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Zusammenfassung

Ultrakalte atomare Gase in optischen Gittern bieten einen einzigartigen Rahmen für das

Studium von Quantenphänomenen in stark korrelierten Systemen. Jenseits der präzisen

Kontrolle über die Parameter im Experiment, können diese Experimente durch ein fun-

damentales Modell der Festkörperphysik beschrieben werden. Für die bosonische Version

dieses Modells, das sogenannte Bose-Hubbard-Modell, wurde ein Phasenübergang von

einem Superfluid zu einem Mottisolator theoretisch vorhergesagt und später in einem

ultrakalten Gas aus 87Rb Atomen in drei- und eindimensionalen optischen Gittern ex-

perimentell nachgewiesen. Neben homogenen optischen Gittern können auch komplexe

Gittertopologien wie Zweifarb-Supergitter realisiert werden. Diese führen zu einem fa-

cettenreichen Phasendiagramm, in dem exotische Phasen wie das Bose-Glas auftreten.

Wir verwenden verschiedene effiziente Vielteilchentechniken wie exakte Diagonalisierun-

gen in vollständigen und trunkierten Hilberträumen und die Dichte-Matrix Renormie-

rungsgruppen (DMRG) Methode, um die Phasendiagramme des eindimensionalen Bose-

Hubbard-Modells sowie des Bose-Fermi-Hubbard-Modells zu untersuchen.

Der Großteil der theoretischen Studien dieser Systeme untersucht die Phasendiagram-

me als Funktionen der generischen Parameter des Hubbard-Modells. Diese Hubbard-

Parameter hängen jedoch in nicht-trivialer Weise von den Kontrollparametern des Ex-

periments ab. Der Schwerpunkt dieser Arbeit ist eine ab-initio Berechnung des Pha-

sendiagramms von 87Rb in eindimensionalen optischen Supergittern, welche direkt von

einem wohldefinierten Experiment ausgeht. Dazu verwenden wir Bandstrukturrechnun-

gen, um die Hubbard-Parameter aus den experimentellen Parametern zu gewinnen. Zur

Lösung des Vielteilchenproblems für realistische Teilchenzahlen und Gittergrößen, die

im Experiment auftreten, verwenden wir moderne DMRG Methoden.

Unsere Ergebnisse zeigen, dass allein die Kontrolle der Intensitäten der Laser die das

Zweifarb-Supergitter bilden ausreicht, um alle relevanten Quantenphasen des Systems

zu realisieren. Wir haben weiterhin herausgefunden, dass die kritischen Intensitäten der

Laser, welche die Phasengrenzen bestimmen, von einem dritten Parameter abhängen.

Dieser dritte Parameter ist entscheidend für eine realistische Betrachtung des Experi-

ments. Er beschreibt die Stärke eines harmonischen Fallenpotentials, welches das Gauss-

förmige Profil der Laser und ein zusätzliches magnetisches Potential zur Lokaliserung

der Atome im Zentrum der Falle berücksichtigt.
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Summary

Ultracold atomic gases in optical lattices provide an unique framework to study quan-

tum phenomena in strongly correlated systems. In addition to the precise control over

all relevant parameters in the experiment, these experiments can be mapped to a fun-

damental model from solid-state physics. For the bosonic version of this model, the

so-called Bose-Hubbard model, a phase transition from a superfluid to a Mott insulator

was theoretically predicted and later experimentally observed in an ultracold gas of 87Rb

atoms in three-dimensional as well as in one-dimensional optical lattices. Apart from

homogeneous optical lattices one can introduce more complex lattice topologies such as

two-color superlattices which give rise to a rich phase diagram including more exotic

phases like the Bose-glass.

We employ various powerful many-body techniques like exact diagonalization in complete

and truncated Hilbert spaces and the Density-Matrix Renormalization Group (DMRG)

algorithm to study the phase diagrams of the one-dimensional Bose-Hubbard and the

one-dimensional Bose-Fermi-Hubbard Hamiltonian.

Most theoretical studies of these systems discuss the phase diagrams with respect to

the generic parameters of the Hubbard model. These Hubbard parameters, however, de-

pend non-trivially on the control parameters used in experiments. The focus of this work

is on the ab-initio calculation of the phase diagram of ultracold 87Rb in one-dimensional

optical superlattices starting directly from the experimental setup. To this end, we

first employ band-structure calculations to extract the Hubbard parameters from the

experimental parameters. Then, we use state-of-the-art DMRG techniques to solve the

many-body problem for realistic particle numbers and lattice sizes that occur in experi-

ments.

Our results show that by using the intensities of the two laser fields forming the two-color

superlattice as control parameters while keeping all other experimental parameters fixed,

it is possible to access all relevant quantum phases of the system. Furthermore, we found

out that the critical values of the laser intensities for the different phase transitions de-

pend strongly on a third parameter that has to be included for a realistic description of

the experiment. This third parameter is the strength of a harmonic trapping potential

which accounts for the Gaussian shape of the laser fields and an additional magnetic

potential used to confine the atoms in the center of the trap.
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Chapter 1

Introduction

Ever since the pioneering work on low temperature physics by Heike Kamerlingh Onnes

leading to the discovery of superconductivity in 1911, and to a Nobel Prize in Physics in

1913, the fascination for the cold secrets of nature was a stimulant for many physicists.

A theoretical indication for exciting physics at low temperatures was provided in 1924 in

Albert Einstein’s publication “Quantentheorie des einatomigen idealen Gases” [1], which

itself based on a work of Satyendra Nath Bose [2]. In this manuscript, he predicted a

new phase of matter at very low temperatures which is nowadays known as the Bose-

Einstein condensate. It took more than three decades until in 1957 superconductivity

was theoretically understood by John Bardeen, Leon N. Cooper, and John R. Schrieffer

as a condensation of correlated electron pairs—the so-called Cooper pairs [3].

Although quantum mechanics is ubiquitous in our daily life, the domain of ultra-low

temperature physics is special in the sense that peculiar quantum effects can emerge on

macroscopic scales. Bose-Einstein condensates provide a link from the microscopic to

the macroscopic world, because in a condensate a single quantum-mechanical state is

occupied by a macroscopic number of particles. Indirect hints for new quantum effects

have appeared very early, e.g., in the form of superconductivity and superfluidity. And

tremendous progress in trapping and cooling techniques for atomic gases finally led to

the realization of the first pure Bose-Einstein condensates in 1995 by Wolfgang Ketterle

[4], Eric A. Cornell and Carl E. Wieman [5]. They were jointly awarded the Nobel Prize

in Physics in 2001.

By now, laboratories all over the world have the expertise to prepare Bose-Einstein
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Chapter 1 · Introduction

condensates, and the focus has shifted from production towards manipulation of these

condensates. Among a wide variety of fascinating experiments in this branch of low-

temperature physics, we focus on ultracold atomic gases in optical lattices [6]. In these

experiments three standing-wave laser fields, one in each spatial direction cross and re-

sult in a three-dimensional periodic potential for the atoms. The experimental setup of

the lasers and the resulting optical lattice are illustrated in Figure 1.1. Above a certain

Figure 1.1: Left panel: Three laser beams focus on a spot. Right panel: Zoom into the spot

illustrating the sites of the optical lattice. The pictures are taken from [6].

intensity of the laser beams, i.e., a certain optical potential depth, the atoms become

localized at the potential minima and only tunneling between these lattice sites allows

for a residual mobility of the atoms. Furthermore, due to the localization of the atoms

at the lattice sites, they interact strongly if they occupy the same lattice site.

Historically, interacting particles in periodic potentials are the domain of solid-state

physics. However, the spatial length of the periodicity in the ionic-lattice of a metal is

hundreds of picometers while it is typically hundreds of nanometers in optical lattices,

i.e., three orders of magnitude larger. By tuning the intensity of the laser beams one

has the unique ability to precisely adjust the depth of the periodic potential in-situ, and

therefore, to continuously control whether tunneling or interaction dominates the behav-

ior of the atoms. Moreover, while electrons, i.e., fermions sit in the periodic potentials

in solids, one can put atoms with integer or half-integer spin, i.e., bosons or fermions,

or even mixtures in optical lattices, allowing for experiments with different quantum

statistics.

2



From a theoretical point of view, these experiments are also very appealing because

they can be mapped to a very fundamental model from solid-state physics, the so-called

Hubbard model [7]. Originally formulated in 1963 to describe correlations between elec-

trons in solids, the bosonic version of the Hubbard model, known as the Bose-Hubbard

model, predicts a quantum phase-transition1 form a superfluid to a Mott-insulator [8].

In 2001, this phase transition was observed experimentally [9] using a technique called

time-of-flight imaging. Shortly after the ultracold atom cloud is released from the lat-

tice, the resulting density distribution is irradiated with resonant laser light and the

absorption is imaged. In the superfluid phase where tunneling dominates, these density

distributions show clear interference patterns due to the existing phase coherence be-

tween the atoms. In the Mott-insulating phase, however, tunneling is suppressed and the

phase coherence is lost, as a result no interference is visible. The time-of-flight images

from the experiment are shown in Figure 1.2. This nice correspondence between experi-

Figure 1.2: Absorption images of multiple matter wave interference patterns. These were ob-

tained after suddenly releasing the atoms from an optical lattice with different potential depths.

The time of flight of was 15 ms. The potential depths were: (a) 0Er, (b) 3Er, (c) 7Er, (d)

10Er, (e) 13Er, (f) 14Er, (g) 16Er, and (h) 20Er. The recoil energy Er is the natural energy

scale in these systems. The picture is taken from [9].

ment and theory, where observables like the interference patterns can be calculated, was

the beginning of a very fruitful collaboration.

One reason for the continuing interest in these systems is the possibility to realize exper-

iments with lower dimensionalities. When one of the laser beams is tuned to very large

1The terminology quantum phase-transition is due to the quantum fluctuations which drive the phase

transition instead of thermal fluctuations in a classical system.

3



Chapter 1 · Introduction

intensities, tunneling along its direction is suppressed and one ends up with a stack of

isolated two-dimensional lattice planes. If the intensity of a second beam is increased

as well, the result is an array of one-dimensional lattices. In 2004, the superfluid to

Mott-insulator transition was observed in such an one-dimensional lattice [10]. Instead

of the interference patterns, the excitation spectrum of the atomic gas was used to dis-

tinguish the two phases. In the superfluid phase, the system is soft and does not exhibit

a gapped excitation spectrum, while sharp excitation peaks appear in the more rigid

Mott-insulating phase. The results from the experiment are shown in Figure 1.3.

Figure 1.3: Spectroscopy of the 1D superfluid phase (open circles) and the Mott insulating phase

(solid circles) with values of U/J of approximately 2.3 and 14, respectively. The system is excited

via a modulation of the intensity of the laser beam. The picture is taken from [10].

So far, there are two parameters in Hubbard model: U , the energy scale of the interac-

tion process, and J , the energy scale of the tunneling process. In homogeneous optical

lattices, these two parameters uniquely describe the properties of the system. Yet, one

can introduce inhomogeneities via an additional energy ǫl for each individual lattice site

l. These on-site energies account for the topology of an inhomogeneous lattice. In the

experiment, these energies appear for different reasons. Usually, an additional magetic

trap is used to confine the atoms at the center of the optical crystal. Furthermore, the

Gaussian shape of the laser beams also leads to inhomogeneities in the optical lattice.

These two potentials are in good approximation harmonic potentials with a minimum

at the center of the optical lattice. But also more interesting topologies can be real-

4



ized. The interference between the generating laser of the optical lattice and a second

laser beam of different wavelength leads to a whole set of possible spatial modulations of

the optical lattice. This setup is called bichromatic superlattice or two-color superlattice.

The phase diagrams of bosonic atoms in such two-color superlattices were extensively

explored theoretically [11, 12, 13, 14, 15, 16, 17, 18]. An example of such a phase diagram

is depicted in Figure 1.4. We will not go into details here but point out that the intro-
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Figure 1.4: Phase diagram of bosonic atoms in a two-color superlattice with 30 lattice sites

and 30 particles spanned by U/J and ǫmax/J = max{ǫl}/J . The labels mark the domains of

the superfluid (SF) phase, the homogeneous Mott-insulator (MI) phase, the quasi Bose-glass

(BG) phase, and the localized (LO) phase. The picture shows our calculation of the energy gap

between ground state and first excited state.

duction of the superlattice leads to a rich phase structure and gives rise to localized and

quasi Bose-glass phases in addition to the superfluid and the Mott-insulating regimes.

The major aim of this work is an ab-initio calculation of the phase diagram of ultracold

atomic gases in optical lattices. We start from a realistic experimental setup and directly

express the phase diagrams with respect to the control parameters of the experiment. To

this end, we explicitly calculate the Hubbard parameters from a given set of experimental

parameters and employ powerful many-body methods like the Density-Matrix Renor-

malization Group (DMRG) algorithm to obtain the eigenstates of the Bose-Hubbard

Hamiltonian for realistic system sizes.
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Chapter 1 · Introduction

This work is organized as follows. In Chapter 2 we discuss the important basics from

solid-state physics and employ band structure calculations to provide a link between the

experimental parameters, like the already mentioned laser intensities, and the generic

parameters of the Hubbard model.

While three-dimensional optical lattices can be treated theoretically on a mean-field

level, correlations play a significant role in one-dimensional systems and a mean-field de-

scription is no longer appropriate. Here, one has to resort to powerful exact many-body

methods which take all correlations fully into account. In Chapter 3, we use large-scale

diagonalization schemes in complete and truncated Hilbert spaces to study the physics of

bosons and Bose-Fermi mixtures in two-color superlattices. These exact diagonalization

schemes, however, are restricted to moderate system sizes, because the Hilbert space

grows factorially with the length of the lattice and the number of atoms.

In order to approach experimentally realized system sizes, we introduce in Chapter 4 the

DMRG method, which is currently the most powerful numerical tool for one-dimensional

lattice systems.

In most previous studies, the phase diagrams were spanned using the generic Hubbard

parameters U , J , and ǫmax directly. This is sufficient as long as the model itself is the

focus of the research. Yet, these parameters depend non-trivially on the real experimen-

tal parameters. In Chapter 5 we establish a direct connection to the experiment and

combine the computation of the Hubbard parameters for the experimental lattice with

DMRG solutions of the many-body problem to provide the first ab-initio calculations

of the phase diagram of 87Rb atoms in a realistic experimental setup. We furthermore

use this framework to directly compare findings from the experiment with our numerical

calculations.

Finally, in Chapter 6 we leave the physics of ultracold atoms in optical lattices and study

an experimental setup designed by the group of Gerhard Birkl from the TU Darmstadt

[19]. In their experiment they have built an one-dimensional optical ring potential. This

ring potential is used as a waveguide for a Bose-Einstein condensate of 87Rb atoms.

We describe the interacting Bose-Einstein condensate via the one-dimensional Gross-

Pitaevskii equation. For the time evolution of the condensate we use the so-called

Split-Operator Fast-Fourier Transformation (SOFFT) method. In this framework we

6



are able to provide a first insight into relevant time scales, geometries, and potential

depths which could be helpful for the design of the experiment.
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Chapter 2

Hubbard Model & Hubbard Parameters

2.1 Periodic Potentials, Bloch vs. Wannier Functions

Since the Hubbard model plays a key role in this work, we provide a brief introduction

to the relevant fundamentals of solid-state physics. The natural basis for single parti-

cles in periodic potentials are delocalized quasi-momentum eigenfunctions—the so-called

Bloch functions. However, the Hubbard model is formulated with respect to localized

Wannier functions. We will show how the latter can be derived from Bloch functions,

and motivate why they provide a convenient description of ultracold atoms in optical

lattices. For a detailed discussion of the physics in periodic potentials the reader may

refer to any solid-state textbook, e.g. [20].

The optical potentials used in experiments are realized via counter-propagating laser

beams which form a standing wave. If the lasers are red-detuned with respect to an

atomic resonance, the atoms feel an increasingly attractive potential with increasing in-

tensity due to the AC-Stark effect [21]. The intensity maxima then mark the lattice sites.

Three of those standing-wave laser fields, one from each spatial direction, cross and form

a 3D crystal of light as illustrated in Figure 1.1. In order to realize a 1D setup, two of

the beams are tuned to large intensities resulting in an array of onedimensional tubes

between which tunneling is suppressed. The tubes are elongated along the x-direction

and the potential along this direction is defined by the third pair of laser beams with

wavelength λ and potential depth V0:

Vopt(x) = V0 sin2
(2π

λ
x
)

, V0 = s · Er = s · ~
24π2

2mλ2
. (2.1)

9



Chapter 2 · Hubbard Model & Hubbard Parameters

The optical potential is usually expressed in units of the recoil energy Er which is the

kinetic energy a particle of mass m obtains through absorption of a single photon of

wavelength λ. The experimental control parameter is the dimensionless parameter s

which sets the laser intensity that is proportional to the potential depth of the optical

lattice.

The single-particle Hamiltonian including the periodic optical potential is of the form

Ĥ =
p̂2

2m
+ Vopt(x̂) , (2.2)

which leads to the coordinate space representation

Hx = − ~
2

2m

∂2

∂x2
+ Vopt(x) . (2.3)

We will now exploit the periodicity of the potential to derive the corresponding eigen-

functions. Due to the periodicity, a shift of half a wavelength leads to an identical point

in the potential. To generate a shift we formally introduce the translation operator Tξl
,

where ξl = la shall be an integer multiple of the lattice constant a = λ/2 and l labels

the different lattice sites

Tξl
Vopt(x) = Vopt(x+ ξl) = Vopt(x) . (2.4)

For convenience, let us also assume periodic boundary conditions which connect both

ends of the optical lattice via Vopt(x + L) = Vopt(x). If there are I minima over the

length L = I ·a, a shift of the form (Ta)
I leads back to the starting point, i.e., (Ta)

I = 1.

Therefore, the eigenvalues of the translation operator are complex roots

(Ta)
I = 1 ⇒ (Ta)

j = ei
2π
Ia

ja with j = 0, 1, 2, . . . , I − 1 , (2.5)

where in the exponent we define a momentum 2π
Ia j = 2π

L j = kj .

Since the Hamiltonian commutes with the translation operator they share the same

eigenbasis. An eigenfunction that reproduces the correct eigenvalues of the translation

operator is of the form

ψ
(i)
kj

(x) = eikjx · u(i)
kj

(x) , with u
(i)
kj

(x+ ξl) = u
(i)
kj

(x) , (2.6)

and thus

Tξl
ψ

(i)
kj

(x) = ψ
(i)
kj

(x+ ξl) = eikjξlψ
(i)
kj

(x) . (2.7)

10



2.1 · Periodic Potentials, Bloch vs. Wannier Functions

Equation (2.6) is known as Bloch’s theorem [20]. The plane-wave eikjx reflects the generic

part of the function determined by the allowed quantized momenta in a box of length

L. The non-trivial part of ψ
(i)
kj

(x) is given by the momentum-dependent function u
(i)
kj

(x)

which shares the periodicity of the potential. If no potential is present, u
(i)
kj

(x) would be

a constant.

In order to obtain Bloch functions for a given potential, we solve the eigenvalue problem

numerically. The energy eigenvalues of the Hamiltonian are two-fold degenerate for ±kj

and exhibit a band structure. There are as many eigenvalues in a band as there are

minima in the potential. The eigenfunctions defined by

Ĥ
∣
∣ φ

(i)
kj

〉
= ǫ

(i)
j

∣
∣ φ

(i)
kj

〉
(2.8)

are not necessarily Bloch functions, but may be any superposition within the ±kj sub-

space. Thus, we have to solve the 2 × 2 eigenvalue problem for the translation operator

within the subspace of degenerate eigenfunctions to obtain Bloch functions which sat-

isfy Eq. (2.7). For convenience, we formally define the translation operator in bra-ket

notation as
〈
x
∣
∣ T̂ξl

∣
∣ ψ

〉
= ψ(x + ξl) and drop the index i for a moment. We expand

the Bloch function in the degenerate subspace via

∣
∣ ψkj

〉
= c+kj

∣
∣ φkj

〉
+ c−kj

∣
∣ φ−kj

〉
. (2.9)

If we now we apply a shift

T̂a

∣
∣ ψkj

〉
= T̂a

(

c+kj

∣
∣ φkj

〉
+ c−kj

∣
∣ φ−kj

〉)

, (2.10)

the translation operator has to reproduce the correct eigenvalue

T̂a

∣
∣ ψkj

〉
= eikja

∣
∣ ψkj

〉
= eikja

(

c+kj

∣
∣ φkj

〉
+ c−kj

∣
∣ φ−kj

〉)

. (2.11)

Multiplication with the bras leads to the matrix representation of the eigenproblem
( 〈

φkj

∣
∣ T̂a

∣
∣ φkj

〉 〈
φkj

∣
∣ T̂a

∣
∣ φ−kj

〉

〈
φ−kj

∣
∣ T̂a

∣
∣ φkj

〉 〈
φ−kj

∣
∣ T̂a

∣
∣ φ−kj

〉

)

·
(

c+kj

c−kj

)

= eikja ·
(

c+kj

c−kj

)

(2.12)

that has to be solved.

The Bloch functions satisfy the completeness and the orthogonality relations

∑

j,i

∣
∣ ψ

(i)
kj

〉〈
ψ

(i)
kj

∣
∣ = 1̂ , (2.13)

〈
ψ

(i)
kj

| ψ(i′)
kj′

〉
= δii′δjj′ . (2.14)
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Figure 2.1: Dispersion relation of 87Rb atoms in an optical lattice with λ = 800 nm and s =

V0/Er = 4 obtained via a diagonalization of the discretized Hamiltonian. The plot shows the

first three energy bands of an optical lattice with I = 31 minima in the reduced zone scheme.

The index i refers to an energy band and emerges because there is only a finite number

of quasi-momenta kj in a finite volume. However, the set of eigenfunctions of Hx in

Equation (2.3) is infinite. In order to fullfill the completeness relation, there must be

orthogonal Bloch functions with the same value of kj . So, the index i refers to the energy

band, u
(i)
kj

(x) in Equation (2.6) is associated to. In the following, we will only consider

Bloch functions within the first energy band and therefore drop the index i definitively.

Exemplarily, Figure 2.1 shows the dispersion relation for atomic 87Rb in an optical

lattice with a wavelength λ = 800 nm and a potential depth of four recoil energies. One

can clearly see the emergence of band gaps in the eigenvalue spectrum.

An alternative set of orthogonal functions which are localized at individual lattice sites

are the so-called Wannier functions [20]. They are defined by the Fourier series of the

Bloch functions from the first energy band:

wξl
(x) =

1√
I

I−1∑

j=0

ψkj
(x)e−ikjξle

iϕkj . (2.15)
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2.1 · Periodic Potentials, Bloch vs. Wannier Functions
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Figure 2.2: (a): probability density of a non-localized Wannier function. (b): probability density

of a localized Wannier function. Both for the same set of parameters: I = 11, s = V0/Er = 3,

λ = 800 nm. The dashed line shows the corresponding potential on an arbitrary scale.

The Wannier functions are not unique since we can multiply them by a momentum

dependent phase factor ϕkj
. For reasons that will be discussed in Section 2.2, the

Hubbard model requires the use of strongly localized Wannier functions. In order to

obtain maximally localized Wannier functions, one can apply a localization criterion

and minimize the spread
〈
x2
〉
−
〈
x
〉2

[22, 23]. We find a strong localization by choosing

the phases ϕkj
such that the imaginary part of the Bloch functions vanishes at the same

point, arbitrarily chosen to x = 0:

Im{ψkj
(0) · eiϕkj } = 0 . (2.16)

We illustrate this issue in Figure 2.2. Both panels show Wannier functions wξ0(x) which

differ only in the choice of the phases ϕkj
. In Figure 2.2(a) the Wannier function is

delocalized whereas in Figure 2.2(b) the phases are chosen according to Equation (2.16),

leading to localization. Note that both Wannier functions are eigenfunctions of the

single-particle Hamiltonian (2.3) with the identical energy eigenvalue.

Since we do not have strict mathematical arguments to justify that choosing the phases

according to Equation (2.16) leads to maximally localized Wannier functions, we com-

pare the Wannier functions to Gaussian functions that minimize the energy expectation

value of the Hamiltonian (2.3). The results are depicted in Figure 2.3. Due to the

13
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Figure 2.3: Probability density of a localized Wannier function (solid line) versus probability

density of a Gaussian function that minimizes the single-particle energy (dashed line). (a):

s = V0/Er = 3,
〈

Gauss | wξ0

〉
= 0.9858. (b): s = V0/Er = 10,

〈
Gauss | wξ0

〉
= 0.9969. Both

for the parameter set I = 11, λ = 800 nm

”wings”, a Wannier function is always broader than the corresponding Gaussian func-

tion, but even for shallow optical lattices the overlap of both functions is close to one.

Therefore, we conclude that the localized Wannier functions we obtain are close to max-

imally localized Wannier functions, if not even identical, and provide a valid basis for

our calculations of the Hubbard parameters in Section 2.3.
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2.2 · Bose-Hubbard Model

2.2 Bose-Hubbard Model

In 1963, John Hubbard proposed a basic model for the low-temperature physics of elec-

trons in periodic potentials, the Hubbard model [7]. It is based on the assumption that

only the lowest Bloch-band is occupied and no excitations to higher-lying energy bands

can occur. The two dominant processes are a tunneling of electrons to adjacent po-

tential minima, i.e. lattice sites, and a two-particle on-site interaction. Despite of its

simple structure, the bosonic version of the model, the Bose-Hubbard model, exhibits

a quantum phase-transition from a superfluid to a Mott-insulating phase [8]. In 1998,

Jaksch et al. found out that ultracold atoms in optical lattices could be an experimental

realization of the Bose-Hubbard model [24]. This conclusion was the starting point of

a very fruitful exchange between experiment and theory, because as we will see later,

optical lattices provide perfect experimental control over all relevant parameters of the

Bose-Hubbard model. In 2001, Greiner et al. observed the superfluid to Mott-insulator

transition in such an experiment [9]. In this section the Bose-Hubbard model is intro-

duced and its validity for the description of ultracold atoms in optical lattices is discussed.

In terms of field operators, which create or annihilate a wave function of a particle

in coordinate space, a Hamiltonian including the optical potential Vopt(~x), an optional

trapping potential VT (~x), and a two-particle interaction term u3D(~x, ~x′) has the form:

Ĥ =

∫

d3x Ψ̂†(~x)
(

− ~
2

2m
~∇2 + Vopt(~x) + VT (~x)

)

Ψ̂(~x)

+
1

2

∫

d3x

∫

d3x′ Ψ̂†(~x) Ψ̂†(~x′)u3D(~x, ~x′) Ψ̂(~x′)Ψ̂(~x) . (2.17)

The physical reason for the need of the trapping potential VT (~x) will be discussed later

on. The two-particle interaction is introduced via a contact potential in three dimensions,

u3D(~x, ~x′) =
4πas~

2

m
δ(3)(~x− ~x′) . (2.18)

The 1D case follows from the 3D interaction with the assumption that in the two remain-

ing directions interaction is neglected and that the wavefunction can be parameterized

with Gaussian functions, i.e., the potential is assumed to be harmonic in these transverse

directions with trapping frequencies ω⊥ = ωy = ωz. Using this, the integrals over the

remaining directions can be calculated [25], leading to

u1D(x, x′) = 2ω⊥~ as δ(x− x′) . (2.19)
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For more details see Appendix A.1. Using this explicit form of the interaction term, we

can write down the one-dimensional Hamiltonian:

Ĥ =

∫

dx Ψ̂†(x)
(

− ~
2

2m

∂2

∂x2
+ Vopt(x) + VT (x)

)

Ψ̂(x)

+
1

2
2ω⊥~ as

∫

dx Ψ̂†(x) Ψ̂†(x) Ψ̂(x)Ψ̂(x) . (2.20)

In experiments the parameter ω⊥ has to be chosen large enough in order to guarantee

the 1D geometry. A typical value from an experiment is ω⊥ = 2π 42kHz [26]. Through-

out this work, we use ω⊥ = 2π 16kHz unless stated otherwise. With this frequency we

are able to reproduce the Hubbard parameters shown in Fig. 5.16 from Ref. [10]. A

comparison of the Hubbard parameters resulting from the different values of ω⊥ is given

in Appendix A.4.

The use of a contact interaction in Eq. (2.17) is only valid if the scattering particles are

not able to resolve the short-range details of the interaction. In this low-momentum limit

the de-Broglie wavelength of a particle is large compared to the short-range structure of

the interaction. In this case we can assume that the scattering particle does not resolve

any short-range details at all, and use only the lowest order partial wave expansion which

is described by the s-wave scattering length as. This s-wave scattering length can be

interpreted as the radius of a hard sphere which has the same low-momentum scattering

properties than the real interaction.

Already Figure 2.3 revealed that Wannier functions are of comparable width, even

slightly broader, than the corresponding Gauss functions. Thus, in order to approxi-

mate the length scale of the wave function, we adopt the oscillator length b obtained

from the quadratic term of a Taylor expansion of the optical potential:

b =

√

~

mω
=

λ

2π

(
V0

Er

)−1/4

. (2.21)

For a detailed calculation see Appendix A.2. The ratio between the s-wave scattering

length as for 87Rb and the oscillator length b is depicted in Figure 2.4(a). Even for

very deep optical lattices, i.e., strongly squeezed Gaussian or Wannier functions, the

assumption of the contact interaction is still valid since the oscillator length is at least

one order of magnitude larger than the scattering length for the parameter regime used

in this work.

Localized Wannier functions offer a convenient way to construct the field operators in
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Figure 2.4: (a): The ratio of the scattering length as of 87Rb and the oscillator length b with in-

creasing depth of the optical potential s = V0/Er. (b): The tunneling matrix element Jlm (black

circles) and the interaction matrix element Ulmlm (gray diamonds) with increasing distance, for

as of 87Rb, λ = 800 nm, and s = V0/Er = 3.

Eq. (2.17). We introduce the second quantized creation and annihilation operators â†l
and âl that create or annihilate a localized single-particle Wannier function at site l. For

the many-particle basis we use an occupation-number representation

∣
∣ {n1, n2, . . . , nl, . . . , nI}α

〉
(2.22)

where the individual states are denoted by α, and define an I-tuple of occupation num-

bers nl for each lattice site l. The operators act on these states according to

âl

∣
∣ {n1, . . . , nl, . . . , nI}α

〉
=

√
nl

∣
∣ {n1, . . . , nl − 1, . . . , nI}α

〉
, (2.23)

â†l
∣
∣ {n1, . . . , nl, . . . , nI}α

〉
=

√
nl + 1

∣
∣ {n1, . . . , nl + 1, . . . , nI}α

〉
, (2.24)

n̂l

∣
∣ {n1, . . . , nl, . . . , nI}α

〉
= nl

∣
∣ {n1, . . . , nl, . . . , nI}α

〉
, (2.25)

where the occupation number operator is defined as n̂l = â†l âl. The complete set of

occupation-number states, i.e., all possible distributions of the particles in the lattice,

span the many-body Hilbert space:

H = span
{ ∣
∣ {n1, n2, . . . , nI}α

〉}
. (2.26)
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Following this notation, the field operators can be expressed by

Ψ̂†(x) =
I∑

l=1

w∗
ξl
(x) â†l , (2.27)

Ψ̂(x) =

I∑

l=1

wξl
(x) âl , (2.28)

with the Wannier functions wξl
(x) defined above. Again, the index l = 1, · · · , I runs

over the individual lattice sites. Using this form of the field operators we can write down

the Hamiltonian 2.20 in second quantization with respect to the occupation-number

representation:

Ĥ =

I∑

l,m=1

∫

dx â†lw
∗
ξl
(x)

(

− ~
2

2m

∂2

∂x2
+ Vopt(x) + VT (x)

)

âmwξm(x) (2.29)

+
1

2
2ω⊥~as

I∑

l,m=1
n,o=1

∫

dx â†lw
∗
ξl
(x) â†mw

∗
ξm

(x) ânwξn(x) âowξo(x) . (2.30)

We now introduce a parameterized form of the Hamiltonian where the integral terms

are reduced to parameters – the so-called Hubbard parameters.

The first part (2.29) of the Hamiltonian is split into two terms, one with equal indices

and one with unequal indices. For l 6= m the integral defines the so-called ”tunneling

energy” or ”Josephson energy”

−Jlm =

∫

dx w∗
ξl
(x)

(

− ~
2

2m

∂2

∂x2
+ Vopt(x) + VT (x)

)

wξm(x) , l 6= m, (2.31)

where the minus sign is convention. In case of equal indices l = m in the integral

corresponds to the local single-particle energy:

ǫl =

∫

dx w∗
ξl
(x)

(

− ~
2

2m

∂2

∂x2
+ Vopt(x) + VT (x)

)

wξl
(x) . (2.32)

The interaction term (2.30) of the Hamiltonian is written as

Ulmno = 2ω⊥~as

∫

dx w∗
ξl
(x)w∗

ξm
(x)wξn(x)wξo(x) . (2.33)

In the next section we will see that the single-particle matrix elements in Equation
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2.3 · Hubbard Parameters & Bandstructure Calculations

(2.31) almost vanish for |l − m| > 1. Furthermore, if we assume localized Wannier

functions, all off-diagonal terms in Equation (2.33) vanish as well. These statements

will be confirmed explicitly in the next section. Using the Hubbard parameters together

with these assumptions finally leads to the form of the Hamiltonian which is called the

Hubbard Hamiltonian:

Ĥ =
I∑

l=1

{

−Jl,l+1

(

â†l âl+1 + â†l+1 âl

)

+ ǫl n̂l +
1

2
Ul n̂l(n̂l − 1)

}

. (2.34)

2.3 Hubbard Parameters & Bandstructure Calculations

In the previous section we derived the Hubbard Hamiltonian in second quantization

(2.34). When phase diagrams are calculated with respect to the Hubbard parameters,

one usually assumes constant values for the tunneling energy J ≡ Jl,l+1 as well as for

the interaction energy U ≡ Ul. The topology of the optical lattice is then considered

approximately by using the on-site potential energy ǫl only. This ansatz avoids a con-

sideration of real experimental parameters. We will follow this procedure in Section 3.1.

Yet, in order to achieve a closer connection to experiments, we start directly from the

optical potentials and calculate the Hubbard parameters explicitly. Thus, a full con-

sideration of all relevant experimental parameters is taken into account. To get started

with numerical calculations we have to evaluate the integrals in Eqs. (2.31), (2.32), and

(2.33) defining the Hubbard parameters.

If we calculate a set of localized Wannier functions for a given optical potential depth,

we are able to confirm the assumption of a vanishing tunneling energy Jlm (2.31)

for |l − m| > 1. Figure 2.4(b) shows the tunneling matrix element as a function of

the distance between the two localized Wannier functions for a fixed potential depth

s = V0/Er = 3. Even in this regime, where we will later see that the particles are

relatively delocalized, it is clearely visible that only nearest-neighbor tunneling, i.e.,

|l −m| = 1 has a significant contribution to the Hamiltonian, and the next-to-nearest-

neighbor tunneling is already negligible. Therefore, the assumption of including only

nearest-neighbor tunneling is valid. Note that the tunneling matrix element does not

change if it is calculated with the non-localized Wannier function (see Fig. 2.2) since

the phases ϕkj
in Equation (2.15) cancel when evaluating the integral (2.31) because the

Bloch functions are eigenfunctions of the single particle Hamiltonian.

The quantitative behavior of the tunneling energy with increasing lattice amplitude
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is depicted in Figure 2.5(a). One can observe an almost exponential decrease with in-

creasing potential depth. For intensities above 15 recoil energies, tunneling is practically

absent. There is also an analytic approximation for the tunneling energy which becomes

exact in the regime V0 ≫ Er [25]:

J ≈ 4

π
Er

(
V0

Er

)3/4

e
−2

“

V0
Er

”1/2

. (2.35)

Numerical values for this approximation are also shown in Figure 2.5(a). For shallow

optical lattices the tunneling energy is clearly overestimated by this approximation.

The local single-particle energy ǫl defined by Equation (2.32) is equal for all lattice

sites in case homogenous lattices and thus amounts to a global energy shift that is

usually set to zero. However, in inhomogeneous lattice topologies, which arise in case

of superlattices or additional trapping potentials (VT (x) 6= 0), these terms will differ

throughout the lattice. A closer inspection of the effect of superlattice potentials will be

the subject of the next section.

We have assumed that the interaction part Ulmno (2.33) reduces to l = m = n = o

if localized Wannier functions are considered. In case of non-localized Wannier func-

tions this is of course not the case. By taking a look at Figure 2.2(a) it is obvious that

off-diagonal parts of the sums in Eq. (2.33) may contribute, whereas for the localized

function shown in Figure 2.2(b) the off-diagonal parts are small. For illustration, the

matrix elements Ulmlm = 2ω⊥~as

∫
dx |wξl

(x)|2 · |wξm(x)|2 are shown in Figure 2.4(b).

They are practically zero for |l −m| > 0. Hence, it is justified to consider the diagonal

term |l = m| only.

Increasing the optical potential s leads to a squeezing of the Wannier function and

the integral over the fourth power of the function increases. Quantitatively this can be

seen in Figure 2.5(a). With the parameterization of the Wannier function by a Gaussian

function one can derive an approximate analytic expression for the interaction term:

U ≈ 2ω⊥~
as

λ

(

4π2 V0

Er

)1/4

. (2.36)

For details see Appendix A.2. Figure 2.5(a) reveals that the reduced width of the Gaus-

sian compared to the Wannier function (see Fig. 2.3) leads to a systematic overestimation

of the two-particle interaction energy by this approximation.
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Figure 2.5: (a): Hubbard parameters J (black) and U (gray) as a function of the depth of the

optical potential s=V0/Er. Solid lines are our calculations [Eqs. (2.31) and (2.33)], dashed lines

are analytical approximations [Eqs. (2.35) and (2.36)]. (b): U/J as a function of the potential

depth (s = V0/Er). (c): Relative error of the analytical approximations of U/J . (d): Energy

gap between lowest band and first excited band.

If no inhomogeneity is present, i.e. the optical lattice is translationally invariant, the

physics of the Bose-Hubbard model is completely characterized by the ratio of the two

parameters U and J . Figure 2.5(c) shows the relative error if the approximated values

for J and U are used. Even at rather large optical potential depth, i.e. large values of

s, the relative error is above 5%. In the regime of smaller optical potential depth the

approximations of the Hubbard parameters [Eqs. (2.35) and (2.36)] are rather crude.
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2.4 Limits of the Model

In our motivation of the Bose-Hubbard model we assumed a single-band approximation,

i.e., only states from the lowest energy band in Figure 2.1 are considered. Comparing the

tunneling energy with the energy of the band gap [Figs. 2.5(a) and 2.5(d)] one can see

that the tunneling energy is always smaller than the bandgap. However, for very shallow

lattices, e.g. s = 2 and U ≈ 0.15Er , the on-site interaction of four particles on a lattice

site is 4(4 − 1)/2 · U ≈ 0.9Er, which is close to the bandgap of about 1Er. Thus, the

validity of the single-band approximation has to be carefully checked in the weakly inter-

acting regime. Since this work focuses on the intermediate and strong interaction regime

(s > 5), where the bandgap is much larger and occupation-number states with many

particles at one site are practically irrelevant, the single-band approximation is sufficient.

Another important issue is our limitation to non-thermal excitations. In the single-

particle picture this means we have to assure not to overcome the bandgap because this

would violate our restriction to the lowest Bloch band. In order to roughly set a scale

for the temperature, we employ Boltzmann’s constant to express the recoil energy in

terms of a temperature, obtaining Er/kB ≈ 10−7K. Since all relevant energies in the

Bose-Hubbard model are smaller than 1Er as shown in figure 2.5(a), experiments in the

sub-µK regime should be well approximated by the single-band assumption.

A rather subtle approximation of this ansatz is the restriction to a single-particle model

for the band-structure calculations. Hence, we assume that a multiple occupation of a

lattice site does not change the shape of the Wannier function. Yet, already a double

occupation of a lattice site would broaden the Wannier function due to the competition

between the repulsive interaction and the lattice potential. This would not only lead

to a smaller interaction energy, but also to a larger tunneling energy. However, it was

found that sizable changes of the Hubbard parameters in one-dimensional lattices only

occur for occupation numbers nl > 10 and optical potential depth V0 > 20Er [27]. Both

values are much larger than those used in this work, and thus the single-particle ansatz

for the band-structure calculations is valid.

2.5 Two-Color Superlattice Potential

In Section 2.1 we have discussed the single-particle physics of cold atoms in a strictly

periodic optical lattice generated by a monochromatic standing-wave laser-field. A sec-
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Figure 2.6: Illustration of the experimental laser setup. Two laser beams with large intensities in

y- and z-direction provide an array of cigar-shaped tubes among which tunneling is almost com-

pletely suppressed. One laser beam in x-direction (λ2) forms the primary 1D optical lattice, the

other weaker one (λ1) with a different wavelength imprints a spatial modulation. The resulting

potential inside each of the tubes is depicted in Figure 2.7. The picture is taken from [26].

ond, orthogonal polarized laser with a different wavelength can be used to introduce

additional complexity and form a two-color superlattice potential. In addition we allow

for a longitudinal trapping potential VT (x) = 1/2mω2
xx

2 which represents the potential

gradient due to the Gaussian shape of the laser focus and a magnetic trapping potential:

Vopt(x) = s1Er1
︸ ︷︷ ︸

V1

sin2
(2π

λ1
x+ φ

)

+ s2Er2
︸ ︷︷ ︸

V2

sin2
(2π

λ2
x
)

+
mω2

x

2
x2 , (2.37)

where si, λi, and Eri are the optical potential depth, wavelength, and recoil energies of

the two lasers which have a phase shift φ. In the following the stronger, primary laser

is always defined by s2 and λ2. The experimental laser setup is illustrated in Figure 2.6

and the resulting one-dimensional optical potential with a typical parameter set used in

experiment is depicted in Figure 2.7.

As explained in the previous section, the determination of the Hubbard parameters
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Figure 2.7: Two-color superlattice potential with λ2 = 800 nm, λ1 = 1000 nm, φ = π/4, s2 = 5,

s1 = 1, and ωx = 0. The gray dots show the location of the discrete lattice sites in the Hubbard

model.

is based on a band-structure calculation from which the localized Wannier functions are

obtained. However, in an inhomogeneous, non-periodic potential a band structure cal-

culation is not straightforward. In order to extract site-dependent Hubbard parameters

we are therefore limited to an approximate scheme to obtain localized Wannier functions

for the superlattice geometry. We have used two different approaches to calculate the

site-dependent Hubbard parameters, which will be discussed in the following paragraphs.

As a simple ansatz, we consider the weak laser field and the harmonic potential as

a perturbation of the strong primary laser (s1Er1 ≪ s2Er2 and 1/2mω2
xx

2 ≪ s2Er2) and

the Wannier functions are extracted from a conventional band-structure calculation for

the homogeneous lattice defined by the primary laser alone. In this approximation, the

Wannier functions are identical for each lattice site. Using these Wannier functions, the

Hubbard parameters of each site of the superlattice are computed using Eqs. (2.31),

(2.32), and (2.33) and the full superlattice potential. The site-dependence of the param-

eters then only results from the superlattice potential Vopt(x) entering into the matrix

elements and not from a site-dependence of the Wannier functions themselves. As a

result, the parameter Ul characterizing the on-site interaction remains constant for all
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lattice sites.

We also employed a more sophisticated ansatz. Here, the site-dependent Wannier func-

tions are determined individually for each site of the inhomogeneous lattice using a

standard band-structure calculation for a periodic lattice whose lattice amplitude is

given by the local depth of the inhomogeneous potential at that particular site. In this

way, the shape of the Wannier functions depends non-trivially on the local structure of

the superlattice potential. The only reason why a set of Wannier functions determined

in this way cannot be considered as an exact set of localized basis functions results from

the minimal violation of the orthogonality of Wannier functions for neighboring sites.

Their mutual overlap is non-zero but always below 1% in the parameter regime con-

sidered in all our calculations. Using these individual localized Wannier functions, all

site-dependent Hubbard parameters are computed without further approximations.

The comparison of the site-dependent Hubbard parameters Ul, ǫl, and Jl,l+1 obtained

in the two schemes exhibits very little difference, as shown in Figure 2.8. From this,

we conclude that the second scheme provides a sufficiently accurate description of the

Hubbard parameters in the parameter range under consideration, simply because the de-

viation from the first, much cruder approximation is small. Furthermore, the dominant

effects introduced by the superlattice geometry are covered by the local on-site potential

energy ǫl, which is practically independent of the choice of the method.

In this work we consider two different optical lattices. One with λ2 = 800 nm, λ1 = 1000

nm, φ = π/4 which was used in previous studies of our group [15, 38] and a second setting

motivated by experiments [29, 26] with λ2 = 830 nm, λ1 = 1076 nm, and φ = π/3. Ex-

amples for the site-dependent Hubbard parameters for the commensurate as well as the

incommensurate superlattice are depicted in Figure 2.9. Note that we always subtract

a global constant from the Hamiltonian such that ǫmin = min{ǫl} = 0. The dominant

effect of the superlattice structure is the spatial modulation of the on-site energies ǫl,

which is in-line with the approximation to introduce the superlattice through ǫl only.

However, also the tunneling matrix element Jl,l+1, which essentially depends on the bar-

rier height between the sites l and l + 1, shows a sizable variation of ±20% around the

average value J̄ . The interaction strength Ul shows only a weak site-dependence which

is induced solely through the site-dependence of the Wannier functions. A comparison

of the energy scales reveals that the weak secondary laser with s1 = s2/10 considered in

this example is sufficient to create a superlattice with ǫmax > Ū .
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Figure 2.8: Site-dependent Hubbard parameters for the commensurate lattice calculated with

individual Wannier functions (black symbols) and as a perturbation (gray symbols). Column

(a): s2 = 3, s1 = 2, column (b): s2 = 4, s1 = 2 In both cases the parameters are: λ2 = 800 nm,

λ1 = 1000 nm, ω⊥ = 30Er2
/(2π~) and as = 109 aBohr. Lines to guide the eye.

In order to point out the strength of the Hubbard parameters in the whole parame-

ter region under consideration, we plot their mean values in the (s2,s1)-plane. Figure

2.10(a) shows the mean tunneling parameter in units of the recoil energy J̄/Er2 . One can

see an exponential-like decrease with increasing s2 almost independent of s1. However,

the contour lines are not straight lines along the s1 direction but show a slight increase

of the mean tunneling with increasing s1. This is due to the enhanced tunneling be-

tween certain sites where the potential barriers are reduced by the superlattice topology.

The complement effect can be seen for the mean interaction Ū/J̄ in Figure 2.10(b). It

increases with increasing s2 but now the contour lines bend in direction of increasing

Ū/J̄ . The mean on-site energies are shown in Figure 2.10(c) and exhibit an increase

with increasing s2 and s1. For that reason we are not able to find a region for small

values of s2 where this parameter dominates over the interaction. This will result in a
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Figure 2.9: Site-dependent Hubbard parameters for the commensurate lattice λ1 = 800 nm,

λ2 = 1000 nm, (black) and the incommensurate lattice λ1 = 830 nm, λ2 = 1076 nm (gray).

Column (a): s2 = 10, s1 = 0.5, column (b): s2 = 10, s1 = 1. In both cases the transverse

trapping frequency is ω⊥ = 30Er2
/(2π~) and the scattering length as = 109 aBohr. Lines to

guide the eye.

different structure of the phase diagrams spanned in the (U/J ,ǫmax/J)-plane compared

to the phase diagrams spanned with respect to the (s2,s1)-plane. We will discussed this

together with the phase diagrams in Section 5.4.

2.6 Harmonic Trapping Potential

Another source for inhomogeneities in the optical potential, apart from a second laser

beam, are the additional magnetic trap, which used to confine the atoms [58], and the

Gaussian beam profile of the primary laser [21]. In case of a red-detuned laser, with re-

spect to the atomic resonance of 87Rb, both potentials increase with increasing distance

from the center of the trap. We account for this by introducing an additional a harmonic

potential with frequency ωx in the optical potential (2.37). Typical experimental fre-
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Figure 2.10: Density plot of the site-dependent Hubbard parameters for the commensurate lattice

λ2 = 800 nm, λ1 = 1000 nm in the s2-s1 plane. Each point represents the maximum value of the

parameters across the optical lattice. The transverse trapping frequency is ω⊥ = 30Er2
/(2π~),

ωx = 0, and the scattering length as = 109 aBohr.

quencies range from ωx = 2π 8.7 Hz to ωx = 2π 75 Hz [10, 29, 26]. To get an impression

of the energy scale, we show some values for the Hubbard parameters in Table 2.1, which

are obtained through our band-structure approach. By setting s1 = 0 the on-site the

variation of the on-site energies results solely from the additional harmonic potential. At

the outer rims they are given by ǫmax. For trapping frequencies below 2π 25Hz we do not

expect a crucial impact because the resulting local potential energies ǫl are very small in

comparison to Ul and Jl. However, for the larger frequency this changes dramatically.

The energy scales of Ul and ǫl become comparable for ωx = 2π 50 Hz to ωx = 2π 75

Hz. In case of ωx = 2π 100 Hz the on-site energies clearly dominate the energy scale. A

detailed discussion on the impact of ωx will be provided together with the discussion of

the phase diagrams in Section 5.4.

2.7 Observables

In the following we will introduce the observables we use to characterize the different

phases of the atoms in the optical lattice [15].
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s2 2 10 12 16

J̄/Er2 0.1428 0.0192 0.0123 0.0053

Ū/Er2 0.1624 0.2505 0.2966 0.3232

Ū/J̄ 1.1378 14.623 24.222 60.636

ωx = 2π 25 Hz

ǫmax/Er2 0.02431 0.02431 0.02431 0.02431

ǫmax/J̄ 0.17052 1.26739 1.98446 4.55600

ωx = 2π 50 Hz

ǫmax/Er2 0.09737 0.09737 0.09737 0.09737

ǫmax/J̄ 0.68196 5.06927 7.937412 18.2389

ωx = 2π 75 Hz

ǫmax/Er2 0.21909 0.21909 0.21909 0.21909

ǫmax/J̄ 1.53407 11.4048 17.8576 41.0344

ωx = 2π 100 Hz

ǫmax/Er2 0.38950 0.38950 0.38950 0.38950

ǫmax/J̄ 2.72634 20.27242 31.7430 72.9423

Table 2.1: Hubbard parameters for the commensurate setup (λ2 = 800 nm, λ1 = 1000 nm,

φ = π/4, I = 30) and the parameters for 87Rb. For the sake of simplicity we set s1 = 0,

therefore ǫmax is the on-site energy at the boundaries (lattice sites 1 and 30) resulting from the

additional harmonic potential.
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Let us assume a many-body state can be written as a superposition of all possible

occupation number-states (see Eq. 2.26). The dimension of the Hilbert space shall be

D. The ν-th eigenstate of the Hubbard Hamiltonian for N particles and I lattice sites

is defined by the coefficients C
(ν)
α obtained by a numerical solution of the eigenvalue

problem:

∣
∣ ψ(ν)

〉
=

D∑

α=1

C(ν)
α

∣
∣ {n1, n2, . . . , nI}α

〉
with

I∑

l=1

nl = N . (2.38)

Since we are mostly interested in groundstate properties, the index ν is usually dropped

if not referring to an excited state.

2.7.1 Mean Occupation-Number

The mean occupation-number at lattice site l is defined by

nl =
〈
ψ
∣
∣ n̂l

∣
∣ ψ
〉
. (2.39)

In a homogenous optical lattice with periodic boundary conditions the mean occupation-

numbers are the same for all sites and are given by the filling fraction N/I. In inhomo-

geneous systems the mean occupation-number can be utilized to probe the distribution

of particles due to the potential generated by the optical superlattice and a harmonic

confinement.

2.7.2 Number Fluctuation

The number fluctuation defined by

σ2
l =

〈
ψ
∣
∣ n̂2

l

∣
∣ ψ
〉
−
〈
ψ
∣
∣ n̂l

∣
∣ ψ
〉2
, (2.40)

provides insight to the mobility of the particles within the optical lattice. Whenever

the mean occupation number at a particular site originates from a superposition of

many occupation-number states with different occupation numbers, particles have at

least locally a large mobility. The mobility is small if the main contribution to the mean

occupation number comes from a single occupation-number state or a subset of states

with the same occupation number at the particular site.

2.7.3 Condensate Fraction

An interesting question is whether the cloud of atoms on the optical lattice is a Bose-

Einstein condensate or not. By definition, a Bose-Einstein condensate is present if most
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of the particles share the same, usually the energetically lowest, single-particle state.

The condensate fraction fc is the ratio of condensed particles Nc to all particles N

fc =
Nc

N
. (2.41)

In order to obtain this quantity from a many-body state we follow the Onsager-Penrose

criterion [20, 30] and calculate the so-called natural orbitals which correspond to Bloch

functions for a homogenous lattice with periodic boundary conditions. If one of those

natural orbitals is macroscopically occupied, the system under consideration is condensed

to a certain single-particle state. If this is the single-particle state with the lowest energy,

this condensate is called a Bose-Einstein condensate.

Technically we have to solve the eigenvalue problem of the one-body density-matrix

defined by the matrix elements

ρ
(1)
ll′ =

〈
ψ
∣
∣ â†l âl′

∣
∣ ψ

〉
. (2.42)

For homogeneous systems the eigenvalues λi are just the quasi-momentum occupation

numbers. The largest eigenvalue defines the number of condensed particles Nc.

In the non-interacting limit, the Hubbard Hamiltonian is diagonal in momentum space

and all particles occupy the zero quasi-momentum single-particle state. Thus, the con-

densate fraction becomes one in that case.

fc = 1 for U → 0 or J → ∞ (2.43)

On the other hand, if all quasi-momentum single-particle states are equally occupied,

the condensate fraction becomes zero in an infinite system. This would be the case for

a spin-polarized and completely filled Fermi system, or for boson system with commen-

surable filling in the limit U → ∞ or J → 0.

Since the trace of the one-body density matrix is the sum of I diagonal elements and

equals the total number of particles N , the length of the lattice I sets a lower bound for

the condenstate fraction fc ≥ 1/I. This means that the condensate fraction might suffer

from strong finite size effects.

For completeness we note that the occurrence of macroscopically occupied natural or-

bitals goes along with off-diagonal long-range order [31]. Formally this is the case if the
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off-diagonal matrix-elements of the one-body density-matrix remain finite even for large

distances

ρ
(1)
ll′ 6= 0 for |l − l′| → ∞ . (2.44)

This statement has to be handled with care in finite systems. There, the off-diagonal

elements will only be exactly zero for vanishing tunneling J → 0 or infinite interaction

strength U → ∞. In a perfect Bose-Einstein condensate all elements of the one-body

density-matrix equal one because all particles are maximally delocalized. One can also

regard equation (2.42) as the overlap between a state, where a particle is moved from

site l to l′ with the original state. In this sense, off-diagonal long-range order reflects the

order of delocalization of particles in the lattice.

2.7.4 Interference Pattern and Fringe Visibility

The interference pattern and the fringe visibility are of particular interest as they are

directly accessible to experiments, where one applies time-of-flight (TOF) imaging to

probe the initial state of the atoms in the optical lattice. This is achieved by instan-

taneously switching off the lasers and the confining potentials. After a certain time of

free expansion of the gas cloud in the gravitational field it is irradiated with resonant

laser light and the absorption image is taken with a CCD camera. During the expansion

the quasi-momentum structure imposed by the optical lattice is mapped to a spatial

density distribution. If particles at different lattice sites are phase-coherent, the density

distribution of the expanded cloud will exhibit interference patterns. If not, the image

will show an incoherent superposition of the momentum distribution of the atoms from

the individual lattice sites.

By formally introducing an amplitude operator Â(x), the intensity of the matter wave

I(x) at a point x is given by

I(x) =
〈
ψ
∣
∣ Â†(x) Â(x)

∣
∣ ψ
〉
. (2.45)

Neglecting the spatial envelope of the interference pattern, the amplitude operator Â(x)

depends on the phase difference φl(x) between site l and the observation point x only,

Â(x) =
1√
I

I∑

l=1

eiφl(x) âl . (2.46)

Considering microscopic distances between the lattice sites and a macroscopic distance

from the lattice to the observation point, we assume a constant phase shift between
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adjacent sites δ = φl+1(x) − φl(x). Using this far-field limit leads to the following

expression for the matter-wave interference pattern:

I(δ) =
1

I

I∑

l,l′=1

ei(l−l′)δ
〈
ψ
∣
∣ â†l′ âl

∣
∣ ψ
〉

=
1

I

I∑

l,l′=1

ei(l−l′)δ ρ
(1)
ll′ , (2.47)

in which we have used the definition (2.42). This expression is closely related to the

quasi-momentum distribution. If δ equals the possible quasi-momenta qk = 2πk/I, k =

0, 1, . . . , I−1, we obtain the respective quasi-momentum occupation numbers. Note that

in a homogeneous lattice the condensate wave function—the lowest natural orbital—is

associated with the Bloch function with zero quasi-momentum. In this case, the fraction

of the intensity of the central peak I(0) and the total intensity would also yield the

condensate fraction fc.

The visibility ν of the interfence fringes can be derived directly from the interference

pattern via

ν =
max {I(x)} − min {I(x)}
max {I(x)} + min {I(x)} . (2.48)

This is basically the intensity difference between the first order interference peaks and

the incoherent background. A nice feature of this observable is that the discarded spatial

envelope does not play a role here. For vanishing interaction energy all particles occupy

the lowest natural orbital. Therefore, the incoherent background will vanish completely

and the visibility of the interference fringes becomes one in this limit.

2.7.5 Energy Gap

Measuring the excitation spectrum of the atomic cloud provides also a sensitive tool to

probe for different quantum phases. In the experiment one employs two-photon Bragg

spectroscopy via an intensity modulation of the optical lattice. The width of the central

interference peak is used as a measure of the energy transfer into the atomic cloud [10].

The detailed structure of the excitation spectrum has been also investigated theoretically

by our group [32, 33].

A first qualitative information about these spectra is given by the energy gap ∆E.

This is the difference between the energy of the first excited state and the ground state

∆E = E(1) − E(0) . (2.49)
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Basically this is the minimal amount of energy needed to excite the system. In the

Mott-insulating phase of a homogeneous lattice the occupation-number state with one

particle per site dominates the ground state. For a double occupancy of a single lattice

site, the system has to pay the interaction energy. Since this is the minimal possible

excitation, the energy gap becomes proportional to the interaction strength between two

particles in the Mott-insulating phase. In the superfluid phase already the ground state

is a superposition of many occupation-number states. Because a multi occupancy of a

single lattice site is not associated with an energy increase, the energy gap is small and

even zero in the limit of vanishing interaction energy.

2.7.6 Maximum Coefficient

Although the maximum coefficient

C2
max = max

{
C2

α

}
(2.50)

in the occupation-number representation (2.38) is not an observable in the strict sense,

it provides interesting information about the structure of the state. If many different

occupation-number states contribute its value is small, whereas its value is close to one

if there is a dominant occupation-number state.
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Diagonalization Techniques

3.1 Diagonalization in the Complete Hilbert Space

A straightforward approach to obtain non-trivial solutions for the Hubbard model at

U 6= 0 and J 6= 0 is an exact diagonalization within a complete Hilbert space. If

applicable, this is also the best method, since it is relatively easy to implement and,

more importantly, we obtain the exact ground state from which all observables can be

directly calculated. However, this method is restricted to small lattices of about 10 sites

and 10 particles due to the factorial growth of the Hilbert space dimension.

3.1.1 Bosons in a Two-Color Superlattice

Together with the occupation-number representation (2.26), the Schrödinger equation

for the Bose-Hubbard Hamiltonian

Ĥ =

I∑

l=1

{

− J
(

â†l âl+1 + â†l+1 âl

)

+ ǫl n̂l +
1

2
U n̂l(n̂l − 1)

}

. (3.1)

with N particles and I lattice sites defines the matrix eigenvalue problem:

D∑

α=1

〈
{n1, n2, . . . , nI}β

∣
∣ Ĥ

∣
∣ {n1, n2, . . . , nI}α

〉
C(ν)

α = EνC
(ν)
β . (3.2)
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The dimension D of the Hilbert space grows factorially with the lattice size and the

number of particles. By combinatorics we obtain the dimensions

Da =
(N + I − 1)!

N !(I − 1)!
for bosons , (3.3)

Dc =
I!

N !(I −N)!
for fermions . (3.4)

For I = N = 8, the dimension for the bosonic Hilbert space is Da = 6435, but for

I = N = 12 one already has Da = 1352078. The latter can still be solved on an or-

dinary desktop computer if the sparseness of the Hamilton matrix is exploited. In this

case Lanczos algorithms [34] are applied in order to calculate a few eigenstates from the

lower end of the spectrum. However, going to larger lattices with more particles quickly

becomes impracticable in this framework.

Usually, the Hubbard Hamiltonian is expressed in units of the tunneling energy J . Thus,

the phase diagram is spanned by the dimensionless parameters U/J and ǫmax/J intro-

duced in Chapter 2. A detailed analysis of the Bose-Hubbard model for moderate system

sizes using an exact diagonalization in the complete Hilbert space can be found in ref-

erences [15, 16].

An exemplary phase diagram for the superlattice topology depicted in Figure 3.1 was

already shown in the introduction in Figure 1.4. Four different phases were identified:

the superfluid phase in the regime of small U/J and small ǫmax/J , the Mott-insulating

phase at 5 . ǫmax/J < U/J , the quasi Bose-glass phase at 5 . U/J < ǫmax/J , and the

localized phase at very small U/J and large ǫmax/J . The characteristics of the different

phases will be discussed in detail in Section 5.4.

3.1.2 Boson-Fermion Mixture in a Two-Color Superlattice

Recent developments in the sympathetic cooling of boson-fermion mixtures in optical

lattices [35] paved the way to experimental studies of degenerate gases with mixed quan-

tum statistics [36, 37]. Various aspects of boson-fermion mixtures in uniform lattices

have been investigated theoretically [38, 39]. In this section, we study the effect of an

additional superlattice potential on the phase diagram of such a mixture. All the fol-

lowing results from this chapter were published [40].

The Hamiltonian of a binary boson-fermion mixture in an optical lattice is given by
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Figure 3.1: Topology of the two-color superlattice.

a straightforward generalization of the Bose-Hubbard Hamiltonian:

Ĥ =

I∑

l=1

{

− J
(

â†l+1âl + ĉ†l+1ĉl + h.a.
)

+
1

2
Uaan̂

(a)
l

(

n̂
(a)
l − 1

)

+Uac n̂
(a)
l n̂

(c)
l + ǫl

(

n̂
(a)
l + n̂

(c)
l

)}

. (3.5)

where â†l , âl, n̂
(a)
l refer to the bosonic species and ĉ†l , ĉl, n̂

(c)
l to the spin-polarized fermionic

species. For the sake of simplicity, we assume equal tunneling matrix-elements J for both

species. Uaa is the boson-boson interaction is energy. Due to Pauli’s exclusion principle,

there is no multiple occupancy of fermions on a single lattice site and therefore no on-site

fermion-fermion interaction Ucc. The inter-species interaction is described by Uac. The

topology of the superlattice is given by ǫl. Again, we employ the two-color superlattice

depicted in Figure 3.1.

The many-body states are written as the direct product of the occupation number bases

for bosons and fermions. A general many-body state can then be represented as a

superposition of all possible combinations of the occupation-number states:

∣
∣ ψ
〉

=

Da∑

α=1

Dc∑

β=1

Cαβ

∣
∣ {n(a)

1 , ... , n
(a)
I }α

〉
⊗
∣
∣ {n(c)

1 , ... , n
(c)
I }β

〉
. (3.6)

The sets of occupation numbers {n(a)
1 , ... , n

(a)
I } for the bosonic component comprise all

possible distributions of the Na atoms over the I lattice sites with
∑

l n
(a)
l = Na. For

the fermionic occupation numbers {n(c)
1 , ... , n

(c)
I } the additional constraint n

(c)
l ∈ {0, 1}
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reflects the Pauli principle.

The following calculations were performed for a system with I = 10 lattice sites and

Na = Nc = 5 particles of each species using the complete basis of Da · Dc = 504504

occupation-number states. The boson-boson interaction energy is fixed to Uaa/J = 20

in order to simplify the discussion. Other (non-zero) values would not change the basic

structure of the phase diagram but only cause a rescaling.

Figure 3.2 shows the maximum coefficient C2
max of the occupation-number states in the

ground state as a function of the boson-fermion interaction strength Uac/J and super-

lattice amplitude ǫmax/J . This quantity already reveals the rich structure of the phase

diagram. We can identify several straight lines or valleys of minimal C2
max that subdi-

vide the phase diagram into different regions. There is a horizontal line at ǫmax = Uaa

and a vertical line at Uac = Uaa, whose locations are determined by the boson-boson

interaction strength and which are independent of the details of the lattice topology.

In contrast, the additional diagonal valleys are governed by these details of the lattice

topology, i.e., the set of on-site energies ǫl.

Typical occupation number distributions for bosons and fermions in the different ar-

eas of the phase diagram separated by those valleys are also presented in Figure 3.2.

They correspond to the values of the boson-fermion interaction strength and the super-

lattice amplitude marked by the labels in the phase-diagram. The characteristics of the

different regions can be summarized as follows:

(A) In this region, the atoms are uniformly distributed over the lattice because of the

dominant repulsive interactions. All occupation-number states with few particles

per site are favored since the strong boson-fermion repulsion suppresses states with

different species occupying the same site. Because of the commensurate filling and

the strongly repulsive interactions between bosons as well as between bosons and

fermions this phase is closely related to the Mott-insulating phase in a purely

bosonic system.

(B) The mean occupation numbers of both species follow the shape of the superlattice

potential. In the upper-left corner of this region two bosons are able to share the

deepest superlattice wells with one fermion. An increasing boson-fermion repulsion

Uac forces one boson to leave the deepest superlattice well and the mean occupation

38



3.1 · Diagonalization in the Complete Hilbert Space

numbers exhibit a profile as depicted in inset (B).

(C) Above ǫmax/J = 20 = Uaa/J the on-site energy of the deepest superlattice wells

exceeds the boson-boson interaction energy and they are capable to hold 2 bosonic

particles. This double occupation occurs if the boson-fermion interaction over-

comes the boson-boson interaction and forces the fermion to leave the deepest

well.

(D) Complete localization of the bosons at the deepest superlattice sites induced by the

strong repulsive boson-fermion interaction in spite of the boson-boson repulsion.

In a purely bosonic system with Uaa/J = 20, a full localization would occur only

for extremely strong superlattice potentials with amplitudes1 ǫmaxJ > 210. The

presence of the fermions and the strong boson-fermion repulsion cause a separation

of bosons and fermions, promoting the localization. The borders of this region of

separation induced localization depend not only on the interaction strengths and

the superlattice amplitude, but also on the filling. The more particles per super-cell

are available, the further the onset of localization is pushed to larger superlattice

amplitudes.

(E) Transition region between (B) and (C). This area of subtle rearrangements is gov-

erned by the finite differences of the on-site energies ǫl of the superlattice potential.

(F) Transition region between (B) and (D). The panel with the occupation numbers in

Figure 3.2 indicates that the fermions on sites l = 2 and 7 successively force the

bosons to the state of complete localization. If the bosons were the only species

this would happen at much larger superlattice amplitudes.

The phase diagram in terms of the condensate fraction fc of the bosonic species is de-

picted in the left panel of Figure 3.3. Three areas with a significant condensate fraction

are visible. In the lower left corner at small boson-fermion interaction strengths and su-

perlattice amplitudes, large condensate fractions occur in spite of the strongly repulsive

boson-boson interaction (Uaa/J = 20), since the incommensurate boson filling averts a

Mott-insulator phase. The condensate is depleted as soon as either the increasing boson-

fermion interaction leads to a Mott-like phase, or the superlattice tends to localize the

particles. The large condensate fractions in an extended region in the upper right part

1Consider a transition from a state with 1 boson at site 2 and 2 bosons at site 3 to a state with

3 particles at site 3. The reduction of the total energy due to the reduced on-site energy of the new

state is compensated by an increase in interaction energy (see Fig. 3.1). For a superlattice amplitude

ǫmax/J = 210 these two competing energies are equal.
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Figure 3.2: Right panel: C2
max of a binary boson fermion system with Na = Nc = 5 particles

on I = 10 lattice sites. Left panel: The mean occupation numbers (white Bosons and gray

Fermions) for the selected points in the phase diagram. The boson-boson interaction energy is a

parameter in this plot and fixed at Uaa/J = 20.
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and along the upper part of the Uac/J = 0 axis have to be treated with care for they are

”localized condensates” [41]. The almost complete localization of the bosonic particles

at the deepest lattice sites l = 3 and 8 manifests in the corresponding diagonal matrix

elements, i.e., the occupation numbers, of the one-body density matrix ρ
(1)
33 and ρ

(1)
88 .

In comparison, the other matrix elements are small except for the off-diagonal elements

ρ
(1)
38 and ρ

(1)
83 . This results in two large eigenvalues of the one-body density matrix and,

therefore, in our description, in a large condensate fraction. Note, however, that this con-

densate is completely different from the condensate associated with the superfluid phase

in a homogeneous lattice, where all particles are delocalized and exhibit long-range phase

coherence. This characterization of the condensate is closely related to the existence of

off-diagonal long-range order (see Section 2.7.3) in the one-body density matrix, which

is absent in the case of the localized condensates. This interpretation is also supported

by the behavior of the fringe visibility ν shown in the right panel of Figure 3.3. Clearly,

the visibility is large at small boson-fermion interaction strengths and superlattice am-

plitudes (lower left corner) as expected for a conventional condensate. In contrast to

this, there is no sizable fringe visibility in the upper-right region, indicating that the

localized phase is incoherent and has to be distinguished from a genuine Bose-Einstein

condensate. This also applies to the narrow stripe along the Uac/J = 0 axis, where the

fringe visibility exhibits an intermediate value. Again, the ground state is dominated by

occupation-number states that have many bosonic particles at the deepest superlattice

wells. In contrast to the area at the top right, not all of the particles are localized and

thus many more occupation-number states contribute. The more occupation-number

states contribute to the ground state, the more the phase coherence is restored, leading

to more pronounced interference patterns.
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Figure 3.3: Binary boson-fermion mixture with Na = Nc = 5 particles on I = 10 lattice sites

at fixed boson-boson interaction energy Uaa/J = 20.(a): condensate fraction fc of the bosonic

species. (b): fringe visibility ν of the bosonic species. Although the condensate fraction at the

top right is large, the fringe visibility vanishes there. This is due to the different nature of the

localized condensates (see text).
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3.2 Diagonalization in Truncated Hilbert spaces

One possible way to reduce the computational effort for exact-diagonalization techniques

in order to extend these direct solutions of the eigenproblem to larger lattices and more

particles is to decrease the size of the Hilbert space in a controlled and physically moti-

vated manner. The challenge is to decide which occupation-number states are important

and which can be discarded from the outset. Our ansatz for a basis truncation scheme

is introduced in the following.

3.2.1 Importance Truncation

We are interested in a criterion that determines a subspace of the Hilbert space that

is still able to provide a good approximate solution to the problem. As an example,

consider a system deep within the Mott-insulating phase. Occupation-number states

with many particles at one particular lattice site are associated with large interaction

energies, which is why they are energetically unfavorable and therefore are not important

for a proper description of the ground state, i.e. their overlaps with the ground state

are very small meaning their coefficient C2
α is very small. Our ansatz is based on an ex-

clusion of these less important occupation-number states from the beginning, leading to

a significant reduction of the basis dimension. An application of our truncation scheme

to a time-dependent Hubbard Hamiltonian – aiming at response under modulations of

the optical lattice – can be found in Refs. [32, 33]. Furthermore, a similar importance-

truncation scheme was also successfully applied in nuclear physics in the framework of

the no-core shell model [42].

A simple but efficient a priori measure for the importance of individual occupation-

number states is the expectation value eα of the Hamiltonian (3.1). The following in-

equality is used to select the relevant basis states:

eα =
〈
{n1, n2, . . . , nI}α

∣
∣ Ĥ

∣
∣ {n1, n2, . . . , nI}α

〉
≤ Etrunc . (3.7)

Hence, occupation-number states associated with interaction or on-site energy contribu-

tions above a specific truncation energy Etrunc are discarded. By varying the parameters

U and ǫmax in the Hamiltonian, one can optimize the basis for a particular region of

the phase diagram. By varying the truncation energy Etrunc one can adjust the size

of the truncated basis and at the same time assess the truncation errors. In a homo-

geneous lattice the energies eα are grouped according to particle hole (ph) excitations

with respect to the occupation-number state with exactly one particle per lattice site.
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An occupation-number state from the 1p1h subspace, e.g., has eα = U since it has one

doubly occupied site.

The truncation scheme works particularly well in regions where the ground state is

composed of a few dominant basis states, i.e., in regions of large C2
max. However, in

regions where almost all occupation-number states contribute significantly, e.g., in the

superfluid phase, the truncation scheme will be less effective. In order to confirm this, we

have performed a diagonalization in the complete Hilbert space for I = N = 7 for a ho-

mogeneous system (ǫmax = 0) and checked the correlations between eα and |Cα|. Figure

3.4 shows the individual energies eα of the occupation-number states over their corre-

sponding coefficients |Cα| in the superfluid as well as in the Mott-insulating regime. The

dashed line marks the 2p2h subspace of the Hilbert space with dimension D2p2h = 358.

For U/J = 2 this means Etrunc/J = 2U/J · 3(3 − 1)/2 = 6U/J and for U/J = 10,

Etrunc/J = 10U/J ·3(3−1)/2 = 30U/J . All basis states above the dashed line would be

omitted by the truncation scheme. In the superfluid phase, a significant number of basis

states with |Cα| ≥ 0.01 would be excluded which would result in a rather poor approxi-

mation of the ground state. In the Mott-insulating phase, however, all basis states with

|Cα| ≥ 0.005 are included. Whether reliable results can be obtained from this approxi-

mate ground state has to be checked carefully by successively increasing the basis size,

i.e., by using larger values for Etrunc, and testing the convergence of the observables. In

the following section we will see that the approximate ground state reproduces all the

relevant physics in the Mott-insulating phase very well.

3.2.2 Benchmark of the Truncation Scheme – Bosons

As a first benchmark, we study the effect of the basis truncation for the single-component

Bose gas including the Mott-insulator to quasi Bose-glass transition. We employ the

same superlattice topology as in the previous sections. The interaction energy is fixed

at U/J = 30. The calculations performed with the complete basis are compared to

calculations with two different truncation levels.

The generation of the truncated basis starts from a reference occupation-number state

that is obtained by a minimization of the expectation value of the Hamiltonian within the

manifold of Fock states for a given particle number. Multiple particle-hole excitations

are generated from this reference state until the inequality (3.7) is no longer satisfied. If

the truncation energy Etrunc is chosen large enough so that none of the new occupation-
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Figure 3.4: Individual energy expectation values eα of the occupation-number basis states over

their coefficients for the ground state (black) and the first excited state (gray). The homogeneous

system under consideration is I = N = 7 and has a dimension of D = 1716. (a): superfluid

phase U/J = 2, (b): Mott-insulating phase U/J = 10. The dashed line marks the 2p2h subspace

(eα/J = 6 for U/J = 2 and eα/J = 30 for U/J = 10) that has a dimension of D2p2h = 358.

number states can violate the inequality, this process would generate the complete set

of occupation-number states. In principle, one could calculate an adapted basis for each

point in the phase diagram, but for the sake of simplicity the phase diagram is split

into three parts with different optimized basis. Table 3.1 lists the different ranges in

ǫmax/J , together with the corresponding basis dimensions and reference states. Since

the importance-truncation approach satisfies the variational principle, we allow for over-

laps at the borders of different sections of ǫmax/J and select the basis that yields the

lowest ground state energy. The strong truncation includes 1p1h and some energetically

favorable 2p2h excitations with respect to an appropriate reference state chosen for the

particular region in the phase diagram. The dimension of the truncated basis is about

0.3% of the complete basis. For the basis with moderate truncation, some higher-order

npnh excitations are also included. Nevertheless, the dimension of the moderately trun-

cated basis is still reduced to a mere 4% of the complete basis.

The dependence of the maximum coefficient C2
max on the amplitude of the superlat-

tice ǫmax/J at fixed interaction strength is depicted in Figure 3.5(a). If the amplitude

ǫmax/J is smaller than the interaction strength U/J , the system is in the homogeneous
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system section (ǫmax/J) dimension reference number state

strong truncation 1-28 91
∣
∣ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

〉

≈ 0.3% of complete basis 29-50 288
∣
∣ {1, 1, 2, 1, 0, 1, 1, 2, 1, 0}

〉

51-150 199
∣
∣ {0, 2, 2, 1, 0, 0, 2, 2, 1, 0}

〉

moderate truncation 1-29 3743
∣
∣ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

〉

≈ 4% of complete basis 30-50 1866
∣
∣ {1, 1, 2, 1, 0, 1, 1, 2, 1, 0}

〉

51-150 2737
∣
∣ {0, 2, 2, 1, 0, 0, 2, 2, 1, 0}

〉

complete basis 1-150 92378 –

Table 3.1: Basis dimensions and reference states for different truncation levels and different

ranges of ǫmax/J . In principle, an optimized basis for each value of ǫmax/J could be chosen in

order to improve the approximate ground state.

Mott-insulator phase and the number state with one particle per lattice site dominates.

Further increase of the superlattice amplitude leads to the onset of the quasi Bose-glass

phase, where a pattern of regions with small values of C2
max and large number fluctua-

tions σmax and regions with large values of C2
max and small σmax emerges. For both C2

max

and σmax the differences between the calculations with the complete and the truncated

basis are barely visible. Only for the strongly truncated basis with 0.3% of the complete

basis dimension, noticeable deviations occur. The basis using a moderate truncation

to 4% yields results which are practically identical to calculations done in the complete

Hilbert space.

Figure 3.5(c) illustrates the dependence of the condensate fraction fc on the super-

lattice amplitude ǫmax/J for fixed U/J = 30. Leaving the homogeneous Mott-insulator

phase, the condensate fraction increases rapidly, reaching a local maximum at the tran-

sition point to the quasi Bose-glass phase at ǫmax/J = 30. After a slight decrease within

the first lobe of the Bose-glass phase it increases again with ǫmax/J . It seems that in

the limit of large superlattice amplitudes ǫmax/J , two separate localized condensates

form at the deepest lattice wells. The term condensate has to be used with caution in

this context – we already discussed the issue of localized condensates in Section 3.1.2.

The deviations between calculations using the truncated and the complete basis for the

condensate fraction are generally small. At the local maximum at ǫmax/J = 30 the

exact calculation yields fc = 0.278, the moderate truncation fc = 0.276 and the strong

truncation fc = 0.258. It is an intrinsic feature of the truncation to underestimate the
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Figure 3.5: . From left to right: maximum coefficient C2
max, maximum number-fluctuation

σmax, condensate fraction fc, and visibility of the interference patterns ν, all plotted over the

amplitude of the superlattice ǫmax/J at fixed interaction strength U/J = 30. Calculations within

the complete basis (solid line), truncated to 4% of the complete basis (dotted line), and truncated

to 0.3% of the complete basis (dashed line). The results of the complete basis and the truncated

basis with 4 % of the full dimension coincide almost everywhere.

condensate fraction because of the occupation-number states that are excluded during

the calculation of the one-body density-matrix. The kink at ǫmax/J = 50 (dashed line)

is due to the change of the basis at this point (see Tab. 3.1). In principle one could

adopt another optimized basis in this region in order to improve the description and

avoid this effect.

Figure 3.5(d) shows the fringe visibility as a function of ǫmax/J for fixed U/J = 30.

In accord with the maxima of σmax and the kinks of the condensate fraction, the visibil-

ity of the interference pattern shows local maxima each time the particles are rearranged

due to the increasing superlattice amplitude. The strongly truncated basis is not able to

give correct quantitative results, although the locations maxima are reproduced quali-

tatively. The moderately truncated basis shows only minor deviations and yields almost

the exact visibilities.

The matter-wave interference pattern after the release of the atoms from the lattice and

a free expansion is also investigated. Figure 3.6 shows three values of the superlattice

amplitude ǫmax/J in the vicinity of the transition point from the homogenous Mott-

insulator to the quasi Bose-glass phase. From the sequence of interference patterns one

can see that the height of the peak at quasi-momentum zero reaches a maximum at

ǫmax = U , with an absolute value below the condensate occupation number. Note that

in a homogeneous lattice the condensate wave function – the lowest natural orbital – is

identical to the quasi-momentum zero Bloch function. Hence, in that case the occupa-
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Figure 3.6: Matter-wave interference pattern in the vicinity of the Mott-insulator to the quasi

Bose-glass transition point at fixed interaction strength U/J = 30. Calculations within the

complete basis (solid line), the basis truncated to 4% of the complete basis (dotted line), and

the basis truncated to 0.3% of the complete basis (dashed line). The dotted line almost perfectly

covered by the solid line because of the good reproduction of the calculations using the complete

basis.

tion of the quasi-momentum zero mode is equal to the lowest eigenvalue of the one-body

density matrix. However, this relation does not hold for irregular lattice potentials.

As already mentioned, we expect the largest deviations between calculations using the

truncation scheme and calculations using a complete basis, if a large number of basis

states is necessary to represent the ground state. But even in the transition region, where

this occurs, less than 1% of the complete set of occupation-number states is sufficient

to reproduce the properties of the system qualitatively. The basis including 4% of the

complete set of occupation-number states included shows virtually no deviation from

the exact calculation. It seems that the estimate (3.7) is a suitable a-priori measure to

select the physically relevant occupation-number states.

48



3.2 · Diagonalization in Truncated Hilbert spaces

0 10 20 30 40 50 60
Uac/J

0

10

20

30

40

50

60

.

ǫ m
a
x
/
J

fc

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
.

0 10 20 30 40 50 60
Uac/J

0

10

20

30

40

50

60

.

ǫ m
a
x
/
J

ν

(b)

0 0.2 0.4 0.6 0.8 1
.

Figure 3.7: Binary boson-fermion mixture with Na = Nc = 5 and I = 10 for fixed Vaa/J = 20

calculated with a truncated basis of roughly 15% of the full dimension. Left panel: condensate

fraction fc of the bosonic species, right panel: fringe visibility ν of the bosonic species. The

comparison with Figure 3.3 illustrates the quality of the truncated calculation.

3.2.3 Benchmark of the Truncation Scheme – Boson-Fermion

Mixtures

We now apply the basis truncation scheme to a binary boson-fermion mixture and repeat

the calculations of section 3.1.2 for I = 10 and Na = Nc = 5. The truncation of the

basis again makes use of the importance criterion (3.7).

For the present example the basis dimension is reduced to Da ·Dc = 72762, i.e., about

15% of the occupation-number states of the complete basis. For the sake of simplicity

we use this rather large set because the phase diagram is not partitioned into several

areas with different optimized bases. Only one basis, optimized for ǫmax = Uaa = Uac

is employed. Again, we could also work with an optimized basis for each point or for

particular regions of the phase diagram to improve the quality of the results.

We consider the condensate fraction and the fringe visibility, as shown in Figure 3.7,

for the truncated calculations. The general structure of the phase diagram of Figure
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3.3 is reproduced well by the approximate ground states. The absolute value of the

condensate fraction is underestimated in the truncated calculation, as discussed earlier.

In close connection to this, the narrow stripe at the top left of right panel of Figure 3.7

shows a significantly smaller visibility ν than in the complete calculation. This is because

occupation-number states with many particles at the same lattice site are discarded by

the truncation scheme due to the optimization to a region where the boson-fermion

interaction plays a significant role. Although the coefficients Cαβ of the missing num-

ber states would have been small, their contribution to the off-diagonal elements of the

one-body density matrix is sizable. Their omission causes a reduction of coherence and

thereby reduces the visibility of the interference pattern.

Despite the quantitative deviations in certain regions of the phase diagram, its global

structure can be fully described by the truncated basis. Naturally, the use of adapted

bases in the different characteristic regions of the phase diagram would improve the

quantitative agreement.

3.3 Applications of the Importance Truncation

3.3.1 Larger Systems and Finite-Size Effects – Bosons

As a first application of the truncation scheme in a regime where calculations with the

complete basis are not feasible any longer, we study the impact of finite size effects for a

single-component Bose gas in superlattice. To this end, we extend the two-color lattice

(see Fig. 3.1) to three and four super-cells, corresponding to a problem of 15 bosons with

15 lattice sites (N = I = 15) with a full basis dimension D = 77558 760 and 20 bosons

with 20 lattice sites (Na = I = 20) with a full basis dimensionD = 68923 264 410, respec-

tively. We employ truncations to 1% and 0.001% of the respective full basis dimensions.

Since we are now considering one bosonic species only, we omit the indices at the inter-

action parameter: Uaa → U . Figure 3.8 demonstrates the dependence of the condensate

fraction on ǫmax/J at fixed U/J = 30 for the truncated three- and four-super-cell system.

The comparison with the complete calculation for the two-super-cell system displayed

in Figure 3.5 reveals that the condensate fraction is generally reduced. The reason for

this is two-fold: First, the basis truncation leads to an underestimation of the conden-

sate fraction as discussed in Section 3.2.2. Second, finite size effects are relevant for

the condensate fraction. The simplest indication for this results from the existence of
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Figure 3.8: Upper row: Maximum number-fluctuation, lower row: condensate fraction. (a)+(c):

N = I = 15 with a truncated basis of dimension D = 546589, (b)+(d): N = I = 20 with

a truncated basis of dimension D = 797232. In all plots, the interaction energy is fixed at

U/J = 30.

a lower bound for fc, which is proportional to 1/I, as shown in Section 2.7.3. Hence,

the smallest possible value for the condensate fraction is given by fmin
c = 1/I. For

the genuine Mott-insulating phase in a regular lattice of increasing size, the condensate

fraction would approach zero like 1/I. In agreement with this intrinsic size dependence,

the condensate fraction within the Mott-insulating phase (ǫmax/U) shown in Figure 3.8

tends to smaller values.

The resulting matter wave interference patterns for U/J = ǫmax/J = 30, i.e., at the

transition from homogeneous Mott-insulator to the quasi Bose-glass phase, are depicted

in Figure 3.9. They can be compared to the result using the complete basis for a system

of two super cells shown in Figure 3.6. The matter-wave interference patterns seem

to be barely affected by the truncation and are of the same general shape for all sys-

tem sizes. Only the increasing number of possible quasimomenta kj = 2π/(Ia)j with

j = 0, 1, 2, . . . I − 1 is reflected in the substructure of the interference peaks.
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Figure 3.9: Interference pattern at ǫmax/J = U/J = 30. (a): N = I = 15 with a truncated basis

of dimension D = 546589. (b): N = I = 20 with a truncated basis of dimension D = 797232.

From these investigations we can conclude that finite-size effects are under control for

the global observables like the condensate fraction and the interference pattern, thus

calculations performed in small systems are well suited for qualitative and even semi-

quantitative predictions for larger systems. Local observables like the maximum number-

fluctuation depicted in Figure 3.8 are practically size-independent. These findings are

also confirmed by more sophisticated calculations presented in Section 5.3.

3.3.2 Two-Color Superlattice beyond Half-Filling –

Boson-Fermion Mixtures

In order to investigate the influence of the filling factor on the phase diagram, we con-

sider a system with Na = Nc = 7 particles on I = 10 lattice sites. The complete basis

for this system consists of Da ·Dc = 1372800 occupation-number states. For the present

calculations a truncation to 22% of the complete basis was used.

The maximum coefficient C2
max as a function of Uac/J and ǫmax/J for fixed Uaa/J = 20,

depicted in Figure 3.10, reveals a phase diagram with a structure different from the

half-filling case shown in Figure 3.2. The most significant difference is the absence of

a genuine Mott-insulator phase in the lower part of the phase diagram. Even in the

limit of very strong repulsive interactions, a homogeneous Mott-insulator phase cannot

be realized since there are always lattice sites occupied with more than one particle

due to the incommensurate filling. For this reason pairs of bosons and fermions occupy

the lattice with a distribution following the topology of the superlattice in region (A),

where the boson-fermion interaction is negligible compared to the boson-boson repul-
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Figure 3.10: Binary boson-fermion mixture with I = 10, Na = Nc = 7. Left panel: maximum

coefficient C2
max in the expansion of occupation-number states, right panel: mean occupation

numbers (white Bosons, gray Fermions) n
(a)
l (n

(c)
l ) of the bosonic (fermionic) species. The

boson-boson interaction energy is fixed at Uaa/J = 20.

sion. An increase of the superlattice amplitude [region (B)] leads to a bosonic double

occupancy of the deepest superlattice wells, whereas the fermions are forced to spread

over several sites with mean occupation numbers less than or equal to one. The horizon-

tal line, which appeared in the half-filling case for superlattice amplitudes ǫmax equal to

the boson-boson interaction strength Uaa, vanishes because of the incommensurability.

For strong boson-fermion repulsion, any slight irregularity of the lattice, i.e., a small

nonzero superlattice amplitude, leads to multiple boson occupancies at the deeper lat-

tice sites. A comparison of the mean occupation numbers at (C) and (D) or at (E) and

(F) shows that if the boson-fermion interaction exceeds the boson-boson interaction, the

mean occupation numbers are stable against increasing superlattice amplitude. At the

same time, however, the increasing value of C2
max indicates that the number fluctuations

decrease successively.

The phase diagram of a boson-fermion mixture beyond half-filling is less structured,

since the homogeneous Mott-insulator phase at small superlattice amplitudes is absent.
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In the region of strong boson-fermion interaction any slight irregularity within the lattice

immediately leads to double occupancies of the deeper site. For increasing superlattice

amplitude, the mean occupation numbers are almost unaltered, only the number fluctu-

ations decrease.
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Chapter 4

Density-Matrix Renormalization Group

(DMRG)

4.1 Reduced Density-Matrix

Because the density-matrix formalism is crucial for the understanding of the Density-

Matrix Renormalization Group (DMRG) algorithm, it is worthwhile to briefly summarize

some important features we will use during the introduction of DMRG. The discussion

follows Feynman’s textbook on Statistical Mechanics [43].

When solving a physical problem one usually considers either a closed system or an

open system that is coupled to an environment. Although we are only interested in

properties of the system, we will derive how observables inside the system change if

we allow for a coupling to an environment. Let
∣
∣ φi

〉
and

∣
∣ θi

〉
be complete and

orthonormal sets of basis states for the system and for the environment, respectively. A

general state
∣
∣ ψ
〉

can be expanded in a tensor-product basis of system and environment

H = Hsys ⊗Henv:

∣
∣ ψ
〉

=
∑

ij

Cij

∣
∣ φi

〉
⊗
∣
∣ θj

〉
=
∑

ij

Cij

∣
∣ φi θj

〉
. (4.1)
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If an operator acts on the system only, i.e., Â = â⊗ 1̂, its expectation value is given by

〈
Â
〉

=
〈
ψ
∣
∣ Â

∣
∣ ψ
〉

=
∑

ii′ jj′

C∗
i′j′Cij

〈
φi′ θj′

∣
∣ â⊗ 1̂

∣
∣ φi θj

〉

=
∑

ii′ jj′

C∗
i′j′Cij

〈
φi′
∣
∣ â
∣
∣ φi

〉
· δj′j (4.2)

=
∑

ii′

〈
φi′
∣
∣ â
∣
∣ φi

〉
· ρred

ii′

where we have introduced the reduced density matrix

ρred
ii′ =

∑

j

C∗
i′jCij . (4.3)

The diagonal elements of ρred
ii are the probabilities to find a specific state

∣
∣ ψ

〉
in the

basis state
∣
∣ φi

〉
of the system without resolving the basis state of the environment

∣
∣ θi

〉
. Even if an operator acts within the system only, the reduced density-matrix

provides an implicit coupling to the enviroment. The operator form of the reduced

density-matrix can be obtained by taking the complete density-matrix and tracing out

the environment

Trenv

( ∣
∣ ψ
〉〈
ψ
∣
∣

)

=
∑

j′′

∑

ii′

C∗
i′j′′Cij′′

∣
∣ φi

〉〈
φi′
∣
∣

= ρ̂red . (4.4)

Note that ρ̂red acts in the Hilbert space of the system only. Whenever it acts in the

combined Hilbert space of system and environment, we have to write:

ρ̂red =
∑

j′′

∑

ii′

C∗
i′j′′Cij′′

∣
∣ φiθj′′

〉〈
φi′θj′′

∣
∣ . (4.5)

Using this operator form of the reduced density-matrix, the expectation value of Â in

Eq. (4.2) can be calculated via

〈
Â
〉

=
〈
ψ
∣
∣ Â

∣
∣ ψ
〉

= Tr
( ∣
∣ ψ
〉〈
ψ
∣
∣ Â
)

= Trsys

(

ρ̂red â
)

. (4.6)

Since ρ̂red is hermitian it can be diagonalized, resulting in a complete set of orthog-

onal eigenvectors
∣
∣ w(α)

〉
and real eigenvalues w(α):

ρ̂red
∣
∣ w(α)

〉
= w(α)

∣
∣ w(α)

〉
, w(α) ≥ w(α+1) , (4.7)
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where we assume an odering of the eigensystem with respect to the eigenvalues. Using

Eq. (4.6) one can show that the eigenvalues obey the relations

w(α) =
〈 ∣
∣ w(α)

〉〈
w(α)

∣
∣
〉

= Trsys

(

ρ̂red
∣
∣ w(α)

〉〈
w(α)

∣
∣

)

= Tr
( ∣
∣ ψ
〉〈
ψ
∣
∣
∑

j

∣
∣ w(α) θj

〉 〈
w(α) θj

∣
∣

)

=
〈
ψ
∣
∣

(∑

j

∣
∣ w(α) θj

〉 〈
w(α) θj

∣
∣

) ∣
∣ ψ
〉

=
∑

j

∣
∣
∣

〈
ψ | w(α) θj

〉
∣
∣
∣

2

≥ 0 (4.8)

and
∑

α

w(α) = Trsys

(

ρ̂red · 1̂
)

=
〈
ψ
∣
∣ 1̂
∣
∣ ψ
〉

= 1. (4.9)

To obtain a good approximation of the expectation value of an operator acting on the

system, i.e., Â = â⊗ 1̂, by referring to a subspace of dimension Dsub only, it is reasonable

to neglect those states with small eigenvalues w(α):

〈
ψ
∣
∣ Â

∣
∣ ψ

〉
= Trsys

(

ρ̂red â
)

=

D∑

α=1

w(α)
〈
w(α)

∣
∣ â
∣
∣ w(α)

〉
≈

Dsub∑

α=1

w(α)
〈
w(α)

∣
∣ â
∣
∣ w(α)

〉
.

(4.10)

One can even show that this approximation of the expectation values is optimal in a

sense that the truncation error is minimal [44, 45]. This is closely related to the so-called

Rayleigh-Ritz method. The truncated weight

∆ = 1 −
Dsub∑

α=1

w(α) (4.11)

can furthermore serve as an estimate for the truncation error.

This optimized approximation of the expectation values in a truncated basis along with

the additional, information from the environment mimicking a physically larger sys-

tem, is the primary mechanism that is responsible for the success of the density-matrix

renormalization-group algorithm introduced in Section 4.5.
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4.2 Concept of the Renormalization-Group Scheme

The renormalization group (RG) was originally developed by K. G. Wilson in 1975 [47].

In 1982 he received the Nobel prize ”for his theory for critical phenomena in connection

with phase transitions”1. Initially formulated in quantum field theory, RG can also be

applied to real space systems [48].

Most often, the huge amount of degrees of freedom is a problem when treating realistic

quantum system numerically. In quantum mechanics a state can be a linear superpo-

sition of all elements of the underlying Hilbert space. Usually, one has to store many

numbers to represent and manipulate such a state. The Hilbert space of the single-band

Hubbard model, for instance, grows factorially with the length of the optical lattice and

the total particle number [see Eq. (3.3)]. In Chapter 3 we have introduced a basis trun-

cation scheme that allows a physically motivated selection of subspaces of the complete

Hilbert space including relevant degrees of freedom for a particular problem. However,

if the resulting space is still too big or ill-suited to describe certain features to a desired

accuracy, we have to resort to other methods.

In contrast to the a-priori approach of the basis truncation scheme, we now apply an

in-situ method to truncate the Hilbert space. Consider the problem of N bosons on I

lattice sites. If we construct the basis of a Hilbert space by successively adding more and

more degrees of freedom, this basis will grow factorially with respect to the length of the

lattice and the number of particles. RG methods offer a solution for this size-explosion

problem. During the growing procedure one keeps the size of the Hilbert space constant

by projecting onto a new basis and by ”integrating out” certain subspaces of the Hilbert

space. Naturally, one wants to drop those subspaces that are least relevant to describe

a desired target state, usually the ground state or one of the low-lying excited states.

The numerical renormalization group (NRG) and the density-matrix renormalization

group (DMRG) follow different approaches to decide which subspaces to keep and which

subspaces to drop. Both algorithms require a convenient way to add degrees of freedom

successively. Those degrees of freedom that are coupled by the Hamiltonian have to

be grouped with respect to their mutual correlation. The easier this grouping can be

achieved, the better the algorithms work. Finding an appropriate ordering is hard work

in general, even in one-dimensional systems. From this point of view NRG and DMRG

1text from nobelprize.org
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algorithms are less universal than a much simpler a-priori truncation of the Hilbert

space. However, in Hubbard-type models the new degrees of freedom are the newly at-

tached lattice sites. Since the Hubbard Hamiltonian connects adjacent lattice sites only,

a natural grouping is obvious and these algorithms can fully unveil their potential.

4.3 Partitioning of the Hilbert Space

In this section we will discuss the conceptual and technical issues related to the parti-

tioning of the Hilbert space with the aim of adding degrees of freedom to a system. For

the sake of simplicity we consider homogeneous systems only; the procedure for inho-

mogeneous systems is absolutely identical. We consider bosonic particles in an optical

lattice of length L, which we will call block. The aim is to enlarge the block to length

L+ 1 via a direct product of Hilbert spaces.

The Bose-Hubbard Hamiltonian with L lattice sites reads in occupation-number rep-

resentation:

Ĥb (L) =

L∑

i=1

(

− J
(
â†i âi+1 + â†i+1âi

)
+

1

2
U â†i â

†
i âiâi

)

. (4.12)

In order to switch to a matrix representation of the Hamiltonian, we consider a complete

set of Db occupation-number states with a finite, yet not constrained total particle num-

ber. We can obtain a matrix representation of the creation and annihilation operators

for each lattice site. For instance, the matrix elements of the operators at site i are given

by

anm
i =

〈
{n1, ..., nL}n

∣
∣âi

∣
∣ {n1, ..., nL}m

〉
, (4.13)

a†nm
i =

〈
{n1, ..., nL}n

∣
∣â†i
∣
∣ {n1, ..., nL}m

〉
. (4.14)

Note that bras and kets belong to subspaces of the Fock space with different total particle

numbers. The Hamiltonian can be expressed by the product of creation and annihilation

operators for the individual sites, yielding the matrix representation

Hb (L) =

L∑

i=1

(

− J
(
a†iai+1 + a†i+1ai

)
+

1

2
U a†ia

†
iaiai

)

, (4.15)

where Hb (L), ai, a
†
i , ni ∈ C

Db×Db . Assuming that the number basis is complete and

the boundary conditions are defined, the diagonalization of the Hamilton matrix would

yield the exact solution of the problem for all included particle numbers. Because the
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Hb(L) Hs =⇒ Hsys(L+1)

Figure 4.1: Building the system by combining block and site.

Hamiltonian matrix contains more than one total particle number, it can be cast into a

block-diagonal form because the Hubbard Hamiltonian conserves the particle number.

Since RG algorithms are based on a successively growing system, we now have to specify

degrees of freedom we can attach. In general, this could be a similar system of any size,

e.g. a second block of size L. In practice, however, the attachment of a single site leads

to much better convergence.

The Hamilton matrix of a single site has no tunneling term and reads

Hs = U/2
(

a†a†aa
)

. (4.16)

Its dimension is given by the dimension Ds of the Fock space of the new site, i.e.,

Hs, a, a
† ∈ C

DsDs .

In order to describe a system of size L + 1, we have to combine block and site as

illustrated in Figure 4.1. The resulting Hamilton matrix Hsys(L+1) ∈ C
DbDs×DbDs repre-

sents the block Hamiltonian with an additional site. Its basis is defined via the tensor

product of the Fock spaces of block and site

Fsys(L+1) = Fb(L) ⊗Fs . (4.17)

For the elements of the Fock spaces we use the following notation:
∣
∣ {mL}k

〉
∈ Fb(L) , dim Fb(L) =Db ,

∣
∣ {σ}k

〉
∈ Fs , dim Fs =Ds , (4.18)

∣
∣ {mL}k

〉
⊗
∣
∣ {σ}l

〉
≡
∣
∣ {mLσ}m

〉
∈ Fsys(L+1) , dim Fsys(L+1) =DbDs .

The system Hamiltonian is composed of block and site parts, and a coupling term

Ĥsys(L+1) = Ĥb (L) ⊗ 1̂ + 1̂ ⊗ Ĥs + Ĥb(L)−s . (4.19)

The explicit form of a matrix element
〈
{mL}k

∣
∣
〈
{σ}l

∣
∣ Ĥsys(L+1)

∣
∣ {mL}k′

〉 ∣
∣ {σ}l′

〉

reads

Hkk′ll′

sys(L+1) = Hkk′

b(L) δll′ +H ll′kk′

b(L)−s +H ll′

s δkk′ . (4.20)
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Hb(L), Db
︷ ︸︸ ︷
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0
]
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⊗
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︷ ︸︸ ︷
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︸ ︷︷ ︸

L+1

=
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︷ ︸︸ ︷
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Figure 4.2: Illustration of the tensor product in terms of matrices. The numbers in square

brackets denote a block matrix for the respective particle number, e.g., the new subspace for 1

particle within the system can be build up from either one particle from the block and zero from

the site or vice versa. In general, the dimensions of the subspaces are not equal.

The coupling term H ll′kk′

b(L)−s is defined via the tunneling of particles between the block

and the new site

Ĥb(L)−s = −J
(

â†L
︸︷︷︸

block

· â
︸︷︷︸

site

+ â†
︸︷︷︸

site

· âL
︸︷︷︸

block

)

, (4.21)

where the additional site is attached to the block at the rightmost site. The operator

structure is defined by

âL
︸︷︷︸

block

= âL ⊗ 1̂ , (4.22)

â
︸︷︷︸

site

= 1̂ ⊗ â . (4.23)

The tensor product of block and site is sketched in Figure 4.2. As already mentioned,

the Hubbard Hamiltonian conserves the total particle number, hence the matrices Hb,

Hs, and Hsys are block-diagonal and we always assume a sorting with respect to increas-

ing total particle number starting from the upper left.

So far, we have started with a block of size L and dimension Db and added an ad-

ditional site of length 1 and dimension Ds. We end up with a system of length L + 1

and dimension Db · Ds. If we would continue this procedure n times, the Fock space

would grow like Db · (Ds)
n. In order to keep the basis size constant during the growing

process, we have to truncate the Fock space of the system before the next lattice site is

added. One possibility how to do this will be introduced in the next section.
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4.4 NRG

Although the numerical renormalization group (NRG) algorithm is supposed to be ob-

solete due to its rather bad convergence, it nicely illustrates the basic idea of the renor-

malization step, namely a non-unitary transformation to a new, truncated basis. We will

not present actual calculations performed with NRG, but it is helpful to understand the

more powerful density-matrix renormalization group (DMRG) method and to underline

its advantages. An application of the NRG algorithm to the Hubbard model was the

subject of a Bachelor thesis [49] in our group.

Our aim is to calculate the ground state of N particles on I lattice sites, at a defined

filling fraction N/I. Furthermore, we want to resort to a procedure that requires only

a fixed number of basis states for any system size I under consideration. Since it is not

obvious from the beginning, which basis describes the problem best, we use an itera-

tive procedure that successively determines an appropriate basis after each growing step.

After having built block, site and system according to Section 4.3, we solve the eigenvalue

problem for the system:

Ĥsys(L+1)

∣
∣ ψ(ν)

〉
= E(ν)

∣
∣ ψ(ν)

〉
, E(ν) ≤ E(ν+1) , (4.24)

∣
∣ ψ(ν)

〉
=

DbDs∑

k=1

c
(ν)
k

∣
∣ {mLσ}k

〉
. (4.25)

Note that the ordering of the eigenstates with respect to increasing eingenvalues is cru-

cial. Due to the block structure of the Hamiltonian, resulting from particle-number

conservation, the eigenvalue problem can be solved for each subspace separately. Keep-

ing in mind Eq. (4.18), we look for a suitable lossy projection of the Hamiltonian and

the operators expressed in the DbDs-dimensional basis of the system to a new basis

which has the dimension Db of the block only. Since we are interested in the ground

state, a first ansatz is a projection onto the Db eigenstates from the lower end of the

eigenspectrum of the Hamilton matrix of the system Hsys(L+1).

∣
∣ {mLσ}k

〉
→

Db∑

ν

∣
∣ ψ(ν)

〉〈
ψ(ν)

∣
∣ ·
∣
∣ {mLσ}k

〉
, (4.26)

If the sum would run over DbDs instead, the transformation would be unitary and both

sides would equal. The Fock space of the system is rotated to a smaller Fock space which
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becomes the new Fock space of the enlarged block

Fsys(L+1) = span
{ ∣
∣ {mLσ}k

〉}
→ Fb(L+1) = span

{ ∣
∣ {mL+1}k′

〉}
, (4.27)

dim Fsys(L+1) = Db ·Ds → dim Fb(L+1) = Db . (4.28)

Formally, Eqs. (4.26) to (4.28) define a non-unitary basis transformation. Obviously

some information is lost during the transformation. In the NRG algorithm, the trans-

formation matrices are built from the Db eigenstates of the system Hamiltonian with

the smallest energy eigenvalues, if we target the lower end of the spectrum. There are

different possibilities to run through the index ν in Eq. (4.26). Either, strictly the first

Db eigenvectors are used for the basis transformation, or the first eigenvectors with re-

spect to each subspace of total particle numbers are used for the basis transformation.

We will discuss this issue in detail in Section 4.6.

For the sake of clarity, the renormalization procedure is illustrated in Figure 4.3. The

transformation matrix O is defined via the coefficients c
(ν)
k from Eq. (4.25)

Oνk =
〈
{mLσ}k | {mL+1}ν

〉
=
〈
{mLσ}k | ψ(ν)

〉
= c

(ν)
k (4.29)

and has also a block structure. Again, each block corresponds to a subspace of a fixed

total particle number.

The Hamilton matrix of the system becomes the new Hamilton matrix of the block

which is now enlarged by one site

OT Hsys(L+1) O = Hb(L+1) , (4.30)

Hsys(L+1) ∈ C
DbDs×DbDs → Hb(L+1) ∈ C

Db×Db . (4.31)

The same applies to the creation and annihilation matrices of the newly attached site

which now become the creation and annihilation matrices of rightmost end of the block:

OT a
︸︷︷︸

site

O = a(L+1)
︸ ︷︷ ︸

block

, (4.32)

OT a†
︸︷︷︸

site

O = a†(L+1)
︸ ︷︷ ︸

block

, (4.33)

a, a† ∈ C
DbDs×DbDs → a(L+1), a

†

(L+1) ∈ C
Db×Db . (4.34)

The other creation and annihilation matrices of the block are no longer necessary, because

the Hamiltonain couples to adjacent sites only. Using Eq. (4.29) the matrix elements of
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Hb(L), Db
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Figure 4.3: Illustration of a renormalization step. The square brackets denote a subspace with

conserved particle number. The dotted lines correspond to the non-unitary basis transformation

for each subspace via the corresponding blocks of the matrix O. In order to keep the filling factor

constant, the subspaces have to be shifted accordingly. Note that the corresponding subspaces

in the block and the system have different dimensions.

64



4.4 · NRG

the new block are given by:

Hkk′

b(L+1) =

DbDs∑

ll′=1

(c
(k′)
l )∗H ll′

sys(L+1) c
(k)
l′ , (4.35)

akk′

(L+1) =

DbDs∑

ll′=1

(c
(k′)
l )∗ all′ c

(k)
l′ , (4.36)

(

a†(L+1)

)kk′

=

DbDs∑

ll′=1

(c
(k)
l′ )∗ (a†)ll

′
c
(k′)
l , (4.37)

Now we have a block extended by one additional site, and start over attaching the

next site to form the new system until we reach the final, desired length I of the lattice.

In summary, the recipe for the iterative NRG growing procedure reads:

(i) Initial step: Calculate and store Hb(L), aL, a
†
L and Hs, a, a

† for a moderate length

L of the block and Nmax particles per site. Store the dimensions of the subspaces

for the different particle numbers in a vector ~n.

(ii) Combine block and site to buildHsys(L+1) for all subspaces of total particle numbers

ranging from N = Nmin to N = Nmax.

(iii) Diagonalize Hsys(L+1) for each subspace of total particle numbers N

Hsys(L+1) ~c
(ν) = E(ν) ~c , and E(ν) ≤ E(ν+1) , (4.38)

and store the eigenvectors ~c(ν) =
∑

k

〈
{mLσ}k | ψ(ν)

〉
∈ C

DbDs .

(iv) For each subspace of total particle numbers from Hsys(L+1), take nk eigenvectors

and form the rectangular transformation matrix O ∈ C
Db×DbDs .

(v) Rotate and truncate the system Hamilton matrix and the matrices a, a† of the new

site in order to build the new block Hamilton matrix and the matrices aL, a
†
L of

the block via the transformation matrix O:

OT Hsys(L+1) O = Hb(L+1) , (4.39)

OT a
︸︷︷︸

site

O = a(L+1)
︸ ︷︷ ︸

block

, (4.40)

OT a†
︸︷︷︸

site

O = a†(L+1)
︸ ︷︷ ︸

block

, (4.41)

Hsys(L+1), a, a
† ∈ C

DbDs×DbDs → Hb(L+1), a(L+1), a
†

(L+1) ∈ C
Db×Db (4.42)
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increase L by one, and start over with (ii).

The question, whether the choice of the new basis for the enlarged block, i.e. the

eigenvectors of Hsys, is reasonable has not yet been answered. Intuitively, one may be

tempted to agree and assume that an eigenbasis for a system of size L could be also a good

eigenbasis for a system of size L + 1. But this can be easily disproven [50]. Consider

a single particle in a box. After the diagonalization of the system Hamiltonian, the

wavefunction has a specific value at the (right) boundary. It has to tend continuously to

zero and vanish at the boundary. The addition of a new site beyond the right boundary

of the system is in contradiction to the previous behavior of the wavefunction, because a

finite value of the wavefunction at this point is now required. When periodic boundary

conditions are applied this problem emerges on both boundaries of the system. In most

cases this, problem leads to poor convergence of the NRG algorithm. Convergence

can be dramatically improved by using a combination of boundary conditions [50], but

the provisionary character of this solution is unsatisfying. Fortunately, the infinite-size

density-matrix renormalization group algorithm can do much better.

4.5 Infinite-Size DMRG

The infinite-size density-matrix renormalization-group (DMRG) algorithm was devel-

oped as a successor of the NRG algorithm. The boundary problem of the wavefunction

in the NRG algorithm, discussed in the previous section, reveals a more fundamental

issue. Taking states from the lower end spectrum of the Hamiltonian as a transfor-

mation matrix lacks a formal motivation. It would be much more satisfying to have

strict mathematical arguments at hand. White showed that the eigensystem of the re-

duced density-matrix defines an optimal basis that provides the best approximation to

the wavefunction as well as to expectation values of observables [51, 44]. To this end,

DMRG introduces some intermediate steps which will be introduced in the following.

For a comprehensive introduction to DMRG and its applications we recommend Ref.

[45, 46].

In contrast to the NRG method, we add a new step prior to the non-unitary basis

transformation and embed the system in an auxiliary environment in order to mimic

the thermodynamic limit. As an immediate improvement compared to NRG, the wave-

function of the system does not have to readjust to changes of the boundaries when the

next lattice site is appended.
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Hb(L) Hs Hs′ Hb′(L) =⇒ Hsuper(2L+2)

Figure 4.4: Combining system and environment to form the superblock.

We start by appending an additional site and an additional block to the system ac-

cording to Section 4.3 to form the so-called superblock, as illustrated in Figure 4.4. This

new superblock of length 2L+ 2 is described by the tensor product of four Fock spaces:

Hsuper(2L+2) = Fb(L) ⊗Fs
︸ ︷︷ ︸

Fsys(L+1)

⊗Fs′ ⊗Fb′(L)
︸ ︷︷ ︸

Fenv(L+1)

. (4.43)

Furthermore, we project onto a fixed total particle number N which in our case is chosen

to guarantee commensurate filling N/(2L + 2) = 1. Due to the projection, the basis of

the superblock is smaller than the product of the basis dimensions of system and envi-

ronment, Dsuper < (DbDs)
2.

In terms of Fock-states we describe the system via

∣
∣ {mL}k

〉
∈ Fb(L) , (4.44)

∣
∣ {σ}k

〉
∈ Fs , (4.45)

∣
∣ {mL}k

〉
⊗
∣
∣ {σ}l

〉
≡
∣
∣ {mLσ}n

〉
∈ Fsys(L+1) . (4.46)

The respective dimensions are dimFb(L) = Db, dimFs = Ds, and dimFsys(L+1) = DbDs.

For the environment we use

∣
∣ {m̃L}k

〉
∈ Fb′(L) , (4.47)

∣
∣ {σ̃}k

〉
∈ Fs′ , (4.48)

∣
∣ {m̃L}k

〉
⊗
∣
∣ {σ̃}l

〉
≡
∣
∣ {m̃Lσ̃}n

〉
∈ Fenv(L+1) , (4.49)

with dimensions dimFb′(L) = Db′ , dimFs′ = Ds′ , and dimFenv(L+1) = Db′Ds′ . The

Hilbert space of the superblock is given by

∣
∣ {mLσ}k

〉
⊗
∣
∣ {m̃Lσ̃}l

〉
≡
∣
∣ {mLσ m̃Lσ̃}n

〉
∈ Hsuper(2L+2) (4.50)

and has a dimension dimHsuper(2L+2) = Dsuper
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In analogy to Eq. (4.20), a matrix element of the superblock
〈
{mL}k

∣
∣
〈
{σ}l

∣
∣
〈
{m̃L}n

∣
∣
〈
{σ̃}o

∣
∣Ĥsuper(2L+2)

∣
∣ {mL}k′

〉 ∣
∣ {σ}l′

〉 ∣
∣ {m̃L}n′

〉 ∣
∣ {σ̃}o′

〉

reads

Hkk′ll′nn′oo′

super(2L+2) = Hkk′

b(L) · δll′δnn′δoo′ +Hkk′ll′

b(L)−s · δnn′δoo′

+H ll′nn′

s−s′ · δkk′δoo′ (4.51)

+Hnn′oo′

s′−b′(L) · δkk′δll′ +Hoo′

b′(L) · δkk′δll′δnn′

After the Hamilton matrix is evaluated, one has to solve the eigenvalueproblem yielding

the groundstate of the superblock of length 2L+ 2 with N particles:

Ĥsuper(2L+2)

∣
∣ ψ(0)

〉
= E(0)

∣
∣ ψ(0)

〉
, (4.52)

=
∑

kl

C
(0)
kl

∣
∣ {mLσ}k

〉
⊗
∣
∣ {m̃Lσ̃}l

〉
. (4.53)

Typically, the dimensions of the eigenvalue problems are about Dsuper ≈ 103 − 104 for

all calculations done in this work. We deal with sparse matrices and usually need the

ground state or the first excited state only, therefore, we can employ efficient Lanczos-

type algorithms [34]. Instead of using the eigensystem of Hsys as a new basis for the

block like we did in NRG, we take advantage of the additional environment. By tracing

out the environment we obtain the reduced density-matrix and information from beyond

the boundary of the system is included:

ρ̂red = Trenv

( ∣
∣ ψ(0)

〉〈
ψ(0)

∣
∣

)

,

=
∑

l′′

〈
{m̃Lσ̃}l′′

∣
∣

( ∣
∣ ψ(0)

〉〈
ψ(0)

∣
∣

) ∣
∣ {m̃Lσ̃}l′′

〉
, (4.54)

=
∑

l′′

∑

kk′

(

C
(0)
kl′′

)∗

C
(0)
k′l′′

∣
∣ {mLσ}k

〉〈
{mLσ}k′

∣
∣ .

Note that due to the trace, ρ̂red is again element of the Fock space with a block diagonal

form resulting from the different total particle numbers. For more information about the

density matrix and its important features for the DMRG algorithm we refer to Section

4.1. In order to preserve a maximum amount of information from the system, we use

the eigensystem of the reduced density matrix

ρ̂red
∣
∣ w(α)

〉
= w(α)

∣
∣ w(α)

〉
, w(α) ≥ w(α+1) , (4.55)

∣
∣ w(α)

〉
=

DbDs∑

i=1

W
(α)
i

∣
∣ {mLσ}i

〉
. (4.56)
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as a new basis for the new block. Note, that the ordering of the eigenstates with respect

to the eigenvalues is necessary in the following. In analogy to Eq. (4.26) we transform

the system to the new block via a non-unitary transformation:

∣
∣ {mLσ}k

〉
→

Db∑

α

∣
∣ w(α)

〉〈
w(α)

∣
∣ ·
∣
∣ {mLσ}k

〉
, (4.57)

span
{ ∣
∣ {mLσ}k

〉}
= Fsys(L+1) → span

{ ∣
∣ {mL+1}k′

〉}
= Fb(L+1) , (4.58)

dimFsys(L+1) = Db ·Ds → dimFb(L+1) = Db . (4.59)

The basis transformation would be unitary if the sum in (4.57) ran up to DbDs. Again,

there are different possibilities to run through the index ν in Eq. (4.57). Either, strictly

the first Db eigenvectors are used for the basis transformation, or the first eigenvectors

with respect to each subspace of total particle numbers are used for the basis transfor-

mation. We will discuss this issue in detail in Section 4.6.

The matrix elements of the transformation matrix O are the expansion coefficients in

Eq. (4.56)

Oαk =
〈
{mLσ}k | {mL+1}α

〉
=
〈
{mLσ}k | w(α)

〉
= W

(α)
k . (4.60)

We use the transformation matrix O to calculate the Hamilton matrix of the new block

from the Hamilton matrix of the system

OT Hsys(L+1) O = Hb(L+1) , (4.61)

Hsys(L+1) ∈ C
DbDs×DbDs → Hb(L+1) ∈ C

Db×Db . (4.62)

Accordingly we obtain for the matrices for the rightmost site of the new block from the

matrices from the site

OT a
︸︷︷︸

site

O = a(L+1)
︸ ︷︷ ︸

block

, (4.63)

OT a†
︸︷︷︸

site

O = a†(L+1)
︸ ︷︷ ︸

block

, (4.64)

a, a† ∈ C
DbDs×DbDs → a(L+1), a

†

(L+1) ∈ C
Db×Db . (4.65)
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The explicit expressions for the matrix elements are

Hkk′

b(L+1) =

DbDs∑

ll′=1

(W
(k′)
l )∗H ll′

sys(L+1)W
(k)
l′ , (4.66)

akk′

(L+1) =

DbDs∑

ll′=1

(W
(k′)
l )∗ all′ W

(k)
l′ , (4.67)

(

a†(L+1)

)kk′

=

DbDs∑

ll′=1

(W
(k)
l′ )∗ (a†)ll

′
W

(k′)
l , (4.68)

where k, k′ run over the block basis and l, l′ over the system basis.

Now we are able to summarize the infinite-size DMRG algorithm. The individual steps

are schematically depicted in Figure 4.5.

(i) Initial step: Calculate Hb(L), aL, a
†
L and Hs, a, a

† for a moderate size L of the block

and Nmax particles per site (typically Nmax = 4 to 6). Store the dimensions of the

subspaces for the different total particle numbers (more generally, for conserved

quantum numbers) in a vector ~n.

(ii) Combine block and site to build Hsys(L) for all subspaces of total particle numbers

ranging from N = Nmin to N = Nmax.

(iii) Proceed in the same manner to build the auxiliary environment Henv(L). Use the

mirrored system for the environment, if the Hamiltonian is translation invariant.

(iv) Build the superblock Hsuper(2L+2) from system and environment and project onto

a fixed total particle number N .

(v) Diagonalize Hsuper(2L+2) (usually only the ground state is needed).

Hsuper(2L+2)
~C(0) = E(0) ~C(0) (4.69)

C
(0)
kl =

( 〈
{mLσ}k

∣
∣⊗

〈
{m̃Lσ̃}l

∣
∣

) ∣
∣ ψ(0)

〉
(4.70)

(vi) Construct the reduced density-matrix

ρred
kk′ =

∑

l

(

C
(0)
kl

)∗

C
(0)
k′l . (4.71)

Note that the density matrix is block diagonal within each subspace of particle

numbers N . Calculate its eigensystem for each subspace.

ρred ~W (α) = w(α) ~W (α) with w(α) ≥ w(α+1) . (4.72)
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Figure 4.5: Sketch of the DMRG algorithm. The cycle is repeated until the desired length of the

lattice is reached. The black dot in step 8 depicts a block that is enlarged by one site but whose

basis has the same dimension as before the enlargement.
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(vii) For each subspace j take nj eigenvectors and form the rectangular transformation

matrix O ∈ C
Db×DbDs via

Oαk =
〈
{mLσ}k | w(α)

〉
= W

(α)
k . (4.73)

(viii) Transform and truncate the system Hamiltonian and the matrices a, a† of the new

site in order to build the new block Hamiltonian and the new exit-entry-terms of

the block via the rectangular transformation matrix O

OT Hsys(L+1) O = Hb(L+1) (4.74)

OT a
︸︷︷︸

site

O = aL
︸︷︷︸

block

(4.75)

OT a†
︸︷︷︸

site

O = a†L
︸︷︷︸

block

(4.76)

(Hsys(L+1), a, a
†) ∈ C

DbDs×DbDs → (Hb(L), aL, a
†
L) ∈ C

Db×Ds . (4.77)

Increase L and step by one and start over with (ii).

Although the infinite-size DMRG algorithm gives much better approximations to the

exact ground state than the NRG algorithm does, there is still room for improvement

as we will see in the next section.

4.6 Finite-Size DMRG

For homogeneous lattices the infinite-size DMRG algorithm already yields very accu-

rate results, but we are mostly interested in inhomogeneous lattices. As soon as the

translational invariance is broken, the reliability of the infinite-size DMRG algorithm

deteriorate rapidly because the Hamiltonian does not know about the complete topol-

ogy of the lattice until the very last step of the algorithm, when the final length of the

lattice is reached. Fortunately, we can overcome this problem by applying the finite-size

DMRG algorithm [44] introduced in the following.

The starting point is a preceding run from the infinite-size algorithm until the desired

length I of the lattice is reached. During this run, one has to store the block matrices

(Hb(L), aL, a
†
L) for each intermediate length L of the system and the environment. The

finite-size algorithm keeps the size of the lattice fixed and continues the DMRG cycle

while the system grows on the expense of the environment and vice versa. Basis rota-

tions are only performed for the currently growing part. Starting at the center, we first
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Figure 4.6: Sketch of one sweep in the finite-size DMRG algorithm. The dimension of the block

stays constant, while the number of included sites varies. The point of return may also be reached

earlier when more sites are left in the block. This depends on the sites included in the block at the

very first step of the infinite-size algorithm where it was represented in the occupation-number

basis.

approach the right boundary of the lattice, rebound and go back to the left boundary,

rebound again and end at the center where we started. This whole process is called a

sweep and is illustrated in Figure 4.6. Thereby, the Hamiltonian always accounts for the

whole lattice and can successively sample the topology of the lattice during the sweeps.

This is done until the ground-state energy and the observables converge.

As a final remark, we would like to mention that the way the reduced density-matrix is

constructed is not strictly defined by the DMRG algorithm [see Eq. (4.57)]. One can

either use the eigenvectors from the largest eigenvalues in each subspace of the system

with conserved particle number. In this case, the subspaces in the square brackets in

Figure 4.3 keep their dimension. Or one can strictly use the first Db eigenvectors of the

reduced density-matrix with the largest eigenvalues which may change the dimensions

of the subspaces in Figure 4.3. In the first case it is possible to discard eigenvectors with

sizeable eigenvalues if the dimension of the respective subspace is already reached. In

the second case one could possibly discard a complete subspace if it has no eigenvec-

tors with an eigenvalue among the largest Db eigenvalues. If in a subsequent step this
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subspace becomes important again, the algorithm might convergence to a metastable

state. Lost subspaces can be regained by adding noise to the transformation matrices

O during the first few sweeps of the finite-size algorithm [52]. A third strategy is a hy-

brid of the two others. Here, one keeps at least one or a few states from each subspace.

This preserves more relevant information without the risk of loosing a complete subspace.

For all calculations presented in this work, we choose the first strategy for it is tech-

nically very convenient. We have randomly checked eigenspectra of ρred for discarded

eigenvectors with sizable eigenvalues. This was never the case for the bases we used in

our calculations of the phase diagrams.

4.7 Observables

So far, we have only discussed how the ground-state energy is obtained from the DMRG

calculations. Although the approximate ground state is a result of the DMRG algorithm,

the calculation of observables is not straight forward. After the first basis rotation in

the beginning of the infinite-size algorithm, we loose access to the individual lattice sites

within the block. The Hilbert space of the block is no longer spanned by the occupation-

number representation, but by a truncated eigenbasis of the reduced density-matrix.

This results in a rather complicated process of calculating observables in the DMRG

framework.

Our gateway to the calculation of observables are the newly attached sites within the sys-

tem and the environment because they are always expressed in the occupation-number

representation. All observables are evaluated in the final sweep of the finite-size algo-

rithm. For the sake of clarity we consider a concrete example in the following. Let us

assume we just reached the left boundary of the lattice. This situation corresponds to the

picture with the arrow, on the right panel of Figure 4.6. Furthermore, we assume to be

interested in an element of the onebody density-matrix ρ
(1)
ij =

〈
a†jai

〉
and i < j < L/2,

i.e. both matrices a†j and ai are in the system which now starts growing on the expense

of the environment. We evaluate the matrix representation of the operator âi as soon as

it is lives in the subspace of the newly attached site:

amn
i =

〈
{mi−1σ}m

∣
∣ âi

∣
∣ {mi−1σ}n

〉
. (4.78)

Since we have to label the same operator in different bases in the following, we introduce

a notation for the full matrix of the operator expressed in a particular basis: when the
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indices are left away, we mean the full matrix representation in the system basis where

the system has the length i

〈
{mi−1σ}

∣
∣ âi

∣
∣ {mi−1σ}

〉
≡
(

〈
{mi−1σ}m

∣
∣ âi

∣
∣ {mi−1σ}n

〉

)

nm

. (4.79)

The matrix representation of the operator has to be transformed from the system basis

to the new block basis via the transformation matrix O. To keep track of further trans-

formations, we index the transformation matrices O → Oi for the individual growing

steps. This leads to

〈
{mi}

∣
∣ âi

∣
∣ {mi}

〉
= OT

i

〈
{mi−1σ}

∣
∣ âi

∣
∣ {mi−1σ}

〉
Oi (4.80)

Note, if there is a σ inside the curly brackets, we are in the system basis, else we are

in the smaller block basis. After the next growing step we have to update the operator

matrix
〈
{mi+1}

∣
∣ âi

∣
∣ {mi+1}

〉
= OT

i+1

〈
{miσ}

∣
∣ âi

∣
∣ {miσ

〉
}Oi+1 . (4.81)

We would like to emphasize that we still deal with the same operator, only the basis in

which it is expressend has changed.

The update procedure is continued until â†j can act on the newly attached site and

we obtain

〈
{mj}

∣
∣ â†j âi

∣
∣ {mj}

〉
= (4.82)

OT
j

( 〈
{mj−1σ}

∣
∣ â†j

∣
∣ {mj−1σ}

〉
×
〈
{mj−1σ}

∣
∣ âi

∣
∣ {mj−1σ}

〉)

Oj .

Only in this growing step, a†j and ai are represented in the same basis and the matrix

multiplication can be evaluated. The compound object then has to be rotated

〈
{mj+1}

∣
∣ â†i âj

∣
∣ {mj+1}

〉
= OT

j+1

( 〈
{mjσ}

∣
∣ â†i âj

∣
∣ {mjσ}

〉)

Oj+1 (4.83)

and updated further. In the very last step, the expectation value is evaluated with the

final eigenstate
∣
∣ ψ

〉
of the superblock

〈
â†j âi

〉
= (4.84)

〈
ψ | {mL−1σm̃L−1σ̃}

〉 〈
{mL−1σm̃L−1σ̃}

∣
∣ â†j âi

∣
∣ {mL−1σm̃L−1σ̃}

〉 〈
{mL−1σm̃L−1σ̃} | ψ

〉
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If both operators are not in the same half of the lattice, e.g. i < I/2 and j > L/2

both are calculated according to Eq. (4.80) and then updated according to Eq. (4.81)

when their part of the superblock is growing. The compound object is calculated not un-

til the very last step of the infinite-size algorithm when the expectation value is evaluated.

If the operators act on the same site, e.g., n̂i = â†i âi, the compound object is calcu-

lated right in Eq. (4.80) and the procedure continues without Eq. (4.82).

In summary, we have to account for the basis rotations explicitly when calculating ex-

pectation values in the DMRG framework. In the very last sweep of the finite-size

algorithm, we evaluate the matrices (a†l , al, nl, n
2
l ) at the step of the sweep in which site

l is given in the occupation-number representation. These matrices have to be rotated

in accordance with the basis of their block in each growing step. This means that all the

multiplications with the transformation matrices O in Eq. (4.80) have to be performed.

At the very last step of the finite-size algorithm, the expectation values are evaluated

with the obtained ground state. In practice, this procedure is numerically very involved

since all matrices for each observable have to be processed in the final sweep and undergo

all basis rotations.

There is a second strategy for the local observables, e.g., ni and n2
i . The expectation

values of these observables can be evaluated directly when their matrix representation is

calculated. In this case, observables at different sites are evaluated with slightly different

ground states, but one saves the effort of carrying on the additional non-unitary trans-

formations. If one assumes the ground state has already converged when the expectation

values are calculated, there should be no difference between the two methods. We have

always compared both methods in all our calculations and found very small deviations

between the results.

4.8 Excited States

The DMRG algorithm uses the eigenstates of the reduced density-matrix as a new, trun-

cated basis for the Hamiltonian and all operators of the system. Usually, the reduced

density matrix is built from the ground state of the superblock. Therefore, the algo-

rithm targets the groundstate of the physical system under consideration [see Eq. (4.54)].

Although the eigensystem solver can provide excited states, they might be poorly ap-

proximated. To improve on this, we have to target an excited state of interest explicitly
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in a new individual DMRG run. If one is interested in several excited states, one can

also use an equal weighted superposition the corresponding states from the lower end

of the eigenspectrum to built the density matrix and perform a single DMRG run only.

This provides a balance between computational effort and quality of the calculation and

is the common procedure proposed in most publications, e.g., Ref. [45].

To obtain the energy gap, we need the energy expectation value of the first excited

state. If we employ larger DMRG bases (e.g., DMRG-D or DMRG-E defined in Tab.

5.2) we found practically no difference of the energy gap when targeting explicitly the

excited state and, therefore, spared the additional DMRG run for the calculations of the

phase diagrams in Section 5.4.

4.9 Filling Factor N/I

In the present work we have only investigated DMRG calculations for systems with

commensurate filling factor N/I = 1, where N is the number of particles and I the final

length of the optical lattice. If other filling factors are of interest, one can calculate

them with a slight modification of the DMRG algorithm. In Figure 4.3, where the

renormalization step is depicted, one can see that the sub-matrices of the block are shifted

by one to the direction of larger N when going from length L to L+1. So, the subspace

corresponding to the smallest total particle number is dropped while a subspace with

the largest total particle number is included. This procedure preserves the filling factor

while the length of the lattice grows. Naturally, one can only project the superblock to

an integer total particle number. For instance, in the case of the filling factor 1/2 the

total particle number of the superblock would be incremented in every second step of the

algorithm. This scheme will eventually lead to a filling factor of N/I = 1/2. For other

filling factors, one has to devise an appropriate scheme for shifting of the sub-matrices

of the block and projection of the superblock to total particle numbers.
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Chapter 5

DMRG Results

5.1 DMRG – Benchmark

At present, the density-matrix renormalization group (DMRG) algorithm is among the

most powerful numerical methods to study low-dimensional and strongly correlated lat-

tice systems. During the introduction of the DMRG algorithm, we emphasized that

the renormalization step of the DMRG algorithm preserves a maximum on information

about a state after the truncation of the many-body basis. However, the DMRG is still

an approximative method. To get an impression about the quality of the approxima-

tion we can expect from DMRG calculations, we investigate how the DMRG algorithm

behaves in different transition regimes of the phase diagram spanned by the generic

Hubbard parameters. The physics of the different phases and their characteristics will

be discussed in detail in Section 5.4.

We restrict ourselves to a small system of I = N = 10 lattice sites and particles, where

benchmark calculations from exact diagonalization schemes, as introduced in Section

3, are available. DMRG calculations using three different truncated Hilbert spaces are

compared to these exact results. Therefore, we will show results for observables obtained

by the exact diagonalization scheme in the complete Hilbert space as well as the devia-

tions from the corresponding DMRG calculations.

For an expectation value of an observable
〈
A
〉

the error of the DMRG result is de-
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fined as:
〈
A
〉err

=
〈
A
〉ex −

〈
A
〉DMRG

. (5.1)

In order to emphasize the truncation error of the DMRG algorithm in this rather small

lattice, we had to choose very small bases for the DMRG calculations. We employ three

different basis sizes, each with a different maximum number of particles per lattice site

max{ni} = Nb = Ns. In the complete Hilbert space max{ni} equals the length of the

lattice. The basis specifications are listed in Table 5.1.

We start with a run of the infinite-size DMRG algorithm which already takes the topol-

ogy of the superlattice is into account. Then, we use three to six sweeps in the finite-size

DMRG algorithm until all observables do not change any more and the calculations are

converged.

Superfluid to homogeneous Mott-insulator transition (ǫmax = 0):

We have already pointed out that in case of a homogeneous lattice, i.e., ǫmax = 0, the

Bose-Hubbard model exhibits a quantum phase transition from the superfluid to the

Mott-insulating phase around U/J ≈ 5. From the outset, we expect the DMRG to en-

counter significant errors in the weakly interacting superfluid phase. Here, even the basis

states (2.26) with many of particles occupying the same site may contribute significantly

to the ground state. In the DMRG calculations, however, we restrict the maximum oc-

cupation number max{ni} as shown in Table 5.1. Furthermore, in the superfluid regime

almost all of the basis states are important and thus the reduced density-matrix is not

able to determine a distinct subspace of most important basis states of the system.

Technically, this is reflected in a slow decrease of the eigenvalues of the reduced density-

matrix and therefore, also important information is discarded by the non-unitray basis

Db Ds max{ni} Dsuper

DMRG-A 10 40 3 258

DMRG-B 15 75 4 338

DMRG-C 21 126 5 446

max{ni} D

diagonalization 10 92378

Table 5.1: Basis specifications for the different DMRG calculations and for the exact diagonal-

ization in the complete Hilbert space.
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transformation in the renormalization step.

The results for the exact calculations are shown in the upper row of Figure 5.1. In

the regime U/J < 5 the energy gap ∆E/J is almost zero and then increases linearly

with U/J after the phase transition. The maximum number-fluctuation σmax, the con-

densate fraction fc, and the visibility ν are all about one for very small U/J and decrease

monotonically with increasing U/J .

The errors of the DMRG calculations are depicted in the lower row of Figure 5.1. For

interaction energies U/J < 3, all three DMRG calculations show significant deviations

for all observables. Calculations using the DMRG-B and DMRG-C basis provide an

excellent approximation for values U/J ≥ 5, where DMRG-A still yield poor results.

Comparing the results of σmax, fc, and ν obtained with the bases DMRG-A, DMRG-B,

and DMRG-C we find that the DMRG calculations systematically underestimate these

observables for U/J < 5. This feature is most prominent for the condensate fraction

fc because it relies most on a good description of the delocalization of particles that

occurs in the superfluid regime. The delocalization is maximal if all particles occupy

one single quasi-momentum eigenstate. Since we work in a localized Wannier basis, it

would require the complete Hilbert space to describe maximal delocalization. The rela-

tive error of the visibility ν is surprisingly small, even for small interaction energies and

the small DMRG-A basis. In homogeneous systems, the maximum of the interference

pattern is in principle given by the occupation number of the Bloch function with quasi-

momentum zero and the minimum corresponds to the occupation number of the highest

quasi-momentum. If the occupation number for the highest quasi-momentum tends to

zero, the visibility becomes one. Thus, although the DMRG cannot put all particles into

the quasi-momentum zero state—this would require the complete, untruncated Hilbert

space—it distributes them among the lowest quasi-momentum states, leaving the high-

est one almost empty, resulting in a good approximation of the visibility even in the

superfluid regime.

For U/J ≥ 5 we find a very small error for the two larger DMRG bases. In the smallest

DMRG-A basis we only allow for max{ni} = 3. This seems to be too small to approxi-

mate the weakly interacting regime.

Homogeneous Mott-insulator to quasi Bose-glass transition (U/J = 30):

In order to study the quality of DMRG calculations in irregular lattices, we fix the
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Figure 5.1: Observables for an I = N = 10 system along the superfluid to Mott-Insulator phase

transition. Upper row: Results from exact diagonalization in a complete Hilbert space. Lower

row: Absolute errors of DMRG calculations using the DMRG-A (dotted), DMRG-B (dashed),

and DMRG-C (solid) bases. (a) energy gap ∆E, (b) maximum number fluctuation σmax, (c)

condensate fraction fc, (d) visibility ν.

interaction strength at U/J = 30, and vary the strength of the superlattice potential

ǫmax/J . If both energies become about equal, the transition from the homogeneous

Mott-insulator to the quasi Bose-glass phase occurs. The strong localization breaks

down and particles are rearranged with respect to the topology of the superlattice. This

leads to an increase of the number fluctuations and a vanishing energy gap at the point

U = ǫmax as shown in the upper row of Figure 5.2.

The corresponding results for the errors of the DMRG calculations are shown in Figure

5.2 as well. The energy gap exhibits a very small error for the whole range of ǫmax/J .

However, DMRG-B and DMRG-C show a larger error at ǫmax = 0 than at ǫmax/J = 1.

This reveals a subtle feature of the DMRG algorithm. In the pure Mott-insulating phase

(ǫmax = 0, U/J > 5), the first excited state is a superposition of multiple degenerate

particle-hole excitations with respect to the number state with exactly one particle per

site. An irregularity (ǫmax/J > 0) lifts this degeneracy and double occupancies in the

deepest superlattice wells become favorable. This enables the reduced density-matrix to

select a subspace of most important states from the system as the new basis of the block
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Figure 5.2: Observables for an I = N = 10 system along the Mott-insulator to quasi Bose-

glass phase transition. Upper row: Results from exact diagonalization in a complete Hilbert

space. Lower row: Absolute errors of DMRG calculations using the DMRG-A (dotted), DMRG-

B (dashed), and DMRG-C (solid) bases. (a) energy gap ∆E, (b) maximum number fluctuation

σmax, (c) condensate fraction fc, (d) visibility ν.

leading to an improvement of the DMRG results. However, as soon as ǫmax roughly

equals U more basis states become energetically degenerate in the first excited state and

the error of ∆E/J increases again. For the other observables, DMRG-B and DMRG-C

give very good approximations to the exact results for all superlattice strengths, even in

the vicinity of the phase transition U ≈ ǫmax. Again, the small DMRG-A basis is not

capable to give reliable results for all values of ǫmax.

Localized to quasi Bose-glass phase transition (ǫmax/J = 50):

Although we found that the localized phase is not accessible via a tuning of the inten-

sities of the two lasers generating the optical superlattice, we examine the quality of

the DMRG calculations in this regime to complete the discussion. In the limit of very

small interaction energies U/J . 3, all particles in the optical lattice settle in the deep-

est wells. An increase of U/J quickly leads to an escape of one particle to the second

deepest lattice well in order to reduce the rapidly growing interaction energy. A further

increase leads to an escape of the next particle and so forth. This is accompanied by

increases and decreases in ∆E, σmax, and ν as shown in the upper row of Figure 5.3.
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Figure 5.3: Observables for an I = N = 10 system along the localized to quasi Bose-glass phase

transition. Upper row: Results from exact diagonalization in a complete Hilbert space. Lower

row: Absolute errors of DMRG calculations using the DMRG-A (dotted), DMRG-B (dashed),

and DMRG-C (solid) bases. (a) energy gap ∆E, (b) maximum number fluctuation σmax, (c)

condensate fraction fc, (d) visibility ν.

In our topology of the superlattice (see Fig. 3.1) there are two supercells and, thus,

five particles in each of the deepest wells. In order to give reasonable approximations,

the DMRG basis must at least allow for that maximum number of particles per lattice

site max{ni}. The DMRG-A and DMRG-B bases are, therefore, not appropriate to de-

scribe this regime and produce large errors, as visible in the lower row of Figure 5.3. The

DMRG-C basis fails only for the energy gap ∆E in the region U/J < 3. A reasonable

explanation for this poor approximation in comparison to the smaller DMRG-B basis

has yet to be found.

To conclude, the relevant transition regimes are very well described by DMRG cal-

culations if the bases are chosen not to be too small. We observe that an increase of

the DMRG bases dimensions leads to better results for all observables. We would like

to emphasize again, that we chose very small DMRG bases on purpose, in order to see

any deviations from the exact calculations in the first place.
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In order to describe properties of the localized phase, it is necessary to provide the

DMRG basis with a max{ni} that at least equals the average number of particles per

supercell to correctly describe a completely localized state. This is of course not feasible

for incommensurate lattices or truly random lattices because the supercells are much

larger in these cases, if they can be defined at all.
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5.2 DMRG – Convergence

In order to check the results of our DMRG calculations for larger lattices, here I = N =

30, where no exact calculations in the complete Hilbert space are available, we follow

the common procedure [45]. For a fixed set of parameters, DMRG calculations are per-

formed with bases of increasing size. If the results for all observables do not change while

the basis size is increased, the calculation is assumed to be converged to the exact result.

The different basis sets we employ are summarized in Table 5.2. In all calculations we

apply three to six sweeps in the finite-size algorithm until we achieve convergence.

Superfluid to homogeneous Mott-insulator transition (ǫmax = 0):

The upper row in Figure 5.4 shows the observables for the superfluid to Mott-insulator

transition. The energy gap is slightly larger in the calculations using the DMRG-C basis,

while curves for DMRG-D and DMRG-E match perfectly. In comparison to the other

observables, where all curves match perfectly for U/J > 3, this is again an indication of

the difficulties the DMRG algorithm has as soon as many degenerate basis states become

important, which is the case for the first excited state in this regime. For smaller values

U/J < 3, the only sizable difference occurs for the condensate fraction fc at U/J ≈ 1

due to the delocalization of particles as already discussed in the previous section.

Localized to quasi Bose-Glass phase transition (ǫmax/J = 50):

In the previous section, we have found that in the regime of the localized phase DMRG

calculations yield rather poor results, which is basically caused by the restriction of

the maximum number of particles per lattice site. In particular for the energy gap the

DMRG algorithm is not able to provide good results for U/J < 3 (see Figure 5.3). This

is in-line with the results for the DMRG convergence analysis depicted in the lower row

of Figure 5.4. Here, in the regime U/J < 3 the DMRG-C and DMRG-D bases, which

both have max{ni} = 5, yield the same results (∆E/J ≈ 5.5 at U/J = 1), whereas

the DMRG-E basis that has max{ni} = 6 yields a smaller energy gap (∆E/J ≈ 2.5 at

Db Ds max{ni} Dsuper

DMRG-C 21 126 5 446

DMRG-D 56 336 5 5073

DMRG-E 210 1470 6 68356

Table 5.2: Bases specifications for the different DMRG calculations.
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Figure 5.4: Check for the convergence of the DMRG calculations for a I = N = 30 lattice. Upper

row: Superfluid to Mott-insulator transition (ǫmax/J = 0). Lower row: Localized to quasi Bose-

glass transition (ǫmax/J = 50). (a) energy gap ∆E, (b) maximum number fluctuation σmax,

(c) condensate fraction fc, (d) visibility ν. All plot shows three lines for the different bases:

DMRG-C (dotted), DMRG-D (dashed), and DMRG-E (solid).

U/J = 1). Thus, the energy gap does not converge in the regime U/J < 3. Note that

the exact calculation in a complete Hilbert space yields ∆E/J ≈ 1 at U/J = 1. The

other observables refer to the ground state only which requires at most max{ni} = 5 to

assemble all particles in the deepest well of the supercell. Hence, even the additional

particle per lattice site provided by the DMRG-E basis does not change σmax, fc, and

ν, i.e. they are converged for all values of U/J .

Homogeneous Mott-insulator to quasi Bose-glass transition (U/J = 30):

The observables in the Mott-insulator to quasi Bose-glass phase transition are shown in

Figure 5.5. Here, all curves match perfectly, even for the small basis of the DMRG-C

calculation. This indicates that the calculations in the strongly interacting regime are

perfectly converged even when lattice irregularities are present.

To summarize, the DMRG is in general not the perfect method for the weakly inter-

acting regime U/J < 5. Since the focus of the present work are the intermediate and

the strong interaction regime, we conclude that the DMRG-C basis is already sufficient
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Figure 5.5: Check for the convergence of the DMRG calculations for a I = N = 30 lattice along

the Mott-insulator to quasi Bose-glass transition. (a) energy gap ∆E, (b) maximum number

fluctuation σmax, (c) condensate fraction fc, (d) visibility ν. All plot shows three lines for the

different bases: DMRG-C (dotted), DMRG-D (dashed), and DMRG-E (solid)

to converge all observables. Nevertheless, we use the DMRG-D basis for the calculations

presented in the remainder of this work. Calculations with this basis are still numerically

feasible on a desktop PC.
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5.3 Finite-Size Scaling Analysis

During our introduction of the relevant observables it already turned out that a de-

tailed finite-size scaling analysis is necessary, in particular for the condensate fraction.

Therefore, we calculate all observables for three different system sizes: I = N = 10,

I = N = 30, and I = N = 50, using the DMRG-D basis as specified in Table 5.2. The

less the observables deviate for different lattice sizes, the less they suffer from finite-size

effects.

Superfluid to homogeneous Mott-insulator transition (ǫmax = 0):

The results for the superfluid to homogeneous Mott-insulator transition are shown in

the upper row of Figure 5.6. The energy gap ∆E/J shows minor differences between

the small and the two larger lattices in the vicinity of the phase transition U/J ≈ 5.

The number fluctuation σmax is a local quantity, calculated with respect to single lattice

sites only. Therefore, the size of the lattice does not play a crucial role for this of ob-

servable, as confirmed by the agreement of the calculations for the different lattice sizes.

The condensate fraction, however, exhibits a strong, but expected, finite-size scaling. In

the superfluid region U/J < 5, the differences are due to the limitations of the DMRG

algorithm to describe the delocalization of particles which this leads to a systematic un-

derestimation of fc. The exact result can be calculated analytically to fc = 1 at U/J = 0,

independent of the size of the lattice (see Section 2.7.3). For large values of U/J one can

clearly see the 1/I scaling of the condensate fraction. For U/J > 2 the visibility for the

smallest lattice is always slightly below those of the two larger lattices, which lie on top

of each other. As already mentioned, the visibility in homogeneous lattices is determined

from the occupation numbers of the lowest and the highest quasi-momenta. In the small

I = N = 10 lattice, the quasi-momentum space is rather coarse grained which leads to

an artificially large occupation of the highest quasi-momentum and therefore a smaller

visibility.

We also performed a calculation for the I = N = 50 lattice using the large DMRG-

E basis. These results are not shown on the plots because there are no sizable deviations

to calculations with the DMRG-D basis. Only in the superfluid regime, the condensate

fraction obtained with the DMRG-E basis yields fc = 0.68 instead fc = 0.63 at U/J = 1.

The results for all other observables remain completely unchanged when going to the

larger DMRG-E basis.
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Figure 5.6: Finite-size scaling analysis using I = N = 10 (dotted), I = N = 30 (dashed), and

I = N = 50 (solid), all calculated with the DMRG-D basis. Upper row: Superfluid to Mott-

insulator transition (ǫmax = 0). Lower row: Localized to quasi Bose-glass transition (ǫmax = 0).

(a) energy gap ∆E, (b) maximum number fluctuation σmax, (c) condensate fraction fc, (d)

visibility ν.

Localized to quasi Bose-glass phase transition (ǫmax/J = 50):

The lower row of Figure 5.6 reveals that the condensate fraction shows a sizable finite-

size effect with the characteristic 1/I scaling for large values of U/J . The results for the

other observables are independent of the lattice size.

Homogeneous Mott-insulator to quasi Bose-glass transition (U/J = 30):

The analysis of the finite-size scaling for the Mott-insulator to quasi Bose-glass transition

also reveals no suprises. In Figure 5.7, one can see that energy gap and number fluctua-

tion show no dependence on the size of the lattice. The condensate fraction exhibits the

1/I scaling and the visibility is slightly different for the small I = N = 10 system.

Considering this analysis of the finite-size scaling for all observables, we conclude that

calculations including 30 particles on 30 lattice sites are sufficient to provide quantitative

predictions even for larger lattices. Current experiments typically have between 1.5 · 104

to 2 · 105 87Rb Bose-Einstein condensed atoms in the optical lattice [29, 26]. Thus,

there are roughly 25 to 60 atoms in each spatial direction of the optical lattice and a
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Figure 5.7: Finite-size scaling analysis along the Mott-insulator to quasi Bose-glass transition

(U/J = 30), using I = N = 10 (dotted), I = N = 30 (dashed), I = N = 50 (solid), all

calculated with the DMRG-D basis. (a) energy gap ∆E, (b) maximum number fluctuation

σmax, (c) condensate fraction fc, (d) visibility ν.

calculation for I = N = 30 describes a realistic experimental situation.
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5.4 Phase-Diagrams from Experimental Parameters

Now, the theoretical as well as the numerical framework to describe actual experiments

is complete. We have introduced single-particle band structure calculations that provide

the link between the experimental setup and the parameters of the Hubbard model. And

we have introduced and tested the density-matrix renormalization group algorithm that

allows for practically exact many-body calculations for lattice sizes that are realized in

the experiment. Based on this framework, we will discuss the ab-initio phase diagram of

ultracold 87Rb atoms in a commensurate optical lattice as a function of the two optical

lattice depths s2 and s1 and an optional harmonic trapping frequency ωx. Furthermore,

we will employ an incommensurate optical lattice to study a different superlattice topol-

ogy and discuss the resulting changes in the structure of the quasi Bose-glass phase.

Finally, we focus on one particular experiment to see whether our numerical results are

in-line with the experimental results. The findings from Chapters 5.4.1 and 5.4.3 are

published [53].

5.4.1 Commensurate Superlattice

We first consider a commensurate superlattice, where the ratio of the wavelengths,

λ2 = 800 nm and λ1 = 1000 nm, is a fraction of small integers resulting in a super-

lattice periodicity of five lattice sites. The phase shift between the lasers is φ = π/4,

the harmonic trapping frequency is ωx = 0, the perpendicular trapping frequency is

ω⊥ = 30Er2/h, and the scattering length as = 109 rBohr of 87Rb is used. The resulting

site-dependent Hubbard parameters are depicted in Figure 2.10. Our first conclusion

from the analysis of the Hubbard parameters was that it is impossible to tune the two

lattice amplitudes s2 and s1 such that ǫmax dominates over Ū . Hence, if we compare the

generic phase diagram spanned by the the Hubbard parameters Ū/J̄ and ǫmax/J̄ with

the experiment-specific phase diagram spanned by the optical lattice depths s2 and s1 in

Figure 5.8, it turns out the localized phase is absent in the latter. In both cases we show

the energy gap obtained from DMRG calculations for I = N = 30 using the DMRG-D

basis specified in Table 5.2. Because the variation of s2 and s1 affects all site-dependent

Hubbard parameters simultaneously, the (s2, s1) phase diagram is deformed relative to

the generic (U/J̄, ǫmax/J̄) phase diagram. Nonetheless, the superfluid phase, the Mott-

insulator phase, and the quasi Bose-glass phase can be reached by variation of the two

laser intensities alone, i.e., there is no need to vary other experimental parameters like

the interatomic scattering length.
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Figure 5.8: Contour plots of the energy gap computed with the DMRG-D basis for a commensu-

rate superlattice with I = N = 30 as a function of the generic Hubbard parameters (a), and as a

function of the experimental potential depth (b). The labels mark the domains of the superfluid

(SF) phase, the homogeneous Mott-insulator (MI) phase, the quasi Bose-glass (BG) phase, and

the localized (LO) phase.

A detailed analysis of the phase diagram as a function of s2 and s1 is given in Figures

5.9(a) to (d), where we depict the energy gap, the condensate fraction, the maximum

number fluctuations, and the visibility, respectively, obtained in DMRG calculations for

I = N = 30 using the DMRG-D basis specified in Table 5.2, and the experimental

parameters mentioned above. The plots represent results from nearly 3000 individual

DMRG calculations.

The superfluid (SF) phase is characterized by an almost vanishing energy gap, a large

condensate fraction, large number fluctuations, and maximum visibility. Although the

most stringent order parameter for this phase transition, i.e., the superfluid fraction

[8, 28], is not shown here, these signatures allow us to identify the SF phase in the

regime of small s2, roughly up to s2 . 6 for all s1 . 2. In this regime the superlattice

is shallow and tunneling dominates over on-site interactions and on-site energies. The

large mobility of particles is a prerequisite for the long-range coherence present in the

SF phase. For s1 = 0, the ratio Ū/J̄ is about 1 at s2 = 2, and reaches about 4.5 at s2 = 6.

Around Ū/J̄ = 5, the phase transition from a superfluid to a homogeneous Mott-

insulator (MI) is expected, in one-dimensional Bose systems in homogeneous lattices
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[54, 18], which is consistent with our observation. Even in the presence of the secondary

laser, i.e. for 0 < s1 ≤ 2, the lattice depth s2 = 6 leads to Ū/J̄ ≈ 4.5, which explains the

presence of the SF phase in the whole range of s1 considered here. A detailed analysis

of the phase transition as a function the generic Hubbard parameters based on an ex-

act diagonalization technique in the complete Hilbert space can be found in Refs. [28, 38].

While increasing s2 at fixed s1 = 0 further, the system enters the MI phase at U/J & 5.

This phase is characterized by a large energy gap, a small condensate fraction, small

fluctuations, and a minimal visibility. These signatures are clearly visible in Figure 5.9

for large values of s2 and small values of s1. At s1 = 0 and s2 = 16 the ratio U/J is

about 60 and the system is deep in the MI regime.

If we now increase s1 at fixed s2 & 10, the modulation of the site-dependent Hubbard

parameters grows rapidly as we have observed in Figure 2.9. Already at s1 ≈ 0.6 the

spread of the on-site energies becomes comparable to the average interaction strength,

i.e., ǫmax/J̄ ≈ Ū/J̄ ≈ 60. Thus, it becomes energetically favorable to move particles

from the lattice sites with largest on-site energies to the sites with the lowest on-site en-

ergies and create double occupancies. In this way the homogeneous MI phase is broken

up and the transition to a quasi Bose-glass (BG) phase occurs. The maximum number-

fluctuation, the condensate fraction, and the visibility depicted in Figure 5.9 show a

sudden increase at the transition point, indicating that local as well as global properties

of the system change.

The commensurate superlattice exhibits only 5 different on-site energies. This always

gives rise to finite energy gaps and extended domains in the BG phase, where certain

occupation-number states dominate the ground state—two of those domains are also

visible in Figure 5.9(a). Only in the transition regions between those domains the en-

ergy gaps become small. In a random infinite-size lattice, the BG phase is characterized

by a vanishing energy gap. Intuitively, this results from the continuous distribution of

on-site energies, which allows the construction of excited states with infinitesimal small

excitation energies by redistributions of atoms to sites with infinitesimally larger on-site

energies. We will approach this limit by applying an incommensurate superlattice in

Section 5.4.3.
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Figure 5.9: Phase diagrams for an I = N = 30 lattice using realistic experimental parameters

(see text). (a) Energy gap ∆E/J̄ , (b) condensate fraction fc, (c) maximum number fluctuations

σmax, and (d) visibility ν.
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5.4.2 Influence of the Harmonic Trapping Potential

Our ab-initio framework allows for studying the effects on account of the Gaussian beam

profile of the strong primary laser and the magnetic trapping potential via a harmonic

potential with frequency ωx (see Eq. 2.37), chosen according to typical experimental

setups. We will discuss phase diagrams for increasing ωx in the following.

We have already discussed the energy scales introduced by this harmonic potential in

Section 2.6 and found that up to ωx = 2π 25 Hz, the influence on the on-site energies ǫl

is an order of magnitude smaller than Ū . For this reason, the phase diagram remains

practically unaltered compared to the phase diagram with ωx = 0 as visible in Figures

5.9 and 5.10.

Table 2.1 reveals that for ωx = 2π 50 Hz the on-site energies are smaller but of the

same order of magnitude as the interaction energy. Thus, all observables depicted in

Figure 5.11 remain almost unaltered for an optical potential s1 < 0.5 generated by the

weak laser. However, above s1 = 0.5 the energy gap in Figure 5.11(a) shows a supression

of the lobes in the quasi Bose-glass phase. Together with the maximum fluctuations this

indicates that redistributions of particles happen more frequently. This is beacause at

ωx = 0 there are only 5 different on-site energies available for the superlattice topology

we employ. For ωx 6= 0, this periodicity of 5 is broken. Thus, there are more regions

in the phase diagrams where redistribution of particles can occur due to the increased

number of different on-site energies. The onset of the quasi Bose-glass phase appears

earlier at s1 ≈ 0.4 instead of s1 ≈ 0.6 for ωx = 2π 25 Hz. This is a direct consequence of

the additional contribution of the harmonic potential to the on-site energies ǫl.

For frequencies ωx = 2π 75 Hz, the maximum on-site energy ǫmax is just below the

interaction energy Ū (see Table 2.1). The corresponding Figure 5.12(a) reveals that the

energy gap stays small even for values s2 ≈ 11 for s1 = 0. The fluctuations as well as

the visibility decrease not until s2 & 10, compared to smaller values of ωx. This means

that the onset of the Mott-insulating phase is clearely shifted towards larger s2. The

onset of the quasi Bose-glass phase now already occurs at s1 ≈ 0.2 for s2 . 10.

In Table 2.1 we can see that the maximum on-site energy ǫmax clearly dominates the

energy scales at ωx = 2π100 Hz. Therefore, in Figure 5.13(a) the Mott-insulating phase

has completely vanished for the range of the optical lattice depth considered in this work,

and consequently, the Mott-insulator to quasi Bose-glass phase transition is no longer
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visible.

To conclude, we have observed that a strong change of the structures in the phase

diagram is induced by an additional harmonic potential. A clear identification of the

homogeneous Mott-insulating phase for the laser frequencies studied here is only pos-

sible in the region of ωx . 2π 75 Hz. One can clearly observe a shift of the SF to MI

transition towards larger values of s2 with increasing ωx due to the growing repulsive

interactions that are needed to overcome the increasing differences between the on-site

energies. Therefore, a unique definition of the critical value for s2, or equivalently Ū/J̄ ,

for the superfluid to Mott-insulator phase transition is intimately connected to the value

of ωx. We further point out, that experiments aiming at the regime of the Bose-glass

phase by using a two-color superlattice should be aware that trapping frequencies above

ωx = 2π 25 Hz lead to ambiguous signatures of this phase due to the subtle interplay of

the two energy scales. These issues should be considered in ongoing experiments.
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Figure 5.10: Phase diagrams for an I = N = 30 lattice using realistic experimental parameters

(see text) and ωx = 2π 25 Hz. (a) Energy gap ∆E/J̄, (b) condensate fraction fc, (c) maximum

number fluctuations σmax, and (d) visibility ν.
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Figure 5.11: Phase diagrams for an I = N = 30 lattice using realistic experimental parameters

(see text) and ωx = 2π 50 Hz. (a) Energy gap ∆E/J̄ , (b) condensate fraction fc, (c) maximum

number fluctuations σmax, and (d) visibility ν.
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Figure 5.12: Phase diagrams for an I = N = 30 lattice using realistic experimental parameters

(see text) and ωx = 2π 75 Hz. (a) Energy gap ∆E/J̄, (b) condensate fraction fc, (c) maximum

number fluctuations σmax, and (d) visibility ν.
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Figure 5.13: Phase diagrams for an I = N = 30 lattice using realistic experimental parameters

(see text) and ωx = 2π 100 Hz. (a) Energy gap ∆E/J̄ , (b) condensate fraction fc, (c) maximum

number fluctuations σmax, and (d) visibility ν.
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5.4.3 Incommensurate Lattice

The commensurate superlattice we discussed in the previous section is by definition

unable to generate a true Bose-glass phase. For that reason we have introduced the

terminology quasi Bose-glass. As already mentioned, the true Bose-glass phase is sig-

naled by a vanishing energy gap caused by continuous redistributions of the particles

among the lattice sites while changing the strength of the superlattice. Following this

strict definition, the Bose-glass phase can only occur in an infinite lattice with random

on-site energies. We are of course limited to a finite lattices and can only study the

influence of larger number of different on-site energies. In order to approach a more

realistic Bose-glass phase, we have to consider more complex lattice topologies. To this

end, we repeat the above analysis for an incommensurate lattice with λ2 = 830 nm,

λ1 = 1076 nm, φ = π/3 inspired by the experimental setup in Refs. [26, 29]. For the

sake of simplicity we abandon the harmonic potential and set ωx = 0. The incommensu-

rate wavelengths lead to a modulation of the site-dependent Hubbard parameters with a

periodicity which does not correspond to a small integer number of lattice sites, as seen

in Fig. 2.9. Therefore, the pattern of on-site energies ǫl is not periodic anymore as in

the case of the commensurate lattice.

The resulting phase diagrams for I = N = 30 are depicted in Figures 5.14. Evidently,

the structure and extension of the superfluid and the Mott-insulator phases are not

affected by the change in the lattice topology. Only the Bose-glass phase exhibits a

different behavior. The energy gap is clearly reduced due to the irregular character

of the superlattice. The larger number of different on-site energies allows for redistri-

butions associated with lower excitation energies and reduced energy gaps. The more

irregular the lattice, the stronger the reduction of the energy gap in the quasi Bose-glass

phase—eventually the true Bose-glass phase in a random lattice would be approached.

Observables like the condensate fraction and the visibility are still suppressed in the

Bose-glass phase and allow for a unique distinction from the superfluid phase.
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Figure 5.14: Phase diagrams for an incommensurate I = N = 30 lattice using realistic experi-

mental parameters (see text). (a) Energy gap ∆E/J̄ , (b) condensate fraction fc, (c) maximum

number fluctuations σmax, and (d) visibility ν.
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5.4.4 Comparison to an Experiment

Our rigorous approach starting directly from the experimental parameters allows us to

express the energy gap in units of the natural energy scale, the recoil energy. We can

exploit this to establish a direct connection to an experiment done by Stöferle et al.

[10], where the excitation spectrum of Bose-Einstein condensed 87Rb atoms in an op-

tical lattice was measured via a time-dependent modulation of the laser intensity and

consequently the optical potential. We do not have the ability to calculate the full ex-

citation spectrum because this would require a dynamic treatment of the many-body

problem which can be found in Refs. [32, 33, 55]. However, the energy gap ∆E sets a

lower bound for possible energy transfers to the system. Thus, we expect the system

to start to respond to a modulation of the lattice around a modulation frequency of

Ωmod = ∆E/~.

In the following, we assume one laser with wavelength λ = 826 nm and the harmonic

trapping frequency ωx = 2π20 Hz for the harmonic potential, as specified in [10].

In previous calculations we mostly employed a transverse trapping frequency of ω⊥ =

2π16.3 kHz to calculate the interaction parameter U via Equation (2.33). Now we use

the trapping frequency

ω⊥ =

√

2s⊥Er

m

2π

λ
(5.2)

as calculated in Appendix A.2. Although this choice of ω⊥ does not reproduce the map-

ping from the optical lattice depth s to the Hubbard parameters U/J given in Figure

2(a) of Ref. [10] (see Fig. 5.16), we think it provides an adequate description of the

experiment. For a potential depth of s⊥ = 30 in the transverse directions, we obtain

ω⊥ = 2π 37.5 kHz using Eq. (5.2). A comparison of the Hubbard parameters result-

ing from the different transverse trapping frequencies can be found in Appendix A.4.

As a direct consequence of the larger ω⊥, the system enters the Mott-insulating phase

at smaller values of the lattice depth. This is evident from the condensate fraction fc

shown in Figure 5.15 for the two different transverse trapping frequencies with all other

parameters unchanged.

The resulting data from the experiment were already shown in Figure 1.3, where the

width of the central interference peak is measured. This width is correlated to the en-

ergy transfer to the system induced by the modulation. The experimental excitation

spectra for different depth of the optical lattice are shown in Figure 5.16. The excitation
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Figure 5.15: Condensate fraction fc for I = N = 30 and ω⊥ = 2π 37.5 kHz (solid) obtained from

Eq. (5.2), and ω⊥ = 2π 16.3 kHz (dotted) which reproduces the mapping from the optical lattice

depth s to the Hubbard parameters U/J in Ref. [10].

spectrum was measured for a potential depth s = 10 which corresponds to U/J = 32

if we use a transverse trapping frequency of ω⊥ = 2π 37.5 kHz instead of U/J = 14 for

ω⊥ = 2π 16.3 kHz as stated in Ref. [10].

Since we allow for a harmonic trapping potential along the optical lattice, the energy

gap depends on the number of particles in the system. However, this information can-

not be determined by the experiment. Therefore, we employ two different lattice sizes,

I = N = 30 and I = N = 60, that cover the experimental relevant regime. Our results

for the energy gap ∆E are depicted in Figure 5.17. At s = 10 we have an energy gap of

∆E = 0.5Er which results in Ωmod ≈ 2π 1.7 kHz for the small I = N = 30 system, and

∆E = 0.46Er which gives Ωmod ≈ 2π 1.55 kHz for the large I = N = 60 system. The

centroid of the first excitation peak in the experiment is approximately around 1.6 kHz.

Hence, our calculation is in good agreement with the experiment.

On the other hand, our calculations show an increase of the energy gap with increasing

potential depth s. This would result in a slight shift of the excitation peak towards larger

modulation frequencies which is not observed in the experiment as shown in Figure 5.16.

The reason for this could be a nontrivial correlation between the width of the central

interference peak and the energy transfer to the system. Regarding this, we are still in
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Figure 5.16: Spectroscopy of ultracold 87Rb atoms in an array of 1D optical lattices. The system

is excited via a modulation of the intensity of the laser beam. The picture is taken from [10].

good agreement with the experimental data. Therefore, we conclude that our ab-initio

framework, starting directly from the experimental parameters is capable of providing

qualitative and even quantitative results for the observables we have presented in this

work.
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Figure 5.17: Energy gap ∆E/Er for the parameters specified in the experiment [10] and I =

N = 30 (solid), I = N = 60 (dotted).
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Chapter 6

BEC in an Optical Ring-Potential

6.1 Experiment with Thermal Atoms

The group of Gerhard Birkl [19] designed an experiment which will enable them to

study the time evolution of ultracold 87Rb atoms in a quasi one-dimensional ring-shaped

optical-potential. As an application, this setup could be used as a high-precision atom

interferometer. But it is also very appealing from a theoretical point of view since it is

an experimental realization of periodic boundary conditions. The optical ring-potential

is generated via an image of a ring-lense that is irradiated with a laser with wavelength

λ = 795 nm. This red-detuning with respect to the atomic resonance of 87Rb leads

to an attractive force in direction of the intensity maximum [21]. A comprehensive in-

troduction to the experiment as well as the detailed optical setup can be found Ref. [56].

In the laboratory the first experiments with a cloud of thermal atoms with tempera-

tures of about 100µK have already been performed. A sequence of fluorescence images

at different times is shown in Figure 6.1. After the atoms are trapped and cooled, they

are loaded to the optical ring-potential which is aligned vertically. One can clearly see

a sizeable fraction of the atoms following the optical ring potential.

In order to use this setup as an interferometer, one needs a possibility to split the

atom cloud and guide the two parts along the ring potential. This can be achieved with

a elongated laser beam that irradiates a stripe of the ring lense. If the stripe is moved

over the lense, this results in an time-dependent potential moving along the optical ring.
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Figure 6.1: Sequence of fluorescence images of thermal atoms following the tilted, optical ring-

potential. The potential depth is about V0 = 2 kB mK and the diameter of the ring is 1.5 mm.

In the last picture approximately 3000 atoms are distributed over the optical ring-potential. The

picture is from [56].

We will introduce a such a potential later on. For an example of the potential we refer

to Figure 6.4. The experimental results for the thermal atoms that are now transported

along the optical ring are shown in Figure 6.2.

Figure 6.2: Time evolution of a thermal atom cloud with a guiding potential. The picture is

from [56].
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6.2 BEC in an Optical Ring-Potential

After the demonstrating the feasibility of trapping and guiding cold atoms inside the

one-dimensional optical ring potential, the next experimental goal is using Bose-Einstein

condensed atoms instead of thermal atoms. Our aim is to provide some insight regard-

ing the relevant timescales, geometries, and potential depths that might help designing

the experiment. To this end, we employ the time-dependent Gross-Pitaevskii equation

(GPE) [57] for the description of an interacting Bose-Einstein condensate. For the time

evolution we use the numerically efficient and stable Split-Operator Fast-Fourier Trans-

formation (SOFFT) method.

After an introduction of the theoretical framework, we present free time evolutions in two

optical rings with different diameters to study the expected timescales in the experiment.

Then we consider the time-dependent potential that is used in the experiment to guide

the Bose-Einstein condensate along the optical ring and make first statements of the

required potential depth. More comprehensive simulations based upon this framework

accounting for a variety of different experimental parameters were subject of a Bachelor

thesis [59].

6.2.1 Gross-Pitaevskii Equation

The Gross-Pitaevskii equation (GPE) can be used to describe a Bose-Einstein conden-

sate with an additional two-particle contact interaction in an external trapping potential.

The Gross-Pitaevskii ansatz assumes that the gas is a perfect Bose-Einstein condensate,

i.e., all particles occupy the energetically lowest single-particle state, therefore, the tem-

peratue is zero. For the sake of convenience, we start directly with the one-dimensional

GPE.

A symmetrized N-body
∣
∣ ψ
〉

can be written as

∣
∣ ψ

〉
= Ŝ

∣
∣ α1

〉
⊗
∣
∣ α2

〉
⊗ · · · ⊗

∣
∣ αN

〉
≡
∣
∣ α1, α2, · · · , αN

〉

s
, (6.1)

where Ŝ is the symmetrization operator and
∣
∣ αi

〉
the single-particle states. The

many-body Hamilton operator including an external time-dependent potential and an

additional two-body interaction term is written in second quantization

Ĥ =
∑

αα′

Tαα′ â†αâα′ +
∑

αα′

Vαα′(t)â†αâα′ +
1

2

∑

α1,α2

∑

α′
1,α′

2

Uα1α2α′
1α′

2
â†α1

â†α2
âα′

2
âα′

1
(6.2)
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with the matrix elements

Tαα′ =
〈
α
∣
∣

~
2k̂2

2m

∣
∣ α′

〉
, (6.3)

V (t)αα′ =
〈
α
∣
∣ V (x̂, t)

∣
∣ α′

〉
, (6.4)

Uα1α2α′
1α′

2
=
〈
α1α2

∣
∣ u(x̂1, x̂2)

∣
∣ α′

1α
′
2

〉
, (6.5)

where the latter indicates a matrix element with respect to a product state. We assume

a contact interaction with s-wave scattering length as and a Gaussian shape of the wave-

function in the transverse directions resulting from a harmonic potential with frequency

ω⊥. The one-dimensional contact interaction is then given by

u(x̂1, x̂2) = 2~ω⊥ as δ(x̂1 − x̂2) . (6.6)

For more details about the 1D contact interaction we refer to Appendix A.1. Using the

coordinate representation αj(xi) =
〈
xi | αj

〉
, the two-body matrix element is given by

〈
α1α2

∣
∣ u(x̂1, x̂2)

∣
∣ α′

1α
′
2

〉
=2~ω⊥as

〈
α1α2

∣
∣ δ(x̂1 − x̂2)

·
∫

dx1

∫

dx2

∣
∣ x1x2

〉〈
x1x2

∣
∣
∣
∣ α′

1α
′
2

〉

=2~ω⊥as

∫

dx1

∫

dx2 δ(x1 − x2)

· α∗
1(x1)α

∗
2(x2) · α′

1(x1)α
′
2(x2)

=2~ω⊥as

∫

dx1 α
∗
1(x1)α

∗
2(x1)α

′
1(x1)α

′
2(x1) . (6.7)

The calculation of the one-body matrix elements for the kinetic energy and the external

harmonic potential is straightforward.

If we now follow the assumption of the Gross-Pitaevskii ansatz and put all particles

in the same single-particle state
∣
∣ αi

〉
=
∣
∣ φ
〉

we obtain from the expectation value of

the Hamiltonian at a fixed time t0 an energy functional of the form:

〈
ψ
∣
∣ Ĥ

∣
∣ ψ
〉

= E[φ] = (6.8)

N

∫

dx

(

− ~
2

2m
φ∗(x)

∂2

∂x2
φ(x) + V (x, t0)φ

∗(x)φ(x) +
(N − 1)

2
2 ~ω⊥ as

[
φ∗(x)

]2[
φ(x)

]2
)

.

Usually one defines a macroscopically N -body wavefunction using Ψ(x) =
√
Nφ(x) and

N ≈ (N − 1). This yields the energy functional

E[Ψ] =

∫

dx

(

− ~
2

2m
Ψ∗(x)

∂2

∂x2
Ψ(x) + V (x, t)Ψ∗(x)Ψ(x) + ~ω⊥as

[
Ψ∗(x)

]2[
Ψ(x)

]2
)

.

(6.9)
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The minimization of this energy functional under the constraint of conserving the total

particle number ∫

|Ψ(x)|2dx = N (6.10)

leads to

0 =δ
(

E[Ψ(x)] − λ

∫

|Ψ(x)|2dx
)

(6.11)

=

∫

dx

(

− ~
2

2m

∂2

∂x2
Ψ(x)∗ + V (x, t0)Ψ(x)∗ + 2~ω⊥as

[
Ψ∗(x)

]2
Ψ(x)∗ − λΨ(x)∗

)

· δΨ(x) .

For a fixed total particle number the Lagrange parameter λ is the total energy of the

system at time t0. The latter expression has to vanish for all variations δΨ(x), thus the

integral kernel has to vanish. We obtain a non-linear Schroedinger equation which is

called the Gross-Pitaevskii equation
(

− ~
2

2m

∂2

∂x2
+ V (x, t0) + 2~ω⊥asρ(x)

)

Ψ(x) = EΨ(x) . (6.12)

This is a stationary Schrödinger equation with an additional mean-field interaction term

that is proportional to the local particle-density ρ(x) = |Ψ(x)|2. The time dependent

version of the equation is given by
(

− ~
2

2m

∂2

∂x2
+ V (x, t) + 2~ω⊥asρ(x, t)

)

Ψ(x, t) = i~
∂

∂t
Ψ(x, t) . (6.13)

The only implicit approximation we have used so far is the description of the two-body

interaction via a contact interaction. Of course we use the explicit approximation that

the Bose-Einstein condensate does not interact with anything else, e.g., a thermal cloud

of atoms.

6.2.2 Split-Operator Fast-Fourier Transformation Method

An efficient way to perform the time evolution for a one-body Schrödinger equation is

the Split-Operator Fast-Fourier Transformation (SOFFT) method. Furthermore, this

method can be used to find ground states of a stationary Schrödinger equation by evolv-

ing in imaginary time. We will derive the SOFFT method in the following.

The time-evolution operator Û(t, t0) can be formally obtained by integrating the Schrödinger

equation:

Û(t, t0) = T exp

{

−i/~

∫ t

t0

dt′Ĥ(t′)

}

. (6.14)
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The operator T is responsible for the canonic ordering of the Hamiltonians for different

times. For a numerical treatment, we need a discretized version of the time-evolution

operator

Û(tN , t0) = T exp

{

−i/~

N∑

n=1

Ĥ(tn−1)∆t

}

, ∆t = tn+1 − tn . (6.15)

Writing down the Dyson series, the commutators [Ĥ(tn), Ĥ(tn′)] are of the order (∆t)2.

The nested commutators are of even higher orders in ∆t. So we obtain

Û(tN , t0) =
N∏

n=1

exp
{

−i/~Ĥ(tn−1)∆t
}

+ O(∆t)2 + O(∆t)3 + · · · . (6.16)

The Hamiltonian shall have a kinetic term T (p̂) and a time dependent potential term

V (x̂, t). We now derive the time-evolution operator for a single time step t0 → t1.

Writing down the Taylor series, splitting the kinetic from the potential, and separating

terms of order (∆t)2 we obtain

Û(t1, t0) =T exp
{
− i/~

(
T (p̂) + V (x̂, t0)

)
∆t
}

= exp
{
− i/~T (p̂)∆t

}
· exp

{
− i/~V (x̂, t0)∆t

}
+ O(∆t)2 . (6.17)

Obviously this is the split-operator (SO) part of the SOFFT method.

The discrete N -step time-evolution of a state in coordinate space is given by:

ψ(x, tN ) =
〈
x
∣
∣ Û(tN , tN−1) . . . Û(t1, t0)

∣
∣ ψ, t0

〉
. (6.18)

For the sake of clarity we exemplarily continue for a single time step. We only account

for linear terms in Eqs. (6.16) and (6.17), which introduces an error of order (∆t)2 and

consequently the time steps must be sufficiently small

〈
x
∣
∣ Û(t1, t0)

∣
∣ ψ, t0

〉
≈
〈
x
∣
∣ exp

{
− i/~ T (p̂) ∆t

}
· exp

{
− i/~ V (x̂, t0) ∆t

} ∣
∣ ψ, t0

〉
.

(6.19)

Now, we insert two unity operators in coordinate space and one unity operator in mo-

mentum space. Technically, this switching between the basis representations is done by

Fast-Fourier Transformations (FFT):

〈
x
∣
∣ Û(t1, t0)

∣
∣ ψ, t0

〉
≈
〈
x
∣
∣ 1̂ exp

{
− i/~ T (k̂) ∆t

}
1̂ exp

{
− i/~ V (x̂, t0) ∆t

}
1̂
∣
∣ ψ, t0

〉

=

∫

dk′
∫

dk′′
∫

dx′
〈
x | k′

〉 〈
k′
∣
∣ exp

{
− i/~ T (k′′) ∆t

} ∣
∣ k′′

〉

·
〈
k′′
∣
∣ exp

{
− i/~ V (x′, t0) ∆t

} ∣
∣ x′

〉 〈
x′ | ψ, t0

〉
.

(6.20)

114



6.2 · BEC in an Optical Ring-Potential

With the coordinate representation of a plane wave
〈
x | k

〉
= e−ikx we obtain

〈
x
∣
∣ Û(t1, t0)

∣
∣ ψ, t0

〉
≈
∫

dk′
∫

dk′′
∫

dx′ e−ik′xe−i/~ T (k′′) ∆t δ(k′, k′′)

· e−i/~ V (x′,t0) ∆teik
′′x′
ψ(x′, t0) (6.21)

=

∫

dk′
∫

dx′ e−ik′x · e−i/~ T (k′) ∆t · eik′x′ · e−i/~ V (x′,t0) ∆t · ψ(x′, t0)

To summarize, first, the potential-energy term of the time-evolution operator acts on

the wavefunction in coordinate space. Second, the resulting wavefunction is fourier-

transformed to momentum space and the kinetic-energy term of the time-evolution op-

erator acts on it. Finally, we fourier transform again to coordinate space. This scheme

is iterated until the algorithm has evolved to the desired time. The most prominent fea-

ture of the algorithm is that there is no need to store matrices because the wavefunction

is always transformed to the eigenbasis of the respective operators that appear in the

Hamiltonian.

Besides the discretization in coordinate space, the error of the SOFFT method seems

only to be the neglected non-linear orders of ∆t. However, the discretization of the time

includes another subtle approximation. For the step-wise evolution of the wavefunction

ψ(x, ti+1) = e
−i/~

“

− ~
2

2m
∂2

∂x2 +V (x,ti)+2~ω⊥asρ(x,ti)
”

ψ(x, ti) (6.22)

we arbitrarily employ the potential V (x, ti) and the density ρ(x, ti) at the beginning of

the time interval ∆t. To justify this, we have to assume a negligible change of these

terms during the time interval. The natural check for convergence is again done by

employing smaller time steps ∆t until the results do not change any more.

6.2.3 Simulations – Free Evolution

The first experimental goal is to observe interference patterns of the Bose-Einstein con-

densate inside the quasi one-dimensional ring potential. Due to the finite optical reso-

lution there is a constraint on the size of the interference structures. Furthermore, the

contrast, given by the density variations, has to be high enough. In order to obtain first

insights to the relevant length scales and densities, we use the above framework to time

evolve a Bose-Einstein condensate of N = 4000 87Rb atoms in the one-dimensional ring

potential.
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We start with a free evolution of a Gaussian wavepacket of the form

G(x, t0) =
√
N
(
πσ2

0

)1/4
e
− x2

2σ2
0 (6.23)

with width σ0 = 20µm. The expected coherence times of the condensate are about 100

ms. In the current experiment, the ring potential has a diameter of d = 1.5 mm. A

simulation of the time-evolution is shown in Figure 6.3(a). After 200 ms the atoms are

distributed over roughly a third of the optical ring. Since the expected coherence times

in the experiment are about 100 ms, a free evolution of the BEC in a ring with this

diameter will probably not yield visible interference patterns. Yet, a ring with diameter

d = 0.15 mm is completely circled by a fraction of the atoms after 80 ms as shown

in Figure 6.3(b). The appearance of the inner cone is a result of the initial Gaussian

wavepacket. The large interaction energy at the dense center of the initial Gaussian

wavepacket provides particles with kinetic energy and they pass the particles from the

tails of of the Gaussian at about 20 ms. The inset in 6.3(b) shows a zoom of the resulting

interference pattern in the upper right corner of the picture. Considering the results of

the simulations we suggest that an optical ring with a diameter clearly smaller than

d = 1.5 mm provides a more promising geometry for the experiment.

6.2.4 Simulations – Guided Evolution

The aim of the experiment is not a free evolution of the atoms, but to guide them with

an optical potential. A first approximation of the additional potential resulting from an

elongated laser that is moved over the ring lense is given by a Gaussian of the form:

V (x, t) = −V0e
− 1

2

(|x|−vLt)2

(σpot)
2
, (6.24)

where V0 is the depth of the potential and vL the velocity of the laser moving over the

ring lense. The time dependent velocity in tangential direction can be derived to

v(t) =

√

r2vL

2rt− vLt2
. (6.25)

We use width of σpot = 100µm for the potential and the velocity of the laser shall be

vL = 1.75 mm/s. Potentials V (x, t) for V0 = 0.15 kBµK and different times are shown

in Figure 6.4.

We start the time evolution with a solution of the Gross-Pitaevskii equation at time

t0 = 0. The resulting simulation with a potential depth of V0 = 0.15 kBµK is shown
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Figure 6.3: Time evolution of 4000 87Rb atoms with a coordinate-time grid of Nx = 8000,

Nt = 8000 points. (a) Large ring with diameter d = 1.5 mm. (b) Small ring with diameter

d = 0.15 mm. The inset in (b) shows a zoom of factor 6 into the upper right corner. The

magnified section is about 20 × 20µm2.

in Figure 6.5(a). As a consequence of the growing barrier at the origin of the ring,

the Bose-Einstein condensate is quickly divided into two parts. Both parts follow the

potential minima and meet at the opposite side of the ring after about 70 ms. The size

of the interference pattern is similar to those in Figure 6.3(b).

A more comprehensive discussion of the subject employing a realistic experimental po-

tential with a variety of different parameters for the potentials depth and geometries of

the optical ring was subject of a Bachelor thesis [59].
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Figure 6.4: Guiding potential for the Bose-Einstein condensate.
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Figure 6.5: Time evolution of 4000 87Rb atoms in a guiding potential. The parameters are:

d = 150µm, Nx = 104, Nt = 104. (a) potential depth V0 = 0.15 kBµK, (b) potential depth

V0 = 0.30 kBµK
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Appendix A

Appendix

A.1 From 3D Contact Interaction to 1D Contact

Interaction

We start with the 3D contact interaction

u3D(~x, ~x′) =
4πas~

2

m
δ(3)(~x− ~x′) (A.1)

and assume a 1D Gauss function for the two remaining spatial directions

G(y) =
(mωy

π~

)1/4
e−

mωy
2~

y2
. (A.2)

The integral over 4th power of the Gaussian leads to

∫ ∞

−∞

dy|G(y)|4 =
(mωy

~2π

)1/2
. (A.3)

Putting these terms together, we obtain the 1D contact interaction

u1D(x, x′) =

∫ ∞

−∞

dy

∫ ∞

−∞

dy′
∫ ∞

−∞

dz

∫ ∞

−∞

dz′|G(y)|2|G(z)|2 u3D(~x, ~x′) |G(y′)|2|G(z′)|2

=2ω⊥~ as δ(x− x′) , (A.4)

where we used ωy = ωz = ω⊥.
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A.2 Oscillator Length

The definition of the oscillator length for Hx = − ~
2

2m
∂2

∂x2 + mω2

2 x2 is given by

a0 =

√

~

mω
. (A.5)

In the vicinity of a lattice site we approximate the optical potential by

Vopt(x) = sEr sin2

(
2π

λ
x

)

≈ sEr

(
2π

λ

)2

x2 (A.6)

and therefore,

ω =

√

2sEr

m

2π

λ
with Er =

~
24π2

2λ2m
.

This leads to the following approximation of the oscillator length

a0 =
λ

2π

(
V0

Er

)1/4

. (A.7)

A.3 Analytic Interaction Matrix Element

At the center of a lattice well we approximate

Vopt(x) = sEr sin2

(
2π

λ

)

x2 ≈ sEr

(
2π

λ

)2

︸ ︷︷ ︸

1/2mω2

x2 . (A.8)

With the assumption that the Wannier function is a Gaussian function (A.4) the integral

is (A.3):

U = 2ω⊥~as

∫

dx |wξl
(x)|4 ≈ 2ω⊥~as

∫

dx |G(x)|4 = 2ω⊥~
as

λ

(

4π2 V0

Er

)1/4

. (A.9)
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A.4 Hubbard Parameters for Different Transverse

Trapping Frequencies

A transverse trapping frequency of ω⊥ = 2π 16.3 kHz reproduces the Hubbard param-

eters in Fig. 5.16 in Ref. [10]. A transverse trapping frequency of ω⊥ = 2π 37.5 kHz

results from the the assumption of a transverse harmonic trapping with potential depth

V⊥ = 30Er.

independent of ω⊥ ω⊥ = 2π 16.3 kHz ω⊥ = 2π 37.5 kHz

s = V0/Er J/Er U/Er U/J U/Er U/J

1 0.1781 0.1294 0.7268 0.2979 1.6724

2 0.1428 0.1571 1.1005 0.3609 2.5283

3 0.1110 0.1799 1.6208 0.4131 3.7208

4 0.0855 0.1992 2.3302 0.4571 5.3475

5 0.0658 0.2156 3.2782 0.4947 7.5215

6 0.0508 0.2297 4.5245 0.5299 10.380

7 0.0394 0.2421 6.1411 0.5552 14.088

8 0.0308 0.2530 8.8215 0.5803 18.843

9 0.0242 0.2628 10.849 0.6028 24.885

10 0.0192 0.2717 14.168 0.6232 32.494

11 0.0153 0.2798 18.319 0.6419 42.009

12 0.0122 0.2874 23.473 0.6593 53.824

13 0.0099 0.2944 29.837 0.6754 68.408

14 0.0080 0.3010 37.650 0.6905 86.308

15 0.0065 0.3072 47.194 0.7047 108.17
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A.5 Units and Constants

~ 1.05457 · 10−34 Js Planck’s Constant

kB 1, 38 · 10−23 J/K Boltzmann’s Constant

u 1.66 · 10−27 Kg atomic mass unit

m 86.909 u mass of 87Rb

rBohr 5.2918 · 10−11 m Bohr radius

as 109 rBohr s-wave scattering length of 87Rb
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