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Chapter 1

Introduction

Theoretical nuclear structure physics describes atomic nuclei on the quantum

level in order to obtain a theoretical understanding of the known properties

of nuclei, such as binding energies, nucleon densities or electromagnetic tran-

sition amplitudes.

From the conceptual point of view, the nucleus is regarded as a self-bound

system of A nucleons, with strong correlations induced by the nuclear force.

For these reasons, the nuclear many-body problem defies easy theoretical

treatment. On the one hand, the interaction among the nucleons is not com-

pletely determined yet, leaving grounds for some theoretical uncertainties

even in this rather essential ingredient of the nuclear problem. On the other

hand, the solution of the large-scale eigenvalue problem corresponding to the

A-body Schrödinger equation is a challenge on its own due to computational

expense, rather than formal complexity, even for small nucleon numbers A.

This work will deal with both the many-body problem and the nuclear in-

teraction within the ab initio no-core shell model (NCSM) framework.

As in almost all applications of many-body quantum mechanics the un-

derlying Hilbert spaces have very large (infinite) dimensions and thus one is

confronted with large eigenvalue problems in order to compute observables

as eigenvalues of the corresponding operators. This is particularly true for

nuclear structure physics, since strong correlations among the nucleons nat-

urally demand large model spaces in order to obtain converged results. Two

ways of dealing with large Hilbert spaces are considered:
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First, when matrices become too large to solve the full eigenvalue prob-

lem using a direct method one can resort to the more practicable approxima-

tive solution using iterative methods like the Lanczos algorithm for instance.

These methods allow approximative partial diagonalizations of the matri-

ces, i.e. approximations of subsets of the full eigenspectrum only, but at

much lower computational cost. This is highly welcome since usually only

few eigenvalues are of real interest, such as the ground state energy and the

first excitations, for the case of the Hamiltonian. Thus obtaining only few

eigenvalues instead of the full spectrum is no real loss at all as long as the

approximation method targets the right range of the spectrum. In practice

Lanczos-type algorithms are frequently used because of their distinct conver-

gence behavior to the extreme eigenvalues of a spectrum, leading to ground

state approximations at comparatively low computational cost. In order to

get access to interior energy eigenvalues the usability of Lanczos-type algo-

rithms as angular momentum projection tools is investigated.

A second approach to cope with Hilbert spaces too large for practical

treatment is the reduction of its dimensionality before the calculation of ob-

servables. Many truncation schemes are designed for calculations of energetic

ground states by removing such states from the basis of the Hilbert space

that contribute mostly to high energy eigenstates, maintaining this way the

lower end of the energy eigenvalue spectrum. The Importance Truncation

[18] scheme employed here, however, does not chose basis states to reject by

focusing on energy arguments but rather on their capability to improve an

initial approximation of a certain Hamiltonian eigenvector. Consequently,

the Hilbert spaces obtained from this truncation are tailored to describe a

specific Hamiltonian eigenvector, regardless of its location in the eigenspec-

trum. Of course, in general the partial diagonalization can be combined with

the Hilbert space truncation, which works fine for the computation of energy

ground states. However, the truncation will severely affect the angular mo-

mentum projection approach mentioned above since a loss of completeness

of the Hilbert basis usually implies a loss of symmetries.

This truncation-induced loss of total angular momentum will cause the

projection method to fail as a Krylov method and even in non-truncated

Hilbert spaces the loss of total angular momentum due to numerical errors

demands a careful treatment.
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Regarding the nuclear interaction, there is evidence that three-nucleon

forces must be included in nuclear structure calculations in addition to the

traditional two-nucleon interactions. Unlike the electromagnetic interaction

that governs the physics in the atomic shell, the interactions among the nu-

cleons are more complicated and far less understood. It is known that the

nuclear force emerges as residual interaction between nucleons in the low-

energy limit of quantum chromodynamics (QCD). Consequently, one should

ultimately be able to derive the nuclear force from QCD. However, attempts

to derive it directly from QCD have failed due to its non-perturbative char-

acter at low energies. At this point the chiral effective field theory (�EFT),

in which the chiral symmetry is spontaneously broken and where the pions

then emerge as the corresponding Goldstone bosons, helps to connect nu-

clear structure with QCD. The chiral perturbative expansion naturally leads

to NNN interactions which will be employed in order to investigate their

relevance in nuclear structure calculations.

This work is organized as follows. Chapter 2 introduces the No-Core-Shell

Model and Chapter 3 the Importance Truncation. The Lanczos algorithm is

reviewed in Chapter 4. Since the Lanczos algorithm is regarded as being nu-

merically instable, Chapter 5 focuses on numerical issues and their treatment.

How the algorithm can be employed as an angular momentum projection

tool is illustrated in Chapter 6. Independent from the angular momentum

discussion, in Chapter 7, 8 electromagnetic form factors and transition prob-

abilities are calculated within the IT-NCSM framework. Three-body forces

are discussed in Chapter 9, where the foundations are set to employ avail-

able three-body matrix elements in NCSM computations, and where general

Slater-Condon rules are derived.
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Chapter 2

No-Core Shell Model

The no-core shell model (NCSM) is a more fundamental approach than the

traditional nuclear shell model in the sense that one starts with the nucle-

onic degrees of freedom and treats the nucleus as a full A-body problem,

interacting via some basic nucleonic interaction

HA =
1

A

A∑

i<j

(pi − pj)
2

2m
+

A∑

i<j

V NN
ij +

A∑

i<j<k

V NNN
ijk . (2.1)

It is convenient to add a center-of-mass harmonic oscillator potential

HCM = 1
2Am

P 2
CM + 1

2
AmΩ2R (R =

∑

i ri) to (2.1) that does not influence

the actually interesting intrinsic properties of the nucleus but constrains the

center-of-mass movement.

Although arbitrary basis sets could be employed, the use of the har-

monic oscillator basis has crucial advantages. The harmonic oscillator single-

particle wave functions

�nlm(r) = gnl(r) Ylm(�, ') (2.2)

are given in terms of the solutions gnl(r) of the radial one-particle Schroedinger

equation with the harmonic potential U(r) = 1
2
mN!

2r2,

[ −ℏ2

2mNr2
∂

∂r

(

r2
∂

∂r

)

+
l(l + 1)ℏ2

2mNr2
+

1

2
mN!

2r2
]

gnl(r) = �nlgnl(r), (2.3)

and the spherical harmonics, carrying the angular dependencies. The con-
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ventions for the quantum numbers used here are according to [22]

n = 0, 1, 2, . . . (2.4)

2n+ l = 0, 1, 2, . . . (2.5)

�nl = (2n+ l + 3
2
)ℏ!. (2.6)

The gnl(r) exist as analytical solutions of (2.3) in terms of associated Laguerre

polynomials L
(k)
n (x) [22]

gnl(r) =

√

2n!

b3Γ(n+ l + 3
2
)

(r

b

)l

e−r2/2b2L
(l+ 1

2
)

n (r2/b2) (2.7)

where b =
√

ℏ/mN! is the oscillator length. So a single-particle harmonic

oscillator wave function including spin and isospin degrees of freedom is given

by

�nlmlmsmt
(x,�, � ) = gnl(r) Ylml

(�, ') �(s=1/2)
ms

(�) �(�=1/2)
mt

(� )

= ⟨x,�, � ∣nlmlmsmt⟩. (2.8)

This analyticity comes at hand at various occasions: In Chapter 7 where elec-

tromagnetic transition amplitudes are calculated, analytical expressions for

the the radial integrals of gnl that enter the calculations can be found. Fur-

thermore, coordinate transformations of oscillator functions result in finite,

rather than infinite, expansions

�′
nlm(r

′) =
<∞∑

Nℒℳ

cNℒℳ �Nℒℳ(r) (2.9)

in the oscillator basis in the original coordinates, which is exploited in Chap-

ter 9. Regarding translationally invariance, the harmonic oscillator basis is

the basis of choice since it - when appropriately truncated by a chosen max-

imum excitation energy - allows the use of single-particle coordinates while

preserving translational invariance.

Because of the conservation of total angular momentum it is more conve-

nient to employ single-particle states that have good total angular momentum

that can be obtained from (2.8) by coupling the orbital angular momentum

and the spin

�njmjmt
(x,�, � ) =

∑

mlms

(
l 1

2
j

ml ms mj

)

CG
�nlmlmsmt

(x,�, � )

= ⟨x,�, � ∣n(ls)jmjmt⟩. (2.10)
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Chapter 3

Importance Truncation

Truncation schemes are naturally used in almost all applications of quantum

theory. Usually an energy argument of some kind is used to truncate the basis

such that the low-energy states are maintained. In contrary to truncations

that are insensitive to the actual problem that is to be solved, the Importance

Truncation [18, 19] is a method that takes the actual problem into account

in more detail.

By the means of Importance Truncation such states shall be removed from

the basis ∣Φ�⟩ of the full model spaceℳfull that are of minor importance for

the description of a specific Hamiltonian eigenstate, called the target state.

The solution of the Hamiltonian eigenvalue problem in this truncated model

space shall at least provide a reasonable approximation for the target state.

To determine the importance of a basis state one needs a pre-computed

zeroth-order approximation of the target state, the reference state ∣Ψref⟩.
This reference state is obtained from a diagonalization in a subspace of the

full model space, the reference spaceℳref. Other basis states ofℳfull that do

not lie in the reference space will lead to corrections of ∣Ψref⟩. It is reasonable

to characterize the importance of a basis vector outside the reference space

through the amount of correction it introduces to ∣Ψref⟩. Estimates of these

corrections can be obtained using perturbation theory, even without explicit

knowledge of the unperturbed and perturbation part of the Hamiltonian. In

the language of perturbation theory, ∣Ψref⟩ corresponds to the unperturbed

state, that is an eigenstate of the unperturbed Hamiltonian H0, for which

the corrections are computed. Therefore, the unperturbed Hamiltonian can
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formally be defined as the operator which obeys the eigenvalue equation

H0∣Ψref⟩ = �ref∣Ψref⟩ (3.1)

with �ref = ⟨Ψref∣H∣Ψref⟩ where H is the full Hamiltonian. Following [18], the

unperturbed Hamiltonian can be expressed as

H0 = �ref∣Ψref⟩⟨Ψref∣+
∑

� /∈ℳref

�� ∣Φ�⟩⟨Φ� ∣, (3.2)

where the energies �� have to be chosen in some way in order to fix the

operator. Then the perturbation part W of the full Hamiltonian is given by

W = H −H0 (3.3)

and with this the first-order correction to ∣Ψref⟩ from many-body perturbation

theory reads

∣Ψ(1)⟩ = −
∑

� /∈ℳref

⟨Φ� ∣W ∣Ψref⟩
�� − �ref

∣Φ�⟩. (3.4)

SinceH0 does not connect states fromℳref with basis states from the outside,

instead of W the full Hamiltonian can be inserted, yielding

∣Ψ(1)⟩ = −
∑

� /∈ℳref

⟨Φ� ∣H∣Ψref⟩
�� − �ref

∣Φ�⟩. (3.5)

In this way, an importance measure �� for a basis state ∣Φ�⟩, which solely

depends on H , ∣Ψref⟩ and ∣Φ�⟩ is defined by

�� = −⟨Φ� ∣H∣Ψref⟩
�� − �ref

. (3.6)

In practice, all basis states with importance measure smaller than a threshold

value, �� < �min, are discarded from the basis and the eigenvalue problem of

H is solved in the remaining model space.

Since the Importance Truncation is clearly a variational approach, changes

in �min will result in more or less continuous departures of the results from

the exact values. Therefore, one can perform a series of calculations with

varying �min and try to extrapolate the results to the �min = 0 (the exact)

case.
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Chapter 4

The Simple Lanczos Algorithm

"Could anything be more simple?"

Beresford Parlett [10].

The Lanczos process was introduced by Cornelius Lanczos in 1950 [1]. In

his paper he presented the Method of Minimized Iterations as a process that

expands each eigenvector of a symmetric n×n matrix into a convergent series

with at most n terms, so that after n steps the exact results are obtained.

In comparison, from the power method, the simplest method to address the

eigenvector to the dominant eigenvalue, one usually does not get exact results

for finite iterations. Although this is a nice feature of the Lanczos process

this is not the way it has been used in the past nor the way it is used in

computations today.

At first the Lanczos process has been used to reduce a symmetric matrix

A to tridiagonal form T . Using exact arithmetics, for a n× n matrix A this

reduction can be achieved after n steps. One ends up with an orthonormal

matrix Q = (q1, ..., qn) that transforms A into a tridiagonal representation

QTAQ = T. (4.1)

Because of the orthonormality of Q (QT = Q−1) this transformation is a

similarity transformation and so A and T have the same set of eigenpairs.

Computing eigenpairs from tridiagonal matrices is a comparatively easy task

and so the Lanczos algorithm together with the QR method for finding the

eigenvalues of tridiagonal matrices have been used as a direct method for the
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solution of eigenvalue problems. In theory the algorithm has some remarkable

properties such as simplicity and memory efficiency in computations.

However, in practice almost all of these properties vanish due to inevitable

rounding errors and the method can not reliably be used as a direct method

for larger problems unless very expensive measures are employed. For that

reason more numerically stable direct methods such as Householder transfor-

mations are used instead which have been developed shortly after the Lanczos

process. Although the Lanczos process fails as a direct method it is still very

useful when used as an iterative one.

Instead of performing all n steps, the Lanczos process can be halted after

k < n steps and Tk, the k × k submatrix of T , can be diagonalized. Lanczos

himself was aware that usually after a few iterations the extreme eigenvalues

of Tk already provide good approximations of the extreme eigenvalues of the

full tridiagonal representation T (and so of A). A first detailed analysis of

the efficiency of the Lanczos process can be found in C.C. Paige’s doctoral

thesis [5]. Therefore, the Lanczos algorithm is the method of choice when

only a few extreme eigenvalues are needed. It is well-suited for large sparse

matrices A since in every iteration step A only occurs in one matrix-vector

multiplication so that the sparsity of A can easily be exploited.

But even when used as an iterative method the Lanczos algorithm suffers

from numerical errors. There are many variations of the algorithm that

represent different ways to deal with the effects of finite precision arithmetics.

The most common variants will be presented in the following and will be used

and compared in the calculations in Section 5.2.

There are two major ways to look at and to derive the Lanczos algorithm.

The first one

Lanczos = Krylov + Rayleigh-Ritz (4.2)

reveals the physical significance of the method and the second one

Lanczos = Reduction to Tridiagonal Form (4.3)

is a fast way to derive the algorithm. Since on the one hand the first way

is essential to understand the physics and on the other hand the second

approach is usually used in the mathematical treatment of the algorithm

both ways are presented in the following.
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4.1 The Krylov Space Approach

The Lanczos method is an orthogonal projection method onto a Krylov space

Km [2, 8]. Therefore, some basic facts about projection methods and Krylov

spaces will be compiled below. In the nuclear context, one will be able to

identify angular momentum subspaces of Hilbert spaces with such Krylov

spaces.

The algorithm iteratively generates an orthonormal basis Q = (q1, . . . , qn)

of the Krylov space. Then the matrix Am = QmAQm is the projection

of A onto this Krylov space. From the matrix Am approximations of the

eigenvalues of A can be extracted.

4.1.1 Projection Methods

In order to find the eigenpairs (�i, �i) of a linear operator

A : V → V

one usually has to resort to the full vector space V, where V ≡ C
n if A ∈ C

n×n

or, for some quantum operator Â, V ≡ ℋ, the underlying Hilbert space

spanned by the eigenstates of A.

A projection method provides approximations (�̃i, �̃i) of the exact eigen-

pairs (�i, �i) from a subspace K ⊆ V. Therefore, since

�̃i ∈ K (�̃i ∈ C),

K is referred to as the subspace of candidate approximants or the right sub-

space.

To find an approximation �̃ from K (the index i will be dropped in the

following) one has to impose m = dim K constraints. Usually, and so in this

case, one demands the residual vector

s := A�̃ − �̃�̃ (4.4)

to be orthogonal to m linear independent vectors l1, . . . , lm. These vectors

define another subspace

ℒ = span {l1, . . . , lm} , (4.5)
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called the subspace of constraints or the left subspace.

In general ℒ may be equal to K but it does not have to. Thus two

classes of projection methods arise, the orthogonal (ℒ = K) and the oblique

(ℒ ∕= K).

The Lanczos procedure is an orthogonal projection method and so in the

following ℒ will be set equal to K and the orthogonality condition mentioned

above becomes

A�̃ − �̃�̃ ⊥ K. (4.6)

The constraints (4.6) are called Galerkin conditions.

K has to be specified by some basis that, because of the finite dimension

of K, can be assumed to be orthonormal. Let {k1, . . . , km} be this basis and

let

K :=
(

k1, . . . , km

)

(4.7)

denote the matrix build from the column vectors ki. The approximative

problem can be solved by translating it into the basis {ki}.
Set

�̃ = Ky (4.8)

(dim �̃ = dim V, dim y = dim K).

With this the Galerkin condition becomes

⟨AKy − �̃Ky, u⟩ = 0 ∀u ∈ K. (4.9)

It is u ∈ K and so u can be expanded in {ki}, u =
∑m

i=1 ciki, and therefore

m∑

i=1

ci⟨AKy − �̃Ky, kj⟩ = 0, j = 1, . . . , m. (4.10)

This equation holds for arbitrary (c1, . . . , cm) ∈ Cm and must therefore be

true for each basis vector ki

⟨AKy − �̃Ky, kj⟩ = 0, j = 1, . . . , m (4.11)

(AKy − �̃Ky)K = 0. (4.12)
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Using the orthonormality of K one gets

KT (AKy − �̃Ky)KKT = KT 0KT (4.13)

KTAKy − �̃y = 0 (4.14)

KTAKy = �̃y. (4.15)

Am(K) := KTAK is the constraint or the projection of A onto the space K,

represented in the orthonormal basis {ki}. Therefore, demanding the residual

vector of the approximative eigenpair to be orthogonal to K, the subspace of

approximants, leads to the eigenvalue problem

Am(K)y = �̃y. (4.16)

Eigenvalues �̃ of Am(K) already are the desired subspace approximations of

A’s exact eigenvalues and from the eigenvectors y of Am(K) one gets the

approximations of the eigenvectors of A via

�̃ = Ky. (4.17)

This method, computing Am(K) = KTAK from an orthonormal basis

{ki} and computing approximative eigenpairs (�̃, �̃) from Am(K) is called the

Rayleigh-Ritz procedure, which is summarized in Table 4.1 and consequently

(�̃, �̃) are called Ritz vectors and Ritz values (resp. Ritz pairs).

R : The Rayleigh-Ritz Procedure

R(1): Compute an orthonormal basis {ki}i=1,...,m of the subspace K.

Let K = (k1, . . . , km).

R(2): Compute Am = KTAK.

R(3): Compute the eigenvalues of Am and select the k desired ones

�̃i, i = 1, . . . , k, where k ≤ m

R(4): Compute the eigenvectors yi, i = 1, . . . , k, of Am

associated with �̃i, i = 1, . . . , k,

and the corresponding approximate eigenvectors of A,

�̃i = V yi, i = 1, . . . , k

Table 4.1: The Rayleigh-Ritz procedure [2]

.
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Because of the orthonormality of K its inverse is given by its transpose

KT = K−1 (4.18)

and so

Am(K) = K−1AK. (4.19)

Therefore, the transformation A→ Am(K) resembles an similarity transfor-

mation from which is known that it preserves the eigenvalues of A. A →
Am(K) is of course not a similarity transformation since usually dim K <

dim A but this resemblance indicates why one gets useful approximations

from Am(K). Indeed, the Rayleigh-Ritz approximations are optimal for the

information provided by the subspace K:

Proposition 4.1.1

The minimum of ∣∣AK − KR∣∣2 over all k × k symmetric matrices R is

attained by R = Am(K) [4].

An important feature of orthogonal projection methods is the fact that

if K is an invariant subspace under A the approximative eigenpairs obtained

from Am(K) are exact.

Definition 4.1.1

If

Ak ∈ K, ∀k ∈ K

then K is called an invariant subspace under A.

Proposition 4.1.2

If K is invariant under A then every approximate eigenpair obtained from

the orthogonal projection method onto K is exact [2].

Instead of a mathematical proof (which is eminently short but of no interest

here) this statement is motivated physically.

If total angular momentum is conserved, a Hilbert space ℋ decomposes

into a direct sum of subspaces J (i) that are invariant under the total angular

momentum operator J2

ℋ = J (0) ⊕ ⋅ ⋅ ⋅ ⊕ J (n) ⊕ . . . . (4.20)
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Let A = H be a Hamilton operator that, due to the conservation of total

angular momentum, commutes with J2

[H, J2] = 0. (4.21)

Then the subspaces J (j) are also invariant under H and there is a simulta-

neous eigenbasis ∣E(j)
k ⟩ for H and J2 with

H∣E(j)
k ⟩ = E

(j)
k ∣E

(j)
k ⟩ (4.22)

J2∣E(j)
k ⟩ = j(j + 1)∣E(j)

k ⟩. (4.23)

An arbitrary state ∣ ⟩ can be expanded in this basis

∣ ⟩ =
∑

j

kj∑

k=1

⟨E(j)
k ∣ ⟩∣E

(j)
k ⟩

∣ ⟩ =
∑

j

kj∑

k=1

 
(j)
k ∣E

(j)
k ⟩, (4.24)

where kj denotes the number of basis states with J2∣E(j)
k ⟩ = j(j + 1)∣E(j)

k ⟩.
Set K ≡ J (j) and let ∣ (j)⟩ ∈ K be an approximation of an eigenvector of H .

Then the Galerkin condition (4.6) becomes

H∣ (j)⟩ − �̃∣ (j)⟩ ⊥ K. (4.25)

Since ∣ (j)⟩ is a state with well-defined total angular momentum j(j + 1) its

expansion reads

∣ (j)⟩ =
kj∑

k=1

 
(j)
k ∣E

(j)
k ⟩. (4.26)

When the Hamiltonian acts on it

H∣ (j)⟩ =
kj∑

k=1

 
(j)
k E

(j)
k ∣E

(j)
k ⟩ (4.27)

one just gets another linear combination of the basis states that built ∣ (j)⟩
and so

H∣ (j)⟩ ∈ K. (4.28)
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Obviously

�̃∣ (j)⟩ ∈ K, (4.29)

and, therefore, the Galerkin condition (4.25) can not be satisfied forH∣ (j)⟩ ∕=
�̃∣ (j)⟩. For this reason it is H∣ (j)⟩ = �̃∣ (j)⟩ which means that the approxi-

mative eigenvalue �̃ is actually exact. This is because K is the full invariant

subspace of H . If K̃ ⊂ K then also H∣ (j)⟩ ∈ K̃ and �̃∣ (j)⟩ ∈ K̃ but (4.25)

may be satisfied.

4.1.2 Krylov Spaces

According to (4.2)

Lanczos = Krylov + Rayleigh-Ritz (4.30)

Krylov spaces play an important role in the Lanczos algorithm.

Definition 4.1.2

The space Km(A, q) spanned by q and the first m − 1 iterates of the simple

power method applied to a matrix A and vector q,

Km(A, q) = span
{
q, Aq, . . . , Am−1q

}
,

is called Krylov space of dimension m with respect to A and q. Consequently

the vectors Akq are referred to as Krylov vectors.

The Lanczos and Arnoldi algorithms are orthogonal projection methods

onto Krylov spaces, i.e. they search for approximative solutions within these

subspaces. At a first glance this could easily be achieved by calculating the

Krylov vectors by iterative application of A onto q. After an orthonormaliza-

tion of the Krylov vectors the Rayleigh-Ritz procedure could be applied to

obtain approximations from the Krylov space. However, although this works

in principle, this approach is not practicable. This is because the Krylov

vectors are the iterates of the power method which, of course, converges to

the eigenvector of the dominant eigenvalue of A

lim
k→∞

Akq = �dom. (4.31)
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Because of this convergence that comes along with an increase of linear de-

pendence of the generated Krylov vectors a reliable orthonormalization can

not be performed numerically since severe cancellations take place. Avoid-

ing this linear dependence while generating and orthonormalizing the Krylov

vectors will be the main task of the Arnoldi and Lanczos algorithm.

There is obviously a natural connection between Krylov spaces and poly-

nomials since every k ∈ Km(A, q) can be expressed as a linear combination

of Krylov vectors

k =
m−1∑

i=0

ciA
iq, k ∈ Km(A, q), ci ∈ C. (4.32)

Proposition 4.1.3

The Krylov space Km is the subspace of all vectors in Cn which can be written

as x = p(A)q, where p ∈∏m−1 is a polynomial of degree not exceeding m−1

[2].

Since according to Proposition (4.1.2) Rayleigh-Ritz approximations of eigen-

values from invariant subspaces turn out to be exact there is a particular

interest in these subspaces. One interesting statement can be made in terms

of the degree of the minimal polynomial of q.

Definition 4.1.3

(1) The minimal polynomial of a vector q is the nonzero monic polynomial

p of lowest degree such that p(A)q = 0.

(2) The degree � = �(A, q) of the minimal polynomial of q is called the

grade of q with respect to A.

Proposition 4.1.4

Let � be the degree of the minimal polynomial of q. Then K� is invariant

under A and Km = K� for all m ≥ � [2].

Krylov spaces of Hermitian matrices have a nice feature when one calcu-

lates an orthonormal basis of it. In general, every finite set of vectors can

be orthonormalized by the well-known Gram-Schmidt procedure. The effort

for this rises fast with a growing number of vectors to be orthonormalized.
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However, for Krylov vectors of Hermitian matrices the situation simplifies

drastically.

Let Qm = (q1, . . . , qm) be orthonormal with column vectors qi that arise

from the Gram-Schmidt procedure applied to the set of Krylov vectors

{q1, Aq1, . . . , Am−1q1}.
Consider span{q1, q2, q3, Aq3}. It is q3 ∈ K3(q1, A) and so

span{q1, q2, q3, Aq3} = span{q1, q2, q3, A(2A2 + 1A+ 01)q1}
= span{q1, q2, q3, A3q1}
= K4(q1, A). (4.33)

So the space spanned by q1, q2, q3 and Aq3 is identical to the Krylov space

K4(q1, A). The advantage in using Aq3 instead of A3q1 to span the space lies

in the fact that for Hermitian matrices Aq3 is already orthogonal to q1:

⟨Aq3, q1⟩ = ⟨q3, A†q1⟩ = ⟨q3, Aq1⟩. (4.34)

Since Aq1 ∈ K2(A, q1) it takes the general form

Aq1 = c0q1 + c1q2 (4.35)

and one gets

⟨Aq3, q1⟩ = ⟨q3, c0q1 + c1q2⟩. (4.36)

By definition q1, q2, q3 are already orthogonal and for that reason ⟨Aq3, q1⟩ =
0.

This can be generalized to the case of more vectors: Instead of orthonor-

malizing a given set of m Krylov vectors for a subsequent Rayleigh-Ritz pro-

cedure one can in the case of Hermitian matrices also generate recursively an

orthonormal basis where the new generated Krylov vectors only have to be

orthonormalized against the two precedent basis vectors (Table 4.2). This is

exactly what the Lanczos algorithm does.
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Generation of an Orthonormal
ONB : Krylov Basis in the Case of

Hermitian Matrices

ONB(1): Start : Choose q1 with ∣∣q1∣∣ = 1

Set q0 = q−1 = 0

Iterate : i = 1, . . . , m− 1

ONB(2): p = Aqi

ONB(3): qi+1 = p− ⟨p, qi⟩qi − ⟨p, qi−1⟩qi−1

Table 4.2: Generation of an orthonormal Krylov basis in the case of an

Hermitian matrix A.

4.1.3 The Arnoldi Algorithm

The (Hermitian) Lanczos algorithm emerges from the Arnoldi algorithm as a

straightforward simplification when Arnoldi is applied to a Hermitian matrix.

The basic ideas are best understood by studying the Arnoldi algorithm for

(non-Hermitian) matrices and so it will be discussed before constraining to

Hermitian matrices and the Lanczos algorithm.

According to Chapter 4.1.1, in order to calculate the projection of eigen-

pairs onto an subspace K one requires an orthonormal basis of this subspace.

From now on this subspace will be a Krylov space Km(A, q).

As mentioned in Chapter 4.1.2 it is not recommended to orthonormal-

ize the set of Krylov vectors directly via the Gram-Schmidt procedure or

other methods because of their increasing linear dependence and, at least

in the case of Hermitian matrices, because of the possibility to simplify the

orthonormalization process.

A central insight of Chapter 4.1.2 is that if Qm = (q1, . . . , qm) is an or-

thonormal basis of the Krylov spaceKm(A, q1) and ifKm(q1, A) = (q1, Aq1, . . . ,
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Am−1q1) is the set of Krylov vectors then

Km+1(q1, A)
Def. (4.1.2)

= span{Km, A
mq1}

(4.33)
= span{Km, Aqm}
= span{Km, qm+1}, (4.37)

where qm+1 denotes the vector Aqm orthonormalized against all qi, i = 1, . . . , m

(in the case of Hermitian matrices only orthonormalizing against qm and qm−1

would be necessary). The fact (4.37) is exploited by the Arnoldi-Algorithm,

summarized in Table 4.3.

A : The Arnoldi Algorithm

A(1): Start : Choose q1 with ∣∣q1∣∣ = 1

Iterate : j = 1, . . . , m :

A(2): ℎij = ⟨qi, Aqj⟩, i = 1, . . . , j

A(3): wj = Aqj −
j∑

i=1

ℎijqi

A(4): ℎj+1,j = ∣∣wj∣∣
A(5): qj+1 = wj/ℎj+1,j

Table 4.3: The Arnoldi algorithm.

In steps A(2) and A(3) one recognizes the classical Gram-Schmidt proce-

dure, where the vector Aqj is orthogonalized to all precedent qi. Steps A(4)

and A(5) are for normalization of the newly generated basis vector.

Proposition 4.1.5

The vectors q1, . . . , qm form an orthonormal basis of the subspace Km =

span {q1, Aq1, . . . , Am−1q1} [2].

After m steps the orthonormal matrix Qm is generated and in order to cal-

culate approximate eigenvalues, the Rayleigh-Ritz procedure now demands

the transformation of A to Am(Qm) via

Am(Qm) = Q†AQ. (4.38)
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As a matter a of fact these matrix multiplications do not have to be per-

formed since the matrix elements of Am arises as byproducts of the Arnoldi

algorithm. Indeed, these matrix elements are given by the overlaps ℎij calcu-

lated in step A(2) and the norms ℎj+1,j, see A(4). This is easy to understand,

because from

A(4) : wj = Aqj −
j
∑

i=1

ℎijqi (4.39)

and

A(6) : qj+1 = wj/ℎj+1,j (4.40)

follow by inserting (4.40) into (4.39) the equations

Aqj =

j+1
∑

i=1

ℎijqi, j = 1, . . . , m. (4.41)

This system of equations takes in matrix representation the form

AQm = QmHm + ℎm+1,mqm+1e
†
m (4.42)

with the upper Hessenberg matrix

Hm =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ℎ11 ℎ12 ℎ13 . . . ℎ1m

ℎ21 ℎ22 ℎ23 . . . ℎ2m

0 ℎ32 ℎ33 . . . ℎ3m
...

. . .
. . .

. . .
...

0 . . . 0 ℎm,m−1 ℎmm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.43)

and the Hermitian conjugate of the m-th unit vector e†m. The last term in

(4.42), ℎm+1,mvm+1e
†
m, takes into account that in (4.41) the element ℎm+1,m

appears under the sum that however is not incorporated in Hm. This term

vanishes for ℎm+1,m = 0 as it would be for instance in the case dim Q =

dim A (the common similarity transformation) so that then one would have

AQ = QH .

Multiplication of (4.42) with Q†
m yields

Q†
mAQm = Hm (4.44)
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since qm+1 is orthogonal to the columns ofQ†
m. Therefore, according to (4.44),

the matrix Hm build from the coefficients ℎij of the Arnoldi algorithm is the

projection of A to the subspace span{Q} = Km(q1, A).

Proposition 4.1.6

Denote by Qm the n×m matrix with column vectors q1, . . . , qm and by Hm the

m×m Hessenberg matrix whose nonzero entries are defined by the algorithm.

Then the following relations hold:

AHm = QmHm + ℎm+1,mqm+1e
†
m (4.45)

Q†
mAQm = Hm (4.46)

[2].

4.1.4 The Lanczos Algorithm

From (4.43) and (4.44) follows that Am = Hm is an upper m×m Hessenberg

matrix with matrix elements ℎij calculated in steps A(2) and A(4) of the

Arnoldi algorithm Table 4.3. Since

ℎij = ⟨Aqj , qi⟩ (4.47)

for a Hermitian matrix A follows

ℎij = ⟨qj , A†qi⟩ = ⟨qj , Aqi⟩ (4.48)

and thus

ℎ∗ij = ⟨Aqi, qj⟩ = ℎji (4.49)

or, more specifically for ℎij ∈ R,

ℎij = ℎji. (4.50)

For an upper Hessenberg matrix it is ℎij = 0 for j < i − 1 and therefore

the projection Am of a Hermitian matrix A takes a tridiagonal form because

of (4.50). This is of course highly welcome since there are powerful algo-

rithms for solving eigenproblems of tridiagonal matrices, the QR algorithm

for instance.
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Proposition 4.1.7

Assume that Arnoldi’s method is applied to a Hermitian matrix A. Then the

coefficients ℎij generated by the algorithm are real and such that

ℎij = 0, for 1 ≤ i < j − 1 (4.51)

ℎj,j+1 = ℎj+1,j, j = 1, . . . , m. (4.52)

In other words, the matrix Hm = Am obtained from the Arnoldi process is

real, tridiagonal, and symmetric [2].

Of course, ℎij ∕= 0 only for elements at the diagonal and subdiagonals

simply reflects the fact that a newly generated vector Aqj is already orthogo-

nal to all but its two preceding basis vectors, as mentioned in Chapter 4.1.2.

Therefore, besides the matrix A and the new vector Aqj one only has to store

the two preceding basis vectors in memory during computations (beside the

ℎij). This is what makes the Lanczos algorithm fast and memory efficient.

Since most ℎij vanish a new notation is convenient

�j := ℎjj

�j := ℎj−1,j, (4.53)

in which Am becomes

Am =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1 �2

�2 �2 �3
. . .

. . .
. . .

�m

�m �m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.54)

In this notation the Lanczos algorithm reads:
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L : The Lanczos Algorithm

L(1): Start : Choose q1 with ∣∣q1∣∣ = 1

Set �1 := 0

Set q0 := 0

Iterate : j = 1, . . . , m :

L(2): �j = ⟨qj , Aqj⟩
L(3): wj = Aqj − �jqj − �jqj−1

L(4): �j+1 = ∣∣wj∣∣
L(5): qj+1 = wj/�j+1

Table 4.4: The hermitian Lanczos algorithm.

So the Lanczos algorithm is nothing but the Arnoldi algorithm (Table

4.3) applied to an Hermitian matrix.

4.2 The Tridiagonal Approach

Chapter 4.1.4 revealed that the Lanczos algorithm creates a tridiagonal rep-

resentation Tm := Am of a Hermitian matrix A. With this knowledge one can

easily derive the Lanczos algorithm not as a Rayleigh-Ritz procedure on a

Krylov space as starting point but as a method to reduce a Hermitian matrix

to tridiagonal form. This approach leads to a three-term recurrence for the

Lanczos vectors that defines the algorithm. The way the Lanczos algorithm

is presented in this approach will later make it easier to study its behavior

in the presence of rounding errors.

For an Hermitian n× n matrix A, a tridiagonal representation

T := Tn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1 �2

�2 �2 �3

�3
. . .

. . .

. . . �n

�n �n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.55)
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can be always found that is generated by an unitary matrix Q =
(

q1, . . . , qn

)

via

T = Q†AQ. (4.56)

T and Q are completely determined by A and q1.

Proposition 4.2.1

If equation (4.56) holds and Q is written by columns as Q = (q1, . . . , qm) then

both T and Q are completely determined by A and q1 (or by A and qn) [10].

Since Q is orthonormal, (4.56) can be rewritten as

AQ = TQ. (4.57)

Equating columns on each side gives

Aq1 = �1q1 + �2q2 (4.58)

Aqi = �iqi−1 + �iqi + �i+1qi+1 , i = 2, . . . , n− 1 (4.59)

Aqn = �nqn−1 + �nqn. (4.60)

Since qi are orthonormal the coefficients ak follow from

�i = q†iAqi, i = 1, . . . , n. (4.61)

To determine �k rearrange (4.58) and (4.59)

�2q2 = Aq1 − �1q1 (4.62)

�i+1qi+1 = Aqi − �iqi−1 − �iqi , i = 2, . . . , n− 1 (4.63)

or

�i+1qi+1 = Aqi − �iqi−1 − �iqi , i = 1, . . . , n− 1 (4.64)

if q0 ≡ 0, and take the norm, making use of ∣∣qi∣∣ = 1

�i+1 = ∣∣Aqi − �iqi−1 − �iqi∣∣ , i = 1, . . . , n− 1. (4.65)

Choosing the �k as positive quantities does not pose a constraint. From

(4.59) also follows that in iteration step i the next Lanczos vector qi+1 is

determined by the three-term recurrence

�i+1qi+1 = Aqi − �iqi−1 − �iqi. (4.66)
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Therefore, the equations that determine the tridiagonal representation and

the Lanczos vectors can be summarized by

�i = q†iAqi (4.67)

�i+1 = ∣∣Aqi − �iqi−1 − �iqi∣∣ (4.68)

qi+1 = (Aqi − �iqi−1 − �iqi)/�i+1. (4.69)

By comparing these expressions with (4.4) it is easy to see that they just

define the Lanczos algorithm. As promised, the tridiagonal approach is a

fast way to derive the algorithm but it does not provide much insight in its

relationship to Krylov spaces and its physical significance.

The starting point for the investigation of the effects of finite arithmetics

precision are the matrix equations

Q†
jQj = 1j (4.70)

AQj −QjTj = qj+1�j+1e
†
j (4.71)

that specify the output of the algorithm at each iteration step j. Eq. (4.70)

represents the orthogonality among the Lanczos vectors and (4.71) is the

three-term recurrence (that is nothing but (4.42)).

4.3 Breakdowns

At least in exact arithmetic the Lanczos algorithm can break down. It turns

out that this happens when the Lanczos basis spans an invariant subspace

under A so that the eigenpairs obtained from this subspace are the exact

ones.

In practice the algorithm usually does not break down due to rounding

errors that lead to a quick deviation from the theoretical behavior. However,

when applied to highly degenerate Hilbert spaces, where the full Hilbert space

fragments into many invariant subspaces of small dimensions, after a few iter-

ations the Lanczos basis will span such an invariant subspace almost exactly

and the algorithm will almost break down because the impact of rounding

errors on the algorithm is limited after only a few iterations. Therefore, it is

worthwhile to examine the breakdown of the algorithm more closely.
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Proposition 4.3.1

The Lanczos algorithm breaks down at step j (i.e. wj = 0 or equivalent

�j+1 = 0) if and only if the minimal polynomial of q1 is of degree j. Moreover,

in this case the subspace Kj is invariant and the approximate eigenvalues and

eigenvectors are exact [2].

During the j-th iteration a vanishing wj in step L(3) of the Lanczos algorithm

(Table 4.4) causes the algorithm to break down: Step L(4) then produces

�j+1 = 0 and therefore L(5) fails to create the new Lanczos vector qj+1.

However, this does not happen accidently: The algorithm stops in the j-th

step if and only if the degree �(q1, A) of the minimal polynomial of q1 with

respect to A is equal to j. Then Km(q1, A) is invariant under A and the

eigenvalues obtained from this subspace are exact. To prove this remarkable

statement (⇒) set �(q1, A) = j and assume that wj ∕= 0. Then a new

Lanczos vector qj+1 could be generated and the Krylov space spanned by

q1, . . . , qj+1 would have dimension j + 1. This would contradict Proposition

4.1.4 that the dimension of a Krylov space can not exceed the degree of the

minimal polynomial. On the other hand (⇐), if wj = 0 then one has found

a polynomial p(A) such that p(A)q1 = 0. Therefore, from the definition of

�, �(q1, A) ≤ j. Since the algorithm did not break down in a previous step

one is left with �(q1, A) = j. Since Kj is invariant under A the Ritz pairs are

according to Proposition 4.1.2 exact. □

After a breakdown the algorithm can be restarted. One has to choose a

new start vector, which in typical calculations is just another random vector,

that has to be orthogonalized against each Lanczos vector to ensure the or-

thogonality of the Lanczos basis and to avoid this vector to have components

in the already spanned invariant subspace. This guarantees that the algo-

rithm will span another invariant subspace. For this purpose all generated

Lanczos vectors have to be stored at least in secondary memory. After having

orthogonalized the new vector against the Lanczos basis the algorithm can

be continued as before.

Since �j+1 = 0 if the algorithm breaks down in the j-th step, the Hessen-
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berg matrix Hm not surprisingly takes a block diagonal form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1 �2

�2
. . .

�j−1 �j

�j �j 0

0 �j+1 �j+2

�j+2
. . . �m

�m �m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.72)

This simply reflects the well-known fact that eigenvalues from independent

subspaces can be calculated separately.

The degree of the minimal polynomial has an descriptive interpretation.

It can be regarded as the number of eigenvectors that build the start vector

q1. Let {�1, . . . , �n} be the eigenbasis of A, then the expansion of q1 in this

(properly ordered) basis reads

q1 =

m≤n∑

i=1

ci�i ∈ Vm. (4.73)

This vector lies in the space Vm of dimension m spanned by �1, . . . , �m. This

is also true for the Krylov vectors because operating with A on this vector

only yields another linear combination of these eigenvectors

qk = Ak−1q1

=

m≤n∑

i=1

ciA
k−1�i

=

m≤n∑

i=1

ci�
k−1
i �i ∈ Vm. (4.74)

After m steps of the Lanczos algorithm one has generated m linear indepen-

dent (orthogonal) vectors that span Vm. So the algorithm has to break down

because a m+1-th Krylov vector can not lie in Vm and be orthogonal to the

full basis of Vm at the same time.
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4.4 Convergence in Exact Arithmetics

"It is too good to be true - as we shall soon see."

Beresford Parlett [10].

In his original paper [1] Lanczos already mentioned the observation that

during the Lanczos procedure the roots of the characteristic polynomials of

the tridiagonal matrices Tm do not change much from the beginning and

that the same could be said about the vibrational modes associated with

these roots (i.e. the eigenvalues). The Lanczos algorithm converges fast

and monotone to a few extreme eigenvalues what makes it suitable for the

calculation of physical ground states and low-lying excited states. There

are some theorems about the convergence of the eigenvalues obtained from

the Lanczos algorithm ([13]) but only the few listed below are of practical

interest, which makes the algorithm a variational method.

The Lanczos algorithm generates a series (Hm)m of Hessenberg matrices

with growing dimension m from which in every iteration step Ritz values

�̃
(m)
i can be computed. Usually, only a few iteration steps are necessary

to get good approximations of the extreme eigenvalues and so dimHm ≪
dimA. Therefore, the eigenvalues of Hm can almost effortless be computed

in each iteration step and their convergence monitored. Obviously, monotone

convergence is expected since the Ritz approximations of eigenvalues are the

best approximations from the subspace Km whose dimension increases in

every iteration step.

Proposition 4.4.1

As long as �m+1 ∕= 0 the spectra �̃
(m)
i of Hm are non-degenerate and interlaced

in the following way:

�min ≤ �̃
(1)
1 ≤ �max

�min ≤ �̃
(2)
1 �̃

(2)
2 ≤ �max

�min ≤ �̃
(3)
1 �̃

(3)
2 �̃

(3)
3 ≤ �max

. . .

where �min and �max denote the minimum and maximum exact eigenvalues

[13].
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This Proposition is actually the Cauchy Interlace Theorem, because the ma-

trices (Hj)j ≤ m are submatrices of Hm. For an example see Figure 4.1.
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Figure 4.1: Monotone convergence of the Ritz values �̃
(Iteration)
i obtained from the

first 5 iterations of the Simple Lanczos algorithm to the extreme (exact)

values �min and �max of the matrix A = diag (1, 2, . . . , n) with start

vector q1 = N (1, 1, . . . , 1). Left: n = 5 (final results are exact). Right:

n = 1000.

In exact arithmetics after n steps the Lanczos algorithm will generate a

tridiagonal representation T of A that obeys (4.57), or ∣∣AQ−TQ∣∣ = 0. This

tridiagonal representation is the rotation of A into the full Lanczos basis. A

first estimate of the quality of the approximations in iteration step m can be

obtained by considering this norm when A is only rotated into the Lanczos

basis generated so far,

∣∣AQm −HmQm∣∣
(4.42)
= ∣∣�m+1qm+1e

†
m∣∣ = �m+1. (4.75)

So this norm is just the last computed �.

Proposition 4.4.2

There are m eigenvalues of A, call them �1′, . . . , �m′, such that

∣�i′ − �̃(m)
i ∣ ≤ �m+1, i = 1, . . . , m

[9].

�m+1 is a global bound for all the Ritz values. With this an estimate of the

quality of the approximations is completely effortless since �m+1 is computed

by the algorithm anyway but it is rather rough. For a more precise estimate
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that also discriminates among the Ritz values one considers the norm of the

residual (4.4) of the i-th Ritz pair in the m-th iteration step

∣∣A�̃(m)
i − �̃(m)

i �̃
(m)
i ∣∣

(4.17)
= ∣∣AQmy

(m)
i − �̃(m)

i Qmy
(m)
i ∣∣ (4.76)

= ∣∣(AQm −Qm�̃
(m)
i )y

(m)
i ∣∣ (4.77)

(4.42)
= ∣∣(ℎm+1,mqm+1e

†
m)y

(m)
i ∣∣. (4.78)

In the Hermitian case Hm is symmetric, ℎm+1,m = ℎm,m+1, and from (4.53)

follows ℎm,m+1 = �m+1. Then the norm becomes

∣∣A�̃(m)
i − �̃(m)

i �̃
(m)
i ∣∣ = ∣∣(�m+1qm+1e

†
m)y

(m)
i ∣∣ (4.79)

∣∣qm+1∣∣=1
= �m+1∣e†my(m)

i ∣ (4.80)

= �m+1(y
(m)
i )m (4.81)

=: �im, (4.82)

where (y
(m)
i )m is the bottom element of the Ritz vector y

(m)
i . This means

that one can compute the residual norm ∣∣A�̃(m)
i − �̃(m)

i �̃
(m)
i ∣∣ without com-

puting the (n-dimensional!) �̃
(m)
i and without performing the matrix-vector

multiplication A�̃
(m)
i . All one needs is provided by the algorithm and Hm.

Proposition 4.4.3

To each �̃
(m)
i there is a corresponding eigenvalue of A, call it �i′, such that

∣�i′ − �̃(m)
i ∣ ≤ �im, i = 1, . . .m

[9].
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Figure 4.2: The 5 lowest Ritz values �̃
(m)
i and their residual norms �im.

There is also a gap theorem:
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Proposition 4.4.4

Let the gap be 
(m)
i = mink ∕=i′ ∣�k − �̃(m)

i ∣. Then

∣�i′ − �̃(m)
i ∣ ≤ �2

im/
(m)
i , i = 1, . . . , m.

[9].

The convergence of a Ritz value depends on the gaps between the eigenvalues

of A. The larger the ratio

min{�i+1 − �i, �i − �i−1}/(�i+1 − �i) (4.83)

the more does a Ritz value settle on to �i [10], see Figure 4.3.

Furthermore, q1 needs to have a non-vanishing component into the direc-

tion of an eigenvector �k one wants to approximate. It is easy to verify that

if q1 is orthogonal to �k then �k /∈ K.
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Figure 4.3: Typical convergence of the leftmost Ritz values to the exact eigen-

values (dotted lines). Left: A = diag(1, 2, . . . , n). Right: A =

diag(1, 10, 11, . . . , n+8), n = 100, q1 = (1, 1, . . . ). The convergence to

the smallest eigenvalue is faster in the right figure because of the larger

gap to the second one.

4.5 Simple Ritz Restart

Restarting the Lanczos algorithm makes sense even if there is no breakdown.

On the one hand, since in practice all Lanczos vectors have to be stored, after

a certain number of iterations one can run out of memory without having

experienced any convergence so far. On the other hand, as the iterations
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go by, rounding errors will accumulate and contaminate the results. An

inaccuracy of �k or �k in iteration k will affect the quality of the eigenvalue

approximations in all further iterations.

To avoid these problems the algorithm can be halted after a certain num-

ber of iterations, or when any other halting criterion is fulfilled, and can be

restarted using some of the information one has already gathered about the

eigenvalue problem that is to be solved.

The simplest way for a reasonable restart scheme is to completely restart

the algorithm with a new start vector that is closer to the eigenvector one

wants to approximate. Because of the convergence pattern of Fig. 4.1, the

restarted algorithm then continues converging from this value further on to

the lowest exact eigenvalue. If one is interested in the lowest eigenvalue,

the natural choice for this start vector is simply the first Ritz vector of the

preceding Lanczos run. Using this Ritz vector, the first computed � in the

restarted algorithm will be the corresponding Ritz value which will be the

single eigenvalue of the Hessenberg matrix in the first iteration step.
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Figure 4.4: Restarted Lanczos algorithm applied to A with aij = 10cos(ij), n = 2000,

q1 = (1, 1, . . . ). The vertical lines indicate the iterations at which the

algorithm was stopped for restart, the dotted lines are the 3 lowest exact

eigenvalues. (a) : Convergence to the lowest eigenvalue. (b) : With a

start vector orthogonal to the converged vector from (a) the lowest Ritz

value converges to the second exact eigenvalue and so on.

To obtain more eigenvalues than the lowest one, this iteration scheme can

be performed until the lowest Ritz vector has converged. Then the algorithm
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can be restarted with a start vector orthogonal to the converged Ritz vector.

In exact arithmetics, if the converged Ritz vector is the exact eigenvector, the

Krylov space generated in this algorithm will be orthogonal to the converged

Ritz vector. In actual computations the Ritz vector approximation will not be

exact and so the newly generated Lanczos vectors have to be kept orthogonal

to the converged vector in every iteration step.
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Chapter 5

Numerical Issues

In theory the Lanczos algorithm is a fast, efficient and, at least after n steps,

a direct method to obtain the eigenvalues of an Hermitian matrix A. In

practice, however, it was long considered as unstable and, therefore, inferior

to other methods. It turns out that already small rounding errors have a

destructive effect on the orthogonality of the Lanczos basis. With this loss

of orthogonality comes the loss of all the remarkable theoretical properties

of the algorithm.

5.1 Loss of Orthogonality

Why the Lanczos algorithm is cherished can be understood from a look at

Figure 5.1 (a). Although the matrix is quite large (n = 5000) after 4 iter-

ations the approximation to its smallest eigenvalue is already almost exact.

After 10 iterations about 5 excellent (to the eye) approximations of eigen-

values at the lower end have emerged from the algorithm. This is what is

expected from Chapter 4.4: Every Ritz value converges to a distinct eigen-

value of A and usually the convergence to the extreme ones is fastest (and

there are large gaps at the lower end of the spectrum). However, using the

Simple Lanczos algorithm of Table 4.4 in the presence of rounding errors,

the results look quite different, as illustrated in Figure 5.1 (c). While the

results of the first iterations look the same, thereafter the algorithm seems

to produce copies of approximations of eigenvalues already computed. After

40 iterations there are already 4 copies of the smallest eigenvalue where only
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one should be.
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Figure 5.1: Results of the Simple Lanczos algorithm (c) and the Lanczos algorithm

with full reorthogonalization (a) for the matrix A = diag(10k/(1.2−k)),
k = 1, . . . , 5000 with q1 = N (1, 1, . . . ) and round-off � = 10−16. To

obtain (a) the Lanczos basis was kept orthogonal by full reorthogonal-

ization in each iteration step while for (c) the new Lanczos vector was

orthogonalized against the two preceding Lanczos vectors what leads to

non-vanishing inner products among the Lanczos basis (d).

Figure 5.1 (a) was obtained using the Lanczos algorithm with full re-

orthogonalization. In every iteration step the new Lanczos vector was or-

thogonalized against the full Lanczos basis and not only against the two

preceding Lanczos vectors. So the orthogonality among the Lanczos vectors

was kept to working precision. Figure 5.1 (b) shows that the inner product

of q1 with the rest of the Lanczos basis {qi, i ∕= 1} vanishes. When the ex-

pensive full reorthogonalization is not performed, as in Figs. 5.1 (c) and (d),

this situation changes. After about 10 iteration the orthogonality is already

lost and the algorithm becomes unreliable. Since the matrix is diagonal and,
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therefore, extremely sparse the orthogonality loss is still quite small. Usually

orthogonality is lost totally after around 20 iterations.

In the presence of rounding errors the two basic equations of the Lanczos

algorithm (4.70) and (4.71) fail and have to be adapted to the new non-ideal

situation

Q†
jQj = C†

j + 1j + Cj (5.1)

AQj −QjTj = qj+1�j+1e
†
j + Fj . (5.2)

From now onQj and Tj lose their meaning from the ideal picture drawn in the

discussion of exact arithmetic. They denote the error-prone quantities one

works with that are stored in the computer. Cj is a strictly upper triangular

matrix that measures the orthogonality loss among the Lanczos vectors (since

Q†
jQj is symmetric and all qi are normalized perfectly to working precision, all

information about orthogonality loss beyond round-off level is encoded in Cj).

Obviously, its matrix elements are given by the inner products of the Lanczos

vectors, (Cj)ik = qi.qk. Similarly, the matrix Fj indicates how much the

three-term-recurrence fails due to round-off in iteration step j. Therefore, Fj

remains at round-off level, at least for sparse matrices, satisfying an inequality

of the form ∣∣Fj∣∣ ≤ �(n)�∣∣A∣∣ with round-off � and some linear function �

[9]. However, Cj grows rapidly with the iterations, see Figure 5.2.
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Figure 5.2: Deviations from the theoretical behavior for the example given in Fig-

ure 5.1. The orthogonality loss among the Lanczos vectors is strong

(left) while the three-term-recurrence in every iteration step only fails

at round-off level (right).
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5.1.1 Systematics in the Orthogonality Loss

Since the orthogonality loss is the crucial point in understanding the numer-

ical Lanczos behavior it is worthwhile to examine it further. At a first glance

the orthogonality loss, since it is due to round-off errors, seems to be random

and uncontrollable. However, already Figure 5.1 (c) indicates that there is

more to say about the Lanczos algorithm in finite precision arithmetic: Al-

though the numerical behavior of the Lanczos algorithm deviates from the

behavior expected in exact arithmetic, the obtained Rayleigh-Ritz approx-

imations are obviously not arbitrarily. As mentioned before, the numerical

Lanczos algorithm produces copies of Ritz values. Therefore, there should

also be copies of Ritz vectors and it turns out that the appearance of such

copies is connected to the orthogonality loss among the Lanczos vectors. To

see this, in addition to the Lanczos picture, one takes a look at the Ritz

picture, noticing that the Ritz vectors also represent a basis of the Krylov

space. As for the Lanczos basis the Ritz basis also obeys in exact arithmetic

the equation Ṽ H
j Ṽj = 1j where Vj is the matrix built from column vectors

�̃
(j)
i . So the orthogonality loss among the Ritz basis can be measured by an

upper triangular matrix Gj with matrix elements (Gj)ik = �̃
(j)
i .�̃

(j)
k satisfying

Ṽ H
j Ṽj = GH

j + 1+Gj. (5.3)

It is worth noticing that the once computed Lanczos basis is fixed while the

Ritz basis changes in every iteration step.

Figures 5.3 - 5.5 show how orthogonality is lost in the Lanczos and Ritz

picture. In each basis orthogonality is maintained until iteration step 9.

There one first notices a loss of orthogonality in both bases that even increases

in the next iteration step. Since the Lanczos basis is fixed this orthogonality

loss pattern remains unchanged in the following iterations while the one for

the Ritz basis changes. In step 10 more Lanczos vectors lose orthogonality

but orthogonality in the Ritz picture is completely restored except for one

Ritz vector that is a copy of another Ritz vector since their scalar product

equals 1. More precisely, it is Ritz vector �̃
(11)
10 that is a copy of �̃

(11)
11 . This is

expected from Figure 5.1, for instance, since it is the extreme eigenvalues the

Lanczos algorithm first produces copies for. This convergence also indicates

that �̃
(11)
11 is already close to the dominant eigenvalue of A. So there is a

graphic picture behind the orthogonality loss in the Lanczos basis that can
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be revealed from a look at the Ritz picture [8]:

Convergence (Ritz basis) ⇒ Loss of Orthogonality (Lanczos Basis).

From iteration 11 on, no additional orthogonality loss can be observed

until iteration 18 when two additional Ritz vectors begin to converge (Figure

5.4). Once again, after these Ritz vectors have converged in iteration step

20, there is no additional orthogonality loss until iteration 26, where another

Ritz vector begins to converge and completes its convergence in iteration 29

(Figure 5.5).
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Figure 5.3: Orthogonality loss in the Lanczos and Ritz picture, measured by Cj

and Yj , from the Simple Lanczos algorithm applied to A with aij =

105 cos(i×j), n = 5000, q1 = N (1, 1, . . . ). Depicted for i < j. Round-

off: � = 10−8.
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Lanczos Orthogonality
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Figure 5.4: Orthogonality loss in the Lanczos and Ritz picture, measured by Cj

and Yj , from the Simple Lanczos algorithm applied to A with aij =

105 cos(i×j), n = 5000, q1 = N (1, 1, . . . ). Depicted for i < j. Round-

off: � = 10−8.
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Lanczos Orthogonality
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Figure 5.5: Orthogonality loss in the Lanczos and Ritz picture, measured by Cj

and Yj , from the Simple Lanczos algorithm applied to A with aij =

105 cos(i×j), n = 5000, q1 = N (1, 1, . . . ). Depicted for i < j. Round-

off: � = 10−8.

5.1.2 Paige’s Theorem

A series of pictures equivalent to Figures 5.3 - 5.5 can be found in [10]. In

this paper the discussion goes further by investigating the angles ∣�̃(j)i .qj+1∣
between the Ritz vectors �̃

(j)
i and the last Lanczos vectors qj+1. These scalar

products vanish in exact arithmetic because

span{�̃(j)1 , . . . , �̃
(j)
j } = span{q1, . . . , qj} = Kj ⊥ qj+1. (5.4)

It turns out that qj+1 is tilted mostly into directions of converged Ritz vectors,

i.e. Ritz vectors that are good approximations of eigenvectors.

This and the results from Section 5.1.1 are backed by Paige’s Theorem:

Proposition 5.1.1 (Paige’s Theorem)

If local orthogonality is maintained in the Lanczos process, governed by (5.2),

i.e. if qHk+1qk = 0 for all k, then for each i ≤ j,

(a) ⟨�̃(j)i , qj+1⟩ =

(j)
ij

�j+1(y
(j)
i )j

(b) for k ≤ j, i ∕= k,

(�̃i − �̃k)�̃Hi �̃k = 
(j)
ii

(

(y
(j)
k )j

(y
(j)
i )j

)

− (j)kk

(

(y
(j)
i )j

(y
(j)
k )j

)

+ (
(j)
ki − 

(j)
ik )
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where

Γ(j) = (
(j)
ik ) = Ṽ H

j [strictly upper triangle (QH
j Fj − FH

j Qj)]Ṽj (5.5)

and (y
(j)
k )j denotes the bottom element (j-th component) of y

(j)
k [10].

The interesting part of Paige’s Theorem is Proposition 5.1.1 (a). The

matrix Γ(j) looks quite unhandy but according to [8] its matrix elements 
(j)
ik

satisfy the inequality

∣(j)ik ∣ ≤ �∣∣A∣∣, ∀i, k, j, (5.6)

and that is all one needs to know. The connection between converging Ritz

vectors and the orthogonality loss of the Lanczos vectors is best explained in

the words of Parlett and Scott (in adapted notation, Yj denotes the matrix

built from column vectors y
(j)
i ) [9]:

The bottom elements of the y
(j)
i appear in a special way. With

any good program, Yj will be orthonormal (to working accuracy)

so that
∑j

i=1(y
(j)
i )2j = 1.

(The sum
∑j

i=1(y
(j)
i )2j = 1 is not the norm of the i-th vector, which would

equal 1 as well – it is a sum running over the bottom elements of all y
(j)
i .

The matrix built from all y
(j)
i ,

Yj =

⎛

⎜
⎜
⎝

↑ ↑ ↑
y
(j)
1 y

(j)
2 . . . y

(j)
j

↓ ↓ ↓

⎞

⎟
⎟
⎠
,

is orthonormal and so for every column it is ∣∣(Yj)i∣∣ = ∣∣y(j)i ∣∣ = 1. From

orthonormality of Yj follows that

Y T
j =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

← y
(j)
1 →

← y
(j)
2 →
...

← y
(j)
j →

⎞

⎟
⎟
⎟
⎟
⎟
⎠

is also orthonormal and for every column one has 1 = ∣∣(Y T
j )i∣∣=

∑j
i=1(y

(j)
i )2j .)
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If

∣(y(j)k )j ∣̃∣(y(j)i )j∣j̃−1/2, ∣�̃i − �̃k∣ > ∣∣Tj∣∣/100, (5.7)

then the error bounds (Proposition 4.4.3) on �̃i and �̃k indicate

that they are poor eigenvalue approximations while Paige’s The-

orem shows that �̃i and �̃k are orthogonal to working accuracy.

A Ritz vector is considered unconverged if it has a bottom element of the

order j−1/2 because that is the order of elements of the normalized vector

N (1, 1, . . . ) that shows no indications for any convergence. Note that

�̃
(j)
i = Qy

(j)
i = (y

(j)
1 )1q1 + ⋅ ⋅ ⋅+ (y

(j)
1 )jqj .

Therefore, for unconverged Ritz vectors their bottom elements, absolute val-

ues are large and so �j+1(y
(j)
i )j will be large too. This is nothing but �ij

from Proposition 4.4.3 from which then the large error bounds follow. On

the other hand from Paige’s Theorem Proposition 5.1.1 (a) follows that the

i-th Ritz vector is orthogonal to qj+1 since 
(j)
ij �̃∣∣A∣∣ is divided by a large

number.

Conversly, if

∣(y(j)i )j ∣ < 10−3, (5.8)

say, then �̃i (if isolated) is a good eigenvalue approximation, �̃i
is good too, and �̃i will not be orthogonal to any unconverged �̃k
(indicated by (y

(j)
k )j j̃

−1/2).

On the other hand, a Ritz vector with bottom element 1̃0−3 is considered

as converged. This number is independent of n since y
(j)
i ∈ Kj , and so the

general condition for convergence can be formulated as (y
(j)
i )j ≪ j−1/2. With

a small bottom element then the statements of Propositions 4.4.3 and 5.1.1

reverse.

Since Yj is orthogonal to working accuracy, it is Qj which must

have lost orthonormality. The better the approximations �̃i and

�̃
(j)
i the greater the departure of Qj from orthogonality. □
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Actually, Proposition 4.4.3 can not be used since it is valid for exact

arithmetics. There is, however, a very similar theorem for the case of finite

precision arithmetic, that Parlett and Scott worked with and that also can

be found in [9].

The conclusion that should be drawn from Section 5.1 is the following:

Although the Lanczos algorithm is a remarkably powerful method in theory,

numerical reality diminishes its capabilities drastically. The reason for the

loss of its power is the loss of orthogonality in the Lanczos basis but the

properties of exact arithmetics can most widely be restored by manually or-

thogonalizing the Lanczos basis – at a certain cost. Since the Gram-Schmidt

procedure becomes too expensive for large matrices and many iterations,

more efficient methods for orthogonalizing the Lanczos basis are to be devel-

oped. Here one can exploit the fact that the orthogonality loss happens not

randomly but rather with a systematics behind it.

5.2 Variants of the Lanczos Algorithm

There are many variants of the Lanczos algorithm. Some of them, the Lanc-

zos algorithm with full or selective reorthogonalization for instance, represent

more or less sophisticated ways to tackle the orthogonality loss problem, and

some are simply other formulations of the Simple Lanczos algorithm with

different numerical stability properties.

5.2.1 The Simple Lanczos Algorithm

The Simple Lanczos is the cheapest way to compute eigenvalues using the

Lanczos algorithm. However, the denotation "Simple Lanczos" is not uniquely

defined because there are (in exact arithmetics) several equivalent formula-

tions of the Simple Lanczos algorithm based on two different ways to compute

�j and �j. The resulting algorithms have been analyzed by Paige [6], [7]. In

the following the term Simple Lanczos (LS) algorithm will denote the algo-

rithm found to be the most stable, Table 5.1, and that is also presented in

[8].

The equivalence of LS (Table 5.1) and L (Table 4.4) is not obvious and

there is no source known for citation so there will be a few words to motivate
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this statement. It is easy to show that the quantities qj , �j and �j fulfill

the same equations in algorithms LS and L but this does not prove their

equivalence yet. It also has to be shown that these quantities denote the same

things in both algorithms, namely Lanczos vectors qj and matrix elements of

the Hessenberg matrix �j and �j. However, this is only shown for the simple

case of quantities in the first iteration since a proof via induction turns out

to be somewhat tricky.

A More Stable
LS : Simple

Lanczos Algorithm

LS(1): Start : Choose r with ∣∣r∣∣ = 1

Set �1 := 1

Set q0 := 0

Iterate : j = 1, . . . , m :

LS(2): qj = r/�j

LS(3): pj = Aqj

LS(4): r = pj − �jqj−1

LS(5): �j = ⟨qj , r⟩
LS(6): r = r − �jqj

LS(7): �j+1 = ∣∣r∣∣

Table 5.1: A more stable variant of the Simple Lanczos algorithm.

In L, q
(L)
1 is the manually chosen start vector while in LS this is r(LS) and

q
(LS)
1 is given by q

(LS)
1 = r(LS)/�

(LS)
1 . Since �

(LS)
1 = 1 in LS, q

(L)
1 and q

(LS)
1

are equivalent. With this the equivalence of �
(L)
1 and �

(LS)
1 can be shown. In

L, �
(L)
1 = ⟨Aq(L)1 , q

(L)
1 ⟩. In LS �

(LS)
1 is given by �

(LS)
1 = ⟨q(LS)1 , r(LS)⟩. At the

point where �
(LS)
1 is computed r(LS) denotes no longer the start vector but

r(LS) = p
(LS)
1 − �(LS)

1 q
(LS)
0 . Since q

(LS)
0 = 0 and p

(LS)
1 = Aq

(LS)
1 one arrives at
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�
(LS)
j = ⟨q(LS)1 , Aq

(L)
1 ⟩. �(L)

2 is computed in L(4) via

L(4) : �
(L)
2 = ∣∣w(L)

1 ∣∣
= ∣∣Aq(L)1 + �

(L)
1 q

(L)
1 − �(L)

1 q
(L)
0 ∣∣

= ∣∣Aq(L)1 − �(L)
1 q

(L)
1 ∣∣.

In LS one finds the same expression

LS(7) : �
(LS)
2 = ∣∣r(LS)∣∣

= ∣∣p(LS)1 − �(LS)
1 q0 − �(LS)

1 q
(LS)
1 ∣∣

= ∣∣Aq(LS)1 − �(LS)
1 q

(LS)
1 ∣∣

in which q
(LS)
1 and �

(LS)
1 have the same meaning as in L. Therefore, �

(LS)
2 is

equivalent to �
(L)
2 . To see that in both algorithms the Lanczos vectors are

generated from the same equations compare

L(5) : q
(L)
j+1 = w

(L)
j /�

(L)
j+1

=
Aq

(L)
j − �(L)

j q
(L)
j − �(L)

j q
(L)
j−1

�
(L)
j+1

with

LS(2) : q
(LS)
j+1 = r/�

(LS)
j+1

=
p
(LS)
j − �(LS)

j q
(LS)
j−1 − �(LS)

j q
(LS)
j

�
(LS)
j+1

=
Aq

(LS)
j − �(LS)

j q
(LS)
j − �(LS)

j q
(LS)
j−1

�
(LS)
j+1

which is the same. In L the general formula to compute �
(L)
j+1 is

L(5) : �
(L)
j+1 = ∣∣w(L)

j ∣∣ = ∣∣Aq(L)j − �(L)
j q

(L)
j − �(L)

j q
(L)
j−1∣∣

and this is the same as in LS

LS(7) : �
(LS)
j+1 = ∣∣r(LS)∣∣

= ∣∣p(LS)j − �(LS)
j q

(LS)
j−1 − �(LS)

j q
(LS)
j ∣∣

= ∣∣Aq(LS)j − �(LS)
j q

(LS)
j − �(LS)

j q
(LS)
j−1 ∣∣.
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Analogously, the generating equation for �
(L)
j

L(2) : �
(L)
j = ⟨Aq(L)j , q

(L)
j ⟩

can be shown to be the same as in LS

LS(5) : �
(LS)
j = ⟨q(LS)j , r(LS)⟩

= ⟨q(LS)j , p
(LS)
j − �(LS)

j q
(LS)
j−1 ⟩

= ⟨q(LS)j , p
(LS)
j ⟩ − �(LS)

j ⟨q(LS)j , q
(LS)
j−1 ⟩

= ⟨q(LS)j , Aq
(LS)
j ⟩.

r carries no label j since its meaning varies during an iteration. Furthermore

an index j would suggest to store all rj, but this is not necessary since it

only serves as a container.

In practice it turns out to be quite hard to discover significant differences

between L and LS, but nevertheless, LS will be used as the basic Lanczos

algorithm in the following.

5.2.2 The Lanczos Algorithm with full Reorthogonal-

ization

The Lanczos algorithm with full reorthogonalization has already been pro-

posed by Lanczos himself and was a first attempt to prevent the orthogonality

loss among the Lanczos vectors. It is the most straight-forward and also the

most expensive method for maintaining the orthogonality, since its recipe for

keeping orthogonality is simply to orthogonalize the new Lanczos vector qj+1

against all the other vectors {q1, . . . , qj} in every iteration step. For large di-

mensions this is conveniently done by the Gram-Schmidt orthogonalization

procedure

qj+1 := qj+1 −
j
∑

i=1

⟨qj+1, qi⟩qi.

For the Gram-Schmidt procedure there is a more stable variant that should

be used in practical implementations that projects the component on qi of

qj+1 after already having orthogonalized qj+1 against {q1, . . . , qi−1}

For i = 1, . . . , j : qj+1 := qj+1 − ⟨qj+1, qi⟩qi.

51



This orthogonalization is placed between steps LS(6) and LS(7) so that �j+1

is computed from the norm of a perfectly orthogonalized r.

Figure 5.1 already showed the superiority of the Lanczos algorithm with

full reorthogonalization over the Simple Lanczos. By maintaining orthog-

onality among the Lanczos basis it is avoided to produce copies of already

computed Ritz values so that every different Ritz value represents an approx-

imation to a different eigenvalue.

Lanczos Algorithm
LFR : with

Full Reorthogonalization

LFR(1): Start : Choose r with ∣∣r∣∣ = 1

Set �1 := 1

Set q0 := 0

Iterate : j = 1, . . . , m :

LFR(2): qj = r/�j

LFR(3): pj = Aqj

LFR(4): r = pj − �jqj−1

LFR(5): �j = ⟨qj , r⟩
LFR(6): r = r − �jqj

For : i = 1, . . . , j :

LFR(7) : r = r − ⟨r, qi⟩qi
End For

LFR(8): �j+1 = ∣∣r∣∣

Table 5.2: The Lanczos algorithm with full reorthogonalization.

5.2.3 The Lanczos Algorithm with Selective Reorthog-

onalization

The main reason for the discussion of Paige’s Theorem is its usefulness in the

development of a more sophisticated way to avoid the orthogonality loss than
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the Lanczos with full reorthonormalization does. Since there is systematics

in the orthogonality loss there should also be a way to exploit this knowledge

[8], [9].

In exact arithmetics, the scalar product of the Ritz vectors �̃
(j)
i and the

last computed Lanczos vector vanishes, (5.4). But in finite precision arith-

metics qj+1 will have components in the directions of �̃
(j)
i . Orthogonalizing

qj+1 against the Lanczos basis is equivalent to removing all its components

into directions of the Ritz vectors. Of course this can be achieved by

qj+1 := qj+1 −
j
∑

i=1

⟨�̃(j)i , qj+1⟩�̃(j)i , (5.9)

but this is obviously no better way than the full reorthogonalization. How-

ever, from Paige’s Theorem one knows that qj+1 has its strongest components

into directions of converged Ritz vectors and one can decide which vectors

have converged from a look at the j-dimensional vectors y
(j)
i . So there is a

cheap way to determine the set of Ritz vectors against that qj+1 has to be

orthogonalized. Once more the stable variant of the Simple Lanczos algo-

rithm Table 5.1 will be the basis for the algorithm. Then, this additional

orthonormalization will be performed between steps LS(6) and LS(7), before

r’s norm is computed yielding �j+1. To distinguish the different values of r

during an iteration step, r′ denotes the original r from Table 5.1 until step

LS(6) (inclusively) and r denotes the final form, according to Table 5.3.

...

LS(6): r′ = r′ − �jqj

LS(*): Intermediate step that generates r from r′ by

orthogonalizing r′ against converged Ritz vectors

r = r′ − ∑

converged �̃
(j)
i

⟨r′, �̃(j)i ⟩�̃(j)i

LS(7): �j+1 = ∣∣r∣∣

Table 5.3: Modification of the stable Lanczos algorithm of Table 5.1 and the

notation used for r.

The question when a Ritz vector should be considered as converged can

be answered in the following way: According to [8], orthogonality among the
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Lanczos basis will be maintained at a preset �-level if r′ is orthogonalized

against all Ritz vectors with

∣ cos∠(�̃(j)i , r′)∣ ≥ �/
√

j (5.10)

because then the inequality holds

∣∣Q†
jqj+1∣∣ = ∣∣Y †

j qj+1∣∣ < �. (5.11)

A computable expression for cos∠(�̃
(j)
i , r′) can easily be derived using Paige’s

Theorem 5.1.1 (a):

⟨�̃(j)i , r′⟩ =

(j)
ij

� ′
j+1(y

(j)
i )j

⇒ ∣∣�̃(j)i ∣∣ ∣∣r′∣∣ cos∠(�̃(j)i , r′) =

(j)
ij

� ′
ij

(5.12)

with � ′
j+1 = ∣∣r′∣∣ and � ′

j+1(y
(j)
i )j ≡ � ′

ij. The vectors �̃
(j)
i and r′ stay normal-

ized even in finite precision arithmetics,

⇒ cos∠(�̃
(j)
i , r′) =


(j)
ij

� ′
ij

. (5.13)

According to (5.10) the absolute value of 
(j)
ij /�

′
ij is larger than �/

√
j,

∣
∣
∣
∣
∣


(j)
ij

� ′
ij

∣
∣
∣
∣
∣
>

�√
j
⇒ ∣� ′

ij∣ <
∣(j)ij ∣
�

√

j. (5.14)

The 
(j)
ij are unknown but Equation (5.6) stated that ∣(j)ij ∣ ≤ �∣∣A∣∣ and so

one finds an upper bound for � ′
ij

∣� ′
ij ∣ <

�∣∣A∣∣
�

√

j. (5.15)

Equation (5.15) tells which �ij indicate converged Ritz vectors depending on

the required degree of orthogonality �. The next question is for which �

one will obtain useful results. According to [12], if the Lanczos vectors are

semiorthogonal, i.e.

Q†
jQj = 1j + E, ∣∣E∣∣ < √�, (5.16)
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then for Tj holds

Tj = Aj +G, ∣∣G∣∣ = O(�∣∣A∣∣) (5.17)

where Aj stands for the exact projection onto the exact Krylov space. There-

fore, if orthogonality of the Lanczos basis is maintained at
√
�-level the re-

sulting Ritz values still are the best one can get due to machine precision.

So � =
√
� is a reasonable choice and Equation (5.15) becomes

∣� ′
ij ∣ <

√
�
√

j∣∣A∣∣. (5.18)

However, this expression is useless unless there is some estimate for ∣∣A∣∣ =
maxi ∣�i∣.

Some tests with low-dimensional 4He Hamiltonians suggest that the spec-

tral norm is usually of the order of the largest absolute value of the diagonal

elements

max
i
∣aii∣ ≑ max

i
∣�i∣. (5.19)

so that one can set

 ⋅max
i
∣aii∣ > max

i
∣�i∣ (5.20)

with a number  < 100. With this one arrives at the final bound for � ′
ij that

will be used in the calculations

∣� ′
ij ∣ < 

√

j� max
i
∣aii∣ =: �(). (5.21)

55



Lanczos Algorithm
LSRa : with

Selective Reorthogonalization
Version (a)

LSRa(1): Start : Choose r with ∣∣r∣∣ = 1

Set �1 := 1

Set q0 := 0

Iterate : j = 1, . . . , m :

LSRa(2): qj = r/�j

LSRa(3): pj = Aqj

LSRa(4): r = pj − �jqj−1

LSRa(5): �j = ⟨qj, r⟩
LSRa(6): r = r − �jqj

LSRa(7): �j+1 = ∣∣r∣∣
LSRa(8) : Compute all �ij

For : i = 1, . . . , j :

If : �ij < �

LSRa(9): Compute �̃i

LSRa(10): r := r − ⟨r, �̃i⟩�̃i
End If

End For

If : ∃ i : �ij < �

LSRa(11): �j+1 = ∣∣r∣∣
End If

Table 5.4: An uneconomic variant of the Lanczos algorithm with selective

reorthogonalization.

A first, but still uneconomic, selective reorthogonalization Lanczos algo-

rithm is shown in Table 5.4 and an example for its results is shown in Figure
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5.6: As for the full reorthogonalization variant, no copies of Ritz values are

generated (Figure 5.6 (a)). From Figure 5.6 (c) one gets confirmation that se-

lective reorthogonalization keeps the Lanczos orthogonality at � ≈ √�-level.
From Figure 5.6 (b) one can see when the residual of one of the 10 lowest

Ritz values falls below � (black line) so that selective reorthogonalization

against the according Ritz vector has to be performed. Finally, Figure 5.6

(d) shows against which Ritz vector r′ has been orthogonalized. For this, the

Ritz values have been ordered in the way

�̃
(j)
1 < �̃

(j)
2 < ⋅ ⋅ ⋅ < �̃

(j)
j

so that �̃
(j)
j denotes the Ritz vector to the highest Ritz value. Thus, Figure

5.6 (d) shows that around iteration 6 the Ritz vector to the highest Ritz

value converges but its residual crossing the � boundary does not appear in

(b) because there only the residuals to the lowest Ritz values are plotted.
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Figure 5.6: Results of LSRa for A with aij = 10cos(ij), n = 2000, q1 = N (1, 1, . . . ):

Convergence of Ritz values (a), Residuals for the lowest Ritz values

(b), Lanczos orthogonality (c), Ritz vectors against which r′ has been

orthogonalized (d).

5.2.4 A more economic Lanczos Algorithm with Selec-

tive Reorthogonalization

At a first glance, Figure 5.6 (d) looks like a great improvement over the Lanc-

zos with full reorthogonalization: Instead of orthogonalizing qj+1 against j

vectors q1, . . . , qj in iteration step j, orthogonality can be maintained by

orthogonalizing r′ against only very few converged Ritz vectors. The draw-

back is that, unlike the Lanczos vectors that can be brought back from sec-

ondary memory when needed, these Ritz vectors have be to computed via

�̃
(j)
i = Qy

(j)
i . For this purpose all the Lanczos vectors have to be retrieved

back from memory secondary too, and for each Ritz vector a (n× j) - (j×1)

matrix-vector multiplication has to be done with the dense matrix Q.

The cost of computing a single Ritz vector (ignoring the cost of retrieving
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the Lanczos vectors) is

1

n

�̃

=

j

n

Q

⋅

1

j

y

= jn ⊗+jn ⊕ = 2jn flops. (5.22)

This can roughly be compared to the cost of a single Lanczos step (ig-

noring the cost of retrieving the matrix from memory). The main part is

the matrix-vector multiplication Aqj . If  is the average number of matrix

elements per row then the cost for computing Aqj is

1

n

p

=

n

n * *

* *

* *

* *

A

⋅

1

n

q

= n ⊗+ n ⊕ = 2n flops. (5.23)

For the case of a sparse matrix with n = 106 and  = 103 one gets

cost(compute 1 Ritz vector)

cost(perform 1 Lanczos step)
≈ 2jn

2n
=

j

n
=

⎧

⎨

⎩

10−3 , j = 1

1 , j = 1000.

Thus, computing a Ritz vector is not always a cheap task relative to a Lanczos

step. Furthermore, the computation of a single Ritz vector is as expensive

as a full reorthogonalization in an iteration step. So there is no gain at all

in using selective reorthogonalization unless it can be avoided to compute all

converged Ritz vectors every iteration step.

Indeed, there is no need in computing all converged Ritz vectors at every

step. If a Ritz vector has converged at some iteration, indicated by �ij < � ,
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it will usually be even more converged in the following iterations, Figure 5.6

(c) and (d), and selective reorthogonalization then demands computing them

in all of these iterations. But since these Ritz vectors are converged, they

differ only very little, so that they are basically the same. Thus, instead of

computing a converged Ritz vector again, a previously computed one can be

used. Two problems arise:

1. Since the Ritz basis changes in every iteration step it is not easy to

identify Ritz vectors and to assign converged Ritz vectors to their coun-

terparts of a previous iteration.

2. The � boundary may be too large for a Ritz vector as approximate so-

lution of the eigenproblem to be considered as conveniently converged,

especially if � is larger than the accuracy or the distance between two

eigenvalues one is interested in. Then it is surely not recommended to

orthogonalize against Ritz vectors with residuals not smaller than ≈ � .

Both problems can be solved by introducing a new boundary � ≤ � and a

classification of Ritz vectors:

�ij > � ⇒ �̃
(j)
i : "unconverged" Ritz vector

�ij < � ⇒ �̃
(j)
i =: �̃

(thres,j)
i : "threshold" Ritz vector

�ij < � ⇒ �̃
(j)
i =: �̃good

i : "good" Ritz vector

A "threshold" Ritz vector is a Ritz vector that is considered converged

in the sense of selective reorthogonalization but that is not conveniently con-

verged as an approximation to an eigenvector. Therefore, threshold Ritz

vectors have to be computed in every iteration step. A "good" Ritz vector

is enough converged to use this vector instead of the following Ritz vectors

approximating the same eigenvector. So when a residual indicates the ap-

pearance of a good Ritz vector it only has to be computed once more and

then stored in secondary memory. This solves the second problem mentioned

above but still the identification problem remains.

If a Ritz value that approximates the i-th exact eigenvalue, �̃
(j)
i , has a

residual of res(�̃
(j)
i ) = � - which is the maximum possible distance to the

exact eigenvalue - at some iteration j and smaller residuals in the following
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iterations, res(�̃
(k>j)
i ) ≤ �, then all these Ritz values will lie in the interval

[�̃
(j)
i − 2�, �̃

(j)
i + 2�], see Figure 5.7.

Ξi Ξ
�

i

H jL
Ξ
�

i

H j+1L

Figure 5.7: If a Ritz value has a certain residual � in some iteration j (red) then

the Ritz value in the next iteration with smaller residuals (blue) will lie

in the interval [�̃
(j)
i − 2�, �̃

(j)
i + 2�] (dashed).

This can be used to identify Ritz vectors as such that approximate cer-

tain eigenvalues. If the distance of the eigenvalues (either of all or just of

those one is interested in) is larger than 4� then two Ritz vectors of differ-

ent iterations can be identified as the Ritz vectors approximating the same

eigenvalue if their residuals are smaller than � and if Ritz value 2 lies within

the interval [Ritz value 1 − 2�,Ritz value 1 + 2�]. It is not possible for the

Ritz value approximating another exact eigenvalue to lie within this interval

if its residual is smaller than �.

All this considerations lead to a economic variant of the selective reorthog-

onalization Lanczos as given in Table 5.5. An example of how the number of

computed Ritz vectors is diminished is shown in Figure 5.8.
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Figure 5.8: The selective reorthogonalization applied to the example of Figure 5.6.

The set of Ritz vectors r′ had to be orthogonalized against is the same

as Figure 5.6 (d). Shown are the Ritz vectors that had to be computed.

Left: � = � . Right: � = 10−4� .
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Lanczos Algorithm
LSR with

Selective Reorthogonalization

LSR(1-7): Perform : LS(1-7)

LSR(8) : Compute all �ij

For : i = 1, . . . , j :

If : �ij < �

LSR(9) :

yes
no

yes

no

�ij < � ?
�̃good
i already

computed ?
Compute �̃good

i

Compute �̃thres
i

r = r − ⟨r, �̃thres
i ⟩�̃thres

i r = r − ⟨r, �̃good
i ⟩�̃good

i

End If

End For

If : ∃ i : �ij < �

LSR(10): �j+1 = ∣∣r∣∣
End If

Table 5.5: The Lanczos algorithm with selective reorthogonalization.
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Chapter 6

Angular Momentum Projection in

Shell Model Spaces

The Lanczos algorithm is well suited for an application to nuclear energy

calculations in a shell-model framework. This problem can be formulated as

the eigenvalue problem of the nuclear Hamiltonian. Usually one is only inter-

ested in the ground state energy and a few additional excitations and so the

convergence properties of Lanczos algorithm make it the favorable method.

However, there is more to be said about the Lanczos algorithm in nuclear

structure calculations. Usually, the total angular momentum is a conserved

quantity and as a consequence Krylov spaces of the form Km(∣j⟩, H), where

∣j⟩ is some J2 eigenvector with eigenvalue j(j + 1), are subspaces of J (j).

Therefore, when started with ∣j⟩ as start vector, the Lanczos algorithm will

project the Hamiltonian onto the total angular momentum subspace spanned

by the Krylov vectors. Thus, the eigenvalue approximations obtained from

the algorithm will only belong to energy states with total angular momentum

specified by ∣j⟩. However, in practical computations various error sources

will contaminate the angular momentum purity of the Krylov space and the

eigenvalue approximations will no longer be constrained to eigenvectors with

the desired angular momentum. Reasons for this are rounding errors dur-

ing the algorithm and a non-conserved total angular momentum. Since the

matrix elements of the Hamiltonian and total angular momentum operator

are determined numerically, they will lead to slightly non-commuting H and

J2 matrices from the beginning which causes small angular momentum im-
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purities. Another reason for a non-conserved total angular momentum is

a truncation of the Hilbert space that produces a non-vanishing commuta-

tor of the Hamiltonian and total angular momentum, already in the theory.

Impurities caused by a Hilbert space truncation are the dominating ones.

From now on, the Dirac Bra-Ket notation will be used, where ∣⋅⟩ denotes

a vector ∈ ℋ and the scalar product reads ⟨⋅∣⋅⟩.

6.1 Subspace Iteration in Exact Arithmetics

Nuclear energies corresponding to Hamiltonian eigenstates with a certain

total angular momentum ĵ = j(j+1) can be obtained from the Hamiltonian

projected onto the subspace of the desired total angular momentum. The

Lanczos algorithm provides an elegant way to obtain such a projection.

Exact arithmetics and total angular momentum conservation, i.e.

[H, J2] = 0, (6.1)

is assumed. Equation (6.1) implies that there is a simultaneous eigenbasis

of H and J2. As in Section 4.1.1, {∣E(j)
k ⟩} denote these eigenstates, where

{∣E(j)
k ⟩ : k = 1, . . . , kj} is the subset of all kj eigenstates with total angular

momentum quantum number j and the eigenvalue equations for H and J2

read

H∣E(j)
k ⟩ = E

(j)
k ∣E

(j)
k ⟩ (6.2)

J2∣E(j)
k ⟩ = j(j + 1)∣E(j)

k ⟩. (6.3)

An eigenvector ∣j⟩ of J2 to the eigenvalue ĵ can be expanded in the simulta-

neous eigenbasis of H and J2

∣j⟩ =
kj∑

k=1

ck∣E(j)
k ⟩. (6.4)

As shown in Section 4.1.1, H acting on this vector will produce another

eigenvector to J2 to the same eigenvalue. As a consequence the Krylov space

Km(H, ∣j⟩) is a total angular momentum subspace of dimension min(m,�(H, ∣j⟩)).
If ∣j⟩ is used as the start vector for a Lanczos algorithm applied to the Hamil-

ton matrix, the algorithm will compute eigenvalue approximations from ex-

actly this subspace.
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An example for such an subspace iteration is shown in Figure 6.1. The

Ritz values clearly converge only to eigenvalues of eigenvectors with the total

angular momentum of the start vector.
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Figure 6.1: Subspace iteration for a start vector ∣j⟩ with ĵ = 2 and a Hamilton

matrix for 4He in a Nmax = 4 model space (dim ≈ 1000). The red

(dashed) lines show the positions of the exact energy eigenvalues to

eigenvectors with total angular momentum ĵ, the remaining eigenvalues

are plotted as black lines at the left margin.

6.2 Angular Momentum Projection

When using the Lanczos algorithm for a subspace iteration as in the preceding

section, the problem of determining the start vector with good total angular

momentum remains. Once more the Lanczos algorithm is the method of

choice because it allows to exploit the highly degenerated structure of the

total angular momentum operator.

6.2.1 Angular Momentum Projection in Exact Arith-

metics

In general, when total angular momentum is conserved, the Hilbert space

decomposes into a direct sum of subspaces with total angular momentum

quantum number j = 0, 1, . . . , jmax,

ℋ = J (0) ⊕ J (1) ⊕ ⋅ ⋅ ⋅ ⊕ J (j) ⊕ ⋅ ⋅ ⋅ ⊕ J (jmax). (6.5)
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In the shell model context the Nℏ! model space is higly degenerated and so

jmax ≪ dim ℋ. In the basis (6.2), (6.3) an arbitrary state ∣�⟩ reads

∣�⟩ =
jmax∑

j=0

kj∑

k=1

�
(j)
k ∣E

(j)
k ⟩. (6.6)

This can be rewritten as a linear combination of single vectors ∣j⟩ with total

angular momenta ĵ contained in ∣�⟩,

∣�⟩ =
jmax∑

j=0

cj ∣j⟩, (6.7)

where the ∣j⟩ are defined as the normalized J2 eigenstates

∣j⟩ =

kj∑

k=1

�
(j)
k ∣E

(j)
k ⟩

∣∣
kj∑

k=1

�
(j)
k ∣E

(j)
k ⟩∣∣

(6.8)

and the expansion coefficients are given by

cj = ∣∣
kj∑

k=1

�
(j)
k ∣E

(j)
k ⟩∣∣. (6.9)

Every action of J2 on (6.7) produces another linear combination of the

J2 eigenvectors ∣j⟩,

∣�n⟩ ≡ (J2)n∣�⟩ =
jmax∑

j=0

cj ĵ
n∣j⟩. (6.10)

Since there are at most jmax+1 different eigenvectors contained in ∣�⟩, there is

a k ≤ jmax+1 for which the vectors ∣�0⟩, . . . , ∣�k⟩ span an invariant subspace

of ℋ. By construction, this space is the Krylov space Kk(J
2, ∣�⟩) for which

the Lanczos algorithm breaks down and delivers the exact eigenvalues and,

therefore, the start vector with good total angular momentum needed for the

subspace iteration for the Hamiltonian. Obviously, the number of different ∣j⟩
contained in ∣�⟩ can be identified with the degree of the minimal polynomial

�(J2, ∣�⟩).
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Figure 6.2: Spanning an invariant total angular momentum subspace under the J2

matrix of 6Li in a Nmax = 4 model space. There are 9 different total

angular momenta in this space, so after 9 iterations the Ritz values

become exact.

6.2.2 Angular Momentum Projection from Converged

Ritz Vectors

In exact arithmetics, it is guaranteed the angular momentum projection pro-

cedure from the previous section returns the component with the target an-

gular momentum that is contained in the initial start vector. However, in

finite precision arithmetics this is no longer guaranteed. Consider a Hilbert

space that contains N different total angular momenta. Numerics can pre-

vent the algorithm to compute the target angular momentum to the desired

accuracy after N steps. Then one has to perform more iterations than there

are distinct total angular momentum eigenvalues. As a consequence the al-

gorithm starts to compute approximations of different eigenvectors to the

same eigenvalue, as it is depicted in Fig. 6.3 for a Hilbert space with N = 7.

As is can be seen from plots (a) - (d), �j+1 and the sum over all residuals
∑

i �ij almost vanish for j = kN, k = 1, 2, . . . , when new invariant subspaces

are almost spanned in these iterations.
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Figure 6.3: Cyclic spanning of invariant angular momentum subspaces for a Hilbert

space with N = 7 distinct total angular momenta.

If an arbitrary start vector for the subspaces iteration is searched for, i.e.

the only constraint on the vector is to have target angular momentum, then

one can iterate until one of the approximations have converged to the desired

accuracy.

The vector obtained this way after m > N iterations will have only

little to do with the initial vector given to the J2 Lanczos. If, as start

vector for a H Lanczos, one wants to utilize a precomputed approximation

∣q̃⟩ that has to be projected on target angular momentum, the J2 Lanczos

is supposed to return its ĵtarget component ∣q̃jtarget⟩ or else the information

from the precomputed approximation is lost. After N iterations one has

not perfect, but still fairly good approximations of the angular momentum

eigenvectors contained in ∣q̃⟩ and so it might be assumed that these vectors

will preferentially converge further with the iterations, rather than the newly

introduced approximations to the same eigenvalue. Denoting Ritz vectors
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whose Ritz values have converged to a certain accuracy to jtarget as {∣�̃jtargeti ⟩},
this would lead to Ritz vectors {∣�̃jtargeti ⟩} with one Ritz vector having the

maximum overlap with ∣q̃⟩ and with vanishing overlaps with all the other

Ritz vectors. That this is not the case can be seen from Fig. 6.4, where

the bars indicate how much overlap a Ritz vector has with the start vector.

Obviously, in general the ∣q̃jtarget⟩ direction is distributed to all converged

Ritz vectors {∣�̃jtargeti ⟩} and not only to one.
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Figure 6.4: Overlap distribution of the start vector among the converged Ritz vec-

tors.

A first attempt to extract ∣q̃jtarget⟩ from these Ritz vectors, under the

assumption that {∣q̃jtarget⟩} are capable to build ∣q̃jtarget⟩ good enough, is to

find the normalized linear combination ∣q⟩ :=
∑

i ci∣�̃
jtarget
i ⟩ of these Ritz

vectors that have maximum overlap with ∣q̃⟩, i.e., to maximize the overlap

function

�(c1, . . . , ck) :=

k∑

i=1

ci ⟨q̃∣�̃jtargeti ⟩ !
= max, (6.11)

over c1, . . . , ck under the constraint (normalization)

ℎ(c1, . . . , ck) =

k∑

i=1

c2i − 1 = 0. (6.12)

This can be done in terms of a Lagrange multiplier �, leading to a system of

equations that the coefficients c1, . . . , ck have to obey
⎧

⎨

⎩

grad �(c1, . . . , ck) + � grad ℎ(c1, . . . , ck) = 0

ℎ(c1, . . . , ck) = 0.
(6.13)
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Evaluating these expressions gives

⎧

⎨

⎩

⟨q̃∣�̃jtarget1 ⟩+ 2� c1 = 0
...

⟨q̃∣�̃jtargetk ⟩+ 2� ck = 0
k∑

i=1

c2i − 1 = 0

(6.14)

where the first k lines are decoupled. Therefore, one finds simple expressions

for cl,

cl = −⟨q̃∣�̃jtargetl ⟩/2�, (6.15)

which can be inserted into the last line in order to determine �,

� = ±1
2

√
√
√
⎷

k∑

i=1

(

⟨q̃∣�̃jtargeti ⟩
)2

. (6.16)

The coefficients cl that maximizes � are then given by

cl = sign(�)
⟨q̃∣�̃jtargetl ⟩

√
k∑

i=1

(

⟨q̃∣�̃jtargeti ⟩
)2

(6.17)

and the optimal result ∣q⟩ of the angular momentum projection becomes

∣q⟩ = �
k∑

l=1

⟨q̃∣�̃jtargetl ⟩
√

k∑

i=1

(

⟨q̃∣�̃jtargeti ⟩
)2

∣�̃jtargetl ⟩, (6.18)

where � = ±1 denotes the sign for that ⟨q̃∣q⟩ becomes positive. The result

(6.18) is not really surprising and in fact it could have been written down

directly without explicitly maximizing the overlap, remembering that angular

momentum subspaces are orthogonal and the well-known fact that in Hilbert

spaces the overlaps of an orthonormal system with a vector lead to the best

approximation within the space spanned by the orthonormal system.

Proposition 6.2.1
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Let (ei) be an orthonormal system within the Hilbert space ℋ over K = R or

K = C and x ∈ ℋ. Then, ∀c1, . . . , cn ∈ K

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x−

n∑

i=1

ciei

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≥
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x−

n∑

i=1

⟨x, ei⟩ei
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
.

Consequently, in order to find the best approximation of ∣q̃jtargetj ⟩, instead of

maximizing the overlap function � one can directly use ⟨q̃j∣�̃jtargetl ⟩ as expan-

sion coefficients and normalize the resulting ∣qj⟩ afterwards. The reason why

this approach fails in practice can be seen in Fig. 6.5.
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Figure 6.5: Eigenvalue and residual evolution during a J2 Lanczos in a N = 7

Hilbert space.

A Ritz vector ∣�̃i⟩ is usually considered as converged to the eigenvalue

ĵ if �̃i ± res(�̃i) lies in a certain interval around the eigenvalue ĵ. But due

to the total angular momentum degeneracy a converged Ritz vector in some

iteration may no longer be considered converged in a later iteration. Thus,

in general one never has enough converged Ritz vectors at hand for a proper

construction of ∣q̃jtargetj ⟩.

6.2.3 Angular Momentum Projection from Arbitrary

Bases

Section 6.2.2 already suggests that it is difficult to extract an angular mo-

mentum component from a given vector more accurately than the Lanczos

algorithm does in the iteration when the invariant subspace is approximately

spanned, even if one does many additional iteration steps. Thus, in practice
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when confronted with large systems where matrix-vector multiplications rep-

resent the upper end one’s computational abilities, one will have to live with

this accuracy. Nevertheless, a different way that does not depend on con-

verged Ritz vectors, and that at a first glance could be capable to overcome

some problems encountered in truncated Hilbert spaces (but is not), shall at

least be presented although it neither will be applied in the following nor its

practical value is further investigated.

If the Lanczos algorithm spans the k-dimensional invariant subspace of

the vector ∣q̃⟩ not accurately enough accurate, then one can perform more

Lanczos steps or try to compute this invariant subspace a second (third etc.)

time a different way and orthonormalize the basis vectors, obtaining a n-

dimensional basis {∣qj⟩ : j = 1, . . . , n}. It has to be assumed that in this

basis all the k angular momentum components ∣q̃(j)i ⟩ of ∣q̃⟩ can accurately

be approximated by linear combinations ∣ki⟩, so that there exists a set of

coefficients

{�(i)l : i = 1, . . . , n, l = 1, . . . , k} (6.19)

with

∣q̃(ji)⟩ ≡ ∣ki⟩ =
n∑

l=1

�
(i)
l ∣ql⟩, i = 1, . . . , k, (6.20)

where the �
(i)
l obey the normalization conditions

n∑

l=1

(�
(i)
l )2 − 1 = 0, i = 1, . . . , k. (6.21)

From these ∣ki⟩ the approximation ∣q⟩ for ∣q̃⟩ is constructed with coefficients

ci, i = 1, . . . , k,

∣q⟩ =
k∑

i=1

ci∣ki⟩, (6.22)

for which the normalization condition reads

k∑

m=1

c2m − 1 = 0. (6.23)

Thus, linear combinations (6.20) and (6.22) are sought that have the

following properties:
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1. ∣q⟩ maximizes the overlap with ∣q̃⟩,

∣⟨q∣q̃⟩∣ = ∣
n∑

m=1

cm⟨q∣km⟩∣ = �max

∣⟨q∣q̃⟩∣ = ∣
n∑

m=1

n∑

l=1

cm�
(m)
l ⟨q∣ql⟩∣ = �max (6.24)

with �max = 1 under the assumption made above. It is convenient to

formulate this equation for �
(i)
l as a minimization problem

�(�⃗, c⃗) := �(�
(1)
1 , . . . , �(1)n , �

(2)
1 , . . . , �(2)n , . . . , �

(k)
1 , . . . , �(k)n , c1, . . . , ck)

= ∣
k∑

m=1

n∑

l=1

cm�
(m)
l ⟨q∣ql⟩ − �max∣ → min = 0 (6.25)

where the minimum is actually known to be 0. This assures the {∣ki⟩}
to be a set of k vectors from which ∣q̃⟩ can be reconstructed. This does

by no means assure ∣ki⟩ to be the i-th angular momentum component

of ∣q̃⟩.

2. Therefore, the additional k constraints that all ∣km⟩ are J2 eigenvec-

tors to the eigenvalue m̂ = m(m + 1) have to be imposed, again as a

minimization problem for the �
(i)
l with known minimum 0

m(�
(m)
1 , . . . , �(m)

n ) := ∣∣J2∣km⟩ − m̂∣km⟩∣∣

= ∣∣
n∑

l=1

�
(m)
l (∣pl⟩ − m̂∣ql⟩) ∣∣

→ min = 0, i = 1, . . . , k. (6.26)

Here the abbreviation ∣pl⟩ := J2∣ql⟩ was introduced for quantities that

already have been computed if the basis ∣qj⟩ was obtained from the

Lanczos algorithm.

Minimizing k + 1 coupled functions simultaneously is a hard task, and so,

using the fact that all minima are equal to 0, they are condensed into a single
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function � to be minimized,

�(�⃗, c⃗) := �(�
(1)
1 , . . . , �(1)n , �

(2)
1 , . . . , �(2)n , . . . , �

(k)
1 , . . . , �(k)n , c1, . . . , ck)

:=

[
k∑

m=1

m(�
(m)
1 , . . . , �(m)

n )

]

+ �(�⃗, c⃗)

→ min = 0. (6.27)

However, � contains a modulus of � and several vector norms of m that are

not differentiable in the minimum. Therefore, the squares of these functions

(for which the minimization conditions remain unchanged) are used instead

which makes the modulus and norms obsolete. So one minimizes the new

function �′,

�′(�⃗, c⃗) :=

k∑

m=1

[

2m(�
(m)
1 , . . . , �(m)

n )
]

+ �2(�⃗, c⃗)→ min = 0,

with

2m(�
(m)
1 , . . . , �(m)

n ) = ∣∣
n∑

l=1

�
(m)
l (∣pl⟩ − m̂∣ql⟩) ∣∣2

=

n∑

l=1

n∑

l′=1

�
(m)
l �

(m)
l′

{

⟨pl∣pl′⟩ − m̂⟨pl∣ql′⟩ − m̂⟨ql∣pl′⟩+ m̂2�ll′
}

. (6.28)

From Hermitecity of J2 follows that ⟨pl∣ql′⟩ = ⟨ql∣pl′⟩ and so one obtains

2m(�
(m)
1 , . . . , �(m)

n ) =
n∑

l=1

n∑

l′=1

�
(m)
l �

(m)
ll′ �

(m)
l′ (6.29)

with the symmetric matrix �
(m)
ll′ given by

�
(m)
ll′ := ⟨pl∣pl′⟩ − 2m̂⟨ql∣pl′⟩+ m̂2�ll′ . (6.30)

With this, one arrives at

�′(�⃗, c⃗) =

k∑

m=1

[ n∑

l=1

n∑

l′=1

�
(m)
l �

(m)
ll′ �

(m)
l′

]

+
[ k∑

m=1

n∑

l=1

cm�
(m)
l ⟨q∣ql⟩ − �max

]2

(6.31)
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which is to be minimized under the constraints

�(c1, . . . , ck) :=

k∑

m=1

c2m − 1 = 0 (6.32)

�i(�
(i)
1 , . . . , �(i)n ) :=

n∑

l=1

(�
(i)
l )2 − 1 = 0, i = 1, . . . , k. (6.33)

Using Lagrange multipliers this leads to a system of equations f ,

f(�⃗, c⃗, �⃗) :=

⎧

⎨

⎩

0 = grad �′ + � grad �+
k∑

i=1

�i grad �i

0 = �

0 = �1

...

0 = �k

. (6.34)

To write this down explicitly one needs the gradient

grad =
( ∂

∂�
(1)
1

, . . . ,
∂

∂�
(k)
n

,
∂

∂c1
, . . . ,

∂

∂ck

)T

(6.35)

of the function

∂

∂�
(i)
j

�′ = 2
n∑

l=1

�
(i)
l �

(i)
lj + 2ci⟨q∣qj⟩

[
k∑

m=1

n∑

l=1

cm�
(m)
l ⟨q∣ql⟩ − �max

]

∂

∂ci
�′ = 2

[
k∑

m=1

n∑

l=1

cm�
(m)
l ⟨q∣ql⟩ − �max

][
n∑

l=1

�
(i)
l ⟨q∣ql⟩

]

(6.36)

and the constraints

∂
∂ci
�m = 0 ∂

∂�
(i)
j

�m = �im2�
(i)
j

∂
∂ci
� = 2ci

∂

∂�
(i)
j

� = 0,
(6.37)
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leading to

f�(�⃗, c⃗, �⃗) =

⎧

⎨

⎩

0 = 2
n∑

l=1

�(i)�
(i)
lj + 2Γ2ci⟨q∣qj⟩+ 2�i�

(i)
j

: � ∈ [1, kn], j = mod[�, n], i = (�− j)/n
0 = 2Γ2Γ

(i)
3 + 2�ci : � ∈ [kn + 1, k(n+ 1)], i = �− kn

0 =
k∑

m=1

c2m − 1 : � = k(n + 1) + 1

0 =
n∑

l=1

(�
(i)
l )2 − 1 : � ∈ [k(n + 1) + 2, k(n+ 2) + 1]

i = �− k(n+ 1)− 1

(6.38)

with the abbreviations

Γ
(m)
1 (�

(m)
1 , . . . , �(m)

n ) =

k∑

l=1

n∑

l′=1

�
(m)
l �

(m)
ll′ �

(m)
l′ , m = 1, . . . , k (6.39)

Γ2(�⃗) =
k∑

m=1

n∑

l=1

cm�
(m)
l ⟨q∣ql⟩ − �max (6.40)

Γ
(m)
3 (�

(m)
1 , . . . , �(m)

n ) =
n∑

l=1

�
(m)
l ⟨q∣ql⟩, m = 1, . . . , k. (6.41)

f is a non-linear system of equations and has, therefore, to be solved itera-

tively. For this purpose the multidimensional Newton method is employed,

for the following reasons: The system is only weakly non-linear and, there-

fore, one expects good convergence by the linear approximations done in the

Newton iteration. Secondly, one needs the system and the Hesse matrix for

which explicit expressions can be found. Furthermore, does the success of

the Newton method depend on good start values for which one can find good

estimates, as it is discussed below.

The Hesse matrix is defined as

f ′(�⃗, c⃗, �⃗) =

⎛

⎜
⎜
⎜
⎝

∂f1

∂�
(1)
1

. . . ∂f1
∂ck

∂f1
∂�

∂f1
∂�1

. . . ∂f1
∂�k

...
...

...
...

...
∂f(n+1)k

∂�
(1)
1

. . .
∂f(n+1)k

∂ck

∂f(n+1)k

∂�

∂f(n+1)k

∂�1
. . .

∂f(n+1)k

∂�k

⎞

⎟
⎟
⎟
⎠
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(6.42)

and its matrix elements follow from the form of the system (6.38) and the

second order derivatives

∂

∂�
(i′)
j′

[

∂

∂�
(i)
j

�′

]

= 2�i′i�
(i′)
j′j + 2ci′ci⟨q∣qj′⟩⟨q∣qj⟩ (6.43)

∂

∂ci′

[

∂

∂�
(i)
j

�′

]

= 2ci⟨q∣qj⟩
n∑

l=1

�
(i′)
l ⟨q∣ql⟩

+ 2�i′i⟨q∣qj⟩
[

k∑

m=1

n∑

l=1

cm�
(m)
l ⟨q∣ql⟩ − �max

]

(6.44)

∂

∂�
(i′)
j′

[
∂

∂ci
�′
]

= 2ci′⟨q∣qj′⟩
n∑

l=1

�
(i)
l ⟨q∣ql⟩

+2�i′i⟨q∣qj′⟩
[

k∑

m=1

n∑

l=1

cm�
(m)
l ⟨q∣ql⟩ − �max

]

. (6.45)

∂

∂ci′

[
∂

∂ci
�′
]

= 2

[
n∑

l=1

�
(i′)
l ⟨q∣ql⟩

][
n∑

l=1

�
(i)
l ⟨q∣ql⟩

]

(6.46)

∂
∂ci′

[
∂
∂ci
�m

]

= ∂
∂ci′

[
∂

∂�
(i)
j

�m

]

= ∂

∂�
(i′)

j′

[
∂
∂ci
�m

]

= 0

∂
∂ci′

[
∂

∂�
(i)
j

�
]

= ∂

∂�
(i′)

j′

[
∂
∂ci
�
]

= ∂

∂�
(i′)

j′

[
∂

∂�
(i)
j

�
]

= 0

∂

∂�
(i′)

j′

[
∂

∂�
(i)
j

�m

]

= 2�im�i′i�j′j
∂

∂ci′

[
∂
∂ci
�
]

= 2�i′i

(6.47)

and trivial derivatives with respect to the Lagrange multipliers.

To find a good starting point for the Newton iteration one needs a first

estimate for the coefficients �
(i)
j and ci. As in Fig. 6.6 (a), the Ritz values

will more or less cluster around the exact eigenvalues. So one can take all

Ritz vectors of a certain cluster and compute from them a single vector that

has the maximum overlap with ∣q̃⟩ and take this as first approximation of a

angular momentum component of ∣ki⟩, from which the coefficient estimates

�
(i)
j = N

∑

l∈conv(i)

∑

m=1

y(l)m y
(l)
j ⟨q∣qm⟩ (6.48)
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follow, where N is the normalization, y denote the Hessenberg eigenvectors

and conv(i) denotes the set of indices of Ritz vectors belonging to a certain

cluster. From the first approximations of ∣ki⟩ again the linear combination

with maximum overlap with ∣q̃⟩ can be computed, leading to a first estimate

for the coefficients ci

cj =

n∑

i=1

�
(j)
i ⟨q∣qi⟩. (6.49)

This has been done in Fig. 6.6. Plots (a) and (b) show the Ritz values

with their residuals and the overlaps of the corresponding Ritz vectors with

a randomly chosen ∣q⟩. Plots (c) and (d) illustrate the convergence during

the Newton iteration of �′ and � as well as for Γ
(2)
1 which is equal to 22 ,

and therefore, measures the angular momentum deviation of ∣k2⟩.
√

Γ
(2)
1

(and so does �) does not become smaller than 10−7 which can be understood

from Fig. 6.6 (f), where the scattering of the exact eigenvalues of the given

J2 matrix is shown around the value ĵi = 2, which lies in the same order.

That the method is, in principle, capable to extract all angular momentum

components of a given vector ∣q̃⟩ is shown in (e), where the overlaps of the

∣ki⟩ with ∣q̃⟩ (red) is compared with the exact distribution (blue) of angular

momentum in the initial vector ∣q̃⟩.
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Figure 6.6: Example for the angular momentum projection of a vector ∣q̃⟩ using

an arbitrary, not necessarily converged basis. (a) and (b) display the

properties of the basis ∣ql⟩. (c) and (d) depict the convergence of the

� and Γ(2) functions during the Newton iterations. (e) compares the

overlaps of ∣q̃⟩ with the original angular momentum components ∣q̃(ji)⟩
contained in it (red) with the overlaps of ∣q̃⟩ with reconstructed angular

momentum components ∣ki⟩ (blue). (f) shows the scattering of the exact

J2 matrix eigenvalues around the integer value 2, from which the final

results for � and Γ(2) in the Newton iteration can be understood.
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6.3 Subspace Iteration

This section regards the Lanczos iteration in a total angular momentum

subspace of an Nℏ! shell model space under realistic numerical conditions,

i.e., in the presence of rounding errors, leading to

[H, J2]1̃0−8. (6.50)

One may try to compute a couple of eigenvalues within the total angular

momentum subspace simultaneously, as it was done in Fig. 6.1. However,

when starting with a vector with good angular momentum, the Lanczos vec-

tors lose the good angular momentum rapidly over the iterations, such that

eigenvalues from other angular momentum subspaces are obtained eventually,

see Fig. 6.7.
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Figure 6.7: (a) : Finite precision results of Fig. 6.1. (b) : Total angular momentum

deviation of the last Lanczos (blue, solid) and first Ritz vector (red,

dashed).

Usually the Lanczos vectors lose their good angular momentum faster

than their orthogonality, even if there is no reorthogonalization employed.

In fact, a reorthogonalization does neither prevent the Lanczos vectors from

losing their good angular momentum nor decelerate this process.

One way to deal with this problem is to correct the angular momentum of

a new Lanczos vector in every iteration step, analog to its orthogonality. This

can be achieved in the same way the start vectors are generated, using the new

Lanczos vector as starting point for the angular momentum projection. If the

angular momentum deviation of the Lanczos vector is sufficiently small, then
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it has a strong component into the direction of the target angular momentum

and the projection will generate the angular momentum corrected version of

the Lanczos vector quickly after two or three iterations.

In practice this approach to compute more than one eigenvalue simulta-

neously fails. Let {∣qi⟩} denote the Lanczos basis that is orthogonal and has

good total angular momentum. When a new Lanczos vector ∣q̃j⟩ is generated

in LFR(2) (Table. 5.1) in iteration j, then this vector may have no good

angular momentum and so it is rotated by the angular momentum projec-

tion into the correct direction in the angular momentum space, yielding the

purified Lanczos vector ∣qj⟩ which is then stored in the Lanczos basis and is

further used by the algorithm. The correction ∣Δq̃j⟩ is then given by

∣qj⟩ = ∣q̃j⟩+ ∣Δq̃j⟩. (6.51)

The algorithm given in Table. 5.1, for example, is only valid if ∣q̃j⟩ is used as

Lanczos vector, but after the projection one works with ∣qj⟩ instead of ∣q̃j⟩.
Therefore, in principle, corrections have to be introduced to cover the usage

of the ’wrong’ Lanczos vector. Then, for example, LFR(3) becomes

∣pj⟩ = A∣qj⟩ −A∣Δq̃j⟩ (6.52)

and the elements of the Hessenberg matrix are determined by

�j = ⟨qj ∣r⟩ − 2⟨qj ∣A∣Δq̃j⟩+ ⟨Δq̃j ∣A∣Δq̃j⟩+ �j⟨Δq̃j ∣A∣qj−1⟩ (6.53)

and

�j+1 = ∣∣ r − A∣Δq̃j⟩+
(

⟨qj∣+ ⟨Δq̃j ∣
)

A∣Δq̃j⟩

− �j⟨qj ∣qj−1⟩∣Δq̃j⟩ − �j⟨Δq̃j ∣qj−1⟩
(

∣qj⟩+ ∣Δq̃j⟩
)

∣∣.
(6.54)

Since these corrections are obviously not practicable and, therefore, worthless

in actual computations, the algorithm will be employed in the usual way,

leading to perturbations of the Hessenberg matrix.

The effects of such perturbations can be seen in Fig. 6.8, where a start

vector with (poor) angular momentum accuracy of 10−4 was generated and

the angular momentum deviation of all Lanczos vectors has been kept at the

same level. From

⟨�i∣H∣�i⟩ = ⟨yi∣QT
mHQm∣yi⟩ = ⟨yi∣Hm∣yi⟩ = �i (6.55)
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follows that the energy expectation value ⟨�i∣H∣�i⟩ of a Ritz vector �i equals

its corresponding Ritz value. Fig. 6.8 (a) however shows significant devia-

tions of the expectation value of the first Ritz vector (black dots) from the

lowest eigenvalue of the Hessenberg matrix. This deviation is independent

from a possible loss of good angular momentum of the Ritz vector or the

Lanczos basis since (6.55) is of course not restricted to a particular Lanczos

basis Qm. Since the components of the eigenvectors of Hm are the expan-

sion coefficients of the Ritz vectors in the Lanczos basis the deviation of the

expectation and Ritz value is a manifestation of the losing connection of the

Hessenberg matrix elements and the Lanczos basis.It should be noted that

this is not caused by the projection returning a completely different purified

vector than that one actually wanted. This can be seen from the difference

of the original ∣q̃j⟩ and the purified ∣qj⟩, measured by their overlap, is at the

level of the angular momentum accuracy, see Fig. 6.8 (c). Because there is

no way to avoid the decoupling of �j, �j and the Lanczos basis, one has to

stop the algorithm at some point in order to perform a restart. As a restart

condition could be formulated in terms of a maximum deviation �restart of the

Ritz and expectation value for the first Ritz vector,

if ∣⟨�1∣H∣�1⟩ − �1∣ > �restart ⇒ restart. (6.56)

Another reason for the necessity of a restart is the loss of good angular mo-

mentum. Fig. 6.8 (b) shows that although the Lanczos vectors are kept at an

angular momentum deviation level around 10−4 the deviation of the first Ritz

vector grows fast until some convergence occurs. This is not surprising since

in the Ritz vector the deviations of the Lanczos vectors accumulate weighted

with the elements of the corresponding Hessenberg eigenvector. One may

suspect the loss of good angular momentum rather than the perturbations of

�j and �j to be the reason for the deviating Ritz expectation values (disre-

garding the general argument above that this deviation has nothing to with

the angular momenta of the basis vectors). That this is indeed not the case

can be seen from Fig. 6.8 (d) where the blue lines at the right margin are

the lowest 2 eigenvalues of the real projected matrix Hm, i.e., the matrix

that has been computed by actually performing the matrix multiplications

Hm = QT
mHQm.
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Figure 6.8: Subspace iteration for 4He Hamilton matrix for a Nℏ! = 4 model space.

(a): Deviation of the Ritz values from the expectation values of the

corresponding Ritz vectors in a subspace iteration using corrected the

Lanczos vectors ∣q̃j⟩ → ∣qj⟩. (b): Angular momentum deviation of the

Lanczos vectors (blue points) and the first Ritz vector (red line). (c):

Differences of ∣q̃j⟩ and the returned ∣qj⟩ measured by their overlaps.

(d): The lines at the right margin show the two lowest eigenvalues of

the real projection Hm.

In summary, Fig. 6.8 strongly suggests some kind of restart of the al-

gorithm. However, it is not recommended to use the Simple Ritz Restart

because this boosts the loss of good total angular momentum when the Ritz

vector used for restart is nearly converged as can be shown easily: Using the

simultaneous, normalized eigenbasis of H and J2 (6.2), (6.3), the new start

vector, which is assumed to be a good approximation of the ground state
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∣E(j0)
0 ⟩ with total angular momentum j0, for example, can be written as

∣q1⟩ = a0∣E(j0)
0 ⟩+ a1

∑

j,k
cj0,0

=0

cj,k∣E(j)
k ⟩, (6.57)

where
∑ ∣cjk∣2 = 1, ∣∣ ∣q1⟩ ∣∣ = 1, and ∣a0∣ ≫ ∣a1∣. Then one has

H∣q1⟩ = a0E
(j0)
0 ∣E(j0)

0 ⟩+ a1
∑

j,k

cj0,0
=0

cj,kE
(j)
k ∣E

(j)
k ⟩ (6.58)

and a straightforward calculation for ∣r⟩ as it is given in the LFR Lanczos

for iteration i = 1 yields

∣r⟩ =
{

a0E
(j0)
0 − ∣a0∣2a0E(j0)

0 − a0∣a1∣2
∑

j,k
cj0,0

=0

∣cj,k∣2E(j)
k

}

∣E(j0)
0 ⟩

+
{

a1 − ∣a0∣2a1E(j0)
0 − ∣a1∣2a1

∑

j′,k′

cj0,0
=0

∣cj′,k′∣2E(j′)
k′

}

×
∑

j,k
cj0,0

=0

cj,k∣E(j)
k ⟩.

(6.59)

Dropping terms O(a21) leaves

∣r⟩ =
{

a0E
(j0)
0 − ∣a0∣2a0E(j0)

0

}

∣E(j0)
0 ⟩

+
{

a1 − ∣a0∣2a1E(j0)
0

} ∑

j,k

cj0,0
=0

cj,k∣E(j)
k ⟩

∣r⟩ = ã0∣E(j0)
0 ⟩+ ã1

∑

j,k

cj0,0
=0

cj,k∣E(j)
k ⟩.

(6.60)

So the coefficients of ∣r⟩ in the expansion analog to (6.57) are given by ã0
and ã1 . Since

∑

j,k

cj0,0
=0

cj,k∣E(j)
k ⟩ contains all the unwanted angular momenta,

the quantities

∣a1∣2
∣a0∣2

resp.
∣ã1∣2
∣ã0∣2

(6.61)

will serve as rough measures for the amount of bad angular momenta in the

states ∣q1⟩ and ∣r⟩. From the normalization of ∣q1⟩ follows that

∣a1∣2
∣a0∣2

=
1

∣a0∣2
− 1≪ 1 (a0 ≈ 1) (6.62)
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which is much smaller than 1 for a0 ≈ 1 indicating that bad momenta are

not strongly present in the initial start vector. From the normalization of ∣r⟩
one obtains an analog relation for ã0 and ã1

∣ã1∣2
∣ã0∣2

=
1

∣ã0∣2
− 1 =

1

(E
(j0)
0 )2

1

∣a0 − ∣a0∣2a0∣2
− 1≫ 1 (a0 ≈ 1) (6.63)

which is obviously much greater than 1 for a0 ≈ 1 indicating that the new

Lanczos vector generated from ∣q1⟩ will have a strong angular momentum

deviation.

6.3.1 Orthogonal Ritz Restart

As for the Simple Ritz Restart, the Thick-Restart [14] is not a convenient

restart scheme for the subspace iteration. This is because the Thick-Restart

utilizes information from the perturbed Hessenberg matrix from the preced-

ing algorithm. Attempts to account for this errors lead to an non-orthogonal

Y for which the Thick-Restart scheme is no longer valid.

In summary, a restart scheme is required that, on the one hand, uses the

information contained in a Ritz or Ritz-like vector without employing it as

a start vector for the iterations, and that, on the other hand does not resort

to any other error-prone quantities from the preceding run of the algorithm.

Obviously, the first criterion is violated by the Simple Ritz Restart and the

second one by the Thick-Restart.

In an attempt to fulfill both criteria, the Lanczos algorithm will here in

the following be modified so that it builds a space K⊥q1
m−1(A, q2) orthogonal

to a certain vector q1 and that computes the projection of the matrix onto

span(q1,K⊥q1
m−1(A, q2)). As for the standard variant of the Lanczos algorithm,

it is easier to construct the Arnoldi analogue first and to make the trivial

transition to the Hermitian case afterwards. The resulting algorithms will be

denoted Orthogonal Ritz algorithms although they are not restricted to Ritz

vectors or even to single vectors. The Orthogonal Ritz Arnoldi algorithm is

presented in Table 6.1.
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The
ORA : Orthogonal Ritz

Arnoldi Algorithm

ORA(1): Start : Choose q1 with ∣∣q1∣∣ = 1

Choose q2 with ∣∣q2∣∣ = 1

and q2 ⊥ q1

ORA(2): k = Aq1

ORA(3): ℎ11 = ⟨q1, k⟩
Iterate : j = 2, . . . , m :

ORA(4): ℎij = ⟨qi, Aqj⟩, i = 1, . . . , j

ORA(5): wj = Aqj −
j∑

i=1

ℎijqi

ORA(6): ℎj+1,j = ∣∣wj∣∣
ORA(7): qj+1 = wj/ℎj+1,j

ORA(8): ℎj1 = ⟨qj , k⟩

Table 6.1: The Orthogonal Ritz Arnoldi algorithm.

Definition 6.3.1

The space K⊥q1
m−1(A, q2) is defined as

K⊥q1
m−1(A, q2) = span{q̃2, q̃3, . . . , q̃m} (6.64)

where the q̃i are recursively determined for a given q1 and q2 by

q̃2 = q2 − ⟨q2, q1⟩ q1
q̃3 = Aq̃2 − ⟨Aq̃2, q1⟩ q1

...

q̃m = Aq̃m−1 − ⟨Aq̃m−1, q1⟩ q1. (6.65)

The tilde is used to distinguish the non-orthogonal vectors q̃i from the or-

thonormal basis qi of Km−1(A, q2) generated by the algorithm. The conver-

gence of the Orthogonal Ritz Arnoldi (Lanczos) will depend strongly on the
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space K⊥q1
m−1(A, q2) so it is worthwhile to examine one of its properties. In

general, K⊥q1
m−1(A, q2) is neither a Krylov space nor a subspace of Km−1(A, q2).

However, it is a subspace of the invariant space of q2 under A.

Proposition 6.3.1

Let � := �(A, q2) be the degree of the minimal polynomial of q2 with respect

to A and let

ℐ(A, q2) := K�(A, q2) (6.66)

denote the invariant subspace of q2 under A. Then K⊥q1
m−1(A, q2) is a subset

of ℐ(A, q2),

K⊥q1
m−1(A, q2) ⊆ ℐ(A, q2). (6.67)

Proof 6.3.1

For an arbitrary vector k ∈ ℐ(A, q2) one has

(Ak)⊥q1 := Ak − ⟨Ak, q1⟩q1 ∈ ℐ(A, q2) : (6.68)

If ⟨Ak, q1⟩ = 0 this follows trivially from the invariance property of ℐ(A, q2).
For ⟨Ak, q1⟩ ∕= 0 an orthonormal basis {q1, q2, . . . , q�} of ℐ(A, q2) can be

constructed from q1 in which Ak can be expanded

Ak =

�
∑

i=1

ciqi. (6.69)

Obviously, (Ak)⊥q1 is then simply given by

(Ak)⊥q1 =

�
∑

i=2

ciqi ∈ ℐ(A, q2) (6.70)

which of course lies in ℐ(A, q2).
The basis vectors {q̃2, q̃3, q̃4, . . . , q̃m} of K⊥q1

m−1(A, q2) from Def. 6.3.1 can

be written as

{q̃2, q̃i := (Aq̃i−1)
⊥q1, i = 3, . . . , m− 1}. (6.71)

Therefore, with the above considerations, if q̃i ∈ ℐ(A, q2) then this is also

true for q̃i+1 and so by induction this is true for all basis vectors since the
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induction assumption q̃i ∈ ℐ(A, q2) is true for q̃2. Then, the proposition

follows immediately

⇒ span{q̃2, q̃i := (Aq̃i−1)
⊥q1, i = 3, . . . , m−1} ≡ K⊥q1

m−1(A, q2) ⊆ ℐ(A, q2).
(6.72)

□

Proposition 6.3.2

The Orthogonal Ritz Arnoldi algorithm, Table 6.1, computes the projection

Am of A onto span
{

q1,K⊥q1
m−1(A, q2)

}

.

Proof 6.3.2

From steps ORA(4) and ORA(5) it is clear that by construction {q2, . . . , qm}
is a orthonormal basis of K⊥q1

m−1(A, q2).

There does not seem to be a quick and elegant way to prove the proposition

as for the standard Arnoldi algorithm. Therefore, one has to take a closer

look at the projection of A the algorithm is supposed to compute. In general,

the projection Am = QmAQ is given by

QT
mAQm =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⟨q1, Aq1⟩ ⟨q1, Aq2⟩ . . . ⟨q1, Aqm⟩
⟨q2, Aq1⟩ ⟨q2, Aq2⟩ . . . ⟨q2, Aqm⟩
⟨q3, Aq1⟩ ⟨q3, Aq2⟩ . . . ⟨q3, Aqm⟩

...
...

...

⟨qm, Aq1⟩ ⟨qm, Aq2⟩ . . . ⟨qm, Aqm⟩

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.73)

This holds for any matrix Qm and it is a similarity transformation for the

special case of orthonormal Qm.

The submatrix Asub
m := (Am)

m
i,j=2 takes Hessenberg form as in the standard

Arnoldi: Since

Aqj ∈ span{q1, q2, . . . , qj+1} (6.74)

the orthogonality of {qk}, guaranteed by ORA(5), demands that (Asub
m )ij =

⟨qi, Aqj⟩ vanish for i > j+1. The part of these non-vanishing matrix elements

of Asub
m at the diagonal and above are computed in ORA(4). The elements at

the subdiagonal are computed in ORA(6):

ℎj+1,j
ORA(6)
= ∣∣wj∣∣ =

√

⟨wj, wj⟩ (6.75)
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ℎj+1,j

ORA(7)
ORA(5)
=

√
√
√
⎷⟨ℎj+1,jqj+1 , Aqj −

j
∑

i=1

ℎijqi⟩

=

√
√
√
⎷ℎj+1,j

(

⟨qj+1, Aqj⟩ −
j
∑

i=1

ℎij⟨qj+1, qi⟩
)

=
√

ℎj+1,j⟨qj+1, Aqj⟩

⇒ ℎ2j+1,j = ℎj+1,j⟨qj+1, Aqj⟩
⇒ ℎj+1,j = ⟨qj+1, Aqj⟩. (6.76)

The first row of Am is computed in steps ORA(3) and ORA(4) and the miss-

ing elements from the first column follow from ORA(8) so that after m steps

Am takes the form

Am =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ORA(3, 1) ORA(4, 2) ORA(4, 3) . . . ORA(4, m)

ORA(8, 2) ORA(4, 2) ORA(4, 3) . . . ORA(4, m)

ORA(8, 3) ORA(6, 2) ORA(4, 3) . . . ORA(4, m)

ORA(8, 4) 0 ORA(6, 3) . . . ORA(4, m)
...

...
...

...

ORA(8, m) 0 0 . . . ORA(4, m)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.77)

where ORA(step, iteration) denotes the step and the iteration when a matrix

element is computed.

Unlike the matrix elements of Asub
m below the subdiagonal the elements of

the first column of Am do not vanish since in general

Aq1 /∈ span
{

q1,K⊥q1
m−1(A, q2)

}

. (6.78)

In order to compute these elements the additional vector k = Aq1 used in

ORA(8) has to be stored in memory. □

The transition to the Hermitian case and, therefore, to the Lanczos algo-

rithm (Table 6.2) is straightforward. Because of the Hermiticity of A

⟨qi, Aqj⟩ = ⟨qj, Aqi⟩ (6.79)
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and Am becomes symmetric. Asub
m then takes the common tridiagonal form

and the elements of the first column of Am do not have to be computed in

ORA(8) since they follow from ORA(4). Therefore, there is no need to keep

the vector k = Aq1 in memory anymore. In a more adequate new Lanczos

notation Am becomes

Am =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 . . . m−1 m

2 �1 �2

3 �2 �2
. . .

...
. . .

. . .
. . .

m−1
. . . �m−2 �m−1

m �m−1 �m−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.80)

The
ORL : Orthogonal Ritz

Lanczos Algorithm

ORL(1): Start : Choose q1 with ∣∣q1∣∣ = 1

Choose q2 with ∣∣q2∣∣ = 1

and q2 ⊥ q1

Set �1 = 0

ORL(2): 1 = ⟨q1, Aq1⟩
Iterate : j = 2, . . . , m :

ORL(3): j = ⟨q1, Aqj⟩
ORL(4): �j−1 = ⟨qj , Aqj⟩
ORL(5): wj = Aqj − jq1 − �j−1qj − �j−1qj−1

ORL(6): �j = ∣∣wj∣∣
ORL(7): qj+1 = wj/�j

Table 6.2: The Orthogonal Ritz Lanczos algorithm.
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A More Stable
ORLS : Orthogonal Ritz

Lanczos Algorithm

ORLS( 1): Start : Choose q1 with ∣∣q1∣∣ = 1

Set �1 = 1

ORLS( 2): r = Aq1 − ⟨Aq1, q1⟩ with ∣∣r∣∣ = 1

ORLS( 3): r = r/∣∣r∣∣
ORLS( 4): 1 = ⟨q1, Aq1⟩

Iterate : j = 2, . . . , m :

ORLS( 5): qj = r/�j−1

ORLS( 6): p = Aqj

ORLS( 7): j = ⟨q1, p⟩
ORLS( 8): r = p− jq1
ORLS( 9): If j > 2 : r = r − �j−1qj−1

End If

ORLS(10): �j−1 = ⟨qj , r⟩
ORLS(11): r = r − �j−1qj

ORLS(12): �j = ∣∣r∣∣

Table 6.3: The more stable version of the Orthogonal Ritz Lanczos algorithm.

As mentioned before, the convergence of the Orthogonal Ritz Lanczos

strongly depends on the choice of q2 and therefore on the space K⊥q1
m−1(A, q2).

The top (blue) curve of Fig. 6.9 shows the convergence of the algorithm

when a random q2 is employed. After the restart the convergence becomes

extremely slow, indicating that there is a problem with the choice of q2. This

behavior can be motivated in terms of invariant subspaces. There are vectors

{k1, . . . , km}, m ≤ n with

R
n = ℐ(k1, A)⊕ ℐ(k2, A)⊕ ⋅ ⋅ ⋅ ⊕ ℐ(km, A), (6.81)

where ℐ(kj , A) denotes the invariant subspace of kj under A. At the time
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of a restart, the first Ritz vector �̃1 trivially lies in the invariant subspace

ℐ(�̃1, A). The more �̃1 is converged to the first exact eigenvector �1, the more

will ℐ(�̃1, A) resemble the invariant space of �1, ℐ(�1, A), and therefore the

smaller will the dimension of ℐ(�̃1, A) since dim ℐ(�1, A) = 1. For that reason

there is a considerable probability that a random q2 will only have a small

component in ℐ(�̃1, A) so that ℐ(�̃1, A) ∩ ℐ(q2, A) ≈ ∅. From Proposition

6.3.1 then follows that the space K⊥�̃1
j (A, q2) will only contribute little to the

approximation of �1, which can be seen clearly in Fig. 6.9. So there is good

reason for not choosing a q2 from a different invariant subspace than the

one that contains q1. A vector from the same subspace can be constructed

by the remaining Ritz vectors: Since they are linear combinations of the

Lanczos vectors that span the Krylov space Km(A, q1) that is a subset of

ℐ(q1) the vector
∑
ci�i will lie in ℐ(q1). Therefore, the restarted algorithm

will continue to span the invariant subspace of q1. As expected, this leads to

a strongly improved convergence as it can be seen from the middle (green)

curve in Fig. 6.9.
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Figure 6.9: Convergence of the Orthogonal Ritz Restart with some test matrix for

different choices of start vectors. Blue (top): Arbitrary start vector.

Green (mid): Start vector from Ritz vetors. Red (bottom): Start vector

q2 = Aq1 − ⟨Aq1, q1⟩.

However, this convergence still is not satisfactory. The approximation

comes close to the exact value but it converges to a value right above, indi-

cating that there is something missing in the space from which one obtains

the approximation. The missing part turn out to be the Aq1 component

that may strictly speaking not be missing but is suppressed by the algorithm
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since for q2 ∕= q1 it is never computed directly and from all the other Lanc-

zos vectors the q1 component is projected out before the matrix acts on it.

Therefore, for the choice q2 = Aq1 − ⟨Aq1, q1⟩ one expects a more complete

convergence and this is confirmed by the lowest (red) curve in Fig. 6.9.

At a first glance nothing has bee gained at all with this approach since

q2 = Aq1− ⟨Aq1, q1⟩ is exactly the quantity that causes all the trouble in the

Simple Ritz Restart because of its large total angular momentum deviation.

But the difference to the Orthogonal Ritz Restart is that there, q1 and q2 are

allowed to be completely disconnectd. Therefore, one can even use a strongly

angular momentum corrected q2 without introducing errors in the algorithm.
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Figure 6.10: Convergence of the Orthogonal Ritz Restart for the example of Fig.

6.8.

6.3.2 Krylov Rayleigh-Ritz

Although the Orthogonal Ritz Lanczos finally is a converging Lanczos variant

it is still far from being satisfying. This is because the Orthogonal Ritz

Lanczos solves the Ritz restart problem but still does not avoid perturbations

of the Hessenberg matrix. One the one hand, effects of such perturbations

are reduced through frequent restarts. One the other hand, it is known that

restarted algorithms converge more slowly than non-restarted ones and so

clearly the Orthogonal Ritz Restart does.

At this point, after lots of effort that lead to no satisfying results it should

be questioned whether the Lanczos algorithm is practical in the subspace

iteration at all. In order to discuss this issue the most important properties,

except for the matrix vector multiplication in every iteration step, of the
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Simple Lanczos algorithm in exact arithmetics are listed below.

(1.) In every iteration step only 2 orthogonalizations are required.

(2.) Only 2− 3 vectors have to be kept in memory.

(3.) The Hessenberg matrix has tridiagonal form.

(4.) The Hessenberg matrix is calculated as a byproduct.

Property (1.) had to be sacrificed in order to maintain orthogonality among

the Lanczos basis. For this reason property (2.) was also lost since the Lanc-

zos vectors had to be at hand for the orthogonalization. Regarding properties

(3.) and (4.), there is no real use for them in the subspace iteration. First,

the reduction to tridiagonal form, (3.), is useful when many or all eigenvalues

are approximated because one commonly does more than n iterations due

to the problem of ghost eigenvalues and then the computation of eigenvalues

from the Hessenberg matrix becomes a problem in itself. In the subspace

iteration, however, the number of iterations is clearly below 1000 and for

matrix dimensions of this order the eigenvalue problem can be attacked with

direct methods easily. Likewise, (4.) is only of minor attractivity in the sub-

space iteration. One the one hand, because of the small dimensionality of

the Hessenberg matrix it is not too important to compute it as a byproduct,

as long as the computation is sufficiently cheap compared to matrix-vector

multiplications. On the other hand, since the Hessenberg matrix contains

perturbations, the sense of computing it at all is questionable.

Once more, one should remember Equation (4.2),

Lanczos = Krylov + Rayleigh-Ritz, (6.82)

which states that the Lanczos is nothing but a convenient way to do a

Rayleigh-Ritz projection onto a Krylov space. In the Rayleigh-Ritz pro-

cedure this Krylov space has to be present as some orthonormal basis Qm

and the projection of a matrix A then is Am = QT
mAQ, or

QT
mAQm =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⟨q1, Aq1⟩ ⟨q1, Aq2⟩ . . . ⟨q1, Aqm⟩
⟨q2, Aq1⟩ ⟨q2, Aq2⟩ . . . ⟨q2, Aqm⟩
⟨q3, Aq1⟩ ⟨q3, Aq2⟩ . . . ⟨q3, Aqm⟩

...
...

...

⟨qm, Aq1⟩ ⟨qm, Aq2⟩ . . . ⟨qm, Aqm⟩

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.83)
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The basis Qm generated in the Orthogonal Ritz Lanczos algorithm, for exam-

ple, is orthogonal, guaranteed by full reorthogonalization. Furthermore, by

projection, it spans the angular momentum subspace to an accuracy of the

accumulated angular momentum deviations of the Lanczos vectors. So the

basis Qm is good and only the computation of Am fails to be accurate. There-

fore, as it was already shown in Fig. 6.8, the Rayleigh-Ritz projection of A

on span{Qm} delivers the real eigenvalue approximations from span{Qm}.
In fact, doing the Rayleigh-Ritz projection does not cause sizable compu-

tational cost as long as the number of iterations is small, because the quan-

tities Aqj in (6.83) are computed in the Lanczos algorithm anyway when a

new Lanczos vector is generated,

Iteration step j : Aqj = p̃j
projection→ pj

orthogonalization→ qj+1 (6.84)

and the only difference to the Lanczos algorithm is the need of computing

the vector overlaps ⟨qi, Aqj⟩ , i = 1, . . . , j in every iteration j. Here, the

symmetry of A is already exploited so that only the upper triangular matrix

elements have to be computed. Therefore, no additional storing of Aqj is

necessary. The Krylov Rayleigh-Ritz algorithm is presented in Table 6.4 with

the most convenient choice of the order of projection and orthogonalization,

as discussed below. It is obvious that this algorithm computes the projection

of A onto Qm by computing the matrix elements (6.83) so that a proof can

be omitted.
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The
KRR : Krylov Rayleigh - Ritz

Algorithm

KRR(1): Start : Choose p with ∣∣p∣∣ = 1

Set � = 1

Iterate : j = 1, . . . , m :

KRR(2): qj = p/�

KRR(3): p = Aqj

KRR(4): Compute : Aij = Aji = ⟨qi, p⟩, i = 1, . . . j

For : i = 1, . . . , j :

KRR(5): p = p− ⟨p, qi⟩ qi
End For

KRR(6): If Necessary : Project p on good angular momentum

while keeping q(proj.) orthogonal to {qi}
KRR(7): � = ∣∣p∣∣

Table 6.4: The Krylov Rayleigh-Ritz algorithm.

At first glance there is no real difference to the Arnoldi algorithm, since

the crucial step KRR(4)´, where the matrix elements of the Rayleigh-Ritz

projection are computed, looks the same as A(2), where the Hessenberg ma-

trix elements are determined. The reason why KRR is not equal to algo-

rithm A is again the difference in the basis generated by both algorithms.

The Arnoldi algorithm generates an orthonormal basis of the Krylov space

Kj(q1, A). In the numerical reality, where the start vector q1 contains a cer-

tain amount of bad angular momentum and the total angular momentum is

not exactly conserved, this Krylov space will contain more than the target

angular momentum and, therefore, one needs the angular momentum projec-

tion. The projected basis spans the space Kj(q1, A)∩J (jtarget) which is only a

subset of the actual Krylov space. But the fact that the Arnoldi basis spans

Kj(q1, A) leads to the vanishing matrix elements of the projection and to the

Hessenberg form, as it is explicitly used in Proof 6.3.2. For that reason will
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Am obtained from the Rayleigh-Ritz projection no longer have Hessenberg

form but it will be symmetric for Hermitian matrices A.

Since the Krylov Rayleigh-Ritz is identical to the Lanczos algorithm in

exact arithmetics all propositions concerning the convergence of the Lanczos

algorithm still hold for the Krylov Rayleigh-Ritz algorithm, as well as the

numerical considerations concerning the loss of orthogonality, for instance.

For the numerical Krylov Rayleigh-Ritz algorithm the simple residual for-

mula derived for the Lanczos algorithm does not hold any more because it is

based on the validity of the three-term recurrence for the Lanczos algorithm.

Besides computing the residual directly, at the cost of one matrix-vector

multiplication per residual, all residuals can be calculated if one stores the

quantities ∣pl⟩ = A∣ql⟩ during the algorithm. Then, the residuals are given

by

res
(

(�̃i, �̃i)
)

= ∣∣A�̃i − �i�̃i∣∣ = ∣∣
m∑

k=1

y
(i)
k

(

pk − �iqk
)

∣∣. (6.85)

Regarding the projection, there are various possibilities for where the

projection can take place, as shown in Fig. 6.11.

(1.) Projecting p on good angular momentum right after the computation

of the matrix elements Aij. From Fig. 6.11 (1a) this choice looks

reasonable but it leads to strong angular momentum deviations within

the basis {qi}. This is because of the reorthogonalization that takes

place after the projection and through which the angular momentum

deviations of previous qi accumulate in the new basis vector. This

accumulation of angular momentum deviation is, however, a minor

effect that can not account for most of the deviations. More problematic

are cancelations in the reorthogonalization that lead to amplifications

of unwanted angular momenta as discussed for the Ritz Restart.

(2.) To avoid this accumulation of angular momentum deviations and the

cancelation in the orthogonalization, the obvious way is to place the

projection right after the orthogonalization. This guarantees the new

basis vector having the desired accuracy regarding the angular momen-

tum, 6.11 (2b), but it destroys the orthogonality of {qi}, (2c). This loss

of orthogonality leads to catastrophic results, (2a), that might be sur-

prising at first.
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Although the vectors {qi} have quite accurate angular momentum, the

angular momentum of the first Ritz vector is totally lost. This might

be understood in the following way: The loss of orthogonality induces

the production of copies of Ritz vectors. Therefore, it will happen that

after the projection rank Qm < m in the target angular momentum

subspace, and consequently one gets eigenvector approximations from

other subspaces that are contained in span{Qm} due to numerical er-

rors.

(3.) In order to maintain both, more or less the desired angular momentum

accuracy and orthogonality, one can place an orthogonalization of p be-

fore and after the projection. This circumvents the cancelation problem

and restores the orthogonality after the projection. In this way a little

angular momentum deviation is introduced in p after the projection

through the orthogonalization. On the other hand the orthogonality of

the basis vectors is guaranteed.

(4.) A similar possibility is to put the second orthogonalization into the

Lanczos angular momentum projection algorithm, i.e. to orthogonalize

the Lanczos vectors generated there against {qi}, which causes the Ritz

vector to be orthogonal to {qi}. This orthogonalization has to take

place before the reorthogonalization of the Lanczos vectors since their

orthogonality has highest priority. In this way the angular momenta of

{qi} are improved, but the degree of orthogonality is somewhat reduced.
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Figure 6.11: Results of different arrangements of projection and reorthogonaliza-

tion, as discussed in the text, for the example of Fig. 6.8, with total

angular momentum accuracy Δj of 10−4. Black dots in the conver-

gence plots depict the energy expectation values of the first Ritz vector.

Even for the most convenient variants (3) and (4), the convergence is not

perfect. In fact, there is convergence of the Ritz values, but not to the exact

eigenvalues to arbitrary accuracy. As depicted for the KRR version (4), in

Fig. 6.12 (a), after a certain number of iterations the first Ritz value stays
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right above the exact eigenvalue and shows no further convergence to it. One

might suspect that this has something to do with the orthogonalization that

in principle can prevent some directions to get included in the basis Qm but

this does not seem to occur in practice. Since the convergence of the first

Ritz value remains unchanged after a restart — so that orthogonalization

effects vanish — the reason for the failing convergence must be another.

In fact it is the low angular momentum accuracy that sets the limit to

the convergence. If the Ritz vector is projected on angular momentum to

an accuracy of 10−7 and with this the algorithm is restarted the Ritz value

immediately comes closer to the exact eigenvalue and converges still further

until again some iteration is reached after which the convergence stops with-

out the Ritz value having reached the exact eigenvalue, Fig. 6.12 (b). As a

consequence the residual norm computed via (6.85) will not become arbitrar-

ily small and may possibly not be a good choice as convergence criterion. As

in the Lanczos algorithm, where the residual is essentially determined by the

last component of the Hessenberg vectors, one can do the same thing with the

eigenvectors of the Rayleigh-Ritz projection in order to determine whether

or not one can expect further convergence of a Ritz value by increasing the

basis dimension.

(a) Δj = 10−4 (b) Δj = 10−7
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Figure 6.12: Convergence limitations due to angular momentum accuracy., (a)

With an total angular momentum accuracy Δj of 10−4 the first Ritz

value converges but not to the exact eigenvalue. (b) After a restart

with an improved angular momentum accuracy of 10−7 the Ritz value

comes more closely to the exact eigenvalue but again does not come

arbitrary close.
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6.4 Truncated Spaces

After considering the angular momentum projection in full Nℏ! shell model

spaces the actually interesting case of truncated spaces is considered now.

Hilbert space truncations lead to non-vanishing commutators

[H̃, J̃2] ≥ 0 (6.86)

of the operators represented in these truncated spaces even in exact arith-

metics. As a consequence operating with H̃ on a J̃2 eigenstate will no longer

produce another J̃2 eigenstate.

6.4.1 Lanczos Projection

That, due to the non-conservation of total angular momentum, starting from

a J̃2 eigenstate q1 the Krylov vectors {q1, H̃q1, H̃2q1, . . . } immediately lose

the initial angular momentum seems nothing to worry about. Of course, the

subspace iteration using the Lanczos algorithm will completely fail because in

every iteration step large corrections to the new Lanczos vectors would have

to be introduced in order to rotate them on good angular momentum, but the

Krylov Rayleigh-Ritz algorithm would be insensitive to such interventions.

However, this algorithm requires that the angular momentum projection still

works in truncated spaces.

As seen in Section 6.2.1 the angular momentum projection of a vector us-

ing the Lanczos algorithm by spanning the invariant subspace of the vector

with respect to J2 is a powerful method as long as the number of distinct

angular momentum eigenspaces is small. With every additional angular mo-

mentum eigenvalue introduced by modifying the Hilbert space an additional

Lanczos iteration would be necessary in order to span such an invariant sub-

space.

Fig. 6.13 depicts the effect of the importance truncation (Chapter 3) on

the angular momentum spectrum and its impact on the angular momentum

projection using the Lanczos algorithm. (1b): In a full Nℏ! shell model

space the spectrum has its usual highly degenerate form with eigenvalues

j(j + 1), j = 0, . . . , jmax. Since jmax = 8 in this example, the Lanczos

algorithm provides almost exact eigenvalues after 9 iterations. (2b): Even

a moderate truncation of the Hilbert space destroys the angular momentum
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spectrum. New eigenvalues are introduced and consequently the Lanczos

algorithm has no near-breakdown at iteration step 9 (2a). In iteration step

11 or 12 one might suspect an almost-breakdown since most Ritz values show

good agreement with the old eigenspectrum but the residuals tell a different

story. (3a,b): With further truncation the angular momentum spectrum gets

farther away from its original shape and the angular momentum projection

does not provide any converged results within few iterations.

Without spanning the invariant subspaces after few iterations there is no

hope for finding an angular momentum component of a given vector, even

after a number of iterations that matches the number of different angular

momenta. Because the number of different angular momenta becomes large

the algorithm might already produce a second (third, . . . ) eigenvalue approx-

imation before there is a first approximation for another eigenvalue. So one

is confronted with multiple Ritz vectors for a certain eigenvalue and Section

6.2.2 revealed that it is not easy to obtain the desired results from them.
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Figure 6.13: Model space truncation effects for a 4He total angular momentum spec-

trum (NmaxℏΩ = 6). The degeneracy is lost even for moderate trun-

cations, preventing the Lanczos algorithm to span invariant subspaces

within a few iterations.
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6.4.2 Shift-and-Invert Lanczos

Since the Lanczos projection fails in truncated spaces due to the destruction

of the original J2 eigenspectrum, the focus is on alternative ways to compute

the projection of the Hamiltonian onto an angular momentum eigenspace.

One way is to make explicit use of the knowledge of the target angular mo-

mentum and even of the loss of degeneracy through truncation.

In the untruncated case the angular momentum eigenspaces have large

dimensions. So one would have to find many J̃2 eigenstates to get reasonable

eigenvalue approximations from an Rayleigh-Ritz projection. By truncation

the eigenspace dimensions become smaller because of the increasing number

of spaces. So the hope might be that the Importance Truncation reduces the

dimension of the target angular momentum eigenspace (which still contains,

due to the character of the Importance Truncation, the target state) so far

that only a few eigenvectors already sufficiently span this space. Considered

as an eigenspace of the target angular momentum is the space spanned by

all eigenvectors of J̃2 with eigenvalues ∈ [jtarget − �, jtarget + �] with a � not

too small.

To find these eigenstates one can do a series of Lanczos algorithms, not

for J̃2 but for the shifted and inverted matrix
(

J̃2
�

)−1

:=
(

J̃2 − �1
)−1

(6.87)

with shift parameter � = jtarget. The eigenvalues �i(J̃
2) of J̃2 are related to

the ones of
(

J̃2
�

)−1

via [16]

�i(J̃
2) = � +

1

�i((J̃2
�)

−1)
⇒ �i((J̃

2
�)

−1) =
1

�i(J̃2)− �
(6.88)

and the eigenvectors are identical. So the eigenvalues of J̃2 that are nearest

to � become the extreme eigenvalues of
(

J̃2
�

)−1

and thus they are perfectly

accessible to the Lanczos algorithm.

For large matrices
(

J̃2
�

)−1

cannot be formed explicitly. However, the only

way the matrix enters the algorithm is the matrix-vector multiplication to

obtain p,

p =
(

J̃2
�

)−1

qj ⇒ J̃2
�p = qj . (6.89)
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So one can solve the linear system J̃2
�p = qj using the shifted-only matrix to

get p.

In practice however, the angular momentum spectrum is not enough re-

solved for
(

J̃2
�

)−1

to be sufficiently non-singular and the linear systems can

not be solved reliably so that this approach also fails.

6.4.3 Hamiltonian Spectrum Shift

Another approach to target Hamiltonian eigenvalues from a specific angular

momentum subspace is to shift up all the Hamiltonian eigenvalues that belong

to other angular momentum subspaces. This can be achieved by adding an

angular momentum dependent term to the Hamiltonian

H�,jtarget = H + �
(

J2 − ĵtarget
)2

. (6.90)

This is not a uniform global spectrum shift as the magnitude of the shift

depends on the angular momentum eigenvalue. However it is clear that the

shifts are uniform in each separate J2 subspace. H�,jtarget clearly commutes

with J2

[H�,jtarget , J
2] = 0, (6.91)

and so each angular momentum subspace can be considered separately. A

simultaneous eigenstate of H and J2 (6.2), (6.3) will still be eigenstate of

H�,jtarget as well, satisfiying

H�,jtarget ∣E(k)
n ⟩ =

(

En + �(k̂ − ĵtarget)2
)

∣E(k)
n ⟩ (6.92)

with k̂ = k(k + 1). Thus, with � > 0 all energy eigenvalues from angular

momentum subspaces J (ĵ ∕=ĵtarget) are shifted in the positive direction while

the others are unaffected. If the eigenvalues of the original and the modified

Hamiltonian are ordered such that

�i(H�,jtarget)
�→0−−→ �i(H) (6.93)

and �i(J
2) denote the corresponding J2 eigenvalues, then the shifted Hamil-

tonian spectrum is given in terms of the original spectrum by

�i(H�,jtarget) = �i(H) + �
(

�i(J
2)− ĵtarget

)2

. (6.94)
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From (6.94) a maximum shift can be estimated, by inserting ĵmax and

ĵtarget = 0. For ĵmax = 240 (jmax = 15) this maximum shift is of the order

�
(

�i(J
2)− ĵtarget

)2

≈ � ⋅ 57600 (6.95)

and the second largest shift for ĵmax = 210 (jmax = 14) is of the order

�
(

�i(J
2)− ĵtarget

)2

≈ � ⋅ 44100. (6.96)

The maximum of the original spectrum maxi ∣�i(H)∣ usually is much smaller

than these shifts. Thus, the upper end of the spectrum gets stretched far into

the positive direction, while the target state energy remains at its original

position. Since the upper end of the spectrum has much larger modulus than

the lower end, the Lanczos algorithm will preferentially converge to these

eigenvalues first. Additionally, since the shifts for jmax = 15 and jmax = 14

differ much, also large gaps are induced at least among the eigenvalues to high

angular momenta. This will also worsen the convergence of the algorithm to

the eigenvalues of interest (Fig. 6.14).
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Figure 6.14: Convergence for a shifted 4He Hamiltonian for different ĵtarget and �.
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It should ne noted that even for 0 < � < 1 the spectrum is shifted up,

because � only stretches the shift induced by the term (k̂−ĵtarget)2. Therefore,

the minimum value of � that is necessary to bring the target state to the low

end of the spectrum also depends on the angular momenta of the lower lying

states.

In truncated spaces a simple eigenvalue relation like (6.94) does not exist

any more because of the non-commutation of H̃ and J̃2, but it is expected

that the energy spectrum from J (ĵ ∕=ĵtarget) still will be shifted up.

Examples for the spectrum shift together with the importance truncation

can be seen from Fig. 6.15 to 6.20, where a UCOM [33, 34] transformed

AV18 interaction has been employed. The first part of the plots shows the

exact H spectrum from the full Nmaxℏ! model space with the Nmax given

in the caption. The red (solid) lines depict energy states with target angu-

lar momentum. The truncation was done by diagonalizing H�,jtarget in the

(Nmax − 2)ℏ! for the lowest five states with angular momentum ĵtarget and

using these as reference states for generation of the truncated Nmaxℏ! space.

How the basis dimension is decreased due to the truncation is illustrated

in the additional plot at the right margin. The second part of the figures

illustrates the effect of the importance truncation on the (unshifted) Hamil-

tonian. From left to right the truncation parameter �min was varied from

0.1 × 10−3 to 1.0 × 10−3. As one can see, except for the target states, the

original spectrum is strongly perturbed by the truncation. The third section

lists the angular momenta of the truncated spectrum at �min = 1.0 × 10−3.

The next part of the figures shows how the H�,jtarget spectrum evolves with

increasing shift parameter; left for moderate shifts with � = 0, . . . , 1, right

for strong shifts with � = 1, . . . , 20 or � = 1, . . . , 5. As expected, the states

with ĵtarget are nearly unaffected by the shifts, even for the largest �. The

last two sections show the isolated ĵtarget spectrum at the largest calculated �

shift and its comparison to the original ĵtarget. In summary, nearly all of the

deviation from the original spectrum originates in the truncation and not in

the shift of the Hamiltonian.
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6.5 Conclusion

In theory, the Lanczos algorithm is a powerful tool to perform a total angular

momentum projection of the Hamiltonian and to extract the low end of its

eigenspectrum.

In practice, besides the orthogonality loss, which can easily be dealt with

by full reorthogonalization, one has to tackle the problem of loss of total

angular momentum among the Lanczos basis. However, if the start vector

for the algorithm is already a reasonable approximation for the ground state

one can achieve converged results before the angular momentum is lost. Good

angular momentum can be restored either by (expensive) explicit correction

of the Lanczos vectors or simply by restarting the algorithm. It has been

seen that the tridiagonal form of the matrix projection has to be sacrificed in

any case, either in the Orthogonal Ritz Restart or the Krylov Rayleigh Ritz

algorithm. That is, the Lanczos algorithm in its standard formulation is not

convenient for angular momentum projection purposes if one takes measures

to correct the angular momentum, and has to be replaced by a method that

is less sensitive to perturbation from the outside of standard usage. But even

with a robust alternative, like the Krylov Rayleigh Ritz, the convergence to

the exact eigenvalues is limited by angular momentum impurities.

In truncated spaces the conservation of total angular momentum is lost

and the degeneracy of angular momentum eigenvalues is resolved and there-

fore the idea of projecting a state on a certain angular momentum, exploiting

the degeneracy of J2 eigenvalues, does not work any longer. Another attempt

to get projections of vectors using a shifted and inverted J2 also fails due to

singularities of this matrix. Finally, with the modification

H�,jtarget = H + �
(

J2 − ĵtarget
)2

(6.97)

of the Hamiltonian it is possible to directly address low-lying states of J (j)

spaces using a Lanczos algorithm even in truncated spaces. This comes at

the cost of diminished convergence properties.
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Chapter 7

Electromagnetic Transitions

The emission and absorption of electromagnetic radiation provides the most

important source of information about the structure and lifetimes of nuclei.

Electromagnetic moments and transition probabilities can accurately be mea-

sured, so they represent a valuable observable to confront theory with.

7.1 Transition Probabilities

Electromagnetic transition rates of a system from an initial state ∣Ψi⟩ to a

final state ∣Ψf⟩ can be determined using Fermi’s Golden Rule

Tfi =
2�

ℏ
∣⟨Ψf ∣Hint∣Ψi⟩∣2 g(Ef) (7.1)

where g(Ef) is the density of the final states and Hint is the Hamiltonian

describing the interaction of the nucleus with an external electromagnetic

field.

Starting from classical expressions for the Hamiltonians describing the

radiation field,

Hfield =
1

8�

∫

d3r
(

E2 +B2
)

, (7.2)

and the interaction of the radiation field A� = (Φ,A) with the nucleus with

charge density � and current density j,

Hint =

∫

d3r
(

�Φ− 1

c
j ⋅A

)

, (7.3)
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after expanding the radiation field in multipoles it can be quantized in terms

of photons.

The quantum number �, related to orbital angular momentum and parity

of the photon, is used to classify multipole radiation as electric (� = E)

or magnetic (� = M) radiation. For the case of spontaneous emission of

photons (i.e. vanishing external field) one obtains the probability for the

emission of a single photon with wave number k, total angular momentum I

and corresponding z-projection m

Tfi(�, kIm) =
8�(I + 1)

ℏI((2I + 1)!!)2

(
E

ℏc

)2I+1

∣⟨Ψf ∣ℳ̂(�kIm)∣Ψi⟩∣2. (7.4)

In (7.4) the multipole transition operators

ℳ̂(EkIm) =
(2I + 1)!!

kI(I + 1)

∫

d3r

{

�YIm
∂

∂r
rjI(kr) + i

k

c
j ⋅ rYImjI(kr)

}

ℳ̂(MkIm) =
−(2I + 1)!!

ckI(I + 1)

∫

d3r j ⋅ (r ×∇) ⋅ (jI(kr)YIm) (7.5)

are introduced. In the limit of long wavelengths the first order expansion in

kr of the Bessel functions jI(kr) leads to the electric and magnetic multipole

operators Q̂Im, M̂Im

ℳ̂(EkIm) ≈ Q̂Im ≡
∫

d3r �rIYIm (7.6)

ℳ̂(MkIm) ≈ Q̂Im ≡
1

c(I + 1)

∫

d3r (r × j) ⋅∇(rIYIm) (7.7)

which are independent of k. By inserting the charge and current density of

a nucleus one obtains the final form of the electric and magnetic multipole

operators in the long wavelength limit as

Q̂Im = e

A∑

i=1

(
1
2
− t(i)3

)

rIi YIm(�i, �i)

M̂Im = �N

A∑

i=1

{

g(i)s si +
2

I + 1
g
(i)
l li

}

⋅
(

△rIYIm(�, �)
)

r=ri

. (7.8)

If one does not distinguishes, and therefore averages over, the angular mo-

mentum projections in the initial and final states the probability for a certain

multipole transition can be written as

Tfi(�I) =
8�(I + 1)

ℏI((2I + 1)!!)2

(
E

ℏc

)2I+1

B(�I, Ii → If) (7.9)

116



with the reduced transition probabilities given in terms reduced matrix ele-

ments ⟨⋅∣∣ ⋅ ∣∣⋅⟩

B ( �=E
�=m , I) =

1

2Ii + 1
⋅

⎧

⎨

⎩

∣⟨Ψf ∣∣Q̂I ∣∣Ψi⟩∣2

∣⟨Ψf ∣∣M̂I ∣∣Ψi⟩∣2
. (7.10)

In order to calculate the many-body matrix elements in the second quanti-

zation framework, the matrix elements in a single-particle basis have to be

known. In the basis ∣i⟩ ≡ ∣ni(lis)jimimti⟩ given in (2.10), the reduced matrix

elements of the multipole operators [21, 22] are

⟨f ∣∣Q̂I ∣∣i⟩ = �mti
mtf

�
mti

1
2

e√
4�

1 + (−1)li+lf+I

2
ℛ(I)

nilinf lf

×
√

(2I + 1)(2ji + 1)(2jf + 1)
(

jf ji I
1/2 −1/2 0

)

3j
(7.11)

and

⟨f ∣∣M̂I ∣∣i⟩ = �mti
mtf

�N

c
√
4�

(−1)ji+I−
1
2
1− (−1)lf+li+I

2
ℛ(I−1)

nilinf lf

×
√

(2I + 1)(2ji + 1)(2jf + 1)
(

jf ji I
1/2 −1/2 0

)

3j

×(I − �)
[

gl

(

1 +
�

I + 1

)

− 1
2
gs

]

(7.12)

with the abbreviation

� ≡ (−1)li+ji+
1
2 + (−1)lf+jf+

1
2 . (7.13)

and the integrals ℛ(�)
nilinf lf

of the radial part of the harmonic oscillator wave

function

ℛ(�)
nilinf lf

≡
∞∫

0

gnf lf (r) r
� gnili(r) r

2 dr. (7.14)

For li + lf + � = even (which are the only integrals contributing to non-

vanishing matrix elements in (7.12) and (7.12)) the result can be written in

closed form as [22]

ℛ(�)
nilinf lf

= (−1)ni+nf

√

ni!nf !

Γ[ni + li +
3
2
]Γ[nf + lf +

3
2
]
�i!�f !

×
�max∑

�=�min

Γ
[
1
2
(li + lf + �) + � + 3

2

]

�!(ni − �)!(nf − �)!(� + �i − ni)!(� + �f − nf )!
,

(7.15)
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where

�i = 1
2
(lf − li + �) (7.16)

�f = 1
2
(li − lf + �) (7.17)

�min = max{0, ni − �i, nf − �f} (7.18)

�max = min{ni, nf}. (7.19)

This form bears the risk of numerical overflows in actual computations. A

more secure form can straightforwardly be derived using
∑

i fi =
∑

i exp ln fi,

ℛ(�)
nilinf lf

= (−1)ni+nf

�max∑

�=�min

exp
{

− ln[�i!] + ln[�f !]

+ 1
2

(

ln[ni!] + ln[nf !]− ln Γ[ni + li +
3
2
]− ln Γ[nf + lf +

3
2
]
)

+ lnΓ[1
2
(li + lf + �) + � + 3

2
]− ln[�!]− ln[(ni − �)!]

− ln[(nf − �)!]− ln[(� + �i − ni)!]− ln[(� + �f − nf )!]
}

, (7.20)

where the prefactor has at first been moved into the sum in order to keep

the number of exp-calls as small as possible.

7.2 Results

Large-scale IT-NCSM calculations have been done for the positive-parity

states of 10B, 12C and 16O with results presented in this and the next section.

The interaction employed is a SRG [23, 24] evolved CD-Bonn interaction

where the L = 0 partial wave has been evolved independently from the other

partial waves, with flow parameters

�Swave
= 0.015 fm4

�other = 0.001 fm4 (7.21)

adjusted such that the binding energies of 4He and 16O are reasonably re-

produced. With this choice of parameters the interaction is expected to be

suitable to appropriately describe the nuclear mass range between helium

and oxygen. The harmonic oscillator frequency is fixed at ℏ! = 24 MeV.
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7.2.1 10B

The calculation of the 10B excitation spectrum is of particular interest since

previous calculations did not reproduce the right ordering of the ground and

first excited state [26, 27]. It was argued [27] that this was a general feature

of two-body Hamiltonians and it was confirmed that for the chiral interaction

[41] the inclusion of NNN contributions leads to the experimentally observed

ground state spin [32].

It is therefore interesting to see the particular choice of the CD-Bonn

parameters (7.21) reproduce the spin ordering of the first five states from

(importance truncated) Nmaxℏ! model spaces with Nmax ≥ 6 (Fig. 7.1). Al-

together, besides missing the 3+ state, the experimental excitation spectrum

is already nicely reproduced at 10ℏ!. The spectrum has been calculated by

ordinary partial diagonalization of the Hamiltonian for the lowest six eigen-

states. IT-NCSM with sequential growing of the Hilbert spaces has been

employed, where the full NCSM for 4ℏ! has been solved and from there for

each Nℏ! space the six computed states shown in Fig. 7.1 have been used

as reference states from which the subsequent (N + 2)ℏ! model spaces have

been built.

4ÑΩ 6ÑΩ 8ÑΩ 10ÑΩ

3+

1+

0+
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2+

3+
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-30.8 -41.3 -48.3 -51.9 -64.7
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0

2

4

6

E
-

E
3+
@M

eV
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Figure 7.1: Positive parity 10B excitation spectrum.

Usually, expectation values of observables evolve smoothly and well-behaved
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under variation of the importance parameter �min. One can therefore extrap-

olate the results obtained for various values of �min to the untruncated case

�min → 0. It is expected that the full NCSM results are recovered at the

limit �min → 0 within the extrapolation errors.

The total angular momentum expectation value JExp is a reasonable quan-

tity to test the reliability of the extrapolation since the exact expectation

values are known to be integers for the full NCSM. As illustrated in Fig.

7.2 for the three lowest 10B states, the departure of the J expectation value

from the exact value as function of �min can reasonably be reproduced with

fit functions jext(�min) ∈
∏

2. The exact NCSM value �full NCSM of an ob-

servable �̂ usually lies between the �min → 0 extrapolations �(1)(�min) ∈
∏

1

and �(2)(�min) ∈
∏

2. This is even more expected to hold for the expectation

values of the intrinsic Hamiltonian since they display a more linear evolution

with �min than JExp does. The estimate of �full NCSM is then simply given by

the average value of �(1)(0) and �(2)(0) while the error is determined by their

distance,

�full NCSM =
1

2

(
�(2)(0) + �(1)(0)

)
± 1

2

(
�(2)(0)− �(1)(0)

)
. (7.22)

Quadrupole moments and B(E2) transition probabilities show a more

non-linear behavior which makes it harder to obtain a stable extrapolation.

It is however still reasonable to expect the �min = 0 value to lie between the

linear and second-order extrapolation as it becomes evident in Fig. 7.3, the

errors consequently just become larger.
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Figure 7.2: J and Hint expectation values for different values of �min in the 8ℏ!

model space. The expected result for the full NCSM usually lies between

the linear and second-order extrapolation �min → 0.
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Figure 7.3: Quadrupole moments and B(E2) transition probabilities (if lowest pos-

sible transition) for the first four 10B states at Nmaxℏ! = 8ℏ!.
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7.2.2 12C

For the 12C nucleus, excitation energies and reduced transition probabilities

have been calculated for the lowest two states. As Fig. 7.4 illustrates, the

predicted excitation energy is too small with a trend even to decrease as one

goes to larger model spaces. This may be an indication for the lack of three-

body force and assigned spin-orbit contributions in the CD-Bonn interaction.

From the convergence of the excitation energy one would suspect the value

of E2+ − E0+ to settle at around 3.5 MeV.
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Figure 7.4: Positive parity 12C excitation spectrum.

The evolution of the B(E2) values with increasing Nmaxℏ! is displayed in

Fig. 7.5. The convergence is not quite clear, and the final value from the 10ℏ!

model space B(E2, 2+ → 0+) = 4.3 e2fm4 clearly misses the experimental

value in the range of 8.2 e2fm4 (as cited in [30]) and 7.6 e2fm4 (as cited in

[31]). On the other hand, this result is similar to the ones presented in [30]

(3.51 e2fm4) and [31] (4.62 e2fm4), using a effective CD-Bonn interaction at

oscillator frequency ℏ! = 15 MeV.
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Figure 7.5: B(E2, 2+ → 0+) values for the states from Fig. 7.4.
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Chapter 8

Density Distributions and Form

Factors

One of the most elementary properties of nuclei is their size. Charge radii

can be measured with high precision, so they constitute good observables

to test theoretical predictions. Charge densities will be computed from the

one-particle density matrices of Hamiltonian eigenstates. With the density

matrix at hand, also electromagnetic form factors can easily be calculated.

The one-particle density matrix is defined in terms of field operators

 ̂†
msmt

(r),  ̂msmt
(r) as [21]

⟨r, msmt∣�̂Ψ∣r′, m′
sm

′
t⟩ := �(rmsmt; r

′m′
sm

′
t)

= ⟨Ψ∣ ̂†
m′

sm
′
t
(r′) ̂msmt

(r)∣Ψ⟩. (8.1)

In the single-particle basis {∣p⟩}

∣p⟩ ≡ ∣np lp mlp s msp mtp⟩ = ĉ†p∣0⟩, (8.2)

the field operator expansion reads

 ̂†
msmt

(r) =

[
∑

q

ĉ†q ⟨q∣
]

∣r, msmt⟩

 ̂msmt
(r) = ⟨r, msmt∣

[

∣
∑

p

∣p⟩ ĉp
]
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and in terms of these the density operator �̂Ψ becomes

�̂Ψ =
∑

pq

∣p⟩ ⟨Ψ∣ĉ†qĉp∣Ψ⟩
︸ ︷︷ ︸

�pq

⟨q∣. (8.3)

The diagonal elements of �̂Ψ can be interpreted as average density of particles

of type mt and with spin projection ms

⟨r, msmt∣�̂Ψ∣r, msmt⟩ ≡ �mtms
(r). (8.4)

Thus, integration over the space and spin spaces yields the particle number

Nmt
for the particle species mt

∑

ms

∫

dr �mtms
(r) = Nmt

=
{

Nn, mt=− 1
2

Np, mt=+ 1
2

(8.5)

In the following, the density will be calculated with angular and spin

degrees of freedom integrated out and fixed isospin projection mt,

�mtmt
(r) =

∑

ms

∫

d�

∫

d� sin �
∑

pq

⟨r, msmt∣p⟩⟨Ψ∣ĉ†qĉp∣Ψ⟩⟨q∣r, msmt⟩, (8.6)

which is just the radial neutron or proton density. Using the j-coupled har-

monic oscillator basis the coordinate representation of ∣p⟩ reads

⟨rmsmt∣p⟩ =
∑

mspmlp

(
lp 1/2 jp
mlp msp mjp

)

CG
Rnplp(r) Ylpmlp

(�, �) �ms,msp
�mt,mtp

.

(8.7)

Plugging these expressions for ⟨rmsmt∣p⟩ and analogous for ⟨q∣rmsmt⟩ into

(8.6) and making use of the orthogonality of spherical harmonics one obtains

�mt
(r) ≡ �mtmt

(r) =
∑

ms

∑

pq

�mtmtp
�mtmtq

�lp,lq�mjp ,mjq

× �pq

(
lp s jp

mjp−ms ms mjp

)

CG

(
lq s jq

mjq−ms ms mjq

)

CG
Rnplp(r) Rnqlq(r).(8.8)

From the density the root-mean-square charge radius can be calculated

⟨r2⟩ = 4�

∫

dr r4 �p(r). (8.9)
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The proton (or charge) density distribution �p(r) can be used to derive

the electromagnetic form factor ∣F (q)∣2 as the correction term for scattering

that accounts for the spatial extension of the nucleus

(
d�

dΩ

)

ext

= ∣F (q)∣2 ⋅
(
d�

dΩ

)

point

. (8.10)

F (q) can be obtained as the fourier transform of the charge density distri-

bution (normalized by 4�e
∫
dr r2�p(r) = Ze)

F (q) =

∫

dr �p(r) e
iqr. (8.11)

For spherical symmetric density distributions as they are used here the an-

gular integration can be performed arriving at

F (q) = 4�

∫

dr r2 �p(r)
sin(qr)

qr
. (8.12)

In order to actually calculate the matrix representation of �̂Ψ, it is not

feasible to implement the formula

�̂Ψ =
∑

pq

∣p⟩ ⟨Ψ∣ĉ†qĉp∣Ψ⟩ ⟨q∣ (8.13)

straightforwardly, because of the large dimension of the Slater determinant

basis {∣Φi⟩} in which ∣Ψ⟩ is represented

∣Ψ⟩ =
∑

i

Ci ∣Φi⟩. (8.14)

With this expansion, (8.13) reads

�̂Ψ =
∑

ij

∑

pq

C∗
i Cj ∣p⟩ ⟨Φi∣ĉ†q ĉp∣Φj⟩ ⟨q∣ (8.15)

The loop over the single particle states is never performed, because from

the Slater determinants ⟨Φi∣ and ∣Φj⟩ the single particle states pq that can

contribute to the elements �pq of �̂Ψ can easily be determined from Slater-

Condon rules.

Symmetry of �̂Ψ allows to compute only a triangle of its matrix repre-

sentation. In (8.13) this could be accomplished by restraining the sum over
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single particle states by p ≤ q. But it is even possible in (8.15), by restraining

the ∣Ψ⟩ expansion by i ≤ j. As a consequence, for two Slater determinants

in the single non-conincidence case (Sec. 9.3)

∣Φi⟩ = ∣a□⟩
∣Φj⟩ = ∣b□⟩, (8.16)

where the Box is used to abbreviate orbitals occupied in both determinants,

the restriction i < j will lead to the term

⟨a□∣ĉ†aĉb∣b□⟩, (8.17)

yielding a contribution to �ba, but not to the case in which the determinants

are exchanged

⟨b□∣ĉ†bĉa∣a□⟩ (8.18)

which would contribute to �ab. But, because of the symmetry of �̂Ψ, the

missing contribution to �ba from i > j is the very same than the one to �ba
from i < j. Thus, if one adds up all contributions one gets for �pq for p ≥ q

or p < q in the triangle p ≤ q of �, this triangle will be complete. Analog

considerations also hold for higher-body density matrices.

8.1 Results

8.1.1 16O

The IT-NCSM allows to go to model spaces beyond Nmaxℏ! = 8ℏ!, where

the model space dimensions in the full NCSM become too large for an ac-

tual solution even for the ground state problem only. At Nmaxℏ! = 14ℏ!

(Fig. 8.1(a)) the binding energy seem to have reached the tail of the typical

exponential convergence, so that the final value of −121.9 MeV already is

in reasonable agreement with the experimental one of −127.6 MeV [28]. An

exponential fit an the data predicts a ground state energy for Nmax →∞ of

−128.84 MeV.

The charge density (Fig. 8.1(b)) and charge form factor (Fig. 8.1(c))

vary only little with increasing model spaces so that no significant improve-

ment of the results would be expected from even larger spaces. Generally,
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the charge radii are too small (2.12 fm) compared to the experimental one

(2.7 fm [29]) which cause the calculated charge form factor to deviate from

experiment. Thus, the failure to reproduce the experimental charge form

factor may indicate a shortcoming of the employed interaction (from Sec.

7.2).
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Figure 8.1: (a) Binding energy of 16O. (b) Charge density. (c) Charge form factor.

Experimental values taken from [35].
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Chapter 9

Three-Body Forces

9.1 Introduction

Accurate prediction of nuclear wave functions and corresponding observables

as ground state energies, excitation spectra and other is a major challenge

in theoretical nuclear structure physics. With the upcoming of ever powerful

computer technologies nowadays converged full NCSM calculations for light

nuclei are available, offering an outstanding opportunity to confront these

theoretical predictions with experiment.

Although modern phenomenological NN potentials reproduce the NN

phase shifts virtually exactly, some nuclear observables calculated from these

potentials may miss the experimental observations significantly. For ground

state energies, the relevance of three-body forces is, for instance, reviewed in

[32] where full NCSM results for 3H and 4He from (bare and effective) NN

and NN+NNN interactions [41] obtained from chiral effective field theory ,

are compared. There, the NNN contribution to the ground state energy turns

out to be of the order −0.6 MeV for 3H and −3 MeV for 4He, whereas the con-

verged results show a significantly reduced deviation from the experimental

values of around 0.01 MeV and 0.1 MeV for 3H and for 4He respectively.

The need of three- or even higher-body forces is not surprising since the

NCSM treats the nucleon as being elementary, which one knows it is not.

One consequence is the existence of excitations of the nucleon, such as the

△-isobar. If the △ degrees of freedom are not implemented in the theory,
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processes involving these excitations, such as

b b
�

b
�

△

b

N N N

N N N

will naturally appear as three-nucleon interactions. The appearance of

many-body interactions is a common and well-known consequence of theories

in which many fundamental degrees of freedom have been reduced to a few

effective ones [37].

The actual fundamental degrees of freedom for the nuclear problem are

the quark and gluon fields of quantum chromodynamics. Thus, one would

ultimately describe the interaction between nucleons in terms of quarks and

gluons. However, nonperturbativity of QCD in the low-energy regime makes

it not feasible today to derive NN interactions directly from these fundamen-

tal degrees of freedom. To connect the theoretical description of the interac-

tion among nucleons with the underlying fundamental theory and especially

its symmetries anyway, one can work in the framework of chiral effective field

theory.

Chirality [38] is of great importance for the nucleon interaction. Since

the masses of the up and down quark are much smaller than the relevant

nucleonic mass scale - the nucleon mass - they can approximatively be treated

as being massless. The free Lagrangian of massless up and down quarks

ℒ = i ̄u /∂ u + i ̄d /∂ d (9.1)

is invariant under the chiral transformations on  = ( u,  d)

ΛV :  → ei
�

2
Θ 

ΛA :  → e−i5
�

2
Θ (9.2)
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and so is massless two-flavor QCD. ΛA implies an uniform meson mass spec-

trum, which is not observed in experiment, and, therefore, the symmetry ΛA

is spontaneously broken. The Goldstone bosons arising from this symmetry

breaking turn out to be the pions. Since chiral symmetry is only approxi-

mate the pions attain mass, which, however, is still much smaller than the

nucleon mass. So, with these light particles at hand, one would expect the

low-energy and -momentum regime to be dominated by the pions.

Effective field theory [39, 40] allows to isolate the most relevant ingre-

dients of a theory at a certain low energy scale and to separate these from

the rest. It is defined by the most general Lagrangian involving the rele-

vant light degrees of freedom that is consistent with the symmetries of the

underlying theory. Heavy-particle exchanges between the light particles are

thereby replaced by a tower of local interactions among the light field modes.

The effects of the suppressed heavier degrees of freedom is then encoded in

the coupling constants of the low-energy effective Lagrangian. Since chirality

suggests the physics to be dominated by pions, the S-matrix elements should

conveniently be expandable in pion masses and momenta. The application of

this chiral perturbation theory leads to the prediction of a NNN interaction

at N2LO [41]. Together with two low-energy constants cD, cE one has at

this order the NNN diagrams from Fig. 9.1, which have been regularized and

determined in [36, 41].

(a) (b) (c)

b

3 1 2

b
�

3 1 2

b b
��

3 1 2

bb

Figure 9.1: Diagrams of the three-body nucleon interaction appearing at N2LO of

chiral effective field theory. (a) Contact interaction. (b) One-pion ex-

change with two-nucleon contact. (c) Two-pion exchange.
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9.2 Matrix Elements

In order to employ NNN interactions in shell model calculations using second

quantization techniques, its matrix elements in the three-nucleon system

⟨(n(ls)jmtmt)(abc)∣V NNN∣(n(ls)jmtmt)(a′b′c′)⟩ (9.3)

have to be calculated. Translational invariance implies that the exact wave

function factorize into an intrinsic part which determines the nuclear prop-

erties and a part corresponding to the dynamics of the center-of-mass

∣ ⟩ = ∣cm⟩ ⊗ ∣int⟩. (9.4)

Since the nuclear interaction is invariant under translations its matrix ele-

ments must not depend on the particular center-of-mass state but on relative

coordinates only,

⟨cm∣ ⊗ ∣⟨int∣V NNN∣cm′⟩ ⊗ ∣int′⟩ = �cm,cm′ ⟨int∣V NNN∣int′⟩. (9.5)

By formulating the three-nucleon system in a translational invariant basis,

i.e. by performing a coordinate transformation from single-particle coordi-

nates (ra, rb, rc) to center-of-mass and relative coordinates (cm, �1, �2), the

center-of-mass degree of freedom can explicitly be omitted in the calculations,

facilitating these.

Section 9.2.1 will introduce Jacobi coordinates and the Talmi transfor-

mation, and Section 9.2.2 gives an overview over the principal procedure

that will lead to the desired translational invariant formulation of the three-

nucleon system, thereby introducing the notation used in the subsequent

sections and therefore serving as reference. The antisymmetrization of the

Jacobi basis and the transformation from the m-scheme are considered in

detail in Section 9.2.3 and 9.2.4.

9.2.1 Jacobi Coordinates and Talmi Transformation

The use of Jacobi coordinates enables to separate the center-of-mass degree

of freedom of a many-body system with single-particle coordinates ri and

masses mi by introducing the center-of-mass coordinate cm and relative co-

ordinates �i. The corresponding transformation is given in (9.6).
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Set g1 = r1, �1 = m1.

Tk :

⎧

⎨

⎩

�k = rk − gk−1

gk = (mkrk + �k−1gk−1)/�k, k = 2, . . . , A

�k = �k−1 +mk

(9.6)

In this sense �k represents the total mass of the subsystem consisting

of particles 1, . . . , k and gk is its center-of-mass position. The �i are the

Jacobi coordinates, where �k is the position of the k-th particle relative to

the center-of-mass of the previous k−1 particles. Using the transformation T ,

the original set of Cartesian coordinates r1, . . . , rA is transformed to Jacobi

coordinates

cm, �1, . . . , �A, (9.7)

where cm ≡ gA is the center-of-mass coordinate of the whole system.

Eq. (9.6) gives not the only possible set of Jacobi coordinates since any

orthogonal transformation among the �i, i = 1, . . . , A yields another conve-

nient set of coordinates. The particular choice for the following discussion is

given in Fig. 9.2.

b

m1

b

m2

b

m3

�0

�1

�2

�0 =
√

1
3
[r1 + r2 + r3]

�1 =
√

1
2
[r1 − r2]

�2 =
√

2
3

[
1
2
(r1 + r2)− r3

]

Figure 9.2: Jacobi Coordinates generated by (9.6).

For the two-nucleon system the center-of-mass degree of freedom can be

separated by the well-known Talmi transformation. For this transformation
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the use of harmonic oscillator wave functions is required since they have

the property that a coordinate transformation (r1, r2) → (R, r) on the two-

body wave function will lead to a finite expansion of oscillator functions in

the original coordinates [43],

∣[e1l1(r1), e2l2(r2)]Λ�⟩ =
∑

EL,el

⟨[EL, el]Λ∣[e1l1, e2l2]Λ⟩d ∣[EL(R), el(r)]Λ�⟩ (9.8)

where the quantum numbers e = 2n + l are used instead of n. Due to

conservation of the total oscillator energy

e1 + e2 = E + e (9.9)

the sum of the expansion is finite. The harmonic oscillator brackets in (9.8)

that serve as expansion coefficients depend on the oscillator quantum num-

bers and on the particular (orthogonal) transformation of the coordinates

that can be expressed by a single number d. This is because every orthogo-

nal transformation can be represented as
⎛

⎝
R

r

⎞

⎠ =

⎛

⎝

√
d

1+d

√
1

1+d
√

1
1+d

−
√

d
1+d

⎞

⎠

⎛

⎝
r1

r2

⎞

⎠ (9.10)

The transformation matrix M is orthogonal and symmetric, M−1 = MT =

M , and so the inverse transformation is given by the same matrix,
⎛

⎝
r1

r2

⎞

⎠ =

⎛

⎝

√
d

1+d

√
1

1+d
√

1
1+d

−
√

d
1+d

⎞

⎠

⎛

⎝
R

r

⎞

⎠ . (9.11)

9.2.2 General Procedure

Matrix elements of the NNN interaction are available in a total antisym-

metrized Jacobi basis. Since usually shell model calculations are performed

in the m-scheme the goal of the preceding sections will be to develop the

transformation of matrix elements between these basis sets, according to

[44, 45, 46].

The transition from a three-nucleon harmonic oscillator basis with single-

particle coordinates to one with Jacobi coordinates can be done by means of
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two subsequent Talmi transformations. The first transformation of coordi-

nates of particles a and b will lead from

∣nalamla(ra)⟩ ∣nblbmlb(rb)⟩ ∣nclcmlc(rc)⟩ (9.12)

to

∣N12ℒ12ℳ12(cm12)⟩ ∣n12l12m12(�1)⟩ ∣nclcmc(rc)⟩ (9.13)

where cm12 is the center-of-mass coordinate of particles a and b and �1 is

the first Jacobi coordinate. Single-particle coordinates are denoted by the

subscript a, b, c rather than 1,2,3 since these numbers are related to Jacobi

coordinates. A second Talmi transformation of the coordinates cm12 and rc

brings the desired result,

∣ncmlcmmcm(cm)⟩ ∣n12l12m12(�1)⟩ ∣n3l3m3(�2)⟩, (9.14)

with the total center-of-mass coordinate cm and the second Jacobi coordinate

�2. In fact, the way these Talmi transformations are done is in accordance

to Tk.

Including the spin etc. degrees of freedom one obtains a non-antisymmetrized

Jacobi basis of the form

∣ncmlcmmcm⟩ ∣�⟩ = ∣ncmlcmmcm⟩ ∣n12n3[(l12sab)j12(l3sc)I3]JMJ(tabtc)TMT ⟩
(9.15)

in which the spatial quantum numbers are as above and the (iso-) spins of

particle a and b are coupled to total (iso-) spin sab (tab). This basis will

be antisymmetrized by antisymmetrizing ∣�⟩ using coefficients of fractional

parentage obtained from diagonalizing the antisymmetrizer �. The result is

a basis of the relative-coordinate wave function of the form ∣NJTi⟩ so that

the complete three-nucleon basis reads

∣ncmlcmmcm⟩ ∣NJTi⟩ (9.16)

where N = 2n12 + l12 + 2n3 + l3 is the total oscillator energy and i is a

non-physical label on the basis states.

137



9.2.3 Antisymmetrization

In this section the antisymmetrization of the Jacobi basis

∣�⟩ = ∣n12n3[(l12sab)j12(l3sc)I3]JMJ(tabtc)TMT ⟩ (9.17)

is discussed. The expansion coefficients are obtained by diagonalizing the

antisymmetrizer �̂. Since the basis (9.17) is already antisymmetric under

1↔ 2 these coefficients are coefficients of fractional parentage.

The antisymmetrizer is defined as

�̂ =
1

3!

∑

P̂

(−1)P P̂

=
1

6

(

P̂123 − P̂132 + P̂231 − P̂213 + P̂312 − P̂321

)

. (9.18)

Antisymmetry in 1 ↔ 2 implies P̂ijk = −P̂jik and because of P̂123 = 1 the

antisymmetizer reduces to

�̂ =
1

3

(

1+ P̂312 + P̂231

)

. (9.19)

The permutation operators can easily be translated into transposition oper-

ators ([T̂ij , T̂kl] ∕= 0)

�̂ =
1

3

(

1+ T̂23T̂12 + T̂12T̂23
)

. (9.20)

Antisymmetry in 1↔ 2 implies T̂12 = −1 which leads to

�̂ =
1

3

(

1− 2T̂23
)

. (9.21)

So the matrix elements of �̂ have essentially reduced to the ones of T̂23.

In order to determine these matrix elements it is convenient to bring the

Jacobi basis (9.17) into the form

∣[n12l12, n3l3]LML⟩ ∣(sabsc)SMS⟩ ∣(tabtc)TMT ⟩. (9.22)

This is because on the one hand, the action of T̂23 ≡ T̂bc on these states

will be analogously for the spin and isospin part. On the other hand, the

spatial part is separated what is welcome since it will be subject to a Talmi
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transformation. The transformation (9.17) → (9.22) can straightforwardly

be found to be

∣n12n3[(l12sab)j12(l3sc)I3]JMJ ; (tabtc)TMT ⟩ =
∑

LS

∑

MLMS

ĵ12 Î3 L̂ Ŝ
{

l12 sab j12
l3 sc I3
L S J

} (
L S J
ML MS MJ

)

CG

× ∣[n12l12, n3l3]LML⟩ ∣(sabsc)SMS⟩ ∣(tabtc)TMT ⟩ (9.23)

with k̂ =
√
2k + 1and consequently the matrix elements of the transposition

operator are given as

⟨n′
12n

′
3[(l

′
12s

′
ab)j

′
12(l

′
3sc)I

′
3]J

′M ′
J ; (t

′
abtc)T

′M ′
T ∣

T̂bc ∣n12n3[(l12sab)j12(l3sc)I3]JMJ ; (tabtc)TMT ⟩

=
∑

L′S′

∑

M ′
L
M ′

S

∑

LS

∑

MLMS

ĵ′12 Î
′
3 L̂

′ Ŝ ′ ĵ12 Î3 L̂ Ŝ

×
{

l′12 s′
ab

j′12
l′3 sc I′3
L′ S′ J ′

}{
l12 sab j12
l3 sc I3
L S J

}

×
(

L′ S′ J ′

M ′
L

M ′
S

M ′
J

)

CG

(
L S J
ML MS MJ

)

CG

× ⟨[n′
12l

′
12, n

′
3l

′
3]L

′M ′
L∣ T̂bc ∣[n12l12, n3l3]LML⟩

× ⟨(s′absc)S ′M ′
S∣ T̂bc ∣(sabsc)SMS⟩

× ⟨(t′abtc)T ′M ′
T ∣ T̂bc ∣(tabtc)TMT ⟩. (9.24)

In the following sections the isospin

⟨(t′abtc)T ′M ′
T ∣ T̂bc ∣(tabtc)TMT ⟩ (9.25)

and spatial matrix element

⟨[n′
12l

′
12, n

′
3l

′
3]L

′M ′
L∣ T̂bc ∣[n12l12, n3l3]LML⟩ (9.26)

are calculated.

Isospin Matrix Element

To calculate the isospin matrix element

⟨(t′abtc)T ′MT ′ ∣ T̂bc ∣(tabtc)TMT ⟩ (9.27)
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the action of T̂bc on the isospin wave function is considered,

∣[(tatb)tabtc]TMT ⟩ =
∑

mtamtb

∑

mtab
mtc

(
ta tb tab
mta mtb

mtab

)

CG

(
tab tc T
mtab

mtc MT

)

CG
∣tamtatbmtbtcmtc⟩

⇒ T̂bc ∣[(tatb)tabtc]TMT ⟩ =
∑

mtamtb

∑

mtab
mtc

(
ta tb tab
mta mtb

mtab

)

CG

(
tab tc T
mtab

mtc MT

)

CG
∣tamtatcmtctbmtb⟩.

(9.28)

From a glance on the Clebsch-Gordan coefficients it follows that it is now par-

ticles a and c (that is in the state ∣tbmtb⟩) that are coupled to an intermediate

angular momentum, but to the same state ∣tabmtab⟩ as before.

Regarding the T -coupling, T̂bc changes the coupling order according to

∣[(tatb)tabtc]TMT ⟩ → ∣[(tatc)tactb]TMT ⟩. (9.29)

The new coupling order can be expanded in the old one using 6j-symbols,

∣[(tatc)tactb]TMT ⟩
=

∑

t̃ab

(−1)tb+tc+t̃ab+tac ˆ̃tab t̂ac

{
tb ta t̃ab
tc T tac

}

∣[(tatb)t̃abtc]TMT ⟩

=
∑

t̃ab

(−1)tb+tc+t̃ab+tab ˆ̃tab t̂ab

{
tb ta t̃ab
tc T tab

}

∣[(tatb)t̃abtc]TMT ⟩ (9.30)

where in the last row tac has been set to tab because of the argument above.

Using (9.30) the isospin matrix element (9.27) is immediately found to be

⟨(t′abtc)T ′MT ′ ∣ T̂bc ∣(tabtc)TMT ⟩
= �T ′T �MT ′MT

(−1)1+t′
ab
+tab t̂′ab t̂ab

{
ta tb t′

ab

tc T tab

}

. (9.31)

Spatial Matrix Element

For the spatial matrix element

⟨[n′
12l

′
12, n

′
3l

′
3]L

′M ′
L∣ T̂bc ∣[n12l12, n3l3]LML⟩ (9.32)

the action of T̂bc on the spatial wave function

∣ncmlcmmcm(cm)⟩ ∣[n12l12(�1), n3l3(�2)]LML⟩ (9.33)
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is considered. Some exercise leads to the expansion of (9.33) into the product

basis of the coordinates ri

∣ncmlcmmcm(cm)⟩ ∣[n12l12(�1), n3l3(�2)]LML⟩

=
∑

m12m3

∑

ΛMΛ

∑

nclcN12ℒ12

∑

ℳ12mc

∑

L12M12

∑

nalanblb

∑

mamb

× (−1)l12+l3−L (−1)ℒ12+lc−Λ

× �2ncm+lcm+2n3+l3,2N12+ℒ12+2nc+lc

× �2n12+l12+2N12+ℒ12,2na+la+2nb+lb

× ⟨[N12ℒ12, nclc]Λ∣[ncmlcm, n3l3]Λ⟩1/2
× ⟨[nala, nblb]L12∣[n12l12,N12ℒ12]L12⟩1
×
(

l3 l12 L
m3 m12 M12

)

CG

(
lcm l3 Λ
mcm m3 MΛ

)

CG

×
(

ℒ12 lc Λ
ℳ12 mc MΛ

)

CG

(
ℒ12 l12 L12
ℳ12 m12 M12

)

CG

×
(

la lb L12
ma mb M12

)

CG

× ∣nclcmc(rc)⟩ ∣nalama(ra)⟩ ∣nblbmb(rb)⟩ (9.34)

T̂bc acts on the wave functions only,

T̂bc ∣nclcmc(rc)⟩ ∣nalama(ra)⟩ ∣nblbmb(rb)⟩
= ∣nclcmc(rb)⟩ ∣nalama(ra)⟩ ∣nblbmb(rc)⟩. (9.35)

In the product wave function, the positions of the quantum numbers have not

changed and so all expansion coefficients can be used without any alteration

to recast (9.34) into the form (9.32). The only difference will not be in the

quantum numbers but in the coordinates since everyplace where originally a

ra occurred in (9.32) after recast there will be rb and vice versa.

Therefore, T̂bc induces a coordinate transformation on the �i defined in

Fig. 9.2,

�′
1 = T̂bc �1 =

√
1
2
[ra − rc]

�′
2 = T̂bc �2 =

√
2
3

[
1
2
(ra + rc)− rb

]
. (9.36)

As in (9.10) this transformation can be represented by an orthogonal matrix

and it is easily solved for d yielding d = 1/3. With this, the states in the
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coordinates �′
i can be expanded in states with the original coordinates �i by

means of a Talmi transformation,

T̂bc∣[n12l12(�1), n3l3(�2)]LML⟩

= ∣[n12l12(�
′
1), n3l3(�

′
2)]LML⟩

=
∑

ñ12 l̃12

∑

ñ3 l̃3

�2ñ12+l̃12+2ñ3+l̃3,2n12+l12+2n3+l3

× ⟨[ñ12 l̃12, ñ3l̃3]L∣[n12l12, n3l3]L⟩1/3 ∣[ñ12l̃12, ñ3l̃3]LML⟩. (9.37)

Then, the matrix element (9.32) follows as

⟨[n′
12l

′
12, n

′
3l

′
3]L

′M ′
L∣ T̂bc ∣[n12l12, n3l3]LML⟩

= �L′L �M ′
L
ML

�2n′
12+l′12+2n′

3+l′3,2n12+l12+2n3+l3

× ⟨[n′
12l

′
12, n

′
3l

′
3]L∣[n12l12, n3l3]L⟩1/3. (9.38)

Total Matrix Element

With the results of the preceding sections the total matrix element of the

transposition operator reads

⟨n′
12n

′
3[(l

′
12s

′
ab)j

′
12(l

′
3sc)I

′
3]J

′M ′
J (t

′
abtc)T

′M ′
T ∣

T̂bc ∣n12n3[(l12sab)j12(l3sc)I3]JMJ(tabtc)TMT ⟩

=
∑

L′S′

∑

M ′
L
M ′

S

∑

LS

∑

MLMS

× �L′L �M ′
L
ML

�S′S �M ′
S
MS

�T ′T �M ′
T
MT

× �2n′
12+l′12+2n′

3+l′3,2n12+l12+2n3+l3

× ĵ′12 Î
′
3 L̂

′ Ŝ ′ ĵ12 Î3 L̂ Ŝ ŝ′ab ŝab t̂
′
ab t̂ab

× (−1)1+s′
ab
+sab (−1)1+t′

ab
+tab

×
{

sa sb s′
ab

sc S sab

}{
ta tb t′

ab

tc T tab

}

×
{

l′12 s′
ab

j′12
l′3 sc I′3
L′ S′ J ′

}{
l12 sab j12
l3 sc I3
L S J

}

×
(

L′ S′ J ′

M ′
L

M ′
S

M ′
J

)

CG

(
L S J
ML MS MJ

)

CG

× ⟨[n′
12l

′
12, n

′
3l

′
3]L∣[n12l12, n3l3]L⟩1/3. (9.39)
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The delta functions eliminate some summations and then the orthogonality

property of the Clebsch-Gordan coefficients

∑

MLMS

(
L S J ′

mL mS M ′
J

)

CG

(
L S J
mL mS MJ

)

CG
= �J ′J �M ′

J
MJ

(9.40)

can be used to show the diagonality in J,MJ . The final result then becomes

⟨n′
12n

′
3[(l

′
12s

′
ab)j

′
12(l

′
3sc)I

′
3]J

′M ′
J (t

′
abtc)T

′M ′
T ∣

T̂bc ∣n12n3[(l12sab)j12(l3sc)I3]JMJ(tabtc)TMT ⟩
= �J ′J �M ′

J
MJ

�T ′T �M ′
T
MT

�2n′
12+l′12+2n′

3+l′3,2n12+l12+2n3+l3

×
∑

LS

(−1)s′ab+sab+t′
ab
+tab L̂2 Ŝ2 ĵ′12 ĵ12 Î

′
3 Î3 ŝ

′
ab ŝab t̂

′
ab t̂ab

×
{

sa sb s′
ab

sc S sab

}{
ta tb t′

ab

tc T tab

}{ l′12 s′
ab

j′12
l′3 sc I′3
L S J

}{
l12 sab j12
l3 sc I3
L S J

}

× ⟨[n′
12l

′
12, n

′
3l

′
3]L∣[n12l12, n3l3]L⟩1/3. (9.41)

Total Antisymmetric Basis

From Section 9.2.4 follows that the antisymmetrizer is diagonal in the quan-

tum numbers T , J and N ≡ 2n12 + l12 + 2n3 + l3. Therefore, each NJT

block of dimension dim NJT can be diagonalized separately.

Actually, the antisymmetrizer, as well as the interaction, are also diagonal

in the projection quantum numbers MJ and MT , but since their matrix

elements do not depend on these quantum numbers at all they will ultimately

be represented in the basis with quantum numbers �/{MJ ,MT}.

Such a NJT block has dim NJT eigenvectors, but not all correspond to

physical states

∣NiJT ⟩ (9.42)

with eigenvalue 1. The other states

∣NlJT ⟩sp (9.43)

are spurious and correspond to eigenvalues 0. The total number of physical

states, or the physical dimension dimp NJT of the block, can be determined
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from the trace of the block since it is equal to the sum of its eigenvalues. So

the physical states from a NJT block can be written as

∣NiJT ⟩ =
dim NJT
∑

k=1

c
(NJT )
k,i ∣�(NJT )

k ⟩, i = 1, . . . , dimp NJT (9.44)

where ∣�(NJT )
k ⟩ denotes the k-th state of the basis ∣�/{MJ ,MT}⟩ whose quan-

tum numbers are in accordance with N, J, T ,

N = 2n12 + l12 + 2n3 + l3

∣j12 − I3∣ ≤ J ≤ j12 + I3

∣tab − 1
2
∣ ≤ T ≤ tab +

1
2
, (9.45)

and the coefficient of fractional parentage c
(NJT )
k,i is just the k-th component

of the i-th physical eigenvector of the block NJT . Exploiting the diagonality

of the antisymmetrizer in the quantum numbers N, J, T and the diagonality

of the interaction in the quantum numbers J and T is crucial in practical

computations, so that their block structure will be explicitly accounted for

in the formulas by the use of notations like �
(NJT )
k . A sum over the whole

basis ∣�/{MJ ,MT}⟩, i.e., over the set of quantum numbers

n12, l12, n3, l3, sab, j12, I3, J, tab, T (9.46)

can thus be represented conveniently as

∑

�/{MJ ,MT }

f(�/{MJ ,MT}) =
∑

NJT

dim NJT
∑

k=1

f(�
(NJT )
k ). (9.47)

9.2.4 m-Scheme ↔ Jacobi Transformation

This section considers the transformation of the interaction matrix elements

from the total antisymmetrized Jacobi basis ∣NJTi⟩ to the m-scheme

⟨NiJT ∣ V NNN ∣N ′i′JT ⟩ → ⟨abc∣ V NNN ∣a′b′c′⟩. (9.48)

It will be convenient to couple the state

∣abc⟩ = ∣na(lasa)jamamta⟩∣nb(lbsb)jbmbmtb⟩∣nc(lcsc)jcmcmtc⟩ (9.49)
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to total angular momentum J first,

∣abc⟩ =
∑

J12

∑

J

(
ja jb J12
ma mb ma+mb

)

CG

(
J12 jc J

ma+mb mc ℳ

)

CG
{{∣a⟩∣b⟩}J12∣c⟩}Jℳ

(9.50)

where ℳ = ma +mb +mc. The identity

1 =
∑

ncmlcm
mcm

∑

�

∣ncmlcmmcm⟩∣�⟩⟨ncmlcmmcm∣⟨�∣, (9.51)

where � denotes the set of quantum numbers

� = {n12, l12, n3, l3, sab, j12, I3, J,MJ , tab, T,MT}, (9.52)

can be written as

1 =
∑

ncmlcm

∑

�

∑

J̃ ℳ̃

{∣ncmlcm⟩∣�⟩}J̃ ℳ̃{⟨ncmlcm∣⟨�∣}J̃ ℳ̃, (9.53)

where � goes over into �→ �/MJ ,

� = {n12, l12, n3, l3, sab, j12, I3, J, tab, T,MT}. (9.54)

Inserting into (9.50) yields

∣abc⟩ =
∑

J12

∑

J

∑

ncmlcm

∑

�

(
ja jb J12
ma mb ma+mb

)

CG

(
J12 jc J

ma+mb mc ℳ

)

CG

T
[

a b c J12
ncm lcm � J

]
{∣ncmlcm⟩∣�⟩}Jℳ (9.55)

with the overlap

T
[

a b c J12
ncm lcm � J

]
:= {⟨ncmlcm∣⟨�∣}J {{∣a⟩∣b⟩}J12∣c⟩}J (9.56)

calculated in Section 9.2.4. T [⋅] is diagonal in the total isospin projection

and so MT from � can be fixed to be

MT =ℳT ≡ mta +mtb +mtc , (9.57)

so that � goes over into �→ �/MT ,

� = {n12, l12, n3, l3, sab, j12, I3, J, tab, T}. (9.58)
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Analog to (9.53) an identity can be expressed in terms of ∣NiJT ⟩,

1 =
∑

ñcml̃cm
m̃cm

∑

Ni

∑

J̃M̃J

∑

T̃

∣ñcml̃cmm̃cm⟩∣NiJ̃M̃J T̃ ⟩⟨ñcml̃cmm̃cm∣⟨NiJ̃M̃J T̃ ∣

1 =
∑

ñcm l̃cm

∑

Ni

∑

J̃

∑

T̃

∑

J̃ ℳ̃

{∣ñcml̃cm⟩∣NiJ̃T̃ ⟩}J̃ ℳ̃{⟨ñcml̃cm∣⟨NiJ̃T̃ ∣}J̃ ℳ̃.

(9.59)

Regarding the overlap

{⟨ñcml̃cm∣⟨NiJ̃T̃ ∣}J̃ ℳ̃{∣ncmlcm⟩∣�⟩}Jℳ

= �J̃ J �ℳ̃ℳ �J̃J �ñcmncm
�l̃cmlcm

�N,2n12+l12+2n3+l3 �T̃ T

× {⟨ncmlcm∣⟨NiJT ∣}Jℳ{∣ncmlcm⟩∣�⟩}Jℳ

= c�i × �J̃ J �ℳ̃ℳ �J̃J �ñcmncm
�l̃cmlcm

�N,2n12+l12+2n3+l3 �T̃ T ,

(9.60)

where

c�i := {⟨ncmlcm∣⟨NiJT ∣}Jℳ{∣ncmlcm⟩∣�⟩}Jℳ, (9.61)

inserting (9.59) into (9.55) leads to the final expansion

∣abc⟩ =
∑

J12

∑

J

∑

ncmlcm

∑

�

∑

i

(
ja jb J12
ma mb ma+mb

)

CG

(
J12 jc J

ma+mb mc ℳ

)

CG

T
[

a b c J12
ncm lcm � J

]
c�i {∣ncmlcm⟩∣NiJT ⟩}Jℳ

ℳ = ma +mb +mc

N = 2n12 + l12 + 2n3 + l3

� = {n12, l12, n3, l3, sab, j12, I3, J, tab, T}. (9.62)

According to [46], the overlaps

c�i := {⟨ncmlcm∣⟨NiJT ∣}Jℳ{∣ncmlcm⟩∣�⟩}Jℳ, (9.63)

are identical to

⟨NiJT ∣�⟩ (9.64)

so that these are the coefficients of fractional parentage obtained from diag-

onalizing the antisymmetrizer in Section 9.2.3.
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Matrix Element

Using expansion (9.62), the matrix element (9.48) reads

⟨abc∣V NNN∣a′b′c′⟩
=

∑

J12

∑

J

∑

ncmlcm

∑

�

∑

i

∑

J ′
12

∑

J ′

∑

n′
cml′cm

∑

�′

∑

i′

×
(

ja jb J12
ma mb ma+mb

)

CG

(
J12 jc J

ma+mb mc ℳ

)

CG

×
(

j′a j′
b

J ′
12

m′
a m′

b
m′

a+m′
b

)

CG

(
J ′
12 j′c J ′

m′
a+m′

b
m′

c ℳ′

)

CG

× T
[

a b c J12
ncm lcm � J

]
T
[

a′ b′ c′ J ′
12

n′
cm l′cm �′ J ′

]

c�i c�′i′

× {⟨ncmlcm∣⟨NiJT ∣}Jℳ V NNN {∣n′
cml

′
cm⟩∣N ′i′J ′T ′⟩}J ′ℳ′

(9.65)

The matrix element in the last line has to be expressed in terms of the

uncoupled basis,

{⟨ncmlcm∣⟨NiJT ∣}Jℳ V NNN {∣n′
cml

′
cm⟩∣N ′i′J ′T ′⟩}J ′ℳ′

=
∑

mcmMJ

∑

m′
cmM ′

J

(
lcm J J
mcm MJ ℳ

)

CG

(
l′cm J ′ J ′

m′
cm M ′

J
ℳ′

)

CG

× ⟨ncmlcmmcm∣n′
cml

′
cmm

′
cm⟩⟨NiJMJT ∣ V NNN ∣N ′i′J ′M ′

JT
′⟩

=
∑

mcmMJ

∑

m′
cmM ′

J

(
lcm J J
mcm MJ ℳ

)

CG

(
l′cm J ′ J ′

m′
cm M ′

J ℳ′

)

CG

× �ncmn′
cm
�lcml′cm �mcmm′

cm
�JJ ′ �MJM

′
J
�TT ′

× ⟨NiJMJT ∣ V NNN ∣N ′Ji′MJT ⟩

= �ncmn′
cm
�lcml′cm �mcmm′

cm
�JJ ′ �TT ′

∑

mcmMJ

(
lcm J J
mcm MJ ℳ

)

CG

(
lcm J J ′

mcm MJ ℳ′

)

CG

× ⟨NiJMJT ∣ V NNN ∣N ′i′JMJT ⟩ (9.66)

where the diagonality of V NNN in the quantum numbers J , MJ , T has been

used. Furthermore, the interaction is independent from MJ , rather than only

diagonal, and so the matrix element

⟨NiJMJT ∣ V NNN ∣N ′i′JMJT ⟩ = ⟨NiJT ∣ V NNN ∣N ′i′JT ⟩ (9.67)
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can be pulled in front of the sum. Then once more the orthogonality of

Clebsch-Gordan coefficients eliminates the sum and the symbols,

{⟨ncmlcm∣⟨NiJT ∣}Jℳ V NNN {∣n′
cml

′
cm⟩∣N ′i′J ′T ′⟩}J ′ℳ′

= �ncmn′
cm
�lcml′cm �mcmm′

cm
�JJ ′ �TT ′

× ⟨NiJT ∣ V NNN ∣N ′i′JT ⟩
∑

mcmMJ

(
lcm J J
mcm MJ ℳ

)

CG

(
lcm J J ′

mcm MJ ℳ′

)

CG

= �ncmn′
cm
�lcml′cm �mcmm′

cm
�JJ ′ �TT ′ �JJ ′ �ℳℳ′

× ⟨NiJT ∣ V NNN ∣N ′i′JT ⟩. (9.68)

Inserting (9.66) into (9.65), and replacingℳ by ma+mb +mc according

to (9.62), yields

⟨abc∣V NNN∣a′b′c′⟩
=

∑

ncmlcm

∑

J

∑

J12J ′
12

∑

��′

∑

ii′

×
(

ja jb J12
ma mb ma+mb

)

CG

(
J12 jc J

ma+mb mc ma+mb+mc

)

CG

×
(

j′a j′
b

J ′
12

m′
a m′

b
m′

a+m′
b

)

CG

(
J ′
12 j′c J

m′
a+m′

b
m′

c ma+mb+mc

)

CG

× T
[

a b c J12 J J
ncm lcm n12 l12 n3 l3
sab j12 I3 tab T

]

T

[
a′ b′ c′ J ′

12 J J

ncm lcm n′
12 l′12 n′

3 l′3
s′
ab

j′12 I′3 t′
ab

T

]

× c
[ n12 l12 n3 l3

sab j12 I3 J
tab T i

]

c

[
n′
12 l′12 n′

3 l′3
s′
ab

j′12 I′3 J

t′
ab

T i′

]

× ⟨NiJT ∣ V NNN ∣N ′i′JT ⟩

N = 2n12 + l12 + 2n3 + l3

N ′ = 2n′
12 + l′12 + 2n′

3 + l′3

� = {n12, n3, l12, sab, j12, l3, I3, J, tab, T,MT}
�′ = {n′

12, n
′
3, l

′
12, s

′
ab, j

′
12, l

′
3, I

′
3, t

′
ab}. (9.69)

Some of the delta functions in (9.66) eliminated sums over indices contained

in �′ so that is has been redefined.

Here two � functions will be included that come from T [⋅], arising from

the fact that there is no non-vanishing overlap between states with different
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oscillator energy. Therefore, the summation range over oscillator quantum

numbers in (9.51)

∑

ncmlcm

∑

n12l12

∑

n3l3

∑

n′
12l

′
12

∑

n′
3l

′
3

(9.70)

is constrained by

2ncm + lcm + 2n12 + l12 + 2n3 + l3 = 2na + la + 2nb + lb + 2nc + lc

2ncm + lcm + 2n′
12 + l′12 + 2n′

3 + l′3 = 2n′
a + l′a + 2n′

b + l′b + 2n′
c + l′c.

(9.71)

In summary, the final form of the transformation of the interaction matrix

elements from the total antisymmetric Jacobi basis to the m-scheme reads

⟨abc∣V NNN∣a′b′c′⟩
=

∑

ncmlcm

∑

J

∑

J12J ′
12

∑

��′

∑

ii′

× �2ncm+lcm+2n12+l12+2n3+l3,2na+la+2nb+lb+2nc+lc

× �2ncm+lcm+2n′
12+l′12+2n′

3+l′3,2n
′
a+l′a+2n′

b
+l′

b
+2n′

c+l′c

×
(

ja jb J12
ma mb ma+mb

)

CG

(
J12 jc J

ma+mb mc ma+mb+mc

)

CG

×
(

j′a j′
b

J ′
12

m′
a m′

b
m′

a+m′
b

)

CG

(
J ′
12 j′c J

m′
a+m′

b
m′

c ma+mb+mc

)

CG

× T
[

a b c J12 J J
ncm lcm n12 l12 n3 l3
sab j12 I3 tab T

]

T

[
a′ b′ c′ J ′

12 J J

ncm lcm n′
12 l′12 n′

3 l′3
s′
ab

j′12 I′3 t′
ab

T

]

× c
[ n12 l12 n3 l3

sab j12 I3 J
tab T i

]

c

[
n′
12 l′12 n′

3 l′3
s′
ab

j′12 I′3 J

t′
ab

T i′

]

× ⟨NiJT ∣ V NNN ∣N ′i′JT ⟩

N = 2n12 + l12 + 2n3 + l3

N ′ = 2n′
12 + l′12 + 2n′

3 + l′3

� = {n12, n3, l12, sab, j12, l3, I3, J, tab, T,MT}
�′ = {n′

12, n
′
3, l

′
12, s

′
ab, j

′
12, l

′
3, I

′
3, t

′
ab}. (9.72)

As mentioned in Section 9.2.3, it is advantageous to use the ∣�(NJT )⟩ repre-

sentation of ∣�⟩. Regarding the different sets of quantum numbers contained
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in � and �′ in Eq. (9.72), their sums are replaced according to

∑

�

∑

�′

f(�) f(�′) →
∑

NJT

∑

k

∑

N ′

∑

k′

f(�
(NJT )
k ) f(�

(N ′JT )
k′ ). (9.73)

⟨abc∣V NNN∣a′b′c′⟩
=

∑

ncmlcm

∑

J

∑

J12J ′
12

∑

NN ′

∑

JT

∑

kk′

∑

ii′

× �2ncm+lcm+2n12+l12+2n3+l3,2na+la+2nb+lb+2nc+lc

× �2ncm+lcm+2n′
12+l′12+2n′

3+l′3,2n
′
a+l′a+2n′

b
+l′

b
+2n′

c+l′c

×
(

ja jb J12
ma mb ma+mb

)

CG

(
J12 jc J

ma+mb mc ma+mb+mc

)

CG

×
(

j′a j′
b

J ′
12

m′
a m′

b
m′

a+m′
b

)

CG

(
J ′
12 j′c J

m′
a+m′

b
m′

c ma+mb+mc

)

CG

× T

[
a b c

ncm lcm �
(NJT )
k

J J12

]

T

[
a′ b′ c′

ncm lcm �
(N′JT )

k′

J J ′
12

]

× c
(NJT )
k,i c

(N ′JT )
k′,i′

× ⟨NiJT ∣ V NNN ∣N ′i′JT ⟩. (9.74)

Further simplification can be obtained from defining a new symbol T̃ via

T̃

[
a b c

ncm lcm �
(NJT )
k

J

]

=
∑

J12

(
ja jb J12
ma mb ma+mb

)

CG

(
J12 jc J

ma+mb mc ma+mb+mc

)

CG

× T

[
a b c

ncm lcm �
(NJT )
k

J J12

]

. (9.75)

The Overlap T

The overlap

T
[ a b c J12 J J
ncm lcm n12 l12 n3 l3
sab j12 I3 tab T

]

:= {⟨ncmlcm∣⟨�∣}J{{∣a⟩∣b⟩}J12∣c⟩}J (9.76)

will be evaluated by expanding the state {{∣a⟩∣b⟩}J12∣c⟩}J in the basis {∣ncmlcm⟩∣�⟩}J .

To do so, a number of transformations have to be performed that will be dis-

cussed in the following. So, starting with {{∣a⟩∣b⟩}J12∣c⟩}J ,
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∣ na la sa ⟩ ∣ nb lb sb ⟩ ∣ nc lc sc ⟩ ∣ ta tb tc ⟩
ja jb jc

J12

J

at first the isospins are coupled to a total T , according to

∣tamtatbmtbtcmtc⟩ → ∣[(tatb)tabtc]Tmta +mtb +mtc⟩ (9.77)

by means of Clebsch-Gordan coefficients,

∣tamtatbmtbtcmtc⟩
=

∑

tab

∑

TMT

( ta tb tab
mta mtb

mta+mtb

)

CG

(
tab tc T

mta+mtb
mtc MT

)

CG
∣[(tatb)tabtc]TMT ⟩

(9.78)

∣ na la sa ⟩ ∣ nb lb sb ⟩ ∣ nc lc sc ⟩ ∣ ta tb tc ⟩
ja jb jc

J12

J

tab

T

Then the single-particle spins and orbital angular momenta of particles

1 and 2 have to be decoupled in order to be able to perform the Talmi

transformation, for which their orbital angular momenta have to be coupled

to a total orbital angular momentum L12. This de- and re-coupling can be

done in one single transformation, taking advantage of the J12-coupling. All

what is needed is a change of the J12-coupling order according to

∣[(lasa)ja(lbsb)jb]J12⟩ → ∣[(lalb)L12(sasb)sab]J12⟩ (9.79)

where the new intermediate angular momenta L12 and sab are introduced.

This is most easily obtained using 9j-symbols,

∣[(lasa)ja(lbsb)jb]J12⟩ =
∑

L12sab

ĵaĵbL̂12ŝ12

{
la sa ja
lb sb jb
L12 sab J12

}

∣[(lalb)L12(sasb)sab]J12⟩. (9.80)
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∣ na la sa ⟩ ∣ nb lb sb ⟩ ∣ nc lc sc ⟩ ∣ ta tb tc ⟩
L12 sab jc

J12

J

tab

T

Rearrangement of wave function parts for optical convenience gives :

∣ na la ⟩ ∣ nb lb ⟩ ∣ sa sb ⟩ ∣ nc lc sc ⟩ ∣ ta tb tc ⟩
L12 sab jc

J12

J

tab

T

The first Talmi transformation transforms the single-particle coordinates

ra, rb into the relative (Jacobi) coordinate �1 and the center-of-mass co-

ordinate for particles 1 and 2, cm12, according to (REF)

∣[nala(ra), nblb(rb)]L12⟩ =
∑

N12ℒ12n12l12

�2N12+ℒ12+2n12+l12,2na+la+2nb+lb

× ⟨[N12ℒ12, n12l12]L12∣[nala(ra), nblb(rb)]L12⟩1
× ∣[N12ℒ12(cm12), n12l12(�1)]L12⟩, (9.81)

∣ N12 ℒ12 ⟩ ∣ n12 l12 ⟩ ∣ sa sb ⟩ ∣ nc lc sc ⟩ ∣ ta tb tc ⟩
L12 sab jc

J12

J

tab

T

The second Talmi transformation will be about the wave functions ∣N12ℒ12⟩
and ∣nclc⟩. In preparation for that the ∣(lcsc)jc⟩-coupling has to be broken

up and it is convenient by doing so to rearrange the J -coupling in a way
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that all three spins and orbital angular momenta each are coupled to total

angular momenta ℒ and S3, according to

∣[(L12sab)J12(lcsc)jc]J ⟩ → ∣[(L12lc)ℒ(sabsc)S3]J ⟩. (9.82)

Again, this rearrangement is easily obtained employing 9j-symbols

∣[(L12sab)J12(lcsc)jc]J ⟩ =
∑

ℒS3

Ĵ12ĵcℒ̂Ŝ3

{ L12 sab J12
lc sc jc
ℒ S3 J

}

∣[(L12lc)ℒ(sabsc)S3]J ⟩ (9.83)

arriving at:

∣ N12 ℒ12 ⟩ ∣ n12 l12 ⟩ ∣ nc lc ⟩ ∣ sa sb sc ⟩ ∣ ta tb tc ⟩
L12

ℒ

sab

S3

J

tab

T

For the second Talmi transformation that transforms the coordinates cm12

and rc into the Jacobi coordinate �2 and the total center-of-mass coordinate

�0 , the orbital angular momenta of ∣N12ℒ12⟩ and ∣nclc⟩ need to be coupled

to a total orbital angular momentum Λ. For this purpose, the ℒ-coupling

order is changed according to

∣[(ℒ12l12)L12lc]ℒ⟩ → ∣[(ℒ12lc)Λl12]ℒ⟩. (9.84)

Since this is a reordering of a three-momentum coupling the transformation

coefficients are given by 6j-symbols as usual,

∣[(ℒ12l12)L12lc]ℒ⟩ =
∑

Λ

(−1)l12+lc+L12ΛL̂12Λ̂
{

lc ℒ12 Λ
l12 ℒ L12

}
∣[(ℒ12lc)Λl12]ℒ]⟩, (9.85)

∣ N12 ℒ12 ⟩ ∣ nc lc ⟩ ∣ n12 l12 ⟩ ∣ sa sb sc ⟩ ∣ ta tb tc ⟩

Λ

ℒ

sab

S3

J

tab

T
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The second Talmi transformation separates the three-body center-of-mass

from the relative-coordinate part

∣[N12ℒ12(cm12), nclc(rc)]Λ⟩ =
∑

ncmlcmn3l3

�2N12+ℒ12+2nc+lc,2ncm+lcm+2n3+l3

× ⟨[ncmlcm, n3l3]Λ∣[N12ℒ12, nclc]Λ⟩2
× ∣[ncmlcm(�0), n3l3(�2)]Λ⟩, (9.86)

∣ ncm lcm ⟩ ∣ n3 l3 ⟩ ∣ n12 l12 ⟩ ∣ sa sb sc ⟩ ∣ ta tb tc ⟩

Λ

ℒ

sab

S3

J

tab

T

What is left after the Talmi transformations is to recast this state into the

form of the left state in (9.76). Since there the center-of-mass angular mo-

mentum is not subject to a intermediate coupling in the J -coupling, the

Λ-coupling is broken up first by a reordering of the ℒ-coupling according to

∣[(lcml3)Λ]ℒ⟩ → ∣[lcm(l3l12)L3]ℒ⟩ (9.87)

by the use of 6j-symbols

∣[(lcml3)Λ]ℒ⟩ =
∑

L3

(−1)lcm+l3+l12+ℒΛ̂L̂3

{
lcm l3 Λ
l12 ℒ L3

}
∣[lcm(l3l12)L3]ℒ⟩, (9.88)

∣ ncm lcm ⟩ ∣ n3 l3 ⟩ ∣ n12 l12 ⟩ ∣ sa sb sc ⟩ ∣ ta tb tc ⟩
L3

ℒ

sab

S3

J

tab

T
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For the same reason the ℒ-coupling involving lcm is broken up according to

∣[(lcmL3)ℒS3]J ⟩ → ∣[lcm(L3S3)J ]J ⟩ (9.89)

since ℒ serves as intermediate angular momentum in the J -coupling,

∣[(lcmL3)ℒS3]J ⟩ =
∑

J

(−1)L3+S3+lcm+J ℒ̂Ĵ
{

lcm L3 ℒ
S3 J J

}
∣[lcm(L3S3)J ]J ⟩, (9.90)

∣ ncm lcm ⟩ ∣ n3 l3 ⟩ ∣ n12 l12 ⟩ ∣ sa sb sc ⟩ ∣ ta tb tc ⟩
L3

J

J

sab

S3

tab

T

The transposition

∣n3l3⟩ ∣n12l12⟩ → ∣n12l12⟩ ∣n3l3⟩ (9.91)

introduces the phase

(−1)l12+l3−L3 (9.92)

arising from the interchange of two columns in the L3-coupling Clebsch-

Gordan coefficient.

∣ ncm lcm ⟩ ∣ n12 l12 ⟩ ∣ n3 l3 ⟩ ∣ sa sb sc ⟩ ∣ ta tb tc ⟩
L3

J

J

sab

S3

tab

T

155



The final step is to change the J-coupling order, introducing the new inter-

mediate angular momenta j12 and I3,

∣[(l12l3)L3(sab
1
2
)S3]J⟩ → ∣[(l12sab)j12(l3 12)I3]J⟩. (9.93)

Since this is a rearrangement of the coupling of four angular momenta, one

can again employ 9j-symbols,

∣[(l12l3)L3(sab
1
2
)S3]J⟩ =

∑

j12I3

ĵ12Î3L̂3Ŝ3

{ l12 l3 L3
sab sc S3
j12 I3 J

}

∣[(l12sab)j12(l3 12)I3]J⟩, (9.94)

∣ ncm lcm ⟩ ∣ n12 l12 sab ⟩ ∣ n3 l3 sc ⟩ ∣ ta tb tc ⟩
j12 I3

J

J

tab

T

From the above considerations, the transformation coefficients for

{{∣a⟩∣b⟩}J12∣c⟩}J → {∣ncmlcm⟩∣�⟩}J (9.95)

are obtained by patching all the transformations above together:
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{{∣a⟩∣b⟩}J12∣c⟩}J =
∑

tab

∑

TMT

∑

L12sab

∑

N12ℒ12
n12l12

∑

ℒS3

∑

Λ

∑

ncmlcm
n3l3

∑

L3

∑

J

∑

j12I3

× �2N12+ℒ12+2n12+l12,2na+la+2nb+lb

× �2N12+ℒ12+2nc+lc,2ncm+lcm+2n3+l3

× ⟨[N12ℒ12, n12l12]L12∣[nala, nblb]L12⟩1
× ⟨[ncmlcm, n3l3]Λ∣[N12ℒ12, nclc]Λ⟩2
×

( ta tb tab
mta mtb

mta+mtb

)

CG

(
tab tc T

mta+mtb
mtc MT

)

CG

× ĵa ĵb L̂12 ŝ12

{
la sa ja
lb sb jb
L12 sab J12

}

× Ĵ12 ĵc ℒ̂ Ŝ3

{ L12 sab J12
lc sc jc
ℒ S3 J

}

× (−1)l12+lc+L12+Λ L̂12 Λ̂
{

lc ℒ12 Λ
l12 ℒ L12

}

× (−1)lcm+l3+l12+ℒ Λ̂ L̂3

{
lcm l3 Λ
l12 ℒ L3

}

× (−1)L3+S3+lcm+J ℒ̂ Ĵ
{

lcm L3 ℒ
S3 J J

}

× (−1)l12+l3−L3 ĵ12 Î3 L̂3 Ŝ3

{ l12 l3 L3
sab sc S3
j12 I3 J

}

× {∣ncmlcm⟩∣�⟩}J (9.96)

Recalling the quantum numbers in ∣�⟩, the inner product of {∣n′
cml

′
cm⟩∣�′⟩}J

and (9.96) will generate � functions

�n′
cmncm

�l′cmlcm �n′
12n12

�n′
3n3

�l′12l12 �s′absab �j′12j12

�l′3l3 �I′3I3 �J ′J �t′
ab
tab �T ′T �MT ′MT

(9.97)

that will eliminate the corresponding summations in (9.96), leaving the sums

∑

L12

∑

N12ℒ12

∑

ℒ

∑

S3

∑

Λ

∑

L3

. (9.98)

The primes can be dropped since every occurring quantum number is either

be summed over or uniquely assigned to each of the states in the overlap.
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The overlap (9.76) finally becomes

{⟨ncmlcm∣⟨�∣}J {{∣a⟩∣b⟩}J12∣c⟩}J =
∑

L12

∑

N12ℒ12

∑

ℒ

∑

S3

∑

Λ

∑

L3

× �2N12+ℒ12+2n12+l12,2na+la+2nb+lb

× �2N12+ℒ12+2nc+lc,2ncm+lcm+2n3+l3

× ⟨[N12ℒ12, n12l12]L12∣[nala, nblb]L12⟩1
× ⟨[ncmlcm, n3l3]Λ∣[N12ℒ12, nclc]Λ⟩2
×

( ta tb tab
mta mtb

mta+mtb

)

CG

(
tab tc T

mta+mtb
mtc mta+mtb

+mtc

)

CG

× ĵa ĵb L̂12 ŝ12

{
la sa ja
lb sb jb
L12 sab J12

}

× Ĵ12 ĵc ℒ̂ Ŝ3

{ L12 sab J12
lc sc jc
ℒ S3 J

}

× (−1)l12+lc+L12+Λ L̂12 Λ̂
{

lc ℒ12 Λ
l12 ℒ L12

}

× (−1)lcm+l3+l12+ℒ Λ̂ L̂3

{
lcm l3 Λ
l12 ℒ L3

}

× (−1)L3+S3+lcm+J ℒ̂ Ĵ
{

lcm L3 ℒ
S3 J J

}

× (−1)l12+l3−L3 ĵ12 Î3 L̂3 Ŝ3

{ l12 l3 L3
sab sc S3
j12 I3 J

}

. (9.99)

The two � functions can be used to eliminate the N12 and lcm summation,

for instance, by constraining them to be

lcm = 2na + la + 2nb + lb + 2nc + lc − 2ncm − 2n12 − l12 − 2n3 − l3
N12 = 1

2

[

2na + la + 2nb + lb −ℒ12 − 2n12 − l12
]

. (9.100)

For computational purposes, the most efficient implementation of T̃ is of

the form
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T̃

[
a b c

ncm lcm �
(NJT )
k

J

]

= (−1)lc+l12 ĵa ĵb ĵc ĵ12 ŝ12 Î3 Ĵ

×
( ta tb tab
mta mtb

mta+mtb

)

CG

(
tab tc T

mta+mtb
mtc mta+mtb

+mtc

)

CG

×
∑

J12

Ĵ12
(

ja jb J12
ma mb ma+mb

)

CG

(
J12 jc J

ma+mb mc ma+mb+mc

)

CG

×
∑

L12

(−1)L12 (2L12 + 1)

{
la sa ja
lb sb jb
L12 sab J12

}

×
∑

ℒ12

⟨[N12ℒ12, n12l12]L12∣[nala, nblb]L12⟩1

×
∑

Λ

(−1)Λ (2Λ + 1) ⟨[ncmlcm, n3l3]Λ∣[N12ℒ12, nclc]Λ⟩2

×
∑

ℒ

(−1)ℒ (2ℒ+ 1)
{

lc ℒ12 Λ
l12 ℒ L12

}

×
∑

S3

(−1)J+S3 (2S3 + 1)
{ L12 sab J12

lc sc jc
ℒ S3 J

}

×
∑

L3

(2L3 + 1)
{

lcm L3 ℒ
S3 J J

}{ l12 l3 L3
sab sc S3
j12 I3 J

}{
lcm l3 Λ
l12 ℒ L3

}
. (9.101)

9.3 Slater-Condon Rules

Working with a Slater determinant basis of the model space

{∣Φ⟩ = �̂ ∣�(1)
�1

. . . �(N)
�N
⟩ ≡ ∣�1 . . . �N⟩}, (9.102)

the calculation of expectation values of some operator requires the evaluation

of its matrix elements in this basis. The Slater-Condon rules facilitate the

calculation of matrix elements of M-body operators

ÔM =
N∑

p1<⋅⋅⋅<pM=1

ôM(p1, . . . , pM) (9.103)

between such N -dimensional Slater determinants by reducing this expression

into a sum of matrix elements of ôM between M-dimensional Slater determi-

nants, symbolically written as

⟨Φ′∣ ÔM ∣Φ⟩ ∝
∑

⟨Φ′
(M)∣ ÔM ∣Φ(M)⟩. (9.104)
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Slater-Condon rules for one- and two-body operators (Table 9.1)

F̂ =

N∑

p=1

f̂(p)

Ĝ =
N∑

p1<p2=1

ĝ(p1, p2) (9.105)

and their derivation are commonly found in textbooks on nuclear physics or

quantum chemistry [47], [48]. For one- and two-body operators the Slater-

Condon rules are most easily proven directly, i.e. by writing all relevant cases

and terms explicitly down and working with these. For three-body operators

however, the number of relevant terms is already too large for a reasonable

explicit treatment.

The way the one- and two-body Slater-Condon rules are derived in [49],

although also essentially explicit, allows a generalization to the M-body case

by replacing the explicit steps by their generalized counterparts where one

can take advantage of determinants. Since along these lines in [49], also the

case of non-orthogonal single-particle basis states is considered, these rules

will in the following also be generalized to the M-body case. In fact, most of

the effort will be about the non-orthogonal case from which the special case

of orthogonal bases will then be derived. From this one gets a quite deep

insight on the structure of matrix elements between Slater determinants. If

one is solely interested in obtaining the practical rules for the orthogonal case

only, there is surely a faster derivation.

Due to the fact that there are only non-vanishing matrix elements

⟨Φ′∣ ÔM ∣Φ⟩ (9.106)

of a M-body operator betweens Slater determinants that differ in at most

M orbitals, in calculating matrix elements one distinguished between the no

non-coincidence

⟨□∣ ÔM ∣□⟩, (9.107)

single non-conincidence

⟨i′□∣ ÔM ∣i□⟩, (9.108)
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double non-coincidence

⟨i′j′□∣ ÔM ∣ij□⟩ (9.109)

case and so on, where □ is used to abbreviate the orbital labels that occur

in both determinants. It is assumed that the determinants are in maximum

coincidence order, i.e. the creation operators assigned to the □ orbitals have

same positions in the creation operator strings generating both determinants.

Using this notation the common Slater-Condon rules for one- and two-body

operators read [47]:

Slater-Condon Rules

for

one-body operators two-body operators

⟨□∣ F̂ ∣□⟩ =
∑

k∈□

⟨k∣ f̂ ∣k⟩ ⟨□∣ Ĝ ∣□⟩ =
∑

k<l
k,l∈□

⟨kl∣ ĝ ∣kl⟩

⟨i′□∣ F̂ ∣i□⟩ = ⟨i′∣ f̂ ∣i⟩ ⟨i′□∣ Ĝ ∣i□⟩ =
∑

k∈□

⟨i′k∣ ĝ ∣ik⟩

⟨i′j′□∣ F̂ ∣ij□⟩ = 0 ⟨i′j′□∣ Ĝ ∣ij□⟩ = ⟨i′j′∣ ĝ ∣ij⟩

Table 9.1: Slater-Condon rules for one- and two-body operators and orthogonal

single-particle basis states.

9.3.1 Preparations

In order to be able to generalize the Slater-Condon to higher-body operators

it is necessary to review some properties of determinantal structures.

Definition 9.3.1 The determinant of a matrix of order N is defined in terms

of the permutation group SN by the well-known formula

detA =
∑

�∈SN

sgn(�) ⋅
N∏

i=1

Ai,�(i) (9.110)

where sgn(�) = ±1 denotes the parity or signature of the permutation �.
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It is worthwhile to take a closer look at the signature function. In (9.110)

the signature of a given �

sgn(�) = sgn
(

1 2 ... N
�(1) �(2) ... �(N)

)
(9.111)

is given by the number of transpositions needed to bring the elements of both

rows into the same order. Clearly the signature depends on the reference

configuration (first row) of the elements that are permuted which can be

chosen arbitrarily. It is, however, possible to relate signature functions with

different reference configurations by the following definition [51]:

Definition 9.3.2 Let i1, . . . , ik and j1, . . . , jk be permutations of distinct N

numbers. Let � and � be elements of SN . Then the sign

sgn
(

�(i1) ... �(iN )
�(j1) ... �(jN )

)

(9.112)

is defined by

sgn
(

�(i1) ... �(iN )
�(j1) ... �(jN )

)

= sgn(�) sgn(�) sgn
(
i1 ... iN
j1 ... jN

)

where

sgn(�) = sgn
(

i1 ... iN
�(i1) ... �(iN )

)

and analogous for � .

As pointed out in [49], there is a connection between the Slater-Condon rules

and the generalized Laplace expansion formula for determinants. Define R as

the row set and C as the column set of a matrix A. Let I = {i1, . . . , ik} ⊂ R,

J = {j1, . . . , jk} ⊂ C, then A[R∖{I}, C∖{J}] is the submatrix of A where

the rows I and columns J are removed. The determinant of this subma-

trix is called the complementary minor of A. A common term related to

determinant expansions is the algebraic complement [50].

Definition 9.3.3 The algebraic complement AM
i1,...,ik
j1,...,jk

of a matrix M is de-

fined as

AM
i1,...,ik
j1,...,jk

= (−1)
k∑

z=1
(iz+jz)

det M [R∖{I}, C∖{J}]. (9.113)
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In other words, the algebraic complement is nothing but the complementary

minor multiplied with a sign which depends on which rows and columns have

been removed from the original matrix.

It will be necessary to express complementary minors in terms of SN and

the full matrix A. Since the result is not too obvious and no derivation

could be found in the literature, this expression will now be derived for

dim I = dim J = 1 and for the general case afterwards.

Proposition 9.3.1 The complementary minor detA[R∖{i}, C∖{j}] can be

expressed in terms of the permutation group SN as follows

detA[R∖{i}, C∖{j}] =
∑

�∈SN

�(i)=j

(−1)i+j sgn(�) ⋅
N∏

m=1
m∕=i

Am,�(m) (9.114)

and the general case detA[R∖{i1, . . . , ik}, C∖{j1, . . . , jk}] reads

detA[R∖{i1, . . . , ik}, C∖{j1, . . . , jk}] =
∑

�∈SN

�(i1)=j1
...

�(ik)=jk

(−1)
k∑

z=1
(iz+jz)

sgn(�) ⋅
N∏

m=1
m∕=i1

...
m∕=ik

Am,�(m). (9.115)

Proof 9.3.1

(i) Since A[R∖{i}, C∖{j}] is a N − 1×N − 1 square matrix, Eq. (9.110)

can be used

detA[R∖{i}, C∖{j}] =
∑

�′∈SN−1

sgn(�′) ⋅
N−1∏

m=1

A[R∖{i}, C∖{j}]m,�′(m).

(9.116)

�′ permutes the numbers {1, 2, . . . , N−1} and the signature is according

to

sgn(�′) = sgn
(

1 2 ... N−1
�′(1) �′(2) ... �′(N−1)

)

.
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Equation (9.116) can be written in terms of A and � ∈ SN as

detA[R∖{i}, C∖{j}] =
∑

�∈SN
�(i)=j

�(i, j) sgn(�) ⋅
N∏

m=1
m∕=i

Am,�(m) (9.117)

which can be seen as follows: In (9.116) the product index m runs over

all N − 1 row values of the submatrix. For the product in (9.117) not

to run over the excluded row i, the constraint m ∕= i is introduced.

Furthermore, in (9.116) the column index �′(m) trivially only belongs

to columns of the submatrix. Therefore, in (9.117) no contribution may

come from a term with �(m) = j. This is achieved by constraining the

permutations � by �(i) ≡ j since those contributions are then excluded

by the product constraint. The permutations � now permute the full

row index set of A and the signum is

sgn(�) = sgn
(

1 2 ... i ... j ... N
�(1) �(2) ... �(i) ... �(j) ... �(N)

)

. (9.118)

To ensure that the contributing terms in (9.117) have the same signs

as in (9.116), a correction factor �(i, j) has to be multiplied. Using

Def. 9.3.2, this correction factor can be determined from the following

consideration:

sgn(�) (9.119)

= sgn
(

1 2 ... i ... j ... N
�(1) �(2) ... �(i) ... �(j) ... �(N)

)

= sgn(�) sgn
(
1 2 ... i ... j ... N
1 2 ... i ... j ... N

)

= sgn(�) sgn(i→ [1]) sgn(j → [1]) sgn
(
j 1 2 ... N
i 1 2 ... N

)

= sgn(�) sgn(j → [1]) sgn(i→ [1]) sgn(�) sgn
(

j 1 2 ... N
�(i) �(1) �(2) ... �(N)

)

.

The signature sgn(j → [1]) is the signature of the permutation that

brings j to the first position in the first row and sgn(i→ [1]) is analo-

gous for the second row. Since in the third line the numbers are ordered,

these signatures are just (−1)j−1 and (−1)i−1. It is (sgn(�))2 = 1, and

because of �(i) = j the first column in the last signature is automatically

in order. So, the last signature is only determined by the permutation of

columns 2, . . . , N−1, which is just the signature of �′ again. Therefore,

sgn(�) = (−1)i+j sgn(�′) (9.120)
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and the correction factor �(i, j) is determined to be

�(i, j) = (−1)i+j. (9.121)

(ii) Analog considerations lead for the general case to

detA[R∖{i1, . . . , ik}, C∖{j1, . . . , jk}]

=
∑

�∈SN

�(i1)=j1
...

�(ik)=jk

�(i1, . . . , ik, j1, . . . , jk) sgn(�) ⋅
N∏

m=1
m∕=i1

...
m∕=ik

Am,�(m). (9.122)

The correction factor is determined in the same way as before:

sgn(�) = sgn
(

1 ... i1 ... ik ... N
�(1) ... �(i1) ... �(ik) ... �(N)

)

= sgn(�) sgn
(
1 ... i1 ... ik ... N
1 ... i1 ... ik ... N

)

= sgn(�) sgn(j1 → 1) . . . sgn(jk → k)

× sgn(i1 → 1) . . . sgn(ik → k) sgn
(
j1 ... jk 1 ... N
i1 ... ik 1 ... N

)

= (−1)
k∑

z=1
(iz+jz)

sgn(�′), (9.123)

where in the last line the ordering i1 < . . . ik, j1 < . . . jk allowed the

identification sgn(in → n) = (−1)in−n and analogous for jn. □

9.3.2 General Matrix Element Formula

In this section an expression for the matrix element

⟨Φ′∣ Â ∣Φ⟩ (9.124)

of the three-body operator

Â =
N∑

p,q,r=1
p<q<r

â(p, q, r) (9.125)

between the Slater determinants

∣Φ′⟩ = �̂ ∣�(1)
�1
. . . �(N)

�N
⟩ ≡ ∣�1 . . . �N ⟩ (9.126)
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and

∣Φ⟩ = �̂ ∣�(1)
�1
. . . �

(N)
�N
⟩ ≡ ∣�1 . . . �N ⟩ (9.127)

is derived in terms of algebraic complements and matrix elements between

M-dimensional Slater determinants. This expression will be the starting

point for the derivation of the Slater rules for the different non-coincidence

cases and single-particle bases.

The antisymmetrizer in (9.126) and (9.127) and its hermitecity and idem-

potency can be expressed as

�̂ =
1√
N !

∑

�∈SN

sgn(�) �̂

�̂† = �̂, �̂2 =
√
N ! �̂. (9.128)

It should be noted that the action of the permutation operator �̂ on a product

wave function is according to

�̂ ∣��1 . . . ��N
⟩ = ∣���(1)

. . . ���(N)
⟩. (9.129)

Furthermore, it shall be remarked that it is well known that the overlap

of two Slater determinants again has the structure of a determinant - the

determinant of the overlap matrix S(Φ′,Φ),

S(Φ′,Φ)ij = ⟨��i
∣��j
⟩. (9.130)

With this and using that [â, �̂] = 0, one has

⟨Φ′∣ Â ∣Φ⟩ =
N∑

p,q,r=1
p<q<r

⟨�(1)
�1
. . . �(N)

�N
∣ �̂† â(p, q, r) �̂ ∣�(1)

�1
. . . �

(N)
�N
⟩

=
√
N !

N∑

p,q,r=1
p<q<r

⟨�(1)
�1
. . . �(N)

�N
∣ â(p, q, r) �̂ ∣�(1)

�1
. . . �

(N)
�N
⟩

=
N∑

p,q,r=1
p<q<r

∑

�∈SN

sgn(�) ⟨�(1)
�1
. . . �(N)

�N
∣ â(p, q, r) ∣�(1)

��(1)
. . . �

(N)
��(N)
⟩.(9.131)
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The operator â(p, q, r) acts in the Hilbert spaces of particles p, q and r

only, and therefore

⟨Φ′∣ Â ∣Φ⟩ =

N∑

p,q,r=1
p<q<r

∑

�∈SN

sgn(�) ⟨�(p)
�p

�(q)
�q
�(r)
�r
∣ â(p, q, r) ∣�(p)

��(p)
�
(q)
��(q)

�
(r)
��(r)
⟩

×
N∏

m=1
m∕=p,q,r

⟨�(m)
�m
∣�(m)

��(m)
⟩. (9.132)

For an one-particle operator ℎ̂(p) the obvious identity

N∑

p=1

⟨�(p)
�p
∣ ℎ̂(p) ∣�(p)

��(p)
⟩ =

N∑

p=1

N∑

a=1

�a,�(p) ⟨�(p)
�p
∣ ℎ̂(p) ∣�(p)

�a
⟩ (9.133)

holds and an analogous identity for the case of higher-body operators is found

straightforwardly. Using this, (9.132) becomes

⟨Φ′∣ Â ∣Φ⟩ =
N∑

p,q,r=1
p<q<r

N∑

a,b,c=1
a ∕=b∕=c

∑

�∈SN

�a,�(p) �b,�(q) �c,�(r) sgn(�)

× ⟨�(p)
�p

�(q)
�q
�(r)
�r
∣ â(p, q, r) ∣�(p)

�a
�
(q)
�b
�
(r)
�c
⟩

×
N∏

m=1
m∕=p,q,r

⟨�(m)
�m
∣�(m)

��(m)
⟩ (9.134)

(a ∕= b ∕= c because of the single occupancy of orbitals in Slater determinants).

The delta functions can be used to constrain the permutations � such that

∑

�∈SN

�a,�(p) �b,�(q) �c,�(r) ⋅ ⋅ ⋅ =
∑

�∈SN

�(p)=a
�(q)=b
�(r)=c

. . . (9.135)

and under the product one recognizes the matrix elements of the overlap

matrix. After inserting an identity of the form 1 = ((−1)a+b+c+p+q+r)2 one
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arrives at

⟨Φ′∣ Â ∣Φ⟩ =
N∑

p,q,r=1
p<q<r

N∑

a,b,c=1
a ∕=b∕=c

⟨�(p)
�p

�(q)
�q
�(r)
�r
∣ â(p, q, r) ∣�(p)

�a
�
(q)
�b
�
(r)
�c
⟩

× (−1)a+b+c+p+q+r

×
∑

�∈SN

�(p)=a
�(q)=b
�(r)=c

(−1)a+b+c+p+q+r sgn(�) ⋅
N∏

m=1
m∕=p,q,r

S(Φ′,Φ)m,�(m)

(9.136)

where Proposition 9.3.1 can be used to write the last line as a complementary

minor

⟨Φ′∣ Â ∣Φ⟩ =
N∑

p,q,r=1
p<q<r

N∑

a,b,c=1
a ∕=b∕=c

⟨�(p)
�p

�(q)
�q
�(r)
�r
∣ â(p, q, r) ∣�(p)

�a
�
(q)
�b
�
(r)
�c
⟩

× (−1)a+b+c+p+q+r det S(Φ′,Φ)[R∖{p, q, r}, C∖{a, b, c}]. (9.137)

Together with the remaining sign, the complementary minor becomes the

corresponding algebraic complement of the overlap matrix as defined in Def.

9.3.3,

⟨Φ′∣ Â ∣Φ⟩ =
N∑

p,q,r=1
p<q<r

N∑

a,b,c=1
a ∕=b∕=c

⟨�(p)
�p
�(q)
�q
�(r)
�r
∣â(p, q, r)∣�(p)

�a
�
(q)
�b
�
(r)
�c
⟩AS

pqr
abc .(9.138)

To proceed further, the abc sum is rewritten according to the identity

N∑

a,b,c=1
a ∕=b∕=c

f [a, b, c] =

N∑

a,b,c=1
a<b<c

∑

�∈S3

f [�(a), �(b), �(c)], (9.139)

which is stated here without proof. With this, Eq. (9.138) becomes

⟨Φ′∣ Â ∣Φ⟩ =
N∑

p,q,r=1
p<q<r

N∑

a,b,c=1
a<b<c

∑

�∈S3

⟨�(p)
�p
�(q)
�q
�(r)
�r
∣ â(p, q, r) ∣�(p)

��(a)
�
(q)
��(b)

�
(r)
��(c)
⟩

× AS
pqr
�(a)�(b)�(c) . (9.140)
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Transpositions of columns of a determinant produce signs and as a conse-

quence one can convince oneself that

AS
pqr
�(a)�(b)�(c) = sgn(�) AS

pqr
abc . (9.141)

Eq. (9.140) then can be recasted in the form

⟨Φ′∣ Â ∣Φ⟩ =

N∑

p,q,r=1
p<q<r

N∑

a,b,c=1
a<b<c

⟨�(p)
�p

�(q)
�q
�(r)
�r
∣ â(p, q, r)

×
[
∑

�∈S3

sgn(�) ∣�(p)
��(a)

�
(q)
��(b)

�
(r)
��(c)
⟩
]

AS
pqr
abc (9.142)

where one can insert the definition of the antisymmetrizer

⟨Φ′∣ Â ∣Φ⟩ =
√
3!

N∑

p,q,r=1
p<q<r

N∑

a,b,c=1
a<b<c

⟨�(p)
�p
�(q)
�q
�(r)
�r
∣ â(p, q, r) �̂∣�(p)

�a
�
(q)
�b
�
(r)
�c
⟩ AS

pqr
abc .

(9.143)

The factor
√
3! can be canceled by antisymmetrizing also the left state, again

by exploiting �̂2 =
√
3!�̂ and [â, �̂] = 0, arriving at

⟨Φ′∣ Â ∣Φ⟩ =

N∑

p,q,r=1
p<q<r

N∑

a,b,c=1
a<b<c

AS
pqr
abc ⟨�p �q �r∣ â ∣�a �b �c⟩, (9.144)

where the occupation number representation of the Slater determinants will

be used from now on and the particle coordinates on the operator have been

dropped.

There has been nothing special about the three-body case so far and it is

clear that the above considerations hold for arbitrary M-body operators ÔM

which allows to formulate the general simple matrix element formula

⟨Φ′∣ ÔM ∣Φ⟩ =
N∑

p1,...,pM=1
p1<⋅⋅⋅<pM

N∑

a1,...,am=1
a1<⋅⋅⋅<am

AS
p1...pM
a1...aM

⟨�p1 . . . �pM ∣ ôM ∣�a1 . . . �aM ⟩.

(9.145)
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9.3.3 Slater-Condon Rules for non-orthogonal Bases

Two Slater determinants ∣Φ′⟩ and ∣Φ⟩ are considered that are in maximum

conincidence form and that have k non-coincidences. Thus,

�i = �i, ∀ i > k (9.146)

and the Slater determinants can be written as

∣Φ′⟩ = ∣�1 . . . �k �k+1 . . . �N⟩
∣Φ⟩ = ∣�1 . . . �k �k+1 . . . �N⟩. (9.147)

Regarding the summations over pi and ai in (9.145), from p1 < ⋅ ⋅ ⋅ < pM
and a1 < ⋅ ⋅ ⋅ < aM it becomes clear that ai > k for i > k. So, because

of (9.146), �ai can be replaced by �ai . However, this does not effectively

simplify the structure of the matrix element formula. For orthogonal bases,

the structure of the determinant in the algebraic complement helps to reduce

the equation, but since for non-orthogonal bases there is no information about

this determinant, the Slater rules can only be stated as below.

Proposition 9.3.2 (Slater Rules for Non-Orthogonal Bases)

Let

∣Φ′⟩ = ∣�1 . . . �k �k+1 . . . �N⟩
∣Φ⟩ = ∣�1 . . . �k �k+1 . . . �N⟩ (9.148)

be two Slater determinants of non-orthogonal single-particle basis states �i

that are in maximum coincidence form. In the k non-coincidence case, the

matrix element of a M-body operator ÔM between these Slater determinants

reads

⟨Φ′∣ ÔM ∣Φ⟩ =
N∑

p1,...,pM=1
p1<⋅⋅⋅<pM

N∑

a1,...,aM=1
a1<⋅⋅⋅<aM

AS
p1...pM
a1...aM

× ⟨�p1 . . . �pk �pk+1
. . . �pM ∣ ôM ∣�a1 . . . �ak �ak+1

. . . �aM ⟩ (9.149)

where AS
p1...pM
a1...aM

is defined as

AS
p1...pM
a1...aM

= (−1)
M∑

z=1
(pz+az)

detS(Φ′,Φ)[R∖{p1, . . . , pM}, C∖{a1, . . . , aM}].
(9.150)
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9.3.4 Slater-Condon Rules for orthogonal Bases

In the case of orthogonal single-particle basis states the Slater rules simplify

significantly because due to the orthonormality of the basis functions the

overlap matrix only contains the trivial entries

S(Φ′,Φ)ij = ⟨��i
∣��j
⟩ = ��i�j

(9.151)

which leads to the simple structure of the overlap matrix

S(Φ′,Φ) =

⎛

⎝
0k×k

1(N−k)×(N−k)

⎞

⎠ . (9.152)

The algebraic complement AS
p1...pM
a1...aM

essentially is the determinant of the

submatrix of S(Φ′,Φ) where rows pi and columns ai have been removed.

Clearly, for this determinant not to vanish, the first k rows and columns

have to be among the removed ones - otherwise the submatrix would contain

an empty row, causing the determinant to vanish. Since p1 < ⋅ ⋅ ⋅ < pM and

a1 < ⋅ ⋅ ⋅ < aM in (9.149), it is mandatory to have pi = ai = i for i = 1, . . . , k,

which eliminates the corresponding summations,

⟨Φ′∣ ÔM ∣Φ⟩ =
N∑

pk+1,...,pM=k+1
pk+1<⋅⋅⋅<pM

N∑

ak+1...aM=k+1
ak+1<⋅⋅⋅<aM

AS
1...k,pk+1...pM
1...k,ak+1...aM

× ⟨�1 . . . �k �pk+1
. . . �pM ∣ ÔM ∣�1 . . . �k �ak+1

. . . �aM ⟩. (9.153)

Similarly, AS
1...k,pk+1...pM
1...k,ak+1...aM

essentially is the determinant of a submatrix of

1(N−k)×(N−k) with rows pk+1 . . . pM and columns ak+1 . . . aM removed. For

a submatrix of an identity matrix not to contain an empty row or column,

the index sets of the removed rows and columns have to be equal (then the

submatrix is just again a lower-order identity matrix). Again, because of

pk+1 < ⋅ ⋅ ⋅ < pM and ak+1 < ⋅ ⋅ ⋅ < aM , one immediately concludes pi = ai for

i > k, which can be used to eliminate the ai-summations. So, the determi-

nant in the algebraic complement is nothing but a determinant of an identity

which equals 1. The factor (−1)
∑

z(pz+az), accompanying the determinant is

also trivially 1 due to the fact that pz = az, as found above.
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Proposition 9.3.3 (Slater Rules for Orthogonal Bases)

Let

∣Φ′⟩ = ∣�1 . . . �k �k+1 . . . �N⟩
∣Φ⟩ = ∣�1 . . . �k �k+1 . . . �N⟩ (9.154)

be two Slater determinants of orthogonal single-particle basis states �i that

are in maximum coincidence form. In the k non-coincidence case, the matrix

element of a M-body operator ÔM between these Slater determinants reads

⟨Φ′∣ ÔM ∣Φ⟩ = (9.155)
N∑

pk+1,...,pM=k+1
pk+1<⋅⋅⋅<pM

⟨�1 . . . �k �pk+1
. . . �pM ∣ ÔM ∣�1 . . . �k �ak+1

. . . �aM ⟩.

In order to bring this Slater-Condon rules into the notation used in Ta-

ble 9.1, again define □ as the set of the coinciding orbitals of both Slater

determinants,

□ ≡ {�k+1, . . . , �N}. (9.156)

Then one can write

⟨i′1 . . . i′k□∣ ÔM ∣i1 . . . ik□⟩ =
∑

△∈□M−k

△1<⋅⋅⋅<△M−k

⟨i′1 . . . i′k△∣ ôM ∣i1 . . . ik△⟩. (9.157)

In particular, one can read off the Slater-Condon rules for three-body oper-

ators as :
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Slater-Condon Rules for

three-body operators

⟨□∣ Â ∣□⟩ =
∑

p,q,r∈□

p<q<r

⟨pqr∣ â ∣pqr⟩

⟨i′□∣ Â ∣i□⟩ =
∑

p,q∈□

p<q

⟨i′pq∣ â ∣ipq⟩

⟨i′j′□∣ Â ∣ij□⟩ =
∑

p∈□

⟨i′j′p∣ â ∣ijp⟩

⟨i′j′k′□∣ Â ∣ijk□⟩ = ⟨i′j′k′∣ â ∣ijk⟩

Table 9.2: Slater-Condon rules for three-body operators and orthogonal single-

particle basis states.
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