinant reference state, both

generators reduce to the forms used for closed-shell nuclei in

[10, 11].

As our reference state, we choose a particle-number pro-

jected Hartree-Fock-Bogoliubov (HFB) vacuum, |Φ〉 =
PNPZ |HFB〉 [16]. This ansatz for the many-body wave func-

tion for an open-shell nucleus allows us to enforce spherical

symmetry in calculations for even nuclei [17]. The natural-

orbital basis of |Φ〉 is the usual canonical basis of the HFB

vacuum, allowing us to use analytic expressions for the den-

sity matrices [18].

We conclude the discussion of the MR-IM-SRG method

by mentioning that systematic improvements of the truncation

scheme are possible. One would include 3, . . . , A-body oper-

ators when expanding the flow equation (6) in normal-ordered

components, as well as additional terms involving irreducible

density matrices. While the number of flow equations is the

same as in the single-reference case, their complexity grows

much more rapidly due to additional terms from the general-

ized normal ordering [10–12].

Calculation Details. Reference states for the MR-IM-

SRG calculation are obtained by solving the HFB equations

in 15 major harmonic-oscillator (HO) shells, and projecting

the resulting HFB vacuum on good proton and neutron num-

bers [11, 19]. For the 3N interaction, the sum of the HO

energy quantum numbers of a 3N basis state is limited by

e1 + e2 + e3 ≤ E3max = 14, as discussed in [11, 20]. Reduc-

ing E3max from 14 to 12 changes the MR-IM-SRG(2) ground-

state energies for oxygen isotopes by less than 1% for the
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FIG. 1. (Color online) Convergence of the MR-IM-SRG(2) ground-

state energies of 18O and 26O with respect to the single-particle basis

size emax, for the NN+3N-full Hamiltonian at λSRG = 2.0 fm−1.

Hamiltonians used in this work. The intrinsic NN+3N Hamil-

tonian is normal-ordered with respect to the reference state,

and the residual normal-ordered 3N interaction term is dis-

carded, leading to the normal-ordered two-body approxima-

tion (NO2B), which is found to overestimate oxygen binding

energies by about 1% [11, 20].

In this Letter, we use the same nuclear Hamiltonians as in

our recent IM-SRG and CC studies [11, 20, 21]: The NN in-

teraction is the chiral N3LO interaction by Entem and Mach-

leidt, with cutoff ΛNN = 500 MeV/c [2, 22]. Our standard

three-body Hamiltonian is a local N2LO 3N interaction with

initial cutoff Λ3N = 400 MeV/c. The resolution scale of the

Hamiltonian is lowered to λSRG = 1.88, . . . , 2.24 fm−1 by

means of an SRG evolution in three-body space [23]. Hamil-

tonians which only contain SRG-induced 3N forces are re-

ferred to as NN+3N-induced, those also containing an initial

3N interaction as NN+3N-full.

In Fig. 1, we illustrate the convergence of the MR-IM-

SRG(2) ground-state energies for 18O and 26O with respect to

the single-particle basis size. At the optimal ~Ω, the change

in the ground-state energy is of the order of 0.1% when we in-

crease the basis from emax = 12 to 14. This rapid convergence

is representative for all Hamiltonians used in this work.

Results. In Fig. 2, we show MR-IM-SRG(2) ground-state

energies of the even oxygen isotopes for NN+3N-full Hamil-

tonians with initial cutoffs Λ3N = 350, 400 and 450 MeV/c.
For the 3N low-energy constants, we use a fixed cD = −0.2,

and cE = 0.205, 0.098, and −0.016, respectively, which are

fit to the 4He binding energy in NCSM calculations [21, 26].

For the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c,
we achieve an excellent reproduction of experimental data all

the way to the neutron drip line at 24O [25], with deviations

of 1-2%. A recent experiment places the 26O ground-state

resonance at Ex . 150 keV above the 24O ground-state en-

ergy [27]. We slightly overestimate this energy in our calcu-

lation because the HO basis expansion of our single-particle

wave functions is ill-suited to the description of resonances
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FIG. 2. (Color online) Dependence of the MR-IM-SRG(2) oxygen

ground-state energies for the NN+3N-full Hamiltonian on the res-

olution scale and the initial cutoff Λ3N. For each Λ3N, the band is

obtained by varying λSRG from 2.24 (open symbols) to 1.88 fm−1

(closed symbols). Experimental values are indicated by black bars

[24, 25].

and other continuum states. The inset in Fig. 2 illustrates that

the correct drip-line systematics is independent of λSRG in the

studied range.The drip line is also robust against variations of

the cutoff Λ3N. This suggests that the long-range part of the

two-pion exchange (2PE) 3N interaction, which remains un-

changed as we lower Λ3N, is key to obtaining the proper iso-

topic trends. The 2PE contribution has significant spin-orbit

and tensor terms, and is therefore important for the evolution

of the shell structure along the isotopic chain, as also demon-

strated in other studies, e.g. [28].

Let us now discuss the effect of varying the resolution scale.

As discussed in [11, 20], the λSRG-dependence of our energies

is the net result of omitted induced 4N interactions, the E3max

cut, and the MR-IM-SRG(2) truncation of the many-body ex-

pansion, while the effect of the NO2B approximation is found

to be independent of λSRG.

For Λ3N = 350 MeV/c we do not expect significant in-

duced 4N interactions [26]. As λSRG is reduced, we cap-

ture additional repulsive 3N strength in matrix elements with

e1 + e2 + e3 ≤ E3max. We also speed up the convergence

of the many-body expansion and reduce the error due to the

MR-IM-SRG(2) truncation, but for the resolution scales con-

sidered here, this effect is already saturated. In total, we find

a slight artificial increase of the ground-state energies as we

lower λSRG [11].

For our standard choice Λ3N = 400 MeV/c, effects from

omitted 4N interactions, the E3max cut, and the many-body

truncation cancel, and the λSRG-dependence of the energies

in Fig. 2 is extremely weak [11]. The omission of 4N in-

teractions becomes the dominant source of uncertainty as

we increase Λ3N to 450 MeV/c, resulting in an enhanced

λSRG-dependence of the ground-state energies of the sd-shell

oxygen isotopes. This observation is consistent with the
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FIG. 3. (Color online) Extrapolation of IT-NCSM ground-state en-

ergies for the even oxygen isotopes, obtained using the NN+3N-

induced (left) and NN+3N-full Hamiltonians at λSRG = 1.88 fm−1.

The solid lines indicate the energy extrapolation based on Nmax =
8 − 12 data, while dotted lines guide the eye for smaller Nmax. Un-

certainties due to the importance truncation are smaller than the sym-

bols used to represent the data. All energies are obtained at optimal

~Ω.

even stronger λSRG-dependence for Λ3N = 500 MeV/c, and

led us to consider the modified 3N interaction with Λ3N =
400 MeV/c in the first place [21, 26, 29].

To assess the quality of our MR-IM-SRG(2) ground-state

energies, we compare them to results from the IT-NCSM,

which yields the exact NCSM results within quantified un-

certainties from the importance truncation [30]. In the IT-

NCSM calculations, we use the full 3N interaction without

NO2B approximation, and the E3max cut is naturally compat-

ible with the IT-NCSM model space truncation [11]. In Fig. 3

we show the convergence of the oxygen ground-state energies

for the NN+3N-induced and NN+3N-full Hamiltonians as a

function of Nmax, along with exponential fits which extrap-

olate Nmax → ∞ [29–31]. With the exception of 26O, all

isotopes converge well, and the uncertainties of the threshold

and model spaces truncations of the IT-NCSM results are typ-

ically of the order of 1 MeV. For 26O, the rate of convergence

is significantly worse, which is expected due to the resonance

nature of this ground state.

In Fig. 4, we compare the MR-IM-SRG(2) and IT-

NCSM ground-state energies of the oxygen isotopes, for the

NN+3N-induced and NN+3N-full Hamiltonians with λSRG =
1.88 fm−1 to experiment. For the latter, the overall agree-

ment between the two very different many-body approaches

and experiment is striking: Except for slightly larger devia-

tions in the drip line nuclei 12O and 26O, we reproduce exper-

imental binding energies within 2-3 MeV. This is a remark-

able demonstration of the predictive power of current chiral

NN+3N Hamiltonians, at least for ground-state energies. For

further confirmation, we perform CC calculations with sin-

gles and doubles (CCSD), as well as perturbative triples (Λ-

CCSD(T)) [13, 20, 32, 33] for oxygen isotopes with sub-shell

closures. Using the same Hamiltonians in NO2B approxima-

tion, the MR-IM-SRG energies are bracketed by the CC re-
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FIG. 4. (Color online) Ground-state energies of the oxygen iso-

topes from the indicated many-body methods, for the NN+3N-

induced (top) and NN+3N-full (bottom) Hamiltonian with Λ3N =
400 MeV/c. MR-IM-SRG(2), CCSD, and Λ-CCSD(T) results are

obtained at optimal ~Ω, using 15 major oscillator shells and E3max =
14. The IT-NCSM energies are extrapolations to infinite model

space. Experimental values are indicated by black bars [24, 25].

sults, and more similar to the Λ-CCSD(T) values, consistent

with the closed-shell results discussed in [11].

For the NN+3N-induced calculation, which should be com-

pared to calculations with the bare chiral NN interaction [6],

the reproduction of experimental trends fails, and the neutron

drip line is predicted at wrong mass number, because 26O is

bound with respect to 24O. This illustrates the crucial impor-

tance of the chiral 3N interaction for a proper description of

the structure of neutron-rich nuclei [28].

Let us conclude the discussion by addressing the uncertain-

ties of our results. The MR-IM-SRG(2) energies lie about

1.5–2% below the IT-NCSM results. About 1% of this de-

viation is caused by the NO2B approximation. The uncer-

tainty due to the E3max cut should be smaller than 1% at low

λSRG. While the NO2B and E3max uncertainties exhaust the

greater part of the 1.5–2% deviation between MR-IM-SRG(2)

and IT-NCSM, and suggest a very small uncertainty due to the

many-body truncation, we assume a more conservative many-

body truncation error of 1–1.5%, and an overall uncertainty

of our oxygen energies at the level of 3–3.5%, consistent with
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our closed-shell IM-SRG calculations [11]. Because all ir-

reducible many-body density matrices vanish in closed-shell

nuclei, our findings indicate that the truncation of terms con-

taining λ(3) and higher, or non-linear powers of λ(2), is negli-

gible compared to the truncation of induced three-body opera-

tors. A more detailed analysis of the MR-IM-SRG truncation

scheme will be presented in a future publication.

Conclusions. We have generalized the IM-SRG approach

to multi-reference states, and used the resulting MR-IM-SRG

method to perform the first ab initio study of the even oxy-

gen isotopes with chiral NN+3N Hamiltonians, along with

the IT-NCSM and the CC method. We achieve remarkable

agreement with experimental binding energies within theoret-

ical uncertainties of 3%. This agreement is achieved without

any re-adjustment of the interaction to experimental data be-

yond 4He, and therefore constitutes an impressive demonstra-

tion of the predictive power of chiral NN+3N Hamiltonians.

The present work also highlights the importance of the 3N in-

teraction for the nuclear structure of neutron-rich nuclei, as

demonstrated by the robust reproduction of the oxygen drip

line.

While the oxygen isotopes studied here are also within the

reach of the particle-attached and -removed CC calculations,

the MR-IM-SRG provides ground-state energies at a signifi-

cantly reduced computational cost. Thus, it is ideally suited

for calculations in medium- and eventually heavy-mass open-

shell nuclei far from shell closures. In such applications, the

MR-IM-SRG also offers a more complete treatment of many-

body correlations than other current open-shell methods.

Acknowledgments. We thank R. Furnstahl for useful com-

ments. This work is supported in part by the National Science

Foundation under Grant No. PHY-1002478, and the NUCLEI

SciDAC Collaboration under the U.S. Department of Energy

Grant No. DE-SC0008533, the Deutsche Forschungsgemein-

schaft through contract SFB 634, the Helmholtz International

Center for FAIR (HIC for FAIR), and the BMBF through con-

tract 06DA7074I. Computing resources were provided by the

Ohio Supercomputer Center (OSC), the Jülich Supercomput-

ing Center, the LOEWE-CSC Frankfurt, and the National En-

ergy Research Scientific Computing Center supported by the

Office of Science of the U.S. Department of Energy under

Contract No. DE-AC02-05CHH11231.

∗ Corresponding author. Electronic address: hergert.3@osu.edu

[1] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.

Phys. 81, 1773 (2009).

[2] R. Machleidt and D. Entem, Phys. Rept. 503, 1 (2011).

[3] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. C 62,

054311 (2000).

[4] B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys.

69, 131 (2013).

[5] G. R. Jansen, M. Hjorth-Jensen, G. Hagen, and T. Papenbrock,

Phys. Rev. C 83, 054306 (2011).

[6] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and

T. Papenbrock, Phys. Rev. Lett. 108, 242501 (2012).

[7] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and

T. Papenbrock, Phys. Rev. Lett. 109, 032502 (2012).

[8] V. Somà, T. Duguet, and C. Barbieri, Phys. Rev. C 84, 064317

(2011).

[9] V. Somà, C. Barbieri, and T. Duguet, Phys. Rev. C 87, 011303

(2013).

[10] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev. Lett.

106, 222502 (2011).

[11] H. Hergert, S. Bogner, S. Binder, A. Calci, J. Langhammer,

R. Roth, and A. Schwenk, (2012), arXiv:1212.1190 [nucl-th].

[12] W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432

(1997).

[13] I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry

and Physics: MBPT and Coupled-Cluster Theory (Cambridge

University Press, 2009).

[14] L. Kong, M. Nooijen, and D. Mukherjee, J. Chem. Phys. 132,

234107 (2010).

[15] S. R. White, J. Chem. Phys. 117, 7472 (2002).

[16] P. Ring and P. Schuck, The Nuclear Many-Body Problem, 1st

ed. (Springer, 1980).

[17] S. Perez-Martin and L. M. Robledo, Phys. Rev. C 78, 014304

(2008).

[18] J. A. Sheikh and P. Ring, Nucl. Phys. A 665, 71 (2000).

[19] H. Hergert and R. Roth, Phys. Rev. C 80, 024312 (2009).

[20] S. Binder, J. Langhammer, A. Calci, P. Navrátil, and R. Roth,

Phys. Rev. C 87, 021303 (2013).

[21] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, and

P. Navrátil, Phys. Rev. Lett. 109, 052501 (2012).

[22] D. R. Entem and R. Machleidt, Phys. Lett. B 524, 93 (2002).

[23] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys. Rev.

Lett. 103, 082501 (2009).

[24] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729,

337 (2002).

[25] C. R. Hoffman, T. Baumann, D. Bazin, J. Brown, G. Christian,

P. A. DeYoung, J. E. Finck, N. Frank, J. Hinnefeld, R. Howes,

P. Mears, E. Mosby, S. Mosby, J. Reith, B. Rizzo, W. F. Rogers,

G. Peaslee, W. A. Peters, A. Schiller, M. J. Scott, S. L. Tabor,

M. Thoennessen, P. J. Voss, and T. Williams, Phys. Rev. Lett.

100, 152502 (2008).

[26] R. Roth, A. Calci, J. Langhammer, and S. Binder, (2013), in

preparation.

[27] E. Lunderberg, P. A. DeYoung, Z. Kohley, H. Attanayake,

T. Baumann, D. Bazin, G. Christian, D. Divaratne, S. M.

Grimes, A. Haagsma, J. E. Finck, N. Frank, B. Luther,

S. Mosby, T. Nagi, G. F. Peaslee, A. Schiller, J. Snyder, A. Spy-

rou, M. J. Strongman, and M. Thoennessen, Phys. Rev. Lett.

108, 142503 (2012).

[28] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi,

Phys. Rev. Lett. 105, 032501 (2010).

[29] R. Roth, J. Langhammer, A. Calci, S. Binder, and P. Navrátil,

Phys. Rev. Lett. 107, 072501 (2011).

[30] R. Roth, Phys. Rev. C 79, 064324 (2009).

[31] R. Roth and P. Navrátil, Phys. Rev. Lett. 99, 092501 (2007).

[32] A. G. Taube and R. J. Bartlett, J. Chem. Phys. 128, 044110

(2008).

[33] G. Hagen, T. Papenbrock, D. J. Dean, and M. Hjorth-Jensen,

Phys. Rev. C 82, 034330 (2010).


