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Abstract

We discuss the implications of using an intrinsic Hamiltonin theories without particle-number conservation,, éhg Hartree-
Fock-Bogoliubov approximation, where the Hamiltonian&ticle-number dependence leads to discrepancies if omelyae-

places the particle-number operator by its expectationevalVe develop a systematic expansion that fixes this proafetieads
to an a posteriori justification of the widely-used one- flus-body form of the intrinsic kinetic energy in nuclearfsebnsistent
field methods. The expansion’s convergence properties hasvies practical applications are discussed for sevenalpde nuclei.
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1. Introduction Naturally, this condition does not hold in a method like HFB,
where the particle number is not conserved. We will analyze
Symmetry breaking is a powerful concept in quantum many+his case in detail in the following.
body theory. In nuclear phyiscs, well-known examples aee th
breaking of the rotational and translational symmetriethef
many-body Hamiltonian by the use of localized single-jotati
states in the construction of the many-body Hilbert spdoe; t 21 The General Case
latter, in particular, can cause sizable center-of-magssacai-
nations of the energies and the many-body wave functions un- Since we want to deal with theories that do not conserve par-
less the symmetry is restored (see e.g. [1, 2] and Refs.ithere ticle number, we consider operatorsfockspace. In this case,
In contrast, the breaking of the particle- number symmetrythe intrinsic kinetic energy operator can be expresseeeéh
by quasi-particle methods like the Hartree-Fock-Bogaliub @ sum of one- and two-body operators,
(HFB) [1] approach is a useful tool because it leads to an ef-
ficient treatment of the important nuclear pairing coriiela, T@ _ (1_ )Z = Z - pi ©)
although one will ultimately want to restore this symmetnai 2m  Am J
finite system like the nucleus.
Since nuclei are self-bound objects the proper startingtpoi or a sum of two-body operators alone, i.e., the relativetiéne
of a nuclear many-body calculation is the translationailsaii-  energies of each nucleon pair:
ant intrinsic Hamiltonian

g (p - pj)?
7O _ ij_ 4 ]
Hni=T -Tem+V=Tint+V. Q) Int - Z 2/1 Z m : 4)

I<j I<J

2. Theory

i<j

The use of the intrinsic kinetic ener@yy; in a simple Hartree- The equality of these two expressions follows from the fefat
Fock (HF) calculation has consequences for the validity of

Koopmans’ theorem, and thereby the interpretation of the HF _
eigenvalues as single-particle energies. A detailed aisalyas Z (p pJ) - Z (92 p2 2p - p,)

given by Khadkikar and Kamble in Ref. [3] and referenced re- <] <]
peatedly over the past few decades (see e.g. [4] or our owk wor A 1 Z - ZZ PP ()
[5]). However, this analysis makes explicit use of the prepe i<j

ties of the HF Slater determinarf¥’), including the assump- " . , .
tion that it is an eigenstate of the particle-number openatth where theA resulting from the summation over the second inde-

eigenvalueA: pendent particléor j in the first two terms is againfock space
R _ operatormeasuring the total particle number. This distinction
AWy = AY). 2 °F _ : . .
is inconsequential as long as one works in a Hilbert spade wit
fixed particle numberbecauseA can then be replaced by the
Email addressesHieiko . Hergert@physik.tu-darmstadt .de (H. corresponding eigenvalue. Naturally, one is tempted toause
Hergert) Robert . Roth@physik. tu-darmstadt .de (R. Roth) similar replacemenA — (A) in Fock space as well, but we
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will demonstrate in the following that this naive treatmefit and
the particle-number dependence leads to discrepancies.

Consider a many-body staf¥) without fixed particle num- — =) (m- p,-)2 AA)
ber. Taking the energy expectation value of the intrinsimitta B =E Z —2<A>2m
tonian with Egs. (3) or (4) in this state, we obtain the energy <] R ) .
functionals _E® (TAA) . (TAA)  (T(AA?)
=B - — — -
A A)? A)?
E@[¥] =< (1——) >——Z< PP+ (6) woW w
(P - PjAA)
i< + Z # . (16)
and o (Am
EO[y +(V 7 . _
[¥] = 2m Z< b= p,) )+ V), 0 The ternyT) that is formally of ordexA)° first appears irE(b),

i<j

=(0) nE@ \ith EO
respectively. Sincé¥) does not satisfy the eigenvalue equation@ linéar term ing;”, and so on. Comparing;~ with E;”, we

(2), we have to consider the operafbr* directly in all expec-  Note that (TAR

tation values, which will require a series expansion in ficac E'(lb) _ E(la) A (17)
To this end, we note that (A
11 1 Z(_ )n( ) @ i.e., if we simply replacd with the numbexA) in Egs. (6) and
A (A4 A <A> (A (7), the functionals are no longer equivalent!
<A> To restore a proper power counting to the expansmﬁ(@f
where we have introduced we first note that the enhanced linear term appearing, B%h
A= A—(A). 9) exactly cancels the one in Eq. (17). Likewise, an enhanced

quadratic term irEY cancels(T(AA)%)/(A)? in Eqg. (16), and
Eq. (8) defines a formal expansion of the energy functiomals i similar cancellations occur for all higher orders. The cdlae

powers of(A)~%. Applying this expansion t&®, we obtain tion can be enforced explicitly if we define
E® = ( )< Y-S P+ V) T(AA)M
&) Eom PP ED = ED + (-1 LA (18)
(A
(TAA) . .
(n piAA) + O((AY®) . (10) and applying Eq. (5) we find that
o D), 9

Denoting truncations of this series containing all termstap
a given orderk by E(a) the leading (LO) and next-to-leading
order (NLO) functionals are

E® =(T)+ <V> (11)

<A> ] (Am We now apply the expansion developed in the previous sub-

We note that the NLO functional is the one we would obtain byseCt'On to the HFB approximation [1], i.e., we assume {H#at
is a quasi-particle Slater determinant and introduce timsitie

naively replacingd with (A) in Eq. (6).

i.e., the functional&€® andE® are identical at any given order
of the expansion.

2.2. Hartree-Fock-Bogoliubov Approximation

. . . trix
Plugging the expansion (8) into Eqg. (7), we have ma .
) ok = (Pl cl'P) (20)
~ ~ 2 _
g® — Z([l - A_ﬁ + (ﬁ‘) + .. ] M> +(V). (13) and the pairing tensor
<] A A 2m(A)
ke = (Pl kW) . (21)

In this case, a naive power counting(iﬁ)‘l breaks down be-
cause terms at a given order of the series are enhanced by fac+we first consider the one- plus two-body form of the intrinsic

tors of (A) as a direct consequence of applying Eq. (5) to thekinetic energy. At next-to-leading order, the functiorzdds
expansion, i.e.,

E® = (v), (14) EP = (1 - %) D (Kt pwk
2 kk'
= (p-p)) 1
EP=EP+ ) ——2~ w5 > kav- 2P g g0
L=5 ; 2(Am zkkzq:q Y= Aym [ A parapk
—ED (1) - M, TA» (P s LS kv - 2 P2 gy . (22
&R ; Aom (15) 4kkz:qq Am A9 Dkige Koy (22)



wheret is the single-particle kinetic energy, and we assume thacf. Eq.(15)), we find that the particle-hole field is given by

all two-body matrix elements are antisymmetrized in the fol

lowing. Varying E? w.r.t. the density matrix, we obtain the
particle-hole field

h(a) (1 _) ktk/ + k v k/ /
<><||>Z<q| —<A> K dpaq
(T) R
((A)Z ; <A>2m]5kk” (23)
where we have used
0o 1
MW (A)2 apka W= Okk - (24)

Varying the energy with respect to the pairing tensor, we find

that the pairing field is given by

A(a)

Z<kl<| ——|qcr>qu (25)

If we start from the pure two-body form (4) of the intrinsic

kinetic energy, we follow the analysis in the previous smtti
and apply (18) to obtain the NLO functional

(G3) _(TAA)
E® = L +(V). (26)
SR Z, u (A
The expectation value of the correction term is
(TAR) =2 ) (KK (pwk = P 27
kk

but due to the properties of the Bogoliubov transformatign [

p—p>= k", (28)

247, My
(Aym (A

+VIKd)pogq —

h = > (kd
qq
1
- (<k| tIky = > (<Kitighpae + pralalt |k’>)]
A ;

2

i<j

M

(A

(M

(A2

(B - P
(Ay2m

K » (31)

and for the pairing field, we obtain
243,

1
= > (kK| —
2 ; (Aym

v % > (Kt i + Kiglal tIKY")

q

0 _
Akk’ -

+ V|90 )xgq
(32)

Assuming that the single-particle states satisfy
(KIK') = 6k » (33)

we obtain the following relation for the antisymmetrizedtra
element of the relative kinetic energy:

2
m(kcﬂ (ﬁ2|k,Q'>
= (KIt[K)qq — (KIt|q Yoqr + (alt|q Yok

1
~ (AtK)q — —<kd pr- P2 K. (34)
Plugging this into Eqgs. (31) and (32), we find that
h® = K@, (35)
AP =A@ (36)

for the NLO funct|0naIsE(a) and E(b) and the specific choice

and there is an ambiguity regarding to which field the correc{29) for the correction term

tion term contributes wheB® is varied. To make contact with

The equivalence of the fields guarantees that a solution of

related works in the literature (see [6] and Refs. there®) athe HFB equations for the function&® will also solve the

well as the HF treatment of Ref. [3], we split it evenly betwee
the particle-hole and particle-particle channels and esgthe
latter contribution in a manifestly real form:

(TAAY = 3 (KK (o - pF)
kk

1
+ 5 2 (KK Vi + (KK () - (29)
kk

We stress that the specific choice (29) onffeaetsunobserv-

able quantitiedike the particle-hole and pairing fields, while

observables like the energy expectation value or the erdifgy

ferences discussed in Sect. 3 do not depend on it at all.
Noting that

2
<A>2 Z

i<j

(a5 (TAA)

(A

M (M

(A (A2

(B - P
(Ay’m

(30)

2

i<j

equations foE(b) and vice versa:

[H,R] = [H®,R] = 0 (37)
Here,H andR are the usual HFB Hamiltonian and generalized

density matrices [1],

_(h=-2 A (P K
and the Lagrange multiplier satisfies
A=1® =0 (39)

In this context, some additional remarks are in order. Since
the expansion parametéAy! is directly linked to the vari-
ational degrees of freedopyy, the derivatives (24) generate
(Ay=2 terms in the fields that cause global shifts in the diagonal



matrix elements of, i.e., the underlying single-particle spec- [
trum. In contrast tqA)~2 contributions that arise from vary- 10}
ing the NNLO functionalEEX, these global shifts aretate- i
independentand can be absorbed in the Lagrange multiplier 81
in a self-consistent calculation. If they are included iitifly .
in A, one cannot directly interpratas the Fermi energy of the &
system, as it is usually done in the literature (see e.qg. [7]) g
For higher orders of the expansion, the explicit evaluation
of the expectation value§T AA") and (p - p;AA") occurring
in higher-order functionalEﬁa/b) becomes increasingly cum-
bersome and time-consuming in practical calculations.- For
tunately, the expansion of the energy functional converges
rapidly, and it is sficient to truncate the expansion of the en-
ergy functional at the linear order in practical calculatipas
demonstrated in Sect. 3. Figure 1: (Color online.) Particle number fluctuation in timeisotopic chain.
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2.3. Hartree-Fock Limit

Starting from the analysis of the HFB approximation in the
previous section, we can easily take the limit of vanishiag-p
ing correlations to obtain the Hartree-Fock limit. Since HF
ground statg'¥) is an eigenstate ok, we immediately see that

can write down and solve HF-like equations for such a case, th
EFA density matrix represents a statistical mixture rathan

a genuine Slater determinant [8]. In this case, we cannot use
the eigenvalue equation (2) to construct the energy funatjo
and we have to resort to the(&A)-expansion again, treating all
AANY =0, (40) expectation values in the statistical sense.

and therefore all higher-order terms in the expanded faneti  2-4- Particle-Number Projection

als E® and E®@ automatically vanish. Of course, one could Since nuclei are finite systems, one eventually wants tg carr
have directly used the eigenvalue equation (2) and avoied t out a particle-number projection (PNP) to obtain a staté wit
expansion in the first place. Moreover, this implies that'tire ~ fixed particle number. The PNP energy functional is con-

corrected” HF functional structed from a quasi-particle Slater determinant thaxjdie
(@) itly projected onto the particle numbgrvia the hermitian pro-
= 2 i jectorP,
Eqr == ) == +(V 41 A
e = ALu g, TV 41 \Pp) = PAl¥) (44)

i<j
(see e.g. [1, 9] for details). Sind®¥ ) satisfies the eigenvalue
defined in analogy to (15) yields the same energieS@sand  equation (2), an expansion is not required, just as in the HF
E®), while we obtain the relation case. All three previously defined functionals are equivale
o _ @ 1 - ) (T @) when derived from (44),

= +—(t—-(to +pt)) + — —
A A EI(Z?I)\IP = EI(:E’I)\IP = EI(Dbl)\lP’ (45)
for the corresponding particle-hole Hamiltonian by movihg
“correction” terms appearing in® to the left-hand side of Eq.
(35). Equation (42) is exactly the relation Khadkikar andrka
ble obtained by plugging (34) in the expressionh®{3]. From
our analysis, we now see how this relation for the fields fol-
lows directly from the energy functional, and that the cotign
terms in particular are derivativeswdinishing energy contribu-
tions

The HFB equations (37) for the functiondt$? andE® are
reduced to their HF counterparts, i.e., a HF solupabtained
with either functional is also a valid solution for the otlfienc-
tional. In addition, it was demonstrated in [3] tha&lso solves
the HF equations for the uncorrected functioB&, i.e.,

but E®), will in general lead to dferent non-observable quan-
tities like the projected fieldsa andAa or their individual con-
tributions to the energy expectation value. In a variatitiara
particle-number projection (VAP), the fields and densities
tained by solving the projected HFB equations [9] are associ
ated with an auxiliary intrinsic state without physical miey,
whereas the expectation values of observables are welkdefin
even if they aréA-dependent. Thus, only these expectation val-
ues of observables or derived quantities like separatiergées

(in the sense of energyftitrences) should be compared to ex-
periment.

. 3. Discussion & Numerical Results
[h®, o] = [h®, p] = [h®), p] = 0. (43)
To test the proposed expansion, we have performed spheri-
Finally, we point out one important caveat: the considera<al HFB calculations using the phenomenological Gogny D1S
tions of this subsectiodo not applyif the equal-filling approxi- interaction [10]. We are employing a spherical harmonidlosc
mation (EFA) is employed to treat open-shell nuclei. While on lator configuration space, and explicitly minimize all egies
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. Figure 3: (Color online.) Theoretical three-point bindiergergy diferences in
I the tin isotopic chain fronE®@"® (e ) and E® (M), compared to experimental
R values (0)[11].
Figure 2: (Color online.) Convergence of th&A) expansion: ground-state
energy dfferencdii(f‘/lb)—Ei(a/b) as a function of the orderfor 180 (e ), 54Ni(H),
and*?°sn(4). functionals at linear (i.e. next-to-leading) order, andpthe

subscripts in the following.

Information about theféect of the intrinsic kinetic energy on
with respect to the oscillator lengtyo; more details can be the nuclear pairing correlations can be extracted by cenisig
found in Ref. [6]. Unless noted otherwise, we include 13 majo the three-point binding energyftiérence formula
oscillator shells in our calculations, which leads to asfatitory 1
convergence in the considered cases. Odd nuclei are tieated ~ A®(N) = (-1)N= (E(N + 1) - 2E(N) + E(N - 1))  (46)

a self-consistent blocking method [1], where the odd nutleo 2

distributed evenly over all magnetic substates of a givshell ~ along an isotopic chain (or equivalently, an isotonic chitfn

according to the equal-filling approximation (see e.g..[8]) N replaced by’). By calculating the ground states of odd nuclei
Let us first consider the convergence of tié&)-expansion. self-consistently, we avoid the complications arising éntpr-

Formally, anA-quasi-particle HFB state can contain states withPative analyses, as discussed in detail in [12, 13]. Thisis p
sharp particle numbers from 0.,2A. In the extreme cases ticularly relevant forA-dependent Hamiltonians [6], which add

this would mean that the operata/(A) in Eq. (8) could anothe_r layer of complexity to the perFurb3ative approach.
acquire the operator norm 1 on the space of HFB wavefunc- !N Fig. 3, we compare the theoreticaf®) for the properly
tions, causing the breakdown of the series expansion. In thgPnstructed functional to the uncorrected functioB&! (15).

nuclear many-body problem, this breakdown could only oc-The latter are typically lower than the values for the proper
cur before the first major shell is fully occupied, and forshe functional by 200- 400 keV, with the exceptions occurring

very light nuclei the use of mean-field methods is questimab @ound the ds; and I/, sub-shell closures &l = 56 and

in the first place. At the major shell closure itself, the HFB N = 70, respectively. The gaps between the relevant sub-shell
wavefunction collapses onto the HF solution, and there is n@"d the next available one are notably larger B8P than for
need for an expansion. As we progress along the nuclear, chaft -+ leading to more pronouncedfects when the odd nu-
we find that particle-number fluctuations only occur within aCcléon is added

given major shell, as shown exemplary for the tin isotopea wi " Sect. 2.3, we have pointed out that a spherical HF treat-
N = 50,...,82 in Fig. 1. This implies that the operator norm ment of open-shell nuclei will gter from the same problems as

of AA/(A) remains below 1 in practical applications, and guar-the€ HFB method due to the use of the equal-filling approxima-
tion. This is explicitly demonstrated for the tin isotopisain
in Fig. 4, where we have used the density matrdbtained by
Xwinimizing the functionalE®. to calculate the energiel-.
i—-1

Fig. 2. We have picked these specific nuclei for their larde va 2d EfE- At sub-shell closures, we have a genuine HF prob-
ues of(AA?) in the respective isotopic chains. We find that is'®M> and in this casell three functionals are equivalent and
essentially sfiicient to include the linear terms if@A) in the IS @ solution for each set of HF equations [3]. For open-shell
energy functional. Beyond the linear order, the largestavar NUCI€l, in contrast, the binding energies obtained Wi{fy are
tions occur fort80, where the successive inclusion of terms upreduced by several hundred keV, and thedence is given by

to third order causes changes of 20Q00 keV (see the inset (TAA) 1
of Fig. 2). As expected, theffiect of higher orders rapidly di- — = —1r (p —p2) (47)
minishes with increasing masses, and amounts to a few keV for A A
the nickel and tin isotopes. For this reason, we will consadle  to numerical accuracy.

5

antees the convergence of the series.

To test the rate of the convergence, we display the quantit
E@P _ @Y for the open-shell nucléfO, %Ni, and12°Sn in



08— ] of the pairing energies in the bottom half of Fig. 5 illustst

I that theindividual particle-hole and particle-particle contribu-

06l ] tions to the total energy expectation value may well ligedent
e 1 in both calculations.

0.4 1 4. Conclusions

[MeV]

i ] We have presented a detailed analysis of Akgependent
0.2f 8 intrinsic kinetic energy operator in theories with and \with
i ] particle-number conservation, in particular the meardfigpe
Hartree-Fock-Bogoliubov method and its number-consegrvin

Y Bl extension via particle-number projection. We have showhah
50 54 58 62 66 70 74 78 82 naive treatment where the number oper#as replaced by its
N expectation valugA) causes discrepancies in expectation val-

ues obtained with the otherwise equivalent operator forfns o
Figure 4: (E:(bo)lor orzflii)ne.) Groung;state(gnergﬁe*iences for the tin isotope; in Tint. We have developed a systematic expansion to fix this prob-
o Jrrni';fr:j;éﬁls_ Biir (0) andB; — B (W). Calculations were done with 1oy 1t \we emphasize that this expansion dugsestore, nor
' is it intended to restore, either the particle number ordian
tional symmetries of the nucleus.
‘ ] Our discussion provides amposteriorijustification for us-
05F ] ing the one- plus two-body form of the intrinsic kinetic eger
; ] since it is automatically consistent with the power coumtir
a ] the developed expansion. As a byproduct, we also clarify how
1 differences and ambiguities in non-observable quantitieshwhic

b (@)
EPNP - EPNP[ ev]
o

' ] had been discussed in the context of the HF approximation [3]
A S S S S S S S S U arise systematically in the presented framework. While we ha
discussed the specific case of the intrinsic kinetic enepgy-o

% 20 k A ator in the present article, we point out that the same treatm
= 15¢ : should be applied to al-dependent observables.
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