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We generalize the coupled-cluster (CC) approach with singles, doubles, and the non-iterative treatment of

triples termed ΛCCSD(T), to Hamiltonians containing three-body interactions. The resulting method and the

underlying CC approach with singles and doubles only (CCSD) are applied to the medium-mass closed-shell

nuclei 16O, 24O and 40Ca. By comparing the results of CCSD and ΛCCSD(T) calculations with explicit treat-

ment of three-nucleon (3N) interactions to those obtained using an approximate treatment in which they are

included effectively via the zero-, one- and two-body components of the Hamiltonian in normal-ordered form,

we quantify the contributions of the residual three-body interactions neglected in the approximate treatment. We

find these residual normal-ordered three-body contributions negligible for theΛCCSD(T) method, although they

can become significant in the lower-level CCSD approach, particularly when the nucleon-nucleon interactions

are soft.

PACS numbers: 21.30.-x, 05.10.Cc, 21.45.Ff, 21.60.De

I. INTRODUCTION

Chiral effective field theory (EFT) provides a systematic

link between low-energy quantum chromodynamics (QCD)

and nuclear-structure physics [1–9]. In order to make ac-

curate QCD-based predictions using ab initio many-body

methods employing Hamiltonians constructed within chi-

ral EFT, the inclusion of three-nucleon (3N) forces is in-

evitable [8, 9], affecting various important nuclear proper-

ties, such as binding and excitation energies [10–17]. While

some many-body approaches, such as the no-core shell model

(NCSM) [10, 12, 18–36] and its importance-truncated (IT)

extension [33, 37, 38] or the coupled-cluster (CC) the-

ory [39–46] truncated at the singly and doubly excited clusters

(CCSD) [38, 47–62] have already been extended to the ex-

plicit treatment of 3N interactions and were successfully ap-

plied to light and medium-mass nuclei [13, 14, 17, 63, 64],

other approaches remain to be generalized to the explicit

3N case. Among these are the more quantitative CC ap-

proaches, including those based on a non-iterative treatment

of the connected triply excited clusters on top of CCSD,

such as CCSD(T) [63, 65], CR-CCSD(T) [51, 53–56, 66–

70], CCSD(2)T [71–74], ΛCCSD(T) [17, 60, 64, 75–78], and

CR-CC(2,3) [38, 58, 61, 79–82], or the in-medium similarity

renormalization group [16, 83].

Considering the substantial cost of ab initio many-body

computations with 3N interactions, it is important to exam-

ine how much information about the 3N forces has to be
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included in such calculations explicitly. A common prac-

tice in nuclear-structure theory is to incorporate 3N forces

into the many-body considerations with the help of effective

interactions that can provide information about these forces

via suitably re-defined lower-particle terms in the Hamilto-

nian. In particular, the normal-ordering two-body approxi-

mation (NO2B), where normal ordering of the Hamiltonian

becomes a formal tool to demote information about the 3N

interactions to lower-particle normal-ordered terms and the

residual normal-ordered 3N term is subsequently discarded,

has led to promising results in NCSM and CCSD calcula-

tions for light and medium-mass nuclei [13, 14, 17, 63, 64].

In the case of the IT-NCSM and CCSD approach, contribu-

tions from the residual 3N interactions have been shown to be

small [14, 63, 64], although not always negligible [14, 64]. In

many cases one needs to go beyond the CCSD level within

the CC framework to obtain a highly accurate quantitative de-

scription of several nuclear properties, including binding and

excitation energies [38, 51, 53–58, 60, 61, 78]. Thus, a more

precise assessment of the significance of the residual 3N con-

tribution in the normal-ordered Hamiltonian at the CC the-

ory levels that incorporate the connected triply excited clus-

ters in an accurate and computationally manageable manner,

such as CCSD(T), ΛCCSD(T) and CR-CC(2,3), is an impor-

tant and timely objective. It is nowadays well established

that once the connected triply excited clusters are included

in the CC calculations, the resulting energies can compete

with the converged NCSM, high-level configuration interac-

tion (CI), or other nearly exact numerical data, which is a con-

sequence of the use of the exponential wave function ansatz

in the CC considerations, where various higher-order many-

particle correlation effects are described via products of low-

rank excitation operators (for the examples of the more recent

nuclear-structure calculations illustrating this statement, see

Refs. [17, 38, 51, 53–58, 60–64, 78]; cf., also, Ref. [84]). This

makes the examination of the CC models that account for the

connected triply excited clusters, in addition to the singly and
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doubly excited clusters and their products captured by CCSD,

and their extensions to 3N interactions even more important.

In our earlier work on CC methods with non-iterative treat-

ment of the connected triply excited clusters (called triples)

using two-nucleon (NN) interactions in the Hamiltonian, the

highest theory level considered thus far was CR-CC(2,3) [38,

61]. The experience of quantum chemistry, where several CC

approximations of this type have been developed, indicates

that CR-CC(2,3) represents the most complete and most ro-

bust form of the non-iterative triples correction to CCSD (cf.,

e.g., Refs. [79–81, 85–88]), producing results that in bench-

mark computations are often very close to those obtained with

a full treatment of the singly, doubly, and triply excited clus-

ters via the iterative CCSDT approach [89, 90], at a small frac-

tion of the computing cost [79, 80, 88]. However, there also

exist other methods in this category, such as the ΛCCSD(T)

approach that has been examined in the nuclear context as

well [17, 64, 78], which represent approximations to CR-

CC(2,3) [79–81, 88] and are almost as effective in capturing

the connected triply excited clusters in closed-shell systems,

while simplifying programming effort, particularly when 3N

interactions need to be examined and when efficient angular-

momentum-coupled codes have to be developed. Thus, al-

though we would eventually also like to work on an angular-

momentum-coupled formulation of the CR-CC(2,3) method

for Hamiltonians including 3N forces, in this first work on the

examination of the role of 3N interactions in the CC theory

levels beyond CCSD, we focus on the simpler ΛCCSD(T) ap-

proach. Following the considerations presented in Ref. [76]

for the case of two-body Hamiltonians and those presented in

Refs. [79, 80, 82] in the more general CR-CC(2,3) context,

which help us to identify additional terms in the equations

due to the 3N forces, we derive the ΛCCSD(T)-style triples

energy correction for three-body Hamiltonians which we sub-

sequently apply to the medium-mass closed-shell nuclei 16O,
24O, and 40Ca. By comparing the CCSD andΛCCSD(T) bind-

ing energies obtained with the explicit treatment of 3N in-

teractions with their counterparts obtained within the NO2B

approximation, we quantify the contributions of the residual

3N interactions that are neglected in the NO2B approxima-

tion at two different CC-theory levels, with and without the

connected triply excited clusters.

II. THEORY

A. Brief synopsis of coupled-cluster theory

The CCSD and ΛCCSD(T) approaches examined in this

study, and the CR-CC(2,3) counterpart of ΛCCSD(T) used in

our considerations as well, are examples of approximations

based on the exponential ansatz of single-reference CC the-

ory, in which the ground state |Ψ〉 of an A-particle system is

represented as [39–46]

|Ψ〉 = eT |Φ〉, (1)

where |Φ〉 is the reference determinant (in the computations

reported in this paper, the Hartree-Fock state) and

T =

A∑

n=1

Tn (2)

is a particle-hole excitation operator, defined relative to the

Fermi vacuum |Φ〉 and referred to as the cluster operator,

whose many-body components

Tn =

(

1

n!

)2 ∑

i1 ,...,in
a1 ,...,an

t
a1 ...an

i1...in
a†a1
· · ·a†an

ain · · ·ai1 (3)

generate the connected wave-function diagrams of |Ψ〉. The

remaining linked, but disconnected contributions to |Ψ〉 are

produced through the various product terms of the Tn opera-

tors resulting from the use of Eqs. (1)–(3). Here and elsewhere

in this article, we use the traditional notation in which i1, i2, . . .

or i, j, . . . are the single-particle states (orbitals) occupied in

|Φ〉, a1, a2, . . . or a, b, . . . are the single-particle states unoc-

cupied in |Φ〉, and p, q, . . . , p1, p2, . . . , or q1, q2, . . . represent

generic single-particle states.

Typically, the explicit equations for the ground-state energy

E, which can be written as

E = Eref + ∆E, (4)

where

Eref = 〈Φ|H|Φ〉 (5)

is the independent-particle-model reference energy and ∆E

its correlation counterpart, and the cluster amplitudes t
a1...an

i1...in
defining the many-body components Tn of T , are obtained by

first inserting the ansatz for the wave function |Ψ〉, Eq. (1),

into the Schrödinger equation, HN |Ψ〉 = ∆E|Ψ〉, where

HN = H − Eref (6)

is the Hamiltonian in normal-ordered form relative to |Φ〉.

Then, premultiplying both sides of the resulting equation

on the left by e−T yields the connected cluster form of the

Schrödinger equation [42, 43],

HN |Φ〉 = ∆E|Φ〉, (7)

where

HN = e−T HN eT = (HN eT )C (8)

is the similarity-transformed Hamiltonian or, equivalently, the

connected product of HN and eT (designated by the subscript

C). Finally, both sides of Eq. (7) are projected on the reference

determinant |Φ〉 and the excited determinants

|Φ
a1...ak

i1...ik
〉 = a†a1

· · ·a†ak
aik · · · ai1 |Φ〉 (9)

that correspond to the particle-hole excitations included in T .

The latter projections result in a nonlinear system of the ex-

plicitly connected and energy-independent equations for the
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cluster amplitudes t
a1 ...ak

i1...ik
[42–45] (cf., e.g., Refs. [38, 41, 46,

70, 88, 91–95] for review information),

〈Φ
a1...an

i1...in
|HN |Φ〉 = 0, i1 < · · · < in, a1 < · · · < an, (10)

where HN is defined by Eq. (8) and n = 1, . . . , A, whereas

the projection of Eq. (7) on |Φ〉 results in the CC correlation

energy formula,

∆E = 〈Φ|HN |Φ〉. (11)

If one is further interested in properties other than energy,

which require the knowledge of the ket state |Ψ〉 and its bra

counterpart

〈Ψ̃| = 〈Φ|(1 + Λ)e−T , (12)

which satisfies the biorthonormality condition 〈Ψ̃|Ψ〉 = 1, and

where

Λ =

A∑

n=1

Λn, (13)

with

Λn =

(

1

n!

)2 ∑

i1 ,...,in
a1 ,...,an

λi1...in
a1...an

a
†

i1
· · · a

†

in
aan
· · · aa1

, (14)

is the hole-particle deexcitation operator generating 〈Ψ̃|, we

also have to solve the linear system of the so-called Λ equa-

tions [38, 88, 91, 93–99],

〈Φ|(1 + Λ) HN |Φ
a1...an

i1...in
〉 = ∆E λi1...in

a1...an
,

i1 < · · · < in, a1 < · · · < an, (15)

obtained by substituting Eq. (12) into the adjoint form of the

Schrödinger equation, 〈Ψ̃|HN = ∆E〈Ψ̃|. System (15) can be

further simplified into the energy-independent form

〈Φ|(1 + Λ) (HN)open|Φ
a1...an

i1...in
〉 = 0,

i1 < · · · < in, a1 < · · · < an, (16)

where

(HN)open = HN − (HN)closed = HN − ∆E (17)

is the open part of HN , defined by the diagrams of HN that

have external Fermion lines. Clearly, the only diagrams of HN

that enter the CC system given by Eq. (10) are the diagrams

of (HN)open, whereas the only diagrams that contribute to ∆E,

Eq. (11), are the vacuum (or closed) diagrams that have no

external lines. We discuss the Λ or left-eigenstate CC equa-

tions, Eq. (15) or (16), for the deexcitation amplitudes λ
i1...in
a1...an

here, since they are one of the key ingredients of ΛCCSD(T)

and the related CR-CC(2,3) considerations below. It is worth

pointing out, though, that by examining these equations in the

context of the ΛCCSD(T)/CR-CC(2,3) considerations for the

three-body Hamiltonians, we are at the same time helping fu-

ture developments in the area of CC computations of nuclear

properties other than binding energy, extending the relevant

formal considerations to the case of 3N interactions. For ex-

ample, the Λ operator obtained by solving Eq. (16) can be

used to determine the CC one-body reduced density matrices,

γ
q
p ≡ 〈Ψ̃|(a

†
paq)|Ψ〉 = 〈Φ|(1 + Λ)(a

†
paq)|Φ〉, (18)

where we define (a
†
paq) as

(a
†
paq) = e−T (a†paq) eT = [(a†paq) eT ]C, (19)

and determine expectation values of one-body operators in the

usual manner as

〈Ψ̃|Θ|Ψ〉 =
∑

p,q

θ
p
q γ

q
p ≡ θ

p
q γ

q
p, (20)

where Θ =
∑

p,q θ
p
q a
†
paq is a one-body property operator of in-

terest. In writing Eq. (20), the Einstein summation convention

over repeated upper and lower indices in product expressions

of matrix elements has been assumed. We will exploit this

convention throughout the rest of this article.

The above is the exact CC theory, which is equivalent to the

exact diagonalization of the Hamiltonian within the full CI ap-

proach and is, for practical reasons, limited to small few-body

problems. Thus, in all practical applications of CC theory, one

truncates the many-body expansion for T , Eq. (2), at some,

preferably low, m-particle–m-hole excitation level Tm. In this

study, we focus on the CCSD approach in which T is truncated

at the doubly excited clusters T2, and the ΛCCSD(T) method,

which allows to correct the CCSD energy for the dominant ef-

fects due to the triply excited clusters T3 in a computationally

feasible manner, avoiding the prohibitively expensive steps of

full CCSDT, in which one has to solve for T1, T2 and T3 in

an iterative fashion. The final form of the CC amplitude and

energy equations also depends on the Hamiltonian used in the

calculations, since the length of the many-body expansion of

the resulting similarity-transformed Hamiltonian HN , Eq. (8),

which can also be written as

HN = HN +

2kmax∑

n=1

1

n!

[

. . .
[

︸︷︷︸

n times

HN , T
]

, . . . , T
]

︸      ︷︷      ︸

n times

=

2kmax∑

n=0

1

n!
(HNT n)C , (21)

depends on kmax, where kmax is the highest many-body rank

of the interactions in HN or H (kmax = 2 for 2N interactions,

kmax = 3 for 3N interaction terms, etc.). In this article we fo-

cus on the kmax = 3 case, emphasizing the differences between

the more familiar CCSD and ΛCCSD(T) equations for two-

body Hamiltonians, which can be found, in the most compact,

factorized form using recursively generated intermediates, in

Refs. [47, 52, 97, 100] for CCSD and [76] forΛCCSD(T), and

their extensions to the three-body case. The key ingredients of

the CCSD and ΛCCSD(T) approaches for 3N interactions in

the Hamiltonian are discussed in the next two subsections. We

begin with the Hamiltonian.
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B. Normal-ordered form of the Hamiltonian with three-body

interactions and the NO2B approximation

As shown in the previous subsection, the single-reference

CC equations for the cluster amplitudes t
a1 ...an

i1...in
defining T , their

deexcitation counterparts λ
i1...in
a1...an

defining Λ, and the correla-

tion energy ∆E can be conveniently expressed in terms of the

Hamiltonian in normal-ordered form relative to the Fermi vac-

uum |Φ〉, transformed with eT , as in Eqs. (8) and (21). For

Hamiltonians with up to three-body interactions,

H = H1 + H2 + H3, (22)

where

Hn =

(

1

n!

)2 ∑

p1 ,...,pn
q1 ,...,qn

h
p1...pn

q1...qn
a†p1
· · · a†pn

aqn
· · · aq1

(23)

is the n-body contribution to H, and the normal-ordered

Hamiltonian HN , Eq. (6), which provides information about

the many-particle correlation effects beyond the mean-field

level represented by |Φ〉, can be represented in the form

HN = FN + VN +WN . (24)

The one-, two-, and three-body components FN , VN and WN

in Eq. (24) are defined as

FN =
∑

p,q

f
p

q N[a†paq], (25)

VN =
1
4

∑

p,q,r,s

v
pq
rs N[a†pa†qasar], (26)

and

WN =
1

36

∑

p,q,r,s,t,u

w
pqr
stu N[a†pa†qa†r auatas], (27)

where N[. . .] designates normal ordering relative to |Φ〉 and

the matrix elements f
p

q , v
pq
rs and w

pqr
stu are given by

f
p

q = h
p
q +

∑

i

h
pi

qi
+ 1

2

∑

i, j

h
pi j

qi j
, (28)

v
pq
rs = h

pq
rs +

1
4

∑

i

h
pqi

rsi
, (29)

and

w
pqr
stu = h

pqr
stu , (30)

repectively. The corresponding reference energy Eref, Eq. (5),

which one needs to add to the correlation energy ∆E to obtain

the total ground-state energy E, is calculated via

Eref =
∑

i

hi
i +

1
2

∑

i, j

h
i j

i j
+ 1

6

∑

i, j,k

h
i jk

i jk
. (31)

When the Hamiltonian is used in the normal-ordered form,

information about the three-body interaction in H enters in

two fundamentally different ways: effectively, via the refer-

ence energy Eref, Eq. (31), and the normal-ordered one- and

two-body matrix elements f
p

q and v
pq
rs , Eqs. (28) and (29),

which define the FN and VN components of HN , and explic-

itly, via the genuinely three-body residual term WN , Eq. (27),

which captures those 3N contributions to the Hamiltonian that

cannot be demoted to the lower-rank FN and VN operators or

the reference energy Eref. Considering the fact that the FN

and VN components of HN combined with the reference en-

ergy Eref contain the complete information about pairwise in-

teractions and much of the information about the 3N forces, it

is reasonable to consider the NO2B approximation, discussed

in Refs. [14, 17, 63, 64], in which the three-body residual

term WN is neglected in HN . The main goal of this study is

to compare the CCSD and ΛCCSD(T) results obtained with a

full representation of the normal-ordered Hamiltonian HN in

which the residual three-body term WN is retained in the cal-

culations, with their counterparts obtained using the truncated

form of HN that defines the NO2B approximation, in which

Eq. (24) is replaced by the simplified expression

HN,2B = FN + VN (32)

containing only the one- and two-body components of HN de-

fined by Eqs. (25)–(26) and (28)–(29).

The NO2B approximation offers several advantages over

the full treatment of 3N forces. First of all, it allows to reuse

the conventional CC equations derived for two-body Hamilto-

nians, which one can find for CCSD in Refs. [47, 52, 97, 100]

and for ΛCCSD(T) in Ref. [76], by replacing the f
p

q and v
pq
rs

matrix elements in these equations with their values deter-

mined using Eqs. (28) and (29). Clearly, the three-body in-

teractions are not ignored when the NO2B approximation is

invoked, since the reference energy Eref, Eq. (31), the one-

body operator FN , defined by Eqs. (25) and (28), and the

two-body operator VN , defined by Eqs. (26) and (29), con-

tain information about the 3N forces in the form of the in-

tegrated 1
6

∑

i, j,k h
i jk

i jk
, 1

2

∑

i, j h
pi j

qi j
and 1

4

∑

i h
pqi

rsi
contributions to

Eref, f
p

q and v
pq
rs . Secondly, the NO2B approximation leads to

major savings in the computational effort, since the most ex-

pensive terms in the CC equations that are generated by the

three-body residual interaction WN are disregarded when one

uses Eq. (32) instead of Eq. (24). Our objective is to exam-

ine if neglecting these residual terms, particularly at the more

quantitative ΛCCSD(T) level, does not result in a substantial

loss of accuracy in the description of the 3N contributions to

the resulting binding energies.

The above discussion implies that in order to compare

the CCSD and ΛCCSD(T) energies corresponding to the full

treatment of 3N forces with their counterparts obtained us-

ing the NO2B approximation, as defined by Eq. (32), one has

to augment the existing CCSD and ΛCCSD(T) equations de-

rived for Hamiltonians with up to two-body components in

HN , reported, for example, in Refs. [47, 52, 76, 97, 100], by

terms generated by the residual WN interaction, while adjust-

ing matrix elements of the FN and VN operators in the result-

ing equations through the use of Eqs. (28) and (29). This
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has been done for the CCSD case in Ref. [63], but none of

the earlier nuclear CC works have dealt with the explicit and

complete incorporation of 3N interactions in modern post-

CCSD considerations. The present study addresses this con-

cern by extending the considerations reported in Ref. [63]

to the triples energy correction of ΛCCSD(T) and also the

ΛCCSD equations, which one has to solve prior to the de-

termination of the ΛCCSD(T) correction. Since, as dis-

cussed in Sec. II A, the CC amplitude and energy equations

and their left-eigenstate Λ counterparts rely on the similarity-

transformed form of HN , designated by HN , Eq. (8), the most

convenient way to incorporate the additional terms due to the

presence of WN into the CC considerations is by partitioning

HN as

HN = e−T (HN,2B +WN) eT = HN,2B +WN , (33)

where

HN,2B = e−T HN,2B eT = (HN,2B eT )C (34)

is the similarity-transformed form of HN,2B and

WN = e−T WN eT = (WN eT )C (35)

is the similarity-transformed form of WN . In this way, we

can split the CC equations Eqs. (10), (11) and (16) into the

NO2B contributions expressed in terms of HN,2B, which, with

the exception of the f
p

q and v
pq
rs matrix elements that define FN

and VN , have the same algebraic structure as the standard CC

equations derived for two-body Hamiltonians, and the WN-

containing terms that provide the rest of the information about

3N contributions neglected by the NO2B approximation.

The partitioning of HN represented by Eqs. (33)–(35) re-

flects the obvious fact that the normal-ordered form of the

Hamiltonian including three-body interactions, Eq. (24), is a

sum of the NO2B component HN,2B, Eq. (32), and the three-

body residual WN term.

As implied by Eq. (21), HN,2B terminates at the quadruply

nested commutators or terms that contain the fourth power of

T , since one can connect up to four vertices representing T

operators to the diagrams of HN,2B. Similarly, WN terminates

at the T 6 terms, since the diagram representing WN has six ex-

ternal lines. As a result, the complete many-body expansions

of HN,2B and WN , i.e.,

HN,2B =
∑

n

Hn,2B, (36)

where

Hn,2B =

(

1

n!

)2 ∑

p1 ,...,pn
q1 ,...,qn

h
p1...pn

q1...qn
(2B)

× a†p1
· · ·a†pn

aqn
· · · aq1

, (37)

and

WN =
∑

n

Wn, (38)

where

Wn =

(

1

n!

)2 ∑

p1 ,...,pn
q1 ,...,qn

w
p1...pn

q1...qn
a†p1
· · · a†pn

aqn
· · · aq1

, (39)

respectively, are quite complex, even at the lower levels of

CC theory, such as CCSD, where T is truncated at T2. In-

deed, it is easy to demonstrate that when the cluster opera-

tor T is truncated at the doubly excited T2 component, the

resulting HN,2B operator contains up to six-body terms. The

corresponding operator WN is even more complex, contain-

ing up to nine-body terms. Fortunately, as shown in the next

subsection, by the virtue of the projections on the subsets of

determinants that enter the CCSD and ΛCCSD(T) consider-

ations, the final amplitude and energy equations used in the

CCSD and ΛCCSD(T) calculations do not utilize all of the

many-body components of HN,2B and WN . For example, the

highest many-body components of HN,2B and WN that have to

be considered in the CCSD and ΛCCSD(T) calculations are

selected types of three-body (HN,2B) or four-body (WN) terms,

which greatly simplifies these calculations. The CCSD and

ΛCCSD(T) equations, with emphasis on the additional terms

beyond the NO2B approximation, are discussed next.

C. The CCSD and ΛCCSD(T) approaches for the

Hamiltonians with three-body interactions

As mentioned in the introduction, the residual 3N interac-

tion, represented by the WN component of the normal-ordered

Hamiltonian HN , although generally small [14, 63, 64], may

not always be negligible, particularly when the basic CC

theory level represented by the CCSD approach is consid-

ered [14, 64]. Considering the fact that one has to go beyond

the CCSD level within the CC framework to obtain a more

quantitative description of nuclear properties [14, 17, 38, 51,

53–58, 60, 61, 64, 78], it is imperative to investigate how sig-

nificant the incorporation of the residual three-body interac-

tions in the Hamiltonian is when the connected triply excited

(T3) clusters are included in the calculations, in addition to

the singly and doubly excited clusters, T1 and T2, included in

CCSD. Ideally, one would prefer to examine this issue using

the full CCSDT approach, in which one solves the system (10)

of coupled nonlinear equations for the T1, T2, and T3 clus-

ter components in an iterative manner. Unfortunately, the full

CCSDT treatment is prohibitively expensive and thus limited

to small few-body problems, even at the level of pairwise in-

teractions. When the residual 3N interactions are included in

the CC considerations, the situation becomes even worse. For

this reason we resort to the approximate treatment of the T3

clusters via the non-iterative energy correction added to the

CCSD energy defining the ΛCCSD(T) approach, which is ca-

pable of capturing the leading T3 effects at the small fraction

of the cost of the full CCSDT computations. A few remarks

about the closely related CR-CC(2,3) method, which contains

ΛCCSD(T) as the leading approximation and which also cap-

tures the T3 effects, will be given too, since the CR-CC(2,3)

expressions provide a transparent and pedagogical mechanism
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for identifying terms in the ΛCCSD(T) equations that result

from adding the 3N interactions to the Hamiltonian. Consid-

ering the relatively low computational cost of the ΛCCSD(T)

approach while providing information about the T3 clusters,

we can for medium-mass nuclei compare the results of the

CC calculations describing the T1, T2, and T3 effects using

the complete representation of the three-body Hamiltonian in-

cluding the residual WN term with their counterparts relying

on the NO2B truncation of HN .

The determination of the ΛCCSD(T) (or CR-CC(2,3)) en-

ergy, which has the general form

E = E(CCSD) + δE(T), (40)

where

E(CCSD) = Eref + ∆E(CCSD) (41)

is the total CCSD energy and δE(T) the energy correction due

to the connected T3 clusters, consists of four steps: First, as

in all many-body computations, we generate the appropriate

single-particle basis, which in our case will be obtained from

Hartree-Fock calculations. In the next two steps, which we

discuss in Sec. II C 1, we solve the CCSD equations and their

left-eigenstate Λ counterparts, and determine the CCSD cor-

relation energy ∆E(CCSD). The δE(T) correction, discussed in

Sec. II C 2, is calculated in the fourth step using the informa-

tion resulting from the CCSD and ΛCCSD calculations.

1. The CCSD and left-eigenstate CCSD equations for three-body

Hamiltonians

We begin our considerations with the key elements of the

CCSD approach, where the cluster operator T defining the

ground-state wave function |Ψ〉 using Eq. (1) is truncated at

the doubly excited clusters, so that (cf. Eqs. (2) and (3))

T ≈ T (CCSD) = T1 + T2, (42)

with

T1 =
∑

i,a

ta
i a†aai =

∑

i,a

ta
i N[a†aai] (43)

and

T2 =
1
4

∑

i, j,a,b

tab
i j a†aa

†

b
a jai =

1
4

∑

i, j,a,b

tab
i j N[a†aaia

†

b
a j], (44)

and the left-eigenstate counterpart of CCSD, where the deex-

citation operatorΛ defining the bra ground state 〈Ψ̃|, Eq. (12),

is approximated using the expression (cf. Eqs. (13) and (14))

Λ ≈ Λ(CCSD) = Λ1 + Λ2, (45)

with

Λ1 =
∑

i,a

λi
a a
†

i
aa =

∑

i,a

λi
a N[a

†

i
aa] (46)

and

Λ2 =
1
4

∑

i, j,a,b

λ
i j

ab
a
†

i
a
†

j
abaa =

1
4

∑

i, j,a,b

λ
i j

ab
N[a

†

i
aaa

†

j
ab]. (47)

In addition to being useful in their own right, the CCSD and

left-eigenstate CCSD calculations provide the singly and dou-

bly excited cluster amplitudes, ta
i

and tab
i j

, and their deex-

citation λi
a and λ

i j

ab
analogs, which are needed to construct

the non-iterative corrections to the CCSD energy via the

ΛCCSD(T), CR-CC(2,3), and similar techniques. The CCSD

equations for three-body Hamiltonians have been discussed in

Ref. [63], but their left-eigenstate ΛCCSD analogs have not

been examined so far. Since the regular CCSD and ΛCCSD

considerations cannot be separated out, we first summarize

the CCSD amplitude and energy equations for the case of 3N

interactions.

The CCSD equations are obtained by replacing T in

Eqs. (10) and (11) by T (CCSD), and by limiting the projec-

tions on the excited determinants |Φ
a1...an

i1...in
〉 in Eq. (10) to those

that correspond to the singly and doubly excited cluster am-

plitudes ta
i

and tab
i j

we want to determine, so that the number of

equations matches the number of unknowns [38, 47–62]. As-

suming that the Hamiltonian of interest contains three-body

interactions, we obtain the system of equations for ta
i

and tab
i j

[63]

〈Φa
i |HN

(CCSD)
|Φ〉 = Θa

i (2B) + Θa
i (WN) = 0, (48)

〈Φab
i j |HN

(CCSD)
|Φ〉 = Θab

i j (2B) + Θab
i j (WN) = 0, (49)

where

HN

(CCSD)
= e−T1−T2 HN eT1+T2 = (HN eT1+T2 )C (50)

is the similarity-transformed Hamiltonian of CCSD and |Φa
i
〉

and |Φab
i j
〉 are the singly and doubly excited determinants rel-

ative to |Φ〉. The Θa
i
(2B), Θa

i
(WN), Θab

i j
(2B), and Θab

i j
(WN)

terms entering Eqs. (48) and (49) are defined as

Θa
i (2B) = 〈Φa

i |HN,2B

(CCSD)
|Φ〉, (51)

Θa
i (WN) = 〈Φa

i |WN

(CCSD)
|Φ〉, (52)

Θab
i j (2B) = 〈Φab

i j |HN,2B

(CCSD)
|Φ〉, (53)

and

Θab
i j (WN) = 〈Φab

i j |WN

(CCSD)
|Φ〉. (54)

The operators HN,2B

(CCSD)
and WN

(CCSD)
appearing in

Eqs. (51)–(54) are defined as

HN,2B

(CCSD)
= e−T1−T2 HN,2B eT1+T2 = (HN,2B eT1+T2)C (55)



7

and

WN

(CCSD)
= e−T1−T2 WN eT1+T2 = (WN eT1+T2)C , (56)

and represent the similarity-transformed forms of the HN,2B

and WN operators, Eqs. (34) and (35), adapted to the CCSD

case, which obviously add up to HN

(CCSD)
,

HN,2B

(CCSD)
+WN

(CCSD)
= HN

(CCSD)
. (57)

From the above definitions it is apparent that Θa
i
(WN) and

Θab
i j

(WN), due to their origin of WN , do only contribute when

the residual 3N interaction is included in the calculations,

whereas the NO2B contributions Θa
i
(2B) and Θab

i j
(2B) are

present in any case. As in the most common case of two-

body Hamiltonians (see, e.g., Refs. [38, 47–50, 95]), it is easy

to demonstrate, using Eq. (21) for kmax = 2 and the above def-

initions of Θa
i
(2B) and Θab

i j
(2B), that the NO2B contributions

to the CCSD amplitude equations do not contain higher–than–

quartic terms in T , i.e.,

Θa
i (2B) = 〈Φa

i | [HN,2B (1 + T1 + T2 +
1
2
T 2

1

+T1T2 +
1
6
T 3

1 )]C |Φ〉 (58)

and

Θab
i j (2B) = 〈Φab

i j | [HN,2B (1 + T1 + T2 +
1
2
T 2

1

+T1T2 +
1
6
T 3

1 +
1
2
T 2

2 +
1
2
T 2

1 T2

+ 1
24

T 4
1 )]C |Φ〉. (59)

For the Θa
i
(WN) and Θab

i j
(WN) contributions to the CCSD am-

plitude equations due to the residual three-body interaction

term WN , we can write [63]

Θa
i (WN) = 〈Φa

i | [WN (T2 +
1
2
T 2

1 + T1T2 +
1
6
T 3

1

+ 1
2
T 2

2 +
1
2
T 2

1 T2 +
1

24
T 4

1 )]C |Φ〉 (60)

and

Θab
i j (WN) = 〈Φab

i j | [WN (T1 + T2 +
1
2
T 2

1 + T1T2 +
1
6
T 3

1

+ 1
2
T 2

2 +
1
2
T 2

1 T2 +
1
24

T 4
1 +

1
2
T1T 2

2

+ 1
6
T 3

1 T2 +
1

120
T 5

1 )]C |Φ〉, (61)

respectively, i.e., the highest power of T that needs to be con-

sidered is 5, not 6, as Eq. (21) for the kmax = 3 case would

imply, since diagrams of the (WNT 6)C type entering WN have

more than four external lines and, as such, cannot produce

non-zero expressions when projected on |Φa
i
〉 and |Φab

i j
〉.

The detailed m-scheme-style expressions for the NO2B-

type Θa
i
(2B) and Θab

i j
(2B) contributions to the CCSD ampli-

tude equations, in terms of the one- and two-body matrix ele-

ments of the normal-ordered Hamiltonian f
p

q and v
pq
rs , and the

singly and doubly excited cluster amplitudes ta
i

and tab
i j

, which

lead to efficient computer codes through the use of recursively

generated intermediates that allow to utilize fast matrix mul-

tiplication routines, can be found in Refs. [47, 52, 97, 100].

The analogous m-scheme-type expressions for the Θa
i
(WN)

and Θab
i j

(WN) contributions to the CCSD equations, in terms

of the w
pqr
stu matrix elements defining WN and the ta

i
and tab

i j
am-

plitudes can be found in Ref. [63]. In using the CCSD equa-

tions presented in Refs. [47, 52, 97, 100], originally derived

for two-body Hamiltonians, as expressions for Θa
i
(2B) and

Θab
i j

(2B) in the context of the calculations including 3N inter-

actions, one only has to use definitions Eqs. (28) and (29) for

the matrix elements f
p

q and v
pq
rs of the normal-ordered Hamil-

tonian, which contain the effective 1
2

∑

i, j h
pi j

qi j
and 1

4

∑

i h
pqi

rsi

contributions due to the 3N interactions. All of the remain-

ing details are, however, the same. Following our earlier stud-

ies [14, 17, 64], in performing the CCSD calculations for the

closed-shell nuclei reported in this work, we use an angular-

momentum-coupled formulation of CC theory discussed in

Ref. [78], which employs reduced matrix elements for all of

the operators involved, allowing for a drastic reduction in the

numbers of matrix elements and cluster amplitudes entering

the computations, and in a substantial reduction in the number

of CPU operations, compared to a raw m-scheme description

used in earlier nuclear CCSD work [38, 51–58, 61], enabling

us to tackle medium-mass nuclei and larger numbers of oscil-

lator shells in the single-particle basis set.

Once the cluster amplitudes ta
i

and tab
i j

are determined

by solving the non-linear system represented by Eqs. (48)

and (49), the CCSD correlation energy ∆E(CCSD), which is

subsequently added to the reference energy Eref, Eq. (31), in

order to obtain the total energy E(CCSD), as in Eq. (41), is cal-

culated using Eq. (11), where we replace HN by HN

(CCSD)
. We

obtain

∆E(CCSD) = ∆E
(CCSD)

2B
+ ∆E

(CCSD)

3B
, (62)

where

∆E
(CCSD)

2B
= 〈Φ|HN,2B

(CCSD)
|Φ〉 (63)

and

∆E
(CCSD)

3B
= 〈Φ|WN

(CCSD)
|Φ〉. (64)

Again, in analogy to the standard two-body Hamiltonians, it is

easy to show that the NO2B contribution to the CCSD correla-

tion energy, ∆E
(CCSD)

2B
, can be calculated using the expression

∆E
(CCSD)

2B
= 〈Φ|[HN,2B (T1 + T2 +

1
2
T 2

1 )]C |Φ〉

= f i
ata

i + v
i j

ab
( 1

4
tab
i j +

1
2
ta
i tb

j ), (65)

where f i
a and v

i j

ab
are determined using Eqs. (28) and (29).

For the ∆E
(CCSD)

3B
component of the CCSD correlation energy

due to the residual three-body interaction term WN , we can

write [63]

∆E
(CCSD)

3B
= 〈Φ|[WN (T1T2 +

1
6
T 3

1 )]C |Φ〉

= w
i jk

abc
( 1

4
ta
i tbc

jk +
1
6
ta
i tb

j t
c
k). (66)

As in the case of Eq. (20) and other similar expressions shown

in the rest of this section, we have used the Einstein summa-

tion convention over the repeated upper and lower indices in

the above energy formulas.
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We now move to the left-eigenstate or ΛCCSD equations,

which one solves after the determination of the T1 and T2 clus-

ters and the CCSD energy, and which have to be solved prior

to the determination of the ΛCCSD(T) (or CR-CC(2,3)) en-

ergy correction δE(T), since, as further elaborated on below,

the T1, T2, Λ1 and Λ2 operators enter the δE(T) expressions.

We examine the ΛCCSD equations in full detail here, since

the programmable form of these equations for the case of 3N

interactions in the Hamiltonian has never been considered be-

fore.

The left-eigenstate CCSD equations for the λi
a and λ

i j

ab
am-

plitudes defining Λ1 and Λ2 are obtained by replacing the ex-

act Λ and HN operators in Eq. (16) by their truncated CCSD

counterparts,Λ(CCSD) and HN

(CCSD)
, Eqs. (45) and (50), and by

limiting the right-hand projections on the excited determinants

|Φ
a1...an

i1...in
〉 in Eq. (16) to the singly and doubly excited determi-

nants |Φa
i
〉 and |Φab

i j
〉. This leads to the following linear system

for the Λ1 and Λ2 amplitudes (cf., e.g., Refs. [38, 88, 91, 93–

95, 98, 99]):

〈Φ|(1 + Λ1 + Λ2) (HN

(CCSD)
)open|Φ

a
i 〉 = 0, (67)

〈Φ|(1 + Λ1 + Λ2) (HN

(CCSD)
)open|Φ

ab
i j 〉 = 0. (68)

If we further split the similarity-transformed Hamiltonian

of CCSD, HN

(CCSD)
, into the NO2B and WN contributions

HN,2B

(CCSD)
and WN

(CCSD)
, we can rewrite the ΛCCSD equa-

tions (67) and (68) for Hamiltonians including three-body in-

teractions as

Ξi
a(2B) + Ξi

a(WN) = 0, (69)

Ξ
i j

ab
(2B) + Ξ

i j

ab
(WN) = 0, (70)

where we define the corresponding NO2B and residual 3N

contributions as

Ξi
a(2B) = 〈Φ|(1 + Λ1 + Λ2) (HN,2B

(CCSD)
)open|Φ

a
i 〉, (71)

Ξi
a(WN) = 〈Φ|(1 + Λ1 + Λ2) (WN

(CCSD)
)open|Φ

a
i 〉, (72)

Ξ
i j

ab
(2B) = 〈Φ|(1 + Λ1 + Λ2) (HN,2B

(CCSD)
)open|Φ

ab
i j 〉, (73)

and

Ξ
i j

ab
(WN) = 〈Φ|(1 + Λ1 + Λ2) (WN

(CCSD)
)open|Φ

ab
i j 〉. (74)

After identifying the non-vanishing terms in the above for-

mulas and expressing them in terms of the individual n-body

components of the HN,2B

(CCSD)
and WN

(CCSD)
operators, des-

ignated in analogy to Eqs. (36) and (38) by Hn,2B and Wn, we

can write

Ξi
a(2B) = 〈Φ|{[(1 + Λ1)H1,2B]C + [(Λ1 + Λ2)H2,2B]C

+(Λ2H3,2B)C}|Φ
a
i 〉, (75)

Ξ
i j

ab
(2B) = 〈Φ|{[(1 + Λ1 + Λ2)H2,2B]C + (Λ2H1,2B)C

+(Λ1H1,2B)DC + (Λ2H3,2B)C}|Φ
ab
i j 〉, (76)

Ξi
a(WN) = 〈Φ|{[(1 + Λ1)W1]C + [(Λ1 + Λ2)W2]C

+(Λ2W3)C}|Φ
a
i 〉, (77)

and

Ξ
i j

ab
(WN) = 〈Φ|{[(1 + Λ1 + Λ2)W2]C + (Λ2W1)C

+(Λ1W1)DC + [(Λ1 + Λ2)W3]C

+(Λ2W4)C}|Φ
ab
i j 〉, (78)

where C continues to represent the connected operator product

and DC stands for the disconnected product expression. The

detailed m-scheme-style formulas for the Ξi
a(2B), Ξ

i j

ab
(2B),

Ξi
a(WN), and Ξ

i j

ab
(WN) contributions to the ΛCCSD system

represented by Eqs. (69) and (70), in terms of the individual

matrix elements h
p1 ...pn

q1...qn
(2B) and w

p1 ...pn

q1...qn
that define the n-body

components of HN,2B

(CCSD)
and WN

(CCSD)
are given by

Ξi
a(2B) = hi

a(2B) + λi
c hc

a(2B) − λk
a hi

k(2B) + λk
c hci

ka(2B)

+ 1
2
λik

cd hcd
ak(2B) − 1

2
λkl

ac hic
kl(2B)

+ 1
4
λkl

cd hcdi
kla(2B), (79)

Ξ
i j

ab
(2B) = h

i j

ab
(2B) +AabA

i jλ
j

b
hi

a(2B)

+A i jλi
c h

c j

ab
(2B) −Aabλ

k
a h

i j

kb
(2B)

+Aabλ
i j
ac hc

b(2B) −A
i jλik

ab h
j

k
(2B)

+AabA
i jλik

ac h
c j

kb
(2B) + 1

2
λ

i j

cd
hcd

ab(2B)

+ 1
2
λkl

ab h
i j

kl
(2B) + 1

2
Aabλ

kl
ca h

i jc

kbl
(2B)

+ 1
2
A

i jλki
cd h

c jd

abk
(2B), (80)

Ξi
a(WN) = wi

a + λ
i
c wc

a − λ
k
a wi

k + λ
k
c wci

ka

+ 1
2
λik

cd wcd
ak −

1
2
λkl

ac wic
kl +

1
4
λkl

cd wcdi
kla, (81)

and

Ξ
i j

ab
(WN) = w

i j

ab
+AabA

i jλ
j

b
wi

a +A
i jλi

c w
c j

ab
−Aabλ

k
a w

i j

kb

+λk
c w

i jc

abk
+Aabλ

i j
ac wc

b −A
i jλik

ab w
j

k

+AabA
i jλik

ac w
c j

kb
+ 1

2
λ

i j

cd
wcd

ab +
1
2
λkl

ab w
i j

kl

+ 1
2
Aabλ

kl
ca w

i jc

kbl
+ 1

2
A

i jλki
cd w

c jd

abk

+ 1
4
λkl

cdw
i jcd

abkl
, (82)

respectively, where

Apq ≡ A
pq = 1 − (pq), (83)

with (pq) representing a transposition of p and q, are the usual

index antisymmetrizers.

As one can see, the ΛCCSD equations for three-body

Hamiltonians, although more complicated than for the case of
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pairwise interactions, where one would not consider Eqs. (81)

and (82), have a relatively simple algebraic structure. In

particular, the highest-rank many-body components of the

HN,2B

(CCSD)
and WN

(CCSD)
operators that enter these equa-

tions are given by selected types of three-body H3,2B terms

and selected types of four-body W4 terms. Although, ac-

cording to the remarks below Eqs. (36)–(39), the HN,2B

(CCSD)

and WN

(CCSD)
operators contain various higher–than–four-

body terms, the right-hand projections on the singly and dou-

bly excited determinants in Eqs. (67) and (68) or (71)–(74)

eliminate such complicated expressions. This greatly sim-

plifies the computer implementation effort. Again, in per-

forming the left-eigenstate CCSD calculations for the closed-

shell nuclei reported in this work, following the recipe pre-

sented in Ref. [78], we convert the m-scheme expressions

for the Ξi
a(2B), Ξ

i j

ab
(2B), Ξi

a(WN), and Ξ
i j

ab
(WN) contributions

into their angular-momentum-coupled representation. The

key quantities for setting up the underlying Eqs. (79)–(82) are

the matrix elements h
q1...qn

p1 ...pn
(2B) and w

q1...qn

p1...pn
of the similarity-

transformed HN,2B

(CCSD)
and WN

(CCSD)
operators. Before dis-

cussing the sources of information about the matrix elements

of HN,2B

(CCSD)
and WN

(CCSD)
that enter Eqs. (79)–(82), let us

comment on the physical and mathematical content of these

equations, including important additional simplifications in

the NO2B contributions Ξi
a(2B) and Ξ

i j

ab
(2B) that reduce the

usage of higher–than–two-body objects in the equations for

the λi
a and λ

i j

ab
amplitudes even further.

First, we note that the NO2B and residual 3N components

of the ΛCCSD equations projected on the singly excited |Φa
i
〉

determinants, Ξi
a(2B) and Ξi

a(WN), have the identical general

form, i.e., they only differ by the details of the Hamiltonian

matrix elements that enter them, but not by their overall alge-

braic structure (cf. Eqs. (75) or (79) and (77) or (81)). How-

ever, in the NO2B case, the contribution

〈Φ|(Λ2H3,2B)C |Φ
a
i 〉 =

1
4
λkl

cd hcdi
kla(2B), (84)

which contains selected three-body components of

HN,2B

(CCSD)
and which enters Eqs. (75) and (79) for Ξi

a(2B),

can be refactorized and rewritten in terms of simpler one- and

two-body objects, eliminating the need for the explicit use

of the three-body H3,2B terms altogether. Indeed, following

the quantum-chemistry literature where interactions in the

Hamiltonian are always two-body, we can replace Eq. (84) by

(cf., e.g., Ref. [97])

1
4
λkl

cd hcdi
kla(2B) = −hie

ad(2B) χd
e − him

an(2B) χn
m, (85)

where the additional one-body intermediates χd
e and χn

m are

defined as

χd
e = −

1
2
t
d f
mnλ

mn
e f (86)

and

χl
m =

1
2
t
e f
mnλ

ln
e f , (87)

respectively. In other words, all we need to know to con-

struct the NO2B contribution Ξi
a(2B) to the ΛCCSD equa-

tions are the matrix elements h
p
q(2B) and h

pq
rs (2B) of the

similarity-transformed Hamiltonian HN,2B

(CCSD)
, which ap-

pear in Eqs. (79) and (85), and the cluster amplitudes ta
i

and

tab
i j

, plus two auxiliary one-body intermediates, obtained by

contracting the tab
i j

and λ
i j

ab
amplitudes, defined by Eqs. (86)

and (87). The relevant, computationally efficient, expres-

sions for the one- and two-body matrix elements h
p
q (2B)

and h
pq
rs (2B) can be found in several sources, for example

in Refs. [82, 100, 101], remembering to rely on Eqs. (28)

and (29) in the determination of f
p

q and v
pq
rs . Unfortunately,

we cannot provide any additional simplifications in the case

of the WN analog of Eq. (84), entering Eqs. (77) and (81),

〈Φ|(Λ2W3)C |Φ
a
i 〉 =

1
4
λkl

cd wcdi
kla, (88)

where we have to rely on the intrinsically three-body matrix

elements of WN that do not factorize into simpler, lower-rank

objects. In this case, in order to construct the residual 3N

contribution Ξi
a(WN) to the ΛCCSD equations projected on

|Φa
i
〉, given by Eq. (81), we must utilize the explicit formu-

las for the one-, two-, and three-body matrix elements of the

similarity-transformed WN

(CCSD)
operator in terms of the ap-

propriate matrix elements w
pqr
stu of WN and the CCSD ampli-

tudes ta
i

and tab
i j

that are listed in Figs. 1 and 2.

Similar, albeit not identical, remarks apply to the ΛCCSD

equations projected on the doubly excited determinants |Φab
i j
〉.

Once again, we can refactorize the NO2B contribution

〈Φ|(Λ2H3,2B)C |Φ
ab
i j 〉 =

1
2
Aabλ

kl
ca h

i jc

kbl
(2B)

+ 1
2
A

i jλki
cd h

c jd

abk
(2B), (89)

entering Eqs. (76) and (80), which contains selected three-

body components of HN,2B

(CCSD)
, by rewriting it in terms of

simpler one- and two-body objects as

1
2
Aabλ

kl
ca h

i jc

kbl
(2B) + 1

2
A

i jλki
cd h

c jd

abk
(2B)

= Aabh
i j

ad
(2B) χd

b −A
i jhim

ab(2B) χ
j
m

= Aabv
i j

ad
χd

b −A
i jvim

ab χ
j
m, (90)

using the identity hkl
cd

(2B) = vkl
cd

and where χd
b

and χ
j
m are

again given by Eqs. (86) and (87), but we cannot do anything

similar for the case of the analogous

〈Φ|(Λ2W3)C |Φ
ab
i j 〉 =

1
2
Aabλ

kl
ca w

i jc

kbl
+ 1

2
A

i jλki
cd w

c jd

abk
(91)

expression that appears in Eqs. (78) and (82), where we have

to rely on the three-body matrix elements of WN . As a re-

sult, in analogy to the previously examined Ξi
a(2B) term, all

we need to know to construct the NO2B contribution Ξ
i j

ab
(2B)

to the ΛCCSD equations are the matrix elements h
p
q(2B) and

h
pq
rs (2B) of HN,2B

(CCSD)
, plus two auxiliary one-body interme-

diates defined by Eqs. (86) and (87), but one needs additional

expressions for the various matrix elements of WN

(CCSD)
to
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construct Ξ
i j

ab
(WN), Eq. (82). In fact, the situation with the

residual WN contributions to the ΛCCSD equations projected

on |Φab
i j
〉 is further complicated by the observation that along

with the various terms that are analogous to the NO2B case,

we also end up with the additional

〈Φ|(Λ1W3)C |Φ
ab
i j 〉 = λ

k
c w

i jc

abk
(92)

and

〈Φ|(Λ2W4)C |Φ
ab
i j 〉 =

1
4
λkl

cdw
i jcd

abkl
(93)

contributions to Ξ
i j

ab
(WN), which contain selected three- and

four-body components of WN

(CCSD)
and which do not have

their NO2B equivalents in Ξ
i j

ab
(2B) (cf. Eqs. (76) or (80)

and (78) or (82)), since one cannot form such terms from

the two-body Hamiltonians. The complete set of expressions

for the one-, two-, three-, and four-body matrix elements of

WN

(CCSD)
, in terms of the pertinent w

pqr
stu matrix elements of

WN and the CCSD amplitudes ta
i

and tab
i j

is given in Figs. 1

and 2.

2. The ΛCCSD(T) correction for three-body Hamiltonians

We end the present section by deriving the expressions that

are used in this work to determine the non-iterative correc-

tion δE(T) to the CCSD energy capable of capturing the dom-

inant T3 effects in the presence of the three-body interactions

in the Hamiltonian. As pointed out above, the triples correc-

tion δE(T) developed in this work is an extension to 3N in-

teractions of the ΛCCSD(T) approach, formulated for two-

body Hamiltonians in Refs. [75, 76]. We begin, however,

with the more general CR-CC(2,3) methodology, originally

introduced in Refs. [79, 80] and examined in the nuclear con-

text in Refs. [38, 61], which contains all kinds of the non-

iterative triples corrections to CCSD, including ΛCCSD(T),

as approximations. The CR-CC(2,3) expressions provide us

with a transparent mechanism for identifying the additional

terms in theΛCCSD(T)-type equations that originate from the

explicit inclusion of the 3N interactions in the Hamiltonian.

In general, the CR-CC(2,3), CR-CC(2,4), and other

approaches in the so-called CR-CC(m,m′) hierar-

chy [79–82, 88], and various closely related approxima-

tions, including CCSD[T] [102, 103], CCSD(T) [65],

CCSD(TQf) [104], ΛCCSD(T) [75, 76], ΛCCSD(TQf) [105],

CCSD(2)T [71–74], CCSD(2) [71–74], CR-CCSD(T) [66–

70], CR-CCSD(TQ) [66–70], CR-CC(2,3)+Q [106],

LR-CCSD(T) [107], and LR-CCSD(TQ) [107], are based on

the idea of adding a posteriori, non-iterative corrections due

to the higher-order cluster components, such as T3 or T3 and

T4, to the energies resulting from the CCSD (or some other

lower-level CC) calculations. One of the most convenient

approaches for deriving these corrections is by examining

the CC energy functional, which is defined as (see, e.g.,

Refs. [96, 98, 108–112] and Eqs. (1) and (12); cf., also, Refs.

[88, 91, 94, 99, 113] for reviews)

∆E = 〈Ψ̃|HN |Ψ〉 = 〈Φ|(1 + Λ)HN |Φ〉, (94)

wi
a =

1
4
wikl

acdtcd
kl +

1
2
wikl

acdtc
ktd

l

wa
b =

1
4
wakl

bcdtcd
kl −

1
4
wklm

bcdtcd
kl ta

m +
1
2
wklm

bcdtc
ktad

lm +
1
2
wakl

bcdtc
ktd

l

− 1
2
wklm

bcdtc
ktd

l ta
m

wi
j =

1
4
wikl

cd jt
cd
kl +

1
4
wikl

cdet
cd
kl te

j −
1
2
wikl

cdet
cd
k j t

e
l +

1
2
wikl

cd jt
c
ktd

l

+ 1
2
wikl

cdetc
ktd

l te
j

w
i j

ab
= w

i jk

abc
tc
k

wai
bc =

1
2
wikl

bcdtad
kl + wail

bcdtd
l + wikl

bcdta
k td

l

wik
ja = −

1
2
wikl

acdtcd
jl + wikl

jact
c
l − wikl

acdtc
jt

d
l

wab
cd = −

1
2
A

abwakl
cdetbe

kl + wabk
cde te

k +
1
2
wklm

cde tab
lmte

k +
1
2
A

abwklm
cde ta

k tbe
lm

−wbkl
cdet

a
k te

l + wklm
cde ta

l tb
mte

k

w
i j

kl
= − 1

2
Aklw

i jm

kcd
tcd
ml + w

i jm

klc
tc
m +

1
2
w

i jm

cde
tde
kl tc

m +
1
2
Aklw

i jm

cde
tcd
lmte

k

+w
i jm

cdl
tc
ktd

m + w
i jm

cde
td
k te

l tc
m

w
a j

ib
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2
w

a jk

bcd
tcd
ik +

1
2
w

jkl
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tac
kl + w

a jk

bci
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k −

1
2
w
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bcd
tcd
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k −
1
2
w

jkl

bcd
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kl tc

i
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jkl

bcd
tac
ik td

l + w
a jk

bcd
tc
ktd
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jkl

bci
tc
kta

l − w
jkl

bcd
ta
l tc

ktd
i

wab
ci = −wabk

cdi td
k +

1
2
A

abwakl
cdetde

ik tb
l +

1
2
A

abwakl
cdetbd

kl te
i +A

abwakl
cdetbe

il td
k

− 1
2
wklm

cdi tab
lmtd

k −
1
2
A

abwklm
cdi tbd

kl ta
m − wabk

cde td
k te

i +A
abwbkl

cdit
d
k ta

l

+ 1
2
wklm

cde tab
imtd

k te
l −A

abwklm
cde tbe

il td
k ta

m +
1
2
wklm

cde tde
il tb

k ta
m

− 1
2
A

abwklm
cde tae

lmtb
k td

i −
1
2
wklm

cde tab
lmtd

k te
i −A

abwakl
cdet

d
k tb

l te
i

+wklm
cdi ta

mtb
l td

k + wklm
cde ta

mtb
l td

k te
i −

1
4
wklm

cde tab
ki tde

lm +
1
4
wklm

cde tab
kl tde

im

− 1
2
A

abwklm
cde tad

kl teb
mi

wia
jk = wial

jkct
c
l +

1
2
A jkwilm

jcdtac
lmtd

k +
1
2
A jkwilm

jcdtcd
kl ta

m +A jkwilm
jcdtad

kmtc
l

− 1
2
wail

cdetde
jk tc

l +
1
2
A jkwail

cdet
cd
lk te

j − wilm
jcktc

l ta
m −A jkwail

cdktc
l td

j

+ 1
2
wilm

cdetae
k j t

c
l td

m +A jkwilm
cdet

ad
kmtc

l te
j − wilm

cdetad
lmtc

kte
j

− 1
2
A jkwilm

cdet
de
m jt

c
kta

l +A jkwilm
cdetae

jmtc
l td

k −A jkwilm
jcdta

mtc
l td

k

+wail
cdet

c
l td

k te
j − wilm

cdeta
mtc

l td
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j +
1
4
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cdetca
jk tde

lm −
1
4
wilm
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lm

+ 1
2
A jkwilm

cdet
cd
jl tea

mk

FIG. 1: Explicit expressions for the one- and two-body matrix ele-

ments of the similarity-transformed form of the the residual three-

body interaction term WN , designated by WN

(CCSD)
and defined by

Eq. (56), which are needed to construct the Ξi
a(WN) and Ξ

i j

ab
(WN )

contributions to the ΛCCSD equations, Eqs. (81) and (82), respec-

tively.

or, more precisely, its asymmetric analog, which in the case

of correcting the CCSD energy can be written as [79, 80, 88]

∆E = 〈Φ|L HN

(CCSD)
|Φ〉, (95)

where HN

(CCSD)
is the similarity-transformed Hamiltonian of

CCSD, Eq. (50). The usefulness of the above expression in

the context of correcting the CCSD results for the effects of

higher–than–doubly excited clusters stems from the fact that

Eq. (95) is equivalent to the exact (i.e., full CI) correlation

energy when 〈Φ|L represents the lowest-energy left eigen-

state of HN

(CCSD)
obtained by diagonalizing the latter opera-

tor in the entire A-particle Hilbert space. Indeed, when the

hole-particle deexcitation operator L entering Eq. (95) orig-

inates from parametrizing the full CI bra state through the
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w
i ja

kbl
= w

i ja
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+Aklw

i jm
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w
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FIG. 2: Explicit expressions for the selected three- and four-body

matrix elements of the similarity-transformed form of the the resid-

ual three-body interaction term WN , designated by WN

(CCSD)
and de-

fined by Eq. (56), which are needed to construct the Ξi
a(WN ) and

Ξ
i j

ab
(WN ) contributions to the ΛCCSD equations, Eqs. (81) and (82),

respectively.

ansatz 〈Ψ| ∼ 〈Φ|L e−T (CCSD)

, where we assume the normaliza-

tion condition 〈Φ|L |Φ〉 = 1, the asymmetric energy expres-

sion given by Eq. (95) produces the exact correlation energy.

At the same time, since the matrix elements 〈Φa
i
|HN

(CCSD)
|Φ〉

and 〈Φab
i j
|HN

(CCSD)
|Φ〉 vanish in the CCSD case as required by

Eqs. (48) and (49), it is easy to demonstrate that the lowest-

energy eigenvalue of HN

(CCSD)
in the subspace of the Hilbert

space spanned by the reference determinant |Φ〉 and the singly

and doubly excited determinants |Φa
i
〉 and |Φab

i j
〉 is the CCSD

correlation energy ∆E(CCSD). Thus, as shown for example in

Refs. [71–73, 79, 80] (cf. Ref. [88] for a review), we can for-

mally split the exact correlation energy∆E into the CCSD part

∆E(CCSD) and the non-iterative correction δE that describes all

of the remaining correlations missing in CCSD by inserting

the resolution of the identity in the A-particle Hilbert space,

written as

|Φ〉〈Φ| + P + Q = 1, (96)

where

P = P1 + P2, (97)

Q = P3 + · · · + PA, (98)

and

Pn =
∑

i1<···<in
a1<···<an

|Φ
a1...an

i1...in
〉〈Φ

a1...an

i1...in
|, (99)

into Eq. (95), and perform some additional manipulations, that

lead to

∆E = ∆E(CCSD) + 〈Φ|L Q HN

(CCSD)
|Φ〉. (100)

The resulting biorthogonal moment expansions of δE, which

result in the aforementioned CR-CC(m,m′) hierarchy [79–82,

88], or the perturbative expansions of δE employing Löwdin’s

partitioning technique [114], as in Refs. [71–76] (cf., also,

Ref. [115]), which lead to methods such as ΛCCSD(T),

ΛCCSD(TQf) or CCSD(2), provide us with the desired math-

ematical expressions for the non-iterative corrections due to

T3, T4, and other higher-order clusters.

In particular, the leading post-CCSD term in the difference

δE between the exact and CCSD energies, which emerges

from the above considerations and which captures the correla-

tion effects due to the connected T3 clusters can be represented

by the following generic form [79, 80, 88]

δE(T) = 〈Φ|L3 HN

(CCSD)
|Φ〉 = 1

36
ℓ

i jk

abc
M

abc
i jk , (101)

where

L3 =
1

36

∑

i, j,k,a,b,c

ℓ
i jk

abc
a†aa

†

b
a†caka jai (102)

is the three-body component of the L operator entering

Eq. (95) and (100), with ℓ
i jk

abc
representing the corresponding

matrix elements, and

M
abc
i jk = 〈Φ

abc
i jk |HN

(CCSD)
|Φ〉 = 〈Φabc

i jk |(HN

(CCSD)
)open|Φ〉 (103)

are the so-called generalized moments of the CCSD equa-

tions [66–70, 116] corresponding to projections of these equa-

tions on the triply excited determinants. At this point, the

above expressions are still exact, i.e., one would have to diago-

nalize HN

(CCSD)
in the entire A-particle Hilbert space to extract

the L3 component of L that enters Eq. (101). Thus, in order

to apply Eq. (101) in practice, we have to develop practical

recipes for determining L3 or ℓ
i jk

abc
that rely on the informa-

tion that one can extract from CCSD-level calculations. The

CR-CC(2,3) approach of Refs. [79, 80] and the ΛCCSD(T)

method of Refs. [75, 76], in which some higher-order terms

in the CR-CC(2,3) expressions for the δE(T) correction are ne-

glected, provide such recipes.

In the CR-CC(2,3) theory of Refs. [79, 80], presented here

in the general, orbital-rotation invariant form, where in anal-

ogy to the CCSD energy, the resulting triples correction δE(T)

is invariant with respect to rotations among the occupied and

unoccupied single-particle states, we determine the desired

L3 operator or the corresponding amplitudes ℓ
i jk

abc
, which enter

Eq. (101), in a quasi-perturbative manner, using the expres-

sion (see [79, 80, 88])

〈Φ|L3 = 〈Φ|(1 + Λ
(CCSD)) HN

(CCSD)
R

(CCSD)

3
, (104)
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where

R
(CCSD)

3
=

P3

∆E(CCSD) − HN

(CCSD)
, (105)

with

P3 =
∑

i< j<k
a<b<c

|Φabc
i jk 〉〈Φ

abc
i jk |, (106)

is the appropriate reduced resolvent of HN

(CCSD)
in the sub-

space spanned by the triply excited determinants |Φabc
i jk
〉 and

Λ(CCSD) is the familiar Λ operator obtained by solving the

left-eigenstate CCSD equations, Eqs. (67) and (68). As a re-

sult, the CR-CC(2,3) correction δE(T), which offers an accu-

rate representation of the T3 effects on the correlation energy

without forcing one to solve for T3 using the full CCSDT ap-

proach, assumes the following compact form:

δE(T) = 〈Φ|(1 + Λ(CCSD)) HN

(CCSD)
R

(CCSD)

3
HN

(CCSD)
|Φ〉.

(107)

Alternatively, to avoid the explicit construction of the reduced

resolvent R
(CCSD)

3
, Eq. (105), in the above expression for

δE(T), we can determine the ℓ
i jk

abc
amplitudes by solving the

linear system

∑

l<m<n
d<e< f

〈Φ
de f

lmn
|(∆E(CCSD) − HN

(CCSD)
)|Φabc

i jk 〉 ℓ
lmn
de f

= 〈Φ|(1 + Λ(CCSD)) HN

(CCSD)
|Φabc

i jk 〉, (108)

which can be further simplified to

−
∑

l<m<n
d<e< f

〈Φ
de f

lmn
|(HN

(CCSD)
)open|Φ

abc
i jk 〉 ℓ

lmn
de f

= 〈Φ|(1 + Λ(CCSD)) (HN

(CCSD)
)open|Φ

abc
i jk 〉, (109)

and use the resulting values of ℓ
i jk

abc
, along with the generalized

moments Mabc
i jk

, Eq. (103), to calculate δE(T). As explained

in Refs. [79, 80, 88], we obtain Eq. (104), or the equivalent

linear system given by Eq. (108), by approximating the exact

L operator in the left eigenvalue problem 〈Φ|L HN

(CCSD)
=

∆E 〈Φ|L , which this operator has to satisfy and which we

right-project on the triply excited determinants |Φabc
i jk
〉, by the

sum of (1 + Λ(CCSD)), obtained by solving the left-eigenstate

CCSD equations, Eqs. (67) and (68), and the unknown L3

component, and by replacing the exact correlation energy ∆E

in the resulting equations by its CCSD counterpart ∆E(CCSD).

The above is the most general form of the CR-CC(2,3) the-

ory, which encompasses other forms of non-iterative triples

corrections available in the literature, such as ΛCCSD(T), and

which satisfies a number of important properties, including

the aforementioned rotational invariance (mischaracterized in

Ref. [76], but correctly described here) and the strict size

extensivity characterizing all of the commonly used CC ap-

proaches, such as CCSD or CCSDT. If we are willing to lift

the requirement of the strict invariance of the δE(T) correction

with respect to arbitrary rotations among the occupied and un-

occupied orbitals, which can be justified by the fact that typi-

cal calculations of such corrections, including those presented

in this work, utilize the Hartree-Fock (i.e., fixed) orbitals, we

can eliminate the iterative steps associated with the need for

solving the linear system for the ℓ
i jk

abc
amplitudes, Eq. (108)

or (109), and replace those steps by non-iterative expressions,

such as [79–82, 88]

ℓ
i jk

abc
= 〈Φ|(1 + Λ(CCSD)) (HN

(CCSD)
)open|Φ

abc
i jk 〉/D

abc
i jk , (110)

where

Dabc
i jk = ∆E(CCSD) − 〈Φabc

i jk |HN

(CCSD)
)|Φabc

i jk 〉

= −

3∑

n=1

〈Φabc
i jk |Hn|Φ

abc
i jk 〉, (111)

if there are no degeneracies among orbitals i, j, k or a, b,

c, with Hn representing the n-body component of HN

(CCSD)

(we still have to solve small linear subsystems of the type

of Eqs. (108) or (109) for the subsets of the ℓ
i jk

abc
ampli-

tudes involving orbital degeneracies to retain the invariance of

δE(T) with respect to the rotations among degenerate orbitals,

but this is much less expensive than dealing with the com-

plete (108) or (109) system). We refer the reader to Refs. [79–

82, 88] for a thorough discussion of such expressions. En-

couraged by the superb performance of the CR-CC(2,3) ap-

proach in the nuclear applications involving two-body Hamil-

tonians, which we reported in Refs. [38, 61], one of our future

objectives is to implement the complete CR-CC(2,3) theory,

as summarized above, for Hamiltonians including 3N inter-

actions, but in this study we focus on the simplifications in

the CR-CC(2,3) expressions for the δE(T) corrections offered

by the ΛCCSD(T) approach of Refs. [75, 76], which facili-

tate the derivations of the programmable expressions for the

triples correction δE(T). Considering, however, the fact that

the original publications on the ΛCCSD(T) method [75, 76]

make explicit use of the assumption that the underlying in-

teractions in the Hamiltonian are two-body, we use the more

general CR-CC(2,3) formulas, Eqs. (101)–(111), to identify

terms in the ΛCCSD(T) equations for δE(T) that result from

adding the 3N interactions to the Hamiltonian.

The ΛCCSD(T) approach is formally obtained by keep-

ing only the lowest-order terms in the definitions of the mo-

mentsMabc
i jk

, Eq. (103), and amplitudes ℓ
i jk

abc
, Eqs. (108), (109),

or (110), that define the CR-CC(2,3) correction δE(T). Thus,

assuming that the Hamiltonian contains up to three-body in-

teractions, we approximate the moments Mabc
i jk

, Eq. (103), by

retaining terms in (HN

(CCSD)
)open that are at most linear in T ,

i.e.,

M
abc
i jk ≈ 〈Φ

abc
i jk |[HN(1 + T1 + T2)]C |Φ〉

= Mabc
i jk (2B) +Mabc

i jk (WN), (112)
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where the NO2B contribution toMabc
i jk

is given by

M
abc
i jk (2B) = 〈Φabc

i jk |[HN,2B(1 + T1 + T2)]C |Φ〉

= 〈Φabc
i jk |(VNT2)C |Φ〉 (113)

and the contribution due to the residual 3N interactions has

the form

M
abc
i jk (WN) = 〈Φabc

i jk |[WN(1 + T1 + T2)]C |Φ〉. (114)

In order to derive the analogous expressions for the ampli-

tudes ℓ
i jk

abc
, which would be consistent with the approxima-

tions that lead to the non-iterative ΛCCSD(T) approach of

Refs. [75, 76], where one makes an assumption that the Fock

operator is diagonal in the occupied and unoccupied single-

particle spaces, so that f i
j
= ǫiδi j and f a

b
= ǫaδab, where ǫp

represents the diagonal matrix element f
p
p , which is automat-

ically satisfied by the calculations reported in this study since

they rely on the canonical Hartree-Fock orbitals, we replace

the reduced resolvent R
(CCSD)

3
entering the CR-CC(2,3) cor-

rection δE(T), Eq. (107), by its simplified Møller-Plesset form

adopted in the ΛCCSD(T) considerations [75, 76], i.e.,

R
(CCSD)

3
= −

P3

(HN

(CCSD)
)open

≈ −
P3

FN

=
∑

i< j<k
a<b<c

(ǫabc
i jk )−1|Φabc

i jk 〉〈Φ
abc
i jk |, (115)

where

ǫabc
i jk = ǫi + ǫ j + ǫk − ǫa − ǫb − ǫc (116)

is the orbital energy difference for triples. The latter approx-

imation is equivalent to replacing (HN

(CCSD)
)open in the left-

hand side of the linear system given by Eq. (109), which cor-

responds to the more elaborate CR-CC(2,3) treatment, by the

FN operator. If we further approximate HN

(CCSD)
in the right-

hand side of Eq. (109) by the leading contribution to HN

(CCSD)
,

which is the normal-ordered Hamiltonian HN itself, we can

replace the linear system given by Eq. (109) by its simplified

form

−
∑

l<m<n
d<e< f

〈Φ
de f

lmn
|FN |Φ

abc
i jk 〉 ℓ

lmn
de f

= 〈Φ|(1 + Λ(CCSD)) HN |Φ
abc
i jk 〉 (117)

form, which immediately allows us to write

ℓ
i jk

abc
= (ǫabc

i jk )−1〈Φ|(1 + Λ(CCSD)) HN |Φ
abc
i jk 〉. (118)

After splitting the above expression into the NO2B and resid-

ual 3N contributions and identifying the non-vanishing terms,

we obtain

ℓ
i jk

abc
= ℓ

i jk

abc
(2B) + ℓ

i jk

abc
(WN), (119)

where

ℓ
i jk

abc
(2B) = 〈Φ|[(Λ1VN)DC + (Λ2FN)DC

+(Λ2VN)C]|Φabc
i jk 〉/ǫ

abc
i jk (120)

and

ℓ
i jk

abc
(WN) = 〈Φ|[WN + (Λ1WN)C

+(Λ2WN)C]|Φabc
i jk 〉/ǫ

abc
i jk . (121)

Equation (101), with moments Mabc
i jk

approximated by

Eqs. (112)–(114) and amplitudes ℓ
i jk

abc
by Eqs. (119)–(121), is

the desired extension of the ΛCCSD(T) correction due to the

connected T3 clusters to the 3N interaction case. By com-

paring the expressions for the NO2B contributions to Mabc
i jk

and ℓ
i jk

abc
given by Eqs. (113) and (120), respectively, with the

analogous formulas for the two-body Hamiltonians reported

in Ref. [76], we can immediately see that the ΛCCSD(T) ap-

proach presented here, which we derived by simplifying the

CR-CC(2,3) equations, reduces to the ΛCCSD(T) theory of

Refs. [75, 76], when the Hamiltonian of interest contains pair-

wise interactions only.

Based on the above considerations, we can give the triples

correction formula for the three-body Hamiltonians, within

the ΛCCSD(T) approximation scheme discussed in this work,

the physically meaningful form

δE(T) = δE
(T)

2B
+ δE

(T)

3B
, (122)

where the pure NO2B contribution δE
(T)

2B
is defined as

δE
(T)

2B
= 1

36
ℓ

i jk

abc
(2B)Mabc

i jk (2B), (123)

whereas the δE
(T)

3B
component of δE(T), which is present only

when the residual 3N interactions are taken into account, is

given by

δE
(T)

3B
= 1

36
[ℓ

i jk

abc
(2B)Mabc

i jk (WN) + ℓ
i jk

abc
(WN)Mabc

i jk (2B)

+ℓ
i jk

abc
(WN)Mabc

i jk (WN)]. (124)

The explicit m-scheme-type expressions for the NO2B con-

tributions to moments Mabc
i jk

and amplitudes ℓ
i jk

abc
, within the

ΛCCSD(T) approximation defined by Eqs. (113), (114), (120)

and (121), are

M
abc
i jk (2B) = A

ab/c
Ai j/k(vab

kdtdc
i j − vcl

i jt
ab
lk ) (125)

and

ℓ
i jk

abc
(2B) = Aab/cA

i j/k( f k
c λ

i j

ab
+ v

i j

ab
λk

c + vkd
abλ

i j

dc

−v
i j

cl
λlk

ab)/ǫabc
i jk , (126)

respectively (the analogous equations can also be found in

Ref. [76], although the equation in Ref. [76], which would be

equivalent to our Eq. (126), is applicable to real orbitals only).

For the residual 3N contributions toMabc
i jk

and amplitudes ℓ
i jk

abc
,

we can write

M
abc
i jk (WN) = wabc

i jk −A
ab/cwabl

i jk tc
l +Ai j/kwabc

i jd td
k

+ 1
2
Ai j/kwabc

dektde
i j +

1
2
A

ab/cwlmc
i jk tab

lm

+A ab/c
Ai j/kwabl

i jd tcd
kl (127)
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and

ℓ
i jk

abc
(WN) = (w

i jk

abc
−Aab/cw

i jk

abl
λl

c +A
i j/kw

i jd

abc
λk

d

+ 1
2
A

i j/kwdek
abcλ

i j

de
+ 1

2
Aab/cw

i jk

lmc
λlm

ab

+Aab/cA
i j/kw

i jd

abl
λkl

cd)/ǫabc
i jk , (128)

respectively. The three-index antisymmetrizers Apq/r =

A pq/r, which enter the above formulas along with the pre-

viously defined two-index antisymmetrizers Apq = A pq,

Eq. (83), are defined in a usual way, viz.,

Apq/r ≡ A
pq/r = 1 − (pr) − (qr), (129)

where we use the (pq) symbol once again to represent a trans-

position of two indices. As in the case of the CCSD and

ΛCCSD equations discussed in Sec. II C 1, the m-scheme-

style expressions Eqs. (125)–(128) can again be convert into

an angular-momentum-coupled form which greatly facilitates

the computations.

We finalize our formal presentation of the ΛCCSD(T) the-

ory for three-body Hamiltonians by emphasizing the differ-

ences between ΛCCSD(T) in the NO2B approximation and

the complete ΛCCSD(T) treatment including the residual 3N

interactions WN . According to the above analysis, in the full

treatment of three-body interactions within the ΛCCSD(T)

description, one determines the total energy E, designated as

E(ΛCCSD(T)), as follows:

E(ΛCCSD(T)) =

Eref + ∆E
(CCSD)

2B
+ δE

(T)

2B
+ ∆E

(CCSD)

3B
+ δE

(T)

3B
, (130)

where we calculate the NO2B-type correlation energy con-

tributions ∆E
(CCSD)

2B
and δE

(T)

2B
using Eqs. (65) and (123), re-

spectively, and the contributions associated with the presence

of the residual 3N interactions, ∆E
(CCSD)

3B
and δE

(T)

3B
, using

Eqs. (66) and (124), respectively. The reference energy Eref,

which obviously does not contain any information about the

residual 3N effects represented by the normal-ordered opera-

tor WN , is calculated using Eq. (31). In the case ofΛCCSD(T)

calculations in the NO2B approximation, we replace the com-

plete energy expression given by Eq. (130) by its simplified

form, in which the WN-containing terms, ∆E
(CCSD)

3B
and δE

(T)

3B
,

are neglected, i.e.,

E
(ΛCCSD(T))

2B
= Eref + ∆E

(CCSD)

2B
+ δE

(T)

2B
. (131)

We stress, however, that the differences between the complete

and NO2B treatments of the 3N interactions in theΛCCSD(T)

calculations are not limited to the final energy expressions.

In the most complete ΛCCSD(T) calculations, in which the

three-body interactions in the Hamiltonian are treated fully,

the singly and doubly excited cluster amplitudes, ta
i

and tab
i j

,

and their singly and doubly deexcited λi
a and λ

i j

ab
counterparts

are determined from CCSD and left-eigenstate CCSD calcula-

tions with all terms in the normal-ordered three-body Hamil-

tonian HN , Eq. (24), including those that contain WN , properly

accounted for, as in Eqs. (48) and (49) for CCSD and (69)

and (70) for ΛCCSD. This should be contrasted with the

NO2B approximation to the ΛCCSD(T) approach, in which

the ta
i
, tab

i j
, λi

a, and λ
i j

ab
amplitudes, which are needed to con-

struct the ∆E
(CCSD)

2B
and δE

(T)

2B
energy components in Eq. (131),

are obtained by solving the CCSD and left-eigenstate CCSD

equations, where the WN-containing Θa
i
(WN) and Θab

i j
(WN)

terms in the CCSD system, Eqs. (48) and (49), and the Ξi
a(WN)

and Ξ
i j

ab
(WN) terms in the ΛCCSD system, Eqs. (69) and (70),

are neglected. Clearly, very similar remarks apply to a com-

parison of the complete and NO2B treatments of the 3N inter-

actions in the underlying CCSD calculations, where the cor-

responding total energies are defined as

E(CCSD) = Eref + ∆E
(CCSD)

2B
+ ∆E

(CCSD)

3B
(132)

≡ Eref + ∆E(CCSD) (133)

in the former case, and

E
(CCSD)

2B
= Eref + ∆E

(CCSD)

2B
, (134)

in the latter case. One of the interesting questions that our

calculations discussed in Section III try to address is if it is

beneficial to consider an intermediateΛCCSD(T) approxima-

tion, where the 3N forces are treated fully at the CCSD level,

while using the NO2B approximation in the determination of

the δE(T) triples correction, so that the full ΛCCSD(T) energy

expression, Eq. (130), is replaced by the somewhat simpler

formula

Ẽ(ΛCCSD(T)) = Eref + ∆E(CCSD) + δE
(T)

2B
. (135)

Finally, it is worth pointing out that one of the most inter-

esting differences between the ΛCCSD(T) calculations with

the NO2B and full treatments of the 3N interactions in the

Hamiltonian is the significance of the T3 contributions in-

duced by the residual WN component. As in conventional

many-body theory based on pairwise interactions, the NO2B

approximation shifts the T3 contribution to the second and

higher orders of the many-body perturbation theory (MBPT)

in the wave function and the fourth and higher MBPT orders

in the energy, since in the absence of the WN component in the

Hamiltonian, the lowest-order approximation to T3 originates

from the formula (cf., e.g., Ref. [103], and references therein)

T
(2)

3
|Φ〉 = (R3VNR2VN)C |Φ〉, where Rn = −(FN)−1Pn is the

n-body component of the MBPT reduced resolvent (assum-

ing, for simplicity, Hartree-Fock orbitals). The fourth- and

higher-order MBPT contributions to the energy due to the T3

clusters originating from the pairwise interaction term VN in

HN are captured by the δE
(T)

2B
correction, Eq. (123), which is

present in any form of the ΛCCSD(T) (or even CCSD(T) or

CCSD[T]) calculations, including those in which the 3N in-

teractions are completely neglected. The situation changes

when we include the residual 3N interaction term WN in the

calculations. In this case, the T3 cluster component due to

WN shows up already in the first MBPT order in the wave

function and the second MBPT order in the energy, since

one can form the connected wave function diagram with six

external lines representing T3 using the formula T
(1)

3
|Φ〉 =
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(R3WN)C |Φ〉. The corresponding second-order MBPT con-

tribution due to the T3 cluster component originating from

the presence of WN in the Hamiltonian is captured by the

δE
(T)

3B
correction, through the last 1

36
ℓ

i jk

abc
(WN)Mabc

i jk
(WN) term

in Eq. (124), which, based on Eqs. (127) and (128), contains

the second-order 1
36

∑

i, j,k,a,b,c wabc
i jk

w
i jk

abc
/ǫabc

i jk
expression as the

leading component. It is trivial to show that the latter ex-

pression is equivalent to the vacuum diagram representing

〈Φ|(WNT
(1)

3
)C |Φ〉. Clearly, such a term cannot be captured

by CCSD, even when the WN interactions are included in the

calculations, since CCSD ignores the T3 contributions alto-

gether and the CCSD correlation energy can only directly en-

gage the T1T2 and 1
6
T 3

1
clusters, as in ∆E

(CCSD)

3B
, Eq. (66).

We would have the 〈Φ|(WNT3)C |Φ〉 component in the corre-

lation energy if we used the full CCSDT approach with the

residual WN interactions. It is, therefore, very encouraging

to observe that the extension of the ΛCCSD(T) approach to

three-body Hamiltonians developed in this work captures the

sophisticated T3-cluster physics originating from the residual

3N forces represented by the WN operator, which normally

requires the full CCSDT treatment, via the δE
(T)

3B
energy com-

ponent defined by Eq. (124).

III. APPLICATION TO MEDIUM-MASS NUCLEI

A. Hamiltonian and basis

We use the chiral NN interaction at N3LO [117] and a local

form of the chiral 3N interaction at N2LO [118]. The initial

Hamiltonian is transformed through a similarity renormaliza-

tion group (SRG) evolution at the two- and three-body level to

enhance the convergence behavior of the many-body calcula-

tion. The SRG transformation represents a continuous unitary

transformation parametrized by a flow parameter α, with the

initial Hamiltonian corresponding to α = 0 [13, 119, 120].

We use the 400 MeV reduced-cutoff version of the chiral 3N

interaction as described in [13, 14, 16, 121]. This cutoff re-

duction is motivated by the observation that SRG-induced 4N

interactions have a sizable impact on ground-state energies of

medium-mass nuclei, which can be reduced efficiently by low-

ering the cutoff.

We will employ two types of SRG-evolved Hamiltonians:

The NN+3N-full Hamiltonian starts with the initial chiral

NN+3N Hamiltonian and retains all terms up to the three-

body level in the SRG evolution; the NN+3N-induced Hamil-

tonian omits the chiral 3N interaction from the initial Hamil-

tonian, but keeps all induced three-body terms throughout the

evolution. The three-body SRG evolution is performed in an

harmonic-oscillator (HO) model space with up to 40 oscilla-

tor quanta [13, 121]. To ensure the sufficiency of this model

space for smaller HO frequencies we apply a frequency con-

version technique [121]: We evolve the Hamiltonian at an ad-

equate HO frequency, here ~Ω = 28 MeV, and convert the

Hamiltonian matrix elements to the HO basis with the desired

frequency for the many-body calculation, afterwards. Further-

more, we consider a range of flow parameters α in order to ob-

NN+3N-induced
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FIG. 3: (color online) CCSD (dashed lines) and ΛCCSD(T) (solid

lines) ground-state energies for 16O and 24O as function of emax for

the two types of Hamiltonians (see column headings) for SRG flow

parameters: α = 0.02 fm4 (•), 0.04 fm4 ( �), 0.08 fm4 (N).

serve how the individual contributions in the CC calculations

evolve with the SRG flow.

For our coupled-cluster calculations, the underlying single-

particle basis is a HO basis truncated in the principal oscillator

quantum number 2n+ l = e ≤ emax and we go up to emax = 12.

We perform Hartree-Fock calculations including explicitly the

3N interaction for each set of basis parameters to obtain an

optimized single-particle basis and stabilize the convergence

of the CC iterations. Due to their enormous number it is not

possible to include all 3N matrix elements that would appear

in the larger bases. Therefore, regarding computing time, we

restrict our calculations to three-body matrix elements with

e1 + e2 + e3 ≤ E3 max = 12. For this particular value of E3 max

we capture a significant part of the 3N interaction, but, mostly

for the harder interactions, we are not yet fully converged with

respect to E3 max [64]. However, this is not expected to impact

the discussion in this article.

For closed-shell nuclei we use an angular-momentum cou-

pled formulation of coupled-cluster theory [78] which enables

us to operate with reduced matrix elements for all operators

involved, in particular the Hamiltonian. This leads to a drastic

reduction of the number of matrix elements to be processed

compared to an m-scheme description and hence greatly ex-

tends the range of the method to medium-mass nuclei and be-

yond.

B. Results

To assess the overall importance of triply excited clus-

ters in nuclear-structure calculations, in Fig. 3 we compare

the CCSD and ΛCCSD(T) ground-state energies E(CCSD) and

E(ΛCCSD(T)) using the complete 3N information, as function of

emax for 16O, 24O and for the two 3N Hamiltonians discussed

in the previous section. First, we notice that we are reasonably

converged within the model spaces we operate in and we ob-
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serve the expected faster convergence with respect to model

space-size for the softer, further evolved, interactions. Fur-

thermore, the triples correction δE(T) provides about 2–5 %

of the binding energy for all nuclei considered, where, as ex-

pected, the contribution of the triply excited clusters decreases

with the SRG flow parameter. Therefore, if one eventually tar-

gets at an accuracy in ground-state calculations of about 1 %,

the cluster truncation is identified as one of the larger sources

of uncertainty and it is not sufficiently converged at the level

of CCSD for triple excitation effects to be negligible, even for

the softest interaction considered.

Next we address the importance of the residual 3N interac-

tion in CCSD and ΛCCSD(T) calculations. This discussion is

complicated by the fact that energy values are not only deter-

mined by their expressions in terms of the T andΛ amplitudes

ta
i
, tab

i j
and λi

a, λ
i j

ab
, but also by the type of equations – with or

without inclusion of the WN terms – used to determine the am-

plitudes in the first place. This leads to various possible and

reasonable combinations to consider.

In Fig. 4, where for 16,24O, 40Ca and both, the NN + 3N-

induced and NN + 3N-full Hamiltonian we show results for

a series of increasingly complete calculations of the energy.

The energy E
(CCSD)

2B
is calculated in NO2B approximation,

i.e., the WN terms are neglected in the equations determining

the T amplitudes. For the calculation of all other energies

we use T and Λ amplitudes determined from their respec-

tive amplitude equations including the WN terms. By com-

paring E
(CCSD)

2B
with E(CCSD), we obtain a direct quantifica-

tion of the combined effect of the additional WN terms in the

CCSD amplitude equations and energy expression. Note that

E(CCSD) − E
(CCSD)

2B
, ∆E

(CCSD)

3B
here, due to the use of different

amplitudes. The interesting question of whether the WN terms

are more important in the determination of the amplitudes or

in the energy expression will be adressed further below. Con-

trary to the previous situation, the same amplitudes are used

in the calculation of δE
(T)

2B
and δE

(T)

3B
. Therefore, using these

numbers we can only quantify how important the WN con-

tributions, simply given by δE
(T)

3B
, are in the calculation of the

total triples correction δE(T), i.e., we can compare the approxi-

mate energy expression Ẽ(ΛCCSD(T)), Eq. (135), to the full form

E(ΛCCSD(T)), Eq. (130), but we cannot at the same time assess

the relevance of WN terms in the respective equations deter-

mining the T and Λ amplitudes. Particularly for δE
(T)

2B
, other

choices of where to include WN terms in the amplitude equa-

tions seem reasonable. We come back to this issue below but

already mention here that for δE
(T)

2B
other choices of amplitude

equations lead to practically the same results.

All data shown in Fig. 4 is compiled in Tab. I, and in the

following we consider 16O with the NN+3N-full Hamilto-

nian [Fig. 4(b)] at flow parameter values α = 0.02 fm4 and

0.08 fm4 as an example. For increasing α, more and more

of the binding energy is shifted to lower orders of the cluster

expansion and the contributions from the higher orders con-

sequently get smaller with the SRG flow: The size of the ref-

erence energy Eref grows from –56.11 MeV to –101.67 MeV,

while the CCSD correlation energy ∆E(CCSD) decreases from

–69.03 MeV to –26.52 MeV as we go from α = 0.02 fm4 to
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FIG. 4: (color online) Anatomy of individual contributions from

CCSD and ΛCCSD(T) to the total binding energy of 16,24O and
40Ca for the two types of Hamiltonians and SRG flow parameters

α = 0.02, 0.04, 0.08 fm4. For 16,24O, an emax = 12 model space and

oscillator frequency ~Ω = 20 MeV was used, whereas for 40Ca we

work in an emax = 10 model space with ~Ω = 24 MeV.
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0.08 fm4 and the ΛCCSD(T) energy correction δE(T), which

we also consider as a measure for the contributions of the

omitted cluster operators beyond the three-body level [64],

decreases from –5.54 MeV to –2.34 MeV, corresponding to

4.2 % and 1.8 % of the total binding energy. In the medium-

mass regime, these uncertainties related to the cluster trunca-

tion are typically the largest in our calculations for a given

Hamiltonian, and therefore they set the overall level of accu-

racy we target at [64].

Examining the contributions from the residual 3N inter-

action to ∆E(CCSD) we find that, while the absolute value

of ∆E(CCSD) decreases by about 30 MeV when we evolve

the Hamiltonian from α = 0.02 fm4 further to 0.08 fm4,

∆E(CCSD) − ∆E
(CCSD)

2B
is only subject to a slight increase from

0.54 MeV to 0.92 MeV, corresponding to 0.4 % and 0.7 % of

the total binding energy. Consequently, the relative as well as

the absolute importance of the residual 3N interaction to the

CCSD correlation energy grows with the SRG flow.

Furthermore, while for the harder Hamiltonian at α =

0.02 fm4 the WN contributions to ∆E(CCSD) are about an or-

der of magnitude smaller than the accuracy level set by δE(T),

for the softer α = 0.08 fm4 Hamiltonian the WN contributions

have an comparable size of about 39 % of the triples correc-

tion. Therefore, in order to keep different errors at a consistent

level, for soft interactions the residual 3N contributions should

be included in CCSD if the triples correction is considered as

well.

For the ΛCCSD(T) triples correction δE(T) itself, the WN

contributions δE
(T)

3B
, despite containing second-order MBPT

contributions, have very small values of about –15 keV. This

effect is about one order of magnitude smaller than the tar-

geted accuracy given by the size of δE(T), and may therefore

be neglected. From another perspective, the WN contributions

to δE(T) constitutes about 0.1 % of the total binding energy,

which clearly is beyond the level of accuracy of any many-

body method operating in the medium-mass regime today.

As is apparent from Fig. 4, the discussion for the NN +3N-

induced Hamiltonian and the heavier nuclei 24O, 40Ca is sim-

ilar. In the case of 40Ca we work in the smaller emax = 10

model space in order to keep the computational cost reason-

able. In this model space the results are not fully converged

with respect to emax, but since the quality of NO2B is largely

independent of emax [64] this does not affect the present dis-

cussion. For the NN + 3N-induced Hamiltonian, for exam-

ple, the relative contribution of WN to the CCSD correlation

energy grows from 1.3 % for α = 0.02 fm4 to 4.2 % for α =

0.08 fm4, in both cases constituting about 0.6 % of the total

binding energy. Again, as the SRG flow parameter increases,

the contributions of WN to the CCSD correlation energy on the

one hand, and the triples correction on the other hand, become

comparable, where ∆E(CCSD) − ∆E
(CCSD)

2B
is about 18 % of the

size of the triples correction at α = 0.02 fm4 and already about

48 % at α = 0.08 fm4. The WN effect to the triples correction

is again negligible, about one order of magnitude smaller than

the triples correction itself, namely about 2 % of δE(T) for α =

0.02 fm4 and about 11 % for α = 0.08 fm4, or 0.1 % and 0.2 %

of the total binding energy E(ΛCCSD(T)).

In summary, for hard interactions, the residual 3N effects

NN+3N-full

0.0

0.2

0.4

0.6

0.8

1.0

.

d
ev

ia
ti

o
n

[%
]

16O

N
O

2
B

A

B C
D

0.02 0.04 0.08

α [fm4]

NN+3N-full

0.0

0.2

0.4

0.6

0.8

1.0

.

d
ev

ia
ti

o
n

[%
]

40Ca

N
O

2
B

A

B
C

D

0.02 0.04 0.08

α [fm4]

FIG. 5: (color online) Comparison of the deviations introduced by

the different approximation schemes Eqs. (136)–(140) described in

the text to the full inclusion of the residual 3N interaction in all steps

involving a CCSD and ΛCCSD(T) calculation.

to the CCSD correlation energy E(CCSD) are rather small com-

pared to the triples correction δE(T), but they become compa-

rable for soft interactions. Therefore, when using soft interac-

tions, the residual 3N interaction should be included in CCSD

if the desired accuracy level also demands inclusion of triples

excitation effects. For the triples correction, on the other hand,

the residual 3N interaction only plays an insignificant role,

providing contributions that are shadowed by the considerably

larger uncertainties stemming, e.g., from the cluster trunca-

tion. This motivates the use of the truncated energy expression

Ẽ(ΛCCSD(T)), Eq. (135), instead of the full form E(ΛCCSD(T)),

Eq. (130), resulting in only negligible losses in accuracy.

The above considerations indicate that the residual 3N in-

teraction may be neglected in calculating the ΛCCSD(T) en-

ergy correction δE(T) without significantly affecting the over-

all accuracy, leading to Eq. (135) as an approximate form for

E(ΛCCSD(T)). From a practitioner’s point of view, discarding

the WN contributions to δE(T), Eqs. (127)–(128), already leads

to significant savings in the implementational effort and com-

puting time, but one still has to solve the CCSD equations de-

termining the T amplitudes ta
i

and tab
i j

as well as the ΛCCSD

equations determining the Λ amplitudes λi
a and λ

i j

ab
with full

incorporation of WN . Particularly solving the ΛCCSD equa-

tions, for which the effective Hamiltonian contributions given

in Fig. 1 and 2 have to be evaluated, consumes most of the

computing time in our calculations. Therefore, it is also

worthwhile to investigate how much of the residual 3N infor-

mation has to be incluced in solving for the amplitudes of the

T and Λ operators that enter the energy expressions, in order

to obtain accurate results at the lowest possible computational

cost.

In order to distinguish different approximation schemes we

introduce the following notation in which for energy quanti-

ties that only depend on T amplitudes the label in brackets

denote if the T amplitudes were determined from the ampli-

tude equations with (3B) or without residual 3N interaction

(2B). Similarly, for quantities that depend on both, T and Λ

amplitudes, the first label denotes the type of equation used to

determine the T amplitudes and the second corresponds to the

ΛCCSD equations. For example, Ẽ(ΛCCSD(T))(3B, 2B) refers

to the energy expression (135), calculated using T amplitudes

determined from Eqs. (58), (59), (60) and (61) while the Λ

amplitudes are determined from Eqs. (79) and (80) only.
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TABLE I: Summary of the individual contributions to the ΛCCSD(T) ground-state energies in MeV for 16,24O and 40Ca and for the NN + 3N-

induced and NN + 3N-full Hamiltonian, obtained for 16,24O from an emax = 12 model space with oscillator frequency ~Ω = 20 MeV and for
40Ca from an emax = 10 model space with ~Ω = 24 MeV. For the calculation of ∆E

(CCSD)

2B
, amplitudes from the NO2B approximation have been

used, while for the calculation of all other quantities amplitudes have been determined from equations including the residual 3N interaction.

NN+3N-
α [fm4] E(ΛCCSD(T)) Eref ∆E

(CCSD)

2B
∆E(CCSD) − ∆E

(CCSD)

2B
δE

(T)

2B
δE

(T)

3Binduced
16O 0.02 –126.37 –56.47 –66.05 0.67 –4.46 –0.06

0.04 –124.09 –80.09 –41.93 0.86 –2.83 –0.10

0.08 –121.78 –96.59 –24.28 0.90 –1.66 –0.15
24O 0.02 –164.92 –65.41 –93.22 0.89 –7.01 –0.18

0.04 –161.14 –98.32 –59.23 1.15 –4.56 –0.18

0.08 –156.97 –120.64 –34.52 1.19 –2.75 –0.24
40Ca 0.02 –372.25 –186.58 –174.35 2.44 –13.44 –0.31

0.04 –364.87 –252.67 –106.28 2.78 –8.22 –0.49

0.08 –353.00 –291.98 –58.32 2.46 –4.56 –0.59

NN+3N-
α[fm4] E(ΛCCSD(T)) Eref ∆E

(CCSD)

2B
∆E(CCSD) − ∆E

(CCSD)

2B
δE

(T)

2B
δE

(T)

3Bfull
16O 0.02 –130.68 –56.11 –69.57 0.54 –5.39 –0.15

0.04 –130.61 –81.79 –45.87 0.82 –3.61 –0.16

0.08 –130.51 –101.67 –27.44 0.92 –2.17 –0.17
24O 0.02 –171.28 –64.16 –99.53 0.67 –8.01 –0.25

0.04 –171.82 –101.52 –65.81 1.07 –5.28 –0.28

0.08 –171.65 –130.43 –39.01 1.18 –3.05 –0.35
40Ca 0.02 –369.56 –158.28 –194.80 2.12 –17.80 –0.80

0.04 –375.02 –238.62 –126.64 2.96 –11.86 –0.86

0.08 –375.82 –298.75 –72.23 2.85 –6.82 –0.87

We consider the following approximation schemes, in

which the WN contributions δE
(T)

3B
to the triples correction are

always neglected: For the “NO2B” scheme, all WN terms are

discarded in both, the determination of the T and Λ ampli-

tudes and the energy E
(ΛCCSD(T))

2B
, Eq. (131),

E(NO2B) = E
(ΛCCSD(T))

2B
(2B, 2B) . (136)

This of course corresponds to an ordinary ΛCCSD(T) calcu-

lation in NO2B approximation. For scheme “A”, we compute

E
(ΛCCSD(T))

2B
as in the NO2B case and also add ∆E

(CCSD)

3B
with

T amplitudes obtained from the NO2B CCSD calculation,

E(A) = E
(ΛCCSD(T))

2B
(2B, 2B) + ∆E

(CCSD)

3B
(2B) . (137)

This represents the simplest and most economic way to in-

clude WN information, where it only enters in the expres-

sion for the energy contribution ∆E
(CCSD)

3B
, Eq. (66), but not in

the considerably more complex equations that determinate the

amplitudes. In scheme “B”, we include full WN information

in the calculation of the CCSD correlation energy, keeping

the WN terms in the amplitude equations as well as in the en-

ergy expression. The triples correction, however, is calculated

without any WN information,

E(B) = E(CCSD)(3B) + δE
(T)

2B
(2B, 2B) . (138)

This way we keep consistency between the T and Λ am-

plitudes that enter the triples correction, while capturing all

residual 3N effects in the CCSD energy ∆E(CCSD). In scheme

“C”, we introduce an inconsistency between the T and Λ am-

plitudes by solving for T with the WN terms present, while we

solve for Λ without WN terms and the energy expression is

given by Ẽ(ΛCCSD(T)), Eq. (135),

E(C) = Ẽ(ΛCCSD(T))(3B, 2B) . (139)

This variant is reasonable since one typically has to solve for

the T amplitude equations with WN terms anyway in order to

obtain the comparatively large ∆E
(CCSD)

3B
contribution to the

energy while one would like to avoid to solve for the Λ am-

plitudes in this manner. Finally, in scheme “D”, in which we

only neglect the residual 3N interaction terms in the expres-

sion for δE(T), we use the full, WN-containing equations to

solve for the T and Λ amplitudes and determine the energy

via Eq. (135),

E(D) = Ẽ(ΛCCSD(T))(3B, 3B) . (140)

As in the discussion of Fig. 4, this variant allows to estimate

the importance of WN for the Λ amplitudes.

In Fig. 5, for the case of 16O, 40Ca and the NN + 3N-full

Hamiltonian, we compare the deviations of all the aforemen-

tioned approximation schemes to the complete 3N calcula-

tions. For 24O and the NN + 3N-induced Hamiltonian we ob-

tain very similar results. As expected, the “NO2B” scheme

shows the largest deviations because the contributions of WN

to CCSD are completely missing. Including the WN terms in

the energy expression for the CCSD correlation energy but

evaluating it using T amplitudes without WN information in

scheme “A” virtually does not change the result. Therefore,

we can conclude that it is the WN effect on the T amplitudes

that is most important for CCSD, rather than the additional

terms ∆E
(CCSD)

3B
. In our calculations, the best approximation
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to the complete calculations provides scheme “B”, where we

use full WN information to determine the CCSD correlation

energy, but otherwise no WN information enters at all in the

calculation of the triples correction. However, approxima-

tion schemes “B”,“C” and “D” give very similar results, again

hinting at the WN effect on the T amplitudes to be the most im-

portant ingredient in the inclusion of residual 3N interactions

in CCSD and ΛCCSD(T) calculations.

IV. CONCLUSIONS

In this article we considered the extension of CC theory

with full treatment of singly and doubly excited clusters and

a non-iterative treatment of triply excited clusters to three-

body Hamiltonians. The incorporation of 3N interactions into

CCSD was previously discussed in detail in Ref. [63], so in

this article we focused on the corresponding generalization of

the non-iterative treatment of triply excited clusters. Among

various triples corrections, for this first study we chose the

ΛCCSD(T) approach due to its relatively simple structure.

The ΛCCSD(T) approach requires to solve the ΛCCSD

equations prior to the computation of the actual energy correc-

tion and therefore we provided a detailed discussion of the in-

clusion of 3N interactions into these equations, where we list

complete and explicit programmable expressions. The effec-

tive Hamiltonian is a central quantity of coupled-cluster the-

ory and in this article we give explicit expressions for the con-

tributions of the residual 3N interactions to all one- and two-

body parts as well as selected three- and four-body parts of

the effective Hamiltonian. We derived the ΛCCSD(T) method

as an approximation from the more complete CR-CC(2,3) ap-

proach which allows for an easy identification of new terms

arising due to the presence of residual 3N interactions, and

we provide complete and explicit expressions required for the

calculation of the ΛCCSD(T) energy correction.

An important outcome of our study is the realization that

through the use of explicit 3N interactions in ΛCCSD(T),

compared to the approximate NO2B treatment, contributions

of the triply excited clusters are moved from second to first or-

der in MBPT for the wave function, and from fourth to second

order for the energy.

The method was applied to the medium-mass closed-shell

nuclei 16O, 24O and 40Ca using NN + 3N Hamiltonians ob-

tained from chiral EFT. For the total binding energies, the ef-

fect of the residual three-body interactions at level of CCSD

can become comparable to the ΛCCSD(T) correction, partic-

ularly for soft interactions, while for the ΛCCSD(T) correc-

tion itself, contributions of the residual 3N interactions were

shown to be negligible. Therefore, for CCSD and ΛCCSD(T)

calculations, by only including explicit 3N interactions at the

CCSD level, we can practically eliminate the error introduced

by the normal-ordering approximation. We further discussed

various combinations of where to include the residual 3N in-

teractions in the determination of the amplitudes from which

energies are calculated, and found that the residual 3N inter-

actions have their most significant effect on the cluster ampli-

tudes.
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Supercomputing Centre, at the LOEWE-CSC Frankfurt, and

at the National Energy Research Scientific Computing Cen-

ter supported by the Office of Science of the U.S. Depart-

ment of Energy under Contract No. DE-AC02-05CH11231.

Supported by the Deutsche Forschungsgemeinschaft through

contract SFB 634, by the Helmholtz International Center for

FAIR within the LOEWE program of the State of Hesse, and

the BMBF through contracts 06DA9040I and 06DA7047I.

Additional support by the Chemical Sciences, Geosciences

and Biosciences Division, Office of Basic Energy Sciences,

Office of Science, U.S. Department of Energy (Grant No. DE-

FG02-01ER15228 to P.P.) is gratefully acknowledged. P.N.

acknowledges support from Natural Sciences and Engineer-

ing Research Council of Canada (NSERC) Grant No. 401945-

2011.

[1] S. Weinberg, Physica A 96, 327 (1979).

[2] S. Weinberg, Phys. Lett. B 251, 288 (1990).

[3] S. Weinberg, Nucl. Phys. B 363, 3 (1991).

[4] J. Gasser and H. Leutwyler, Ann. Phys. 158, 142 (1984).

[5] J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).

[6] U. van Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999).

[7] U. van Kolck, Phys. Rev. C 49, 2932 (1994).

[8] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).

[9] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.

Phys. 81, 1773 (2009).
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[22] P. Navrátil and W. E. Ormand, Phys. Rev. Lett. 88, 152502

(2002).
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C 71, 044325 (2005).

[30] J. Vary, O. Atramentov, B. Barrett, M. Hasan, A. Hayes,
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