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We introduce an iterative importance truncation scheme which aims atingdihe dimension of the model
space of configuration interaction approaches bg priori selection of the physically most relevant basis states.
Using an importance measure derived from multiconfigurational getion theory in combination with an im-
portance threshold, we construct a model space optimized for themtescof individual eigenstates of a given
Hamiltonian. We discuss in detail various technical aspects and refingwighe importance truncation, such
as perturbative corrections for excluded basis states, thresholgp@stian techniques, andftérent iterative
model-space update schemes. We apply the idea of the importanceitrnicahe context of the no-core shell
model (NCSM) for theab initio description of nuclear ground states. In a series of benchmark dadaisldor
closed- and open-shell nuclei up*t® we compare the ground-state energies obtained in the importance trun-
cated NCSM to the full NCSM. All calculations show an excellent agreemieimiportance truncated and full
NCSM for all cases where the latter is feasible. The results demonstratbehimportance truncated NCSM,
while preserving most of the advantages of the full NCSM, gives actemuch largeiNm,/Q spaces and
heavier nuclei. In this way we are able to perform importance truncategMN&lculations for nuclei liké?C
and®0 up toNax = 22.

PACS numbers: 21.60.De, 21.60.Cs, 21.30.Fe, 02.70.-c

I. INTRODUCTION contains a significant number of basis states that conéritout
the basis expansion of the target eigenstates with extyemel

Configuration interaction (CI) approaches play an impor—sma" or vanishing amplitudes. If these basis states woeld b

tant role for the descrintion of quantum manv-body svstems i omitted from the outset, the target eigenstates obtainea by
P q y ysy solution of the eigenvalue problem in the truncated spade an

many diferent areas of modern physics, ranging from atomi | observables derived from them would change only little.

C
. . a
and molecular physics and quantum chemistry to condens . T . L
. e diagonalization in the truncated space gives a vanatio
matter and nuclear physics. Well known examples for Cl-type

methods from the dierent fields include the full and trun- approximation to the full eigenstates whose quality isalye

cated configuration interaction methods for the many-sdect controlled by the threshold on the amplitudes used to igenti

problem in molecular physics and quantum chemistry [1], thethe important basis states. In order to exploit this idea, we

exact diagonalization approaches for Heisenberg- or Hubba heed a way to estimate the amplitudes of the individual basis

; . _states without actually solving the full eigenvalue praile
type problems in condensed matter theory [2, 3], or the dlag'This can be done in the framework of many-body perturba-
onalization shell model or general configuration-mixing ap

. : tion theory, using the amplitudes for the first-order pdréur
proaches in nuclear structure physics [4, 5]. tive correction of an initial approximation for the targédtes
The basic framework of all of these methods is the Samezs an importance measure [7, 8]. This is the concept of the
Within a model space spanned by a set of many-body stategnportance truncation scheme discussed in this paper.
the eigenstates of the Hamiltonian are determined through a
Iarge-scale numerical solution of the matrix eigenvalu:cbpr We will focus on the nuclear many-body pr0b|em in the
lem. The many-body states forming the basis of the modeframework of a large-scale shell-model approach. However,
space are often Slater determinants of a set of singleefgarti al| of the conceptual developments are generic and can be
states. The basic parameter which determines thieuty  applied to any Cl-type many-body method for other quan-
and computational cost of such calculations is the dimensiotum systems as well. For the nuclear many-body problem,
D of the many-body model space, i.e., the linear size of thgve aim at an exacab initio solution for a Hamiltonian in-
Hamilton matrix. If the full eigenspectrum is required, the cluding a realistic nuclear interaction. In this contexte t
exact numerical diagonalizations are routinely perforfegd  no-core shell model (NCSM) is the most successful Cl-type
dimensions up t® ~ 10° nowadays. Often only a few eigen- method at present [5, 9-13]. The model space of the NCSM
states are of interest, such that Lanczos-type algoritmms p is spanned by Slater determinants constructed from haomoni
vide a very dicient tool and expand the domain of tractable pscillator single-particle states with an upper limit oe tm-
model-space dimensions B ~ 10° [4, 5] and possibly 18  perturbed excitation energy of the many-body basis stdtes o
through massive parallelization [6]. NmadiQ. A unique advantage of themadQ truncation is the
We consider applications which require only one or fewpossibility to separate intrinsic and center-of-mass elegjof
low-lying eigenstates. In those cases the model space oftdfeedom and thus to obtain translationally invariant it
states. The NCSM is able to provide a complete description of
the ground and low-lying excited states including all raleyv
observables, like energies, transition matrix elemermtsn{
*Electronic addressrobert . roth@hysik. tu-darmstadt.de factors and densities. It has been applied very succegstull



nuclei up to mas# ~ 13 using realistic Hamiltonians involv- tains a substantial number of basis states which are iaptev
ing two- and three-nucleon interactions, e.g. the moddan-in for the description of a specific eigenstate, e.g., the gtoun
actions derived within chiralféective field theory [14-16]. A state. The basic goal of the importance truncation scheme is
similar set of observables and nuclei is accessible in Gseento identify the important configurations for the descriptiaf
function Monte Carlo calculations [17-19] which, however, one or a set of target states using the information provided
are restricted to certain classes of local interactionsiplaaml- by the Hamiltonian. Only the important states are selected
cluster methods, which have recently been used in conmectico construct a new, greatly reduced model-space in which the
with chiral two-nucleon interactions, have provided peedi eigenvalue problem is eventually solved. These importance
tions also for heavier closed-shell nuclei [20, 21]. selection ideas have been pioneered in quantum chemistry
The range of applicability of the NCSM is limited solely in the 1970s leading to a number offférent computational
by the combinatorial growth of the model space with particleschemes (see Sec. 11G). The crucial ingredient is gomi-
numberA and energy truncatioN,,,/iQ. For®0 the model ori measure for the importance of individual basis states. One
space dimension reaches the ordet dBeady forNmax = 8, possible framework to construct a simple importance measur
which is typically not sfiicient to obtain results that are con- is low-order multi-reference or multiconfigurational petia-
verged with respect thinax. Since the model-space dimension tion theory as discussed in the following section. Though th
is its only crucial limitation, the NCSM provides the optima following is applicable to all types of configuration intetisn
framework for implementing the importance truncation ideaapproaches, we will employ the language of the nuclear shell
[7]. As we will discuss in detail, the importance truncated n model for convenience.
core shell model (IT-NCSM) obtained in this way extends the
NCSM to a much larger domain iy andNp,ay.
This paper is organized as follows: In Sec. Il we discuss B. Multiconfigurational Perturbation Theory
the general elements of the importance truncation scheate th

can be employed in any Cl-type calculation. In Sec. Ill we
combine these elements with the NCSM and discuss the bas&qvmvznsfggg;?azéusnt ;? do ge;_s?;cg(( g%;?:?r?:i;ﬁinsigt

?(raospoefrltzljsé)-fstcr:]:I(IaTt-)’(\elr?cSh'\rf{a:PkiZ(I:c:S.I:;/t's:gx twhi ?{e,\slgga ?e'oscillator Slater determinants of the shell model with some
' 9 uiatl : model-space truncation. Furthermore we assume a reference

%gun: dsta::]as Orf ﬂ:ertintrclosltid- ?Phd C;pﬁrlll'égel\l/: n_lyr(]:rle' UE totstate|‘I’ref> being a zeroth-order approximation for the eigen-
> and compare 1o (he results ofthe Tu ) ougnoUl,-te of the Hamiltonian we are interested in, e.g., thergtou
this work we restrict ourselves to a regime where full NCSM

calculation are still possible to some extent so that a betai state. In general, the reference state can be a superpasitio
ulat Il pOSS XL . ' basis states from a subspakges of the full model space
assessment of the importance truncation is possible.

Weey = > CID,). (1)
II.  IMPORTANCE TRUNCATION SCHEME veMeer

This initial approximation can be obtained, e.g., from a pre
A. Concept vious CI calculation for a smaller space. In the simplesecas
the reference space can be one-dimensional and the rederenc

Consider a quantum many-body system whose ground argtate is given by a single basis stqd®) corresponding, e.g.,
excited states shall be determined by solving the eigeavaluto the ground state of a closed shell nucleus in an indepénden
problem of the Hamiltonian in a large model space. The nuparticle shell model.
clear shell model is a typical example: The model space is Now we would like to use many-body perturbation theory
spanned by a set of Slater determinants of harmonic oscillato estimate the leading corrections to the reference $4te
tor single-particle states and the lowest few eigenvalues a resulting from states outside of the reference space. Rlyrma
the corresponding eigenvectors of the Hamilton matrix &re d this requires the use of multireference or multiconfignaei
termined. Similar configuration interaction (CI) methods a perturbation theory (MCPT) as it is widely applied in quantu
used throughout many fields of physics and chemistry. chemistry [22, 23].

In all of these methods the many-body model space is con- For setting up the perturbation series we have to split the
structed in a combinatorial fashion with some global truncafull Hamiltonian H into an unperturbed pakly and a per-
tion. In the no-core shell model in nuclear physics the modeturbationW. Since we want to start from the reference state
space is spanned by all possible Slater determinants cofy,) as an unperturbed state, the unperturbed Hamiltonian
structed from harmonic oscillator single-particle statgth has to be chosen such that
total excitation energies up tdn,iQ. In a full configuration

interaction calculation in quantum chemistry the modetspa Ho [Pref) = €ef [Prer) (2)
is spanned by all Slater determinants that can be constructe
from a given finite set of single-particle orbitals. with an eigenvalues given by the expectation value with the

These global truncations do not account for the specific feafull HamiltonianH
tures of the Hamiltonian and the physical properties of the
state one is interested in. As a result the model space con- €ef = (Prefl H [Pref) . 3)
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Formally, we can write the unperturbed Hamiltonian whichwhere we have used that all matrix elementdHgfbetween
satisfies the eigenvalue relation as |Prery and the basis statd®,) ¢ M,es outside the reference
space vanish by construction.
Ho = €ref[PretXWrefl + Z & |D,XD,| . (4) For the many-body states, the zeroth-order contribution is
VEMret just given by the initial reference state

For simplicity, contributions from states withit,e; which POy = W) . (10)
are orthogonal tg¥ ) have been left out, since they will not
contribute later on. The first-order correction is given by

The unperturbed energies for basis states outside of the (@, W [rer)
reference spac#;es which enter into the definition of the un- w®y = - e p,)
perturbed Hamiltonian (4) can be chosen freely. This choice Vi & Cref
of the unperturbed energies—and thus of the partitioning of (D, H [¥,ef)
the Hamiltonian—has an impact on the convergence behav- == — D).
. . . . €y — Eref
ior of the perturbation series and a nhumber dfedent pos- vEMret
sibilities have been studied in this respect [22]. In the-sim
plest Mgller-Plesset-type formulation of MCPT the unper-
turbed energies are defined as

11)

In all of these expressions we can insert the expansion (1) of
the reference staté¥,.) in terms of the basis states. Obvi-
ously, all these relations reduce to ordinary many-body per
turbation theory when dealing which a reference state that i
given by a single basis state, i.e. fiif,er) = |D@o).
whereAeg, is the excitation energy of the basis stéabe) com- In the following, MCPT serves two important purpose$: (
puted at the level of the independent-particle picture,ig It provides an icient way to assess the importance of in-
ing the single-particle energies of the underlying basisedvh dividual basis states outside of the reference speleg and
using a harmonic-oscillator basis1 the Sing]e-particlergies will thus be the main ingredient in the importanCe trunaatio
are just the harmonic-oscillator energs= #Q(2n, + I, +  scheme. i() It allows for a direct computation of corrections
3/2). When working with a Hartree-Fock single-particle ba- t0 the energy obtained by an initial shell-model calculaiio
sis, these are the Hartree-Fock single-particle energies. @ limited reference spac&f;er, induced by states outside of
Alternatively, in an Epstein-Nesbet partitioning, the anp  this simple space.
turbed energies of states outside of the reference space are
defined via the expectation value of the full Hamiltonian

€ = €ef + A€, , (%)

C. Perturbative Importance Measure
€ =(D,/H|D,), (6)

. . The central element of the importance truncation scheme
which appears to be a more natural choice, but does not gugg an a priori measure for the relevance of individual basis
antee better convergence [22]. For the present applicatiogates|d,) for the description of a specific eigenstate of the
computational giciency is the prime concern, therefore the Hamiltonian. The target state is represented by an inifial a
simple Mgller-Plesset-type partitioning (5) is more agpro  proximation, the reference stafier), that carries the correct

ate and will be used eventually (cf. Sec. IIlE). ~guantum numbers. Based on this reference state, multicon-
Once the unperturbed Hamiltonian is fixed, the perturbationigyrational perturbation theory provides a natural framew
Wis defined via for assessing the importance of basis states outside oéthe r

erence spacMes.

A simple yet dficient importance measure can be con-
h_structed from the expression (11) for the lowest-orderemrr
niion to the unperturbed, i.e., reference stae.). The am-

plitudes of the individual basis staté®,) ¢ M in the per-

turbative correction (11) provide a dimensionless meafre
EO = (Wrel Ho [Wref) = eref the relevance of those states. Thus we can use the perwarbati
ED = (W W ¥rep) = O (8) amplitudes to define aapriori importance measure:

W =H - Ho @)

and we can easily write out the lowest orders of the Rayleig
Schibdinger perturbation series. For the energy the zeroth a
first-order contributions read

. . (D, H [Pref)
as a direct consequence of our definition of the unperturbed Ky = ——————
Hamiltonian. The second-order contribution to the enesyy a & = Eref H (12)
sumes the well known form _ Z e (@,[H D)
H € — Eef
0= Y K, [ W ¥repl® e
ey v Only those basis states with an importance measirarger
O H W2 (9  than a threshold valuey, are included in the importance-
= - Z K[ H [Frenl” , truncated model space. This space is tailored for an optimal

Vi & Cref description of the target state for the given Hamiltonian. |
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contrast to truncation schemes based on global energy cuts, D. lIterative Model-Space Construction

the importance truncation criterion is directly governgdhe

Hamiltonian and the target state. The importance threshold sjnce the importance measure (12) constructed within
«min CONtrols the size of the model space and will later on bqowest-order perturbation theory can only be used to extend
truncation. an iterative procedure to construct the importance trattat

By construction, the importance measurecharacterizes Model space for a given threshoigli,. Here we discuss a
the basis states with regard to their relevance for the grescr Simple and universal update scheme applicable for any Cl-
tion of the eigenstate. This is not the only possible choicefyP€ problem. More specialized update schemes can be de-
One can define a corresponding importance measure for ideMised for specific models spaces—we will come back to this
tifying the basis states which are most relevant for therigsc ~ quéstion in the context of the NCSMin Sec. llID.
tion of the energy. Using the contributions of the indivilua Assume we start from a single basis stite) as an ini-

basis states to the lowest-order correction to the enejgyd9 tial approximation for the target state, e.g., the grountessf

as reference statBPE(la]f) = |®g) and employ the importance
measure to construct alplh and 202h excitations of the ref-
erence state withk,| > kmin. Within this new model space
M (kmin) consisting of up to p2h excitations we solve the
eigenvalue problem and obtain an improved approximation
for the target state

Since we are aiming at an optimum approximation to the i 0

eigenstate, which is then used for computing various observ ) = Z G, (14)
ables other than the energy, the state-based importance mea ve MU (iin)

surex, is conce'ptually superior and will be use(_j in the fol- with amplitudesC[V” defined by the eigenvector.
lowing. In practice both measures lead to very similar tssul

thouah the di onl tate-based i . . The improved statg®™M) obtained in the first iteration is
oug € dimensioniess state-based Importance MeASUre lsqq 1o construct a new reference stmﬁb for the second
easier to handle (cf. Sec. lllE).

iteration. In order to accelerate the evaluation of the impo

It is important to note that for a two-body Hamiltonian the tance measure, we typically do not use the full eigenstate,
importance weighk, (as well as¢,) vanishes whenever the but project onto a reference Spabéi]f spanned by the basis
basis statgd,) differs from all of the states in the reference states|®,) ¢ MY Skmm) with ampIitudesC[V” above a refer-
space by more than two single-particle states. If we stamifr ence thresholdCM| > Cnin. The new reference state is thus
a single Slater-determinant as reference stdtgs), thenonly  defined as
1plh and P2h-excited states with respect to this determi- 2] 2] 0
nant can yield non-zero matrix elements fbrand thus non- Prer) = Nigg Z 1@y
vanishingk,. In order to access@h and 4p4h-excited states vemiy
directly, the second-order perturbative corrections &dm-
plitude would have to be used. This shows that the constru
tion of the importance truncation via perturbation theoay-n
urally entails a hierarchy afpnhstates. Only p1h and 202h

K@y H MWrenl?

€ — €ref

& = (13)

(15)

with a normalization constamlr[g. Typically the reference
CthreshoIdein can be chosen up to 10-times larger than the
importance thresholdy, without #fecting the results, we

excitations of [¥rer) contribute to the leading-order correc- will discuss the threshold dependencies in detail laterAm.
in the first iteration, the importance measure is used to con-

tion, 3p3h and 4o4h excited states first appear in the next- L ;
to—Iead?ng—ordeﬁnd so on. In order to 250id the computa—Strucfzf”‘II Ipih and Zn2h excitations withlk,| > kmin ON top
tionally demanding evaluation of higher-orders of persurb of [¥g). Since the new reference state already contains up to

tion theory we embed the first-order importance measure (1 p2h excitations with respect to the initial Slater determinant

2 (4. i itati
into an iterative scheme for the construction of the impuréa Fre rr:?rc]iel S?atfﬁ: f(frr]”'“) fonrf\'/Stl of u? t|§)| @r;lhv\;axcﬁ?tlicr)]ns.n w
truncated space as discussed in Sec. 1I1D. 0 € solution oT the eigenvaiue proble € obtain ane

approximation of the target state

Although we focus on the description of a single eigenstate, 2l 2l
the concept of the importance truncation can easily be gener ) = Z G D)) (16)
alized to the simultaneous description of several eigéesta veME (kinin)

Starting from a set of a few reference stafe§}), we con-  ith new amplitude€?. This improved state again defines a
struct separate importance measud35 for each reference new reference state and the previous steps are repeated.
state. The corresponding basis stgbe) is included into the This scheme is used for a fully adaptive update of the whole
importance truncated space if one of the importance messurenodel space, i.e., in each iteration the importance of all ba
Kﬁ") exceeds the threshotg,, i.e. if the basis state contributes sis states is reassessed using the most recent referetee sta
with a sizable amplitude to at least one of the target stétes. In this way, the impact of the coupling to higher-oragynh

this way, we obtain a model space tailored for the simultanestates is included when selecting states with lomenhor-

ous description of all target states. ders. This relaxation can have sizabfteets.
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E. A posteriori corrections 5p5h and G6h configurations. The computationafert for
evaluating this correction is almost the same as a fulltiema
Beyond the definition of the importance measure, perturbaf the model-space update because of the complexity of the
tion theory can be used to constragposterioricorrections to ~ 'éference state. Reference thresholds and extrapolawon t
the CI energie€ (kmin), Which account for contributions from niques can be employed to speed up the calculations also in
basis states that are not included in the importance tradcat this case. o .
model spaceM(kmin). We distinguish two types of correc- S|mpler'meth'ods for estimating théects of higher-order
tions: () those accounting for states that were discarded be?Pnh configurations are used in the context of truncated Cl
cause of an importance measure below the thresholdignd (c@lculations in quantum chemistry [1]. Due to their addii&ib
those accounting for configurations which would only be genbenefit of restoring size extensivity in truncated ClI cadeul
erated in the next iteration of the update cycle described ifions they are commonly referred to as size-extensivity cor
Sec. 11 D because of theirpnhrorder. rections [24, 2_5]. The S|mple_st class of corrections are_the
An estimate for the energy contribution of basis states witiSingle- or multi-reference Davidson corrections [24], ehi
non-vanishing importance measiitg < &min, i.€. those that exist in a number_of dierent formulanons. In the Iangyage'
were excluded from the importance truncated sp&t@min) of quantum_chemlstry, a correction to the_ energy obt_a_lned in
for given thresholdkyin, can be obtained from the second- the second iteration corresponds to a multi-referencatsim,
order energy correction (9). One can simply add the indafidu Where the eigenvector of the first iteratio!y defines the

energy contributions of the basis stat@s) ¢ M(kmin): reference state and the second iteration includes singks a
doubles excitations on top of this reference state. Out®f th
(D, | H [Pre)? different forms of multi-reference Davidson (MRD) correc-
Aexci(kmin) = ~ Z T e —ew (17) " tions we use the so-called Davidson-Silver or Siegbahn form
vEM(kimin) oo [25—-27], which can be constructed in the context of perturba
This amounts to adding the energy-importance measfjres tion theory,
defined in Eq. (13) for the excluded configurations. Eval- 1- Cgl
uating this correction during the construction of the impor Amrp = AEZlZCZ——l , (19)
21

tance truncated space does not generate any additional com-
putational €ort since the time-consuming matrix element haswhereE,; = E@ - EY is the diference of the CI energies

to be computed anyway for the importance measiire obtained in the second and the first iteration and
Generally, the correctioNeyc(kmin) provides only a rough 5 212

estimate for the contribution of excluded states to thegner Co = Z IG5~ (20)

since only the coupling to the reference stdigs) is con- vemit]

sidered but not the coupling to the majority of other basisig the total weight with which the configurations MY, i.e.
states inM(kmin). The primary use of this correction relies on those that were already present in the first iteration, dmurte

the formal property thaliexci(kmin) has to vanish in the limit ;16 eigenstate after the second iteration. Obviouslgtae
kmin — 0. This makes it a unique tool for stabilizing the ex- ation of the MRD correction does not involve any additional
trapolation of the Cl e.”efg‘f("miv) to vanishing Importance computational fort. For each value of the importance thresh-
Fhl’e.ShO|dein'—> 0. Tr_ns constrained threshold extrapolation 4 Kmin WE Can extract the correctiotyro (kmin) Using the
is discussed in detail in Sec. Il F. energies and amplitudes of the two last iterations. Evdlgtua

The dfect of higher-ordempnh states that would only e \RD correction is also extrapolated to vanishing thresh
be generated in the next iteration of the model-space up; 4 kimin — 0.

date can also be assessed via the second-order energy cor-

rection of MCPT. Assume we have performed two iterations

of the importance-update cycle starting from a single &late F. Properties of the Importance Truncated Cl
determinant as initial reference state. The importance-tru
cated spaceMl? (kmin) then contains up to gh excitations
with respect to the initial reference state. In order toneste
the dfect of 5p5h and §6h configurations we can either per-
form a third iteration to construo¥®® (kyin) and solve the ClI
probllem orwe can apply.MCP.T on top of the eigenstité!) First of all, it is a strictly variational approach. Since we
obtained in the second iteration. Based on the second—ord%

ibuti : by Eq. (9 define th termine energies always from a solution of an eigenvalue
i(r)]rerregc{igr?n ribution given by Eq. (9), we define the energyproblem of the Hamiltonian in a restricted space, the low-

est eigenvalue always provides an upper bound for the exact
(D, | H [Pre)[2 ground state energy. Moreover, the Hylleraas-Undheim-theo
(18) rem [28] applies, i.e., the energy of all states is guarahtee
drop monotonically with decreasing,, and is bounded from
Pelow by the exact eigenvalliE*a°tin the full model space:

Already at this stage we can identify a few general proper-
ties of the importance truncated Cl, which do not depend on
the details of the physical system or the model space under
consideration.

Apr = - Z

€, — €
VMt v ref

where the reference state is given by the full eigenvector o

the second iteration¥,er) = [P, and the sum runs over all ES* < En(kmin) < En(Kyin)  fOr  &min < K » (21)



where E,(kmin) is the nth energy eigenvalue obtained in the G. Comparison with other methods

importance truncated spadd(kmin). One can view the whole

importance-truncated Cl scheme as a variational calamati  Thg jgea of an importance selection was pioneered in quan-
with an iteratively improved linear trial state. The setw@ftes 1, chemistry. Already in the late 1960s and early 1970s
from which the trial state is constructed as a linear superpopertyrhative importance measures and thresholds were used
sition, is selected using the importance measure based oM@ facilitate large-scale Cl calculations [31, 32]. In a ekt
previous approximation of the target state. seminal papers Buenker and Peyeritiitid3—35] introduced

Second, the iterative construction of the importance trund SOnfiguration-selecting multi-reference double-exataCl
’ : P . approach (MRD-CI), which is one of the benchmark methods
cated model space will recover the full model space in th

S . . &n quantum chemistry up to today. It starts from a multi-
:!smtlrge(Kggkicr;qg?nn—)nr?eigﬁ;t?é ﬁ Itggitilk?lgsi,nv:r?eerﬁjll fnoﬁlel configurational reference space and adds individual single

space. when startlian with a sin I% basis determinant aalinit and doubles excitations employing a selection critericseda
pace, g 9 on the energy-lowering capability of the new configuration.

:ﬁ;er:aegfst;ogiewcehZ)\{gleglz?;zz Irr:aft:rir?ggt;atxattgfvcirlllegll\,:;im;ghe latter can be quantified either by using the perturbative
that this holds even after a single iteration. Together with second-order energy contribution (13) or by explicitlylerad-

monotonous behavior of the enerav. this limiting prope ing the change of the energy eigenvalue obtained from adding
. . gy, I g property-p the respective configuration. A threshold value on thisgner
vides the foundation for aa posterioriextrapolation of the

: : lowering is used to select the important configurations Wwhic
energies for dferent importance thresholds towargig — 0. are then included in the model space. Already in the initial

Third, the importance measure (12) is constructed to iden?ﬁpgcat'ﬁnlsdc’f this MlR[.)'CI scrr:e_me in Refs. [33735]’ dpower-
tify states based on their contribution to the expansioreft 'Y threshold extrapolation techniques were employed te co
eigenstates and not based on théiee on the energies. Thus rect for the ﬁ_fects of ex.clluded conf!gurat|ons. (cf. Sec. .”I F).
the importance truncation using is tailored to generate an :\I/Igreovebr, S|ze—%xtendS|V|ty corrections as discussed in Se
optimal approximation for the eigenstates in a limited mode "' = €an D€ considered.

space. The energy can be computed from the eigenstatesjustEsse”tia”y all con_ceptual elements of the IT-ClI scheme
like any other observable of interest. Therefore, from thie-c '€ already present in the MRD-CI (although we learned of

ceptual point of view, all observables are accessible wii¢h t the MRD-CI only after [7] was published). Onefidirence,
same precision as the energy. however, lies in the iterative setup we adopt for the IT-Cl

which allows for a systematic improvement of the importance

Finally, an interesting and nontrivial question that wastruncated space. Whereas the MRD-CI is typically imple-
raised in Refs. [29, 30] and addressed in detail in Ref. [gnented as a one-step calculation, the idea of an iterative im
concerns the size extensivity of importance-truncatedaGl ¢ Provement of the model space has also been used in quantum
culations. In simple terms, size extensivity requires that ~chemistry. An example is the CIPSI method [36-38] which
energy obtained in a many-body calculation for a system comuses a Cl calculation for a limited model space of important
posed of two non-interacting subsystems is equal to the sugenfigurations and supplements it with a second-order pertu
of the energies obtained in separate calculations for ttiie in bative correction for singles and doubles excitations oo
vidual subsystems. Whereas full Cl is size extensive, a &runc the Cl model space. The Cl space is then iteratively enlarged
tion of the space at some fixegpnhexcitation level destroys by including those singles and doubles which contribute to
size extensivity [8’ 25] Therefore, importance truncatdd the first-order perturbed states with amplitudes Iargem tha
calculations based on very few iterations of the mode|.3pacthl’eShO|d value. Also this CIPSI scheme contains many of the
update discussed in Sec. 11D can violate size extensivigy. Arelevantideas employed in the IT-CI.
discussed in detail in Ref. [8] a computationally simple way Since these early formulations a large number of
to restore approximate size extensivity are Davidson-tgge  new implementations and variations of the aforementioned
rections as given by Eg. (19). In most cases tffect of  importance-selection ideas have been developed [1, 39, 40]
these corrections is small already after two iterative tgmla and are being used for thab initio description of highly cor-
of the importance truncated space (cf. Sec. IVB). After arelated problems in quantum chemistry.
suficiently large number of iterations, i.e. once the model- In nuclear physics the use of importance-selection tech-
space updates have converged, these size-extensivigceorr niques is not as far developed as in quantum chemistry. How-
tions (19) vanish altogether. This is in line with the fabiatt  ever, there are some schemes, particularly in the context of
after A/2 iterations at most the importance truncated Cl re-the valence-space shell model, which employ similar ideas.
covers the full model space in the limit{,, Cmin) = 0 and  Among those is the Monte-Carlo Shell Model (MCSM) of
thus would be manifestly size extensive. Although the limhit Otsukaet al. [41]. It uses the lowering of the energy eigen-
vanishing thresholds is realized only through an extramoia  value caused by adding a test configuration to a set of refer-
we can nevertheless presume that the importance trunchted €nce states as a criterion for the relevance of this configura
provides an approximately size-extensive result aftevern tion. However, the crucial element of this method is that the
gence of the model-space updates and threshold extrapglati test configurations are generated through an imaginary time
simply because it provides an approximation of full Cl with- evolution of the reference set implemented via an auxiiary
out any explicimpnhtruncation. field Monte Carlo scheme. Due to this stochastic sampling



the individual configurations are no simple shell-modelidas the full NCSM at present. For heavier nuclei the situation be
states anymore, but more complex states containing informaomes progressively worse.
tion on the Hamiltonian already. For the final diagonalizafi The importance truncation can be usedfticently reduce
typically supplemented by an angular momentum projectionthe dimension of thé\,./iQ2 model space to a tractable size.
a small number of those MCSM configurations iffisientto  Note that theNa/iQ space already reflects a simplistic im-
capture the relevant physics. portance selection of the individual many-body basis state
Another importance sampling scheme has been proposdgased on the perturbative arguments of Sec. 1l C, the ampli-
by Andreozziet al. [42] in connection with an iterative tudes of basis states with large unperturbed excitation ene
method for the solution of the eigenvalue problem [43]. Heregies will be suppressed by the energy denominator in (12).
the approximations of the eigenvalues obtained duringtthe i Precisely those states are discarded througiNthe:Q trun-
erative solution are used to apply an energy threshold-critecation. However, the numerator of (12) and thus the full
rion to discard irrelevant states. Horeti al. have devised a Hamiltonian, is not considered in this simplified picturénel
truncation scheme based on the diagonal matrix elements &fna2Q2 model space is not adapted to the specific properties
the Hamiltonian and applied it in sd and fp-shell calculasio of the Hamiltonian or the target states under consideration
[44]. By using the importance truncation in combination with the
Nmax1€2 model space we also include these aspects.

I1l. IMPORTANCE TRUNCATED NO-CORE SHELL
MODEL B. Hamiltonian

As the primary application we study the importance trun- For the following discussion we use a translationally iiwvar
cation scheme in connection with the no-core shell modeant Hamiltonian composed of intrinsic kinetic enerGy; =
(NCSM) [7]. Applications of the importance truncation in-nu T — Tcy and a realistic two-nucleon interactiviy:
clear Cl approaches based on fatient definition of the full . N
model space have been presented in Ref. [8].

p p [8] Hint=Tint+VNN=§%Zqi2j+Zvij’ (22)
<] <]
A.  Model space whereq;; = 3(pi — p;) is the relative two-body momentum
operator ang = my/2 the reduced mass.

The NCSM is based on an expansion of the many-nucleon |n principle any two-body interaction can be used as input.
state in a basis of Slater determinants of harmonic oscillam this work we restrict ourselves to unitarily transforniaed
tor single-particle states. The model space of the full NCSMeractions derived in the framework of the Unitary Corrielat
is restricted solely with regard to the maximum number ofOperator Method (UCOM). Starting from the Argonne V18
harmonic-oscillator excitation quantdmax, in the many-body  potential a unitary transformation is used to account fortsh
basis state. In other words, all harmonic-oscillator $laterange central and tensor correlations leading to a phaiie-sh
determinants with unperturbed excitation energies of up t@quivalent &ective interaction with improved convergence
Nmax2€2 are included in the model space. properties. The conceptual details of the UCOM approach are

The combination of harmonic oscillator basis axig,,Q discussed in Refs. [46—48]. Further details regarding #hte c
truncation has a unique advantage. Only this model space atulation of matrix elements of théycom interaction and the
lows for an exact separation of the center-of-mass andintri determinantion of the optimal correlation functions ars-di
sic component of the many-body state for Mlh.x. There-  cussed in Ref. [49].
fore, one can guarantee that the intrinsic part of the state i For all of the following calculations we use the ‘standard’
free of spurious center-of-mass contaminations. Any otheget of correlation functions introduced in Ref. [49] with
single-particle basis, e.g. a Hartree-Fock basis, orfferdi  a triplet-even tensor correlator with range paraméjer=
ent model-space truncation, e.g. a truncation at the level c0.09 fm®. This value was chosen such that experimental bind-
the single-particle states like in other Cl methods, wiiley  ing energies foH and“He are roughly reproduced in full
this property and induce center-of-mass contaminatiotiseof NCSM calculations. Though improved correlation functions
eigenstates which can severefjeat intrinsic observables. are available [50], there exists a number of@ient many-

The dimension of thé&,/Q model space grows factori- body calculations for this first-generati®Mycowm interaction.
ally with Nmax and particle numbef. Therefore, full NCSM  Calculations for light nuclei in the NCSM and other methods
calculations are computationally feasible only for refaly  [51] show thatVycom exhibits good convergence properties
light nuclei or in very small spaces. Model space dimensionsind provides a realistic description of a number of observ-
of the order of 18 are used routinely with present NCSM ables. Studies of heavier nuclei in Hartree-Fock plus s&con
codes [6, 45]. Fot®0 this allows for calculations in a8 order many-body perturbation theory demonstrate thatrhis
space, which for most realistic Hamiltonians is noffisient  teraction provides reasonable binding energies througheu
to reach convergence. The dimension of thé&(lOnodel whole nuclear mass range without the explicit inclusion of a
space is larger than 30and thus just beyond the reach of three-body interaction [52]. Therefore tgcowm interaction



provides a realistic testbed for the many-body methodssinve of a single target states after typically 10 iterations. rEue
tigated here. ally, we obtain energy eigenvalues and amplitudes of thyetar
We emphasize that all of the following calculations use thestates. Since the eigenstates are—at no additional costr-give
Hamiltonian (22) without further transformations, i.enete  in a simple shell-model representation, we can easily wesa th
is no additional Lee-Suzuki similarity transformation aghie ~ for subsequent computation of various expectation valods a
ab initio NCSM [9-12, 14, 53, 54]. Here the term NCSM density distributions or form-factors.
solely refers to a Cl-type calculation specifically using an The time-consuming parts to the code, i.e. the construction
Nmax2Q model space. of the importance-truncated space and the computatioreof th
Hamilton matrix, can be easily parallelized with practigal
no communication overhead and perfect scaling. We use a
C. Implementation hybrid OpenMP plus MPI parallelization strategy to make op-
timal use of the memory resources of modern multi-core ar-

The implementation of an importance truncated NCSM dif_chitectures. As compare to a'typic;al full .NCSM’ the particle
fers from a conventional NCSM code. The computationallyn“mbers and model space sizes in the importance-truncated

most demanding part is the construction of the importancé!©SM are notlimited by the available memory. Larger model

truncated space itself. Due to the reduction of the dimenSPaces or particle numbers only require more CPU-time for

sion of the model space, the subsequent computation of tHBe construction of the importance-truncated model space.
Hamilton matrix and the solution of the eigenvalue problem
are simpler than in a full NCSM approach.

For generating the importance truncated space for a given D-  Iterative Construction of Model-Space: IT-NCSM(j) vs.

reference staté¥,e;), we use an algorithm motivated by the IT-NCSM(seq)
structure of the importance measure (12). We loop over all
basis stategd,) € Ms contained in the reference stgter) We can use the universal update scheme described in

and create all fi1h and 202h excitations of each of them. In Sec. Il D for the iterative construction of the importanastr
order to avoid creating duplicates, we discard any newly crecated Nya2Q2 space for any giveMna For targeting the
ated determinanitd, ) that has a non-vanishing matrix element ground state, we would start with &Q eigenstate as the
of the Hamiltonian with any of the states ;s that were initial reference state—for a closed-shell nucleus thisist
processed previously. This update scheme, which is alsb us¢he independent-particle shell-model determinant. Inst fir
in importance selecting Cl approaches in qguantum chemistriteration the importance update is used to generate al rele
[33, 36, 40], is much morefkcient than the simple scheme vant 1plh and 202h excitations within theNma,Q space un-
employed in [7]. There, explicit loops over all possiblpnh  der consideration. Using the eigenstate in this importance
excitations of the independent-patrticle shell-modeksi@)  truncated space as reference state, a second iteratiogiweill
were used to generate candidate states for evaluating the iraccess to all basis states up to thplid level with respect to
portance measure. Though duplicates are excluded from thbe initial 0zQ state. Typically two or three iterations of the
outset, this scheme becomes lefgent already at the®h importance update cycle arefBaient to obtain convergence,
order and it eventually limited the calculations in Ref. {@] i.e. a result which is not changed anymore by another impor-
states up to the gih level. Therefore, all results presented tance update. In the following we will identify those cakaul
here are based on the refined implementation without any exions with the label IT-NCSM§, wherei indicates the number
plicit limitation of thenpnhlevel of the states considered. of iterations.

Evidently, the cost for the model-space update grows However, for theNma/iQ space of the NCSM there exists
guadratically with the number of basis states in the refezen a more dicient alternative. Typically we are interested in a
|¥rer). Therefore, as discussed in Sec. 11D, we introduce arsequence of calculations for growilg,ax in order to assess
additional reference threshold and define the referende stathe convergence behavior with increasing model-space size
|¥ref) Using the dominant components of the previous eigen¥e can combine this sequential increas@&gfy with the im-
state. Typical reference threshol@s,, are of the order of portance update in an elegant way. Assume we start with a
10~*which leads to reference states composed of typicafty 10complete NCSM calculation in ai or 2:Q space. Using
basis determinants. We always check that a further loweringhe eigenstate obtained in this small, s&pRXpace as refer-
of the reference threshold does not produce sizatdets. ence state we construct the importance truncate gpace

Eventually we obtain a list of basis states spanning the imand solve the eigenvalue problem again. The resulting eigen
portance truncated model space including their importancetate then defines the reference state for the construction o
weights. The typical dimensions we deal with are of thethe importance truncated:Q space, and so on. We will iden-
order 13. These problems can be handled by conventionatify calculations based on this sequential update scheme by
Lanczos- or Arnoldi-type algorithms—in addition to sim- IT-NCSM(seq) in the following.
ple Lanczos-implementations we use the implicitly resthrt ~ This sequential scheme has an important conceptual ad-
Arnoldi algorithm of the ARPACK library [55]. The many- vantage: The maximumpnh excitation with respect to the
body matrix elements of the Hamiltonian are pre-computedQ space that is contained in a2 space is of or-
and stored in memory or on disk. Using the known impor-dern = Nnax Therefore in each step of sequerdgax =
tance weights as initial pivots, one can obtain convergencs, 2,4,6, ... the maximumnpnhorder increases by 2 and a
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%ounted for in the lowest-order perturbative estimate.

k, and the amplitud€, obtained by solving the eigenvalue problem . - . .
in an IT-NCSM(2) calculation of°0 with Ny = 8 andiQ = 22 As mentioned in Sec. II C there are other options to define

MeV. The panels correspond to theffdrentnpnhorders as indi- " importance measure in the framework of multiconfigura-

cated. tional perturbation theory. A natural alternative to thatet
based importance measuwigis the energy-based importance
measurey, defined in Eq. (13). One could also consider an

single importance update at each step ifisient to access Epstein-Nesbet partitioning as discussed in Sec. 11 B taiget

all npnh orders that can appear. Thus, the sequential upthe perturbative corrections and define a state-based impor

date scheme recovers the complBlg,iQ model space in tance measure".

the limit (kmin, Cmin) — O and does not impose any explicit  In order to assess thdfieiency of the three measures we

limitation regarding thenpnh-content of the space. We need perform a series of calculations withfidirent values of the re-

to apply the importance update only once for each value o$pective importance thresholds and plot the energy eigiezva

Nmax, in the iterative scheme we would nee& Npmay/2 it- versus the dimension of the importance truncated space as a

erations to formally achieve this. We will apply and compareparametric curve spanned by the importance threshalgs

both schemes in Sec. IV. Xmin» andkm, respectively. Since the whole approach is vari-
ational, the measure which leads to the lowest ground-state
energy for a given dimensiob of the importance-truncated

E. Importance Measure space is mostfécient in selecting th® most important basis

states.

An example of this analysis is shown in Fig. 2, again for the
ground state of®0 in an 8Q space. In all cases the NCSM
ground state in a completdiQ space was used as reference
state for the construction of the importance-truncateataspa
The points obtained with all three definitions of the impor-
tance measure essentially fall onto the same line, i.e. @li-m
sures are able to identify the most important configurations
with the same ficiency. We therefore use the conceptually
and computationally simplest importance measure, the-stat
d based measure of Eq. (12) in all following investigations.

As a first test of the reliability of the importance measure,
we can compare the perturbative estimattor the amplitude
of a given basis statéd,) with the amplitudeC, resulting
from the diagonalization. Whereas thepriori importance
measure, only includes the coupling to the states from the
reference space, tlagposterioriamplitudesC, are dfected by
the mutual coupling of all states. Nonetheless shgrovides
a reasonable estimate for the amplitu@gsvhich is suficient
to identify the important basis states.

This is illustrated in Fig. 1 for an importance-truncate
NCSM calculation fortf0 in an §Q space using two itera-
tions of the importance-update of the model space for an im- )
portance thresholghin = 5 x 10°5. The correlation plots re- F. Threshold Dependence & Extrapolation
late the importance measukg of the individual basis states
with the corresponding amplitud€s in the final eigenstates. The variation of the thresholg,, is an important probe
There is a clear correlation between the two quantities fvhic for the quality of the importance truncation and the basis fo
is suficient to predict which basis states are important for aran extrapolation to vanishing threshaig, — 0 as it will be
adequate representation of the final eigenstate. The iscattaised later on. To this end, all IT-NCSM calculations are per-
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FIG. 3: (color online) Threshold dependence of the energies and the =, 120!
model space dimension for a IT-NCSM(2) calculation*®d with —_

Nmax = 8 andnQ = 22 MeV. (a) Energy eigenvalues and as func- £ 128]
tion of kmin Without (¢) and with @) perturbative correction for the \E
W

excluded configurations. (b) Total dimension of the importance trun- 130l
cated spacee] as well as the number of@@2h (o), 3p3h (¢), and
4pdh-configurationstf) with varying «min.

formed for a sequence offliérent values fokmin. For €ach g 4: (color online) Threshold extrapolation of the ground-state
threshold value the importance truncated spaceiisréntand  energy of'°0 (1 = 22 MeV) obtained in IT-NCSM(2) for dier-
the eigenvalue problem has to be solved again. However, thignt N,,... Shown are the perturbatively corrected enerdig&nmin)
can be done at small computational cost. The importance truras function of«yi, for 2 = 0,0.5,1, 1.5, and 2 (data sets from top to
cated space and the Hamilton matrix are initially determhine bottom within each panel). For = 0 (e) the original energy eigen-
for the smalleskmin. After the solution of the eigenvalue prob- valueE(xmin) is recovered, fon = 1 (¢) we obtain the perturbatively
lem for this threshold, all basis states that are not papa¢e ~ corrected energi (kmin) + Aexci(kmin)- The lines show the results of a
for the next-larger importance threshold and the correspon swpultaneous constrained fit for all data sets using 4th order polyno-
ing matrix elements are removed, and the eigenvalue profMals (See text).

lem is solved again. Hence, the time consuming construction

of the importance truncated space and the computation of the

Hamilton matrix is done only once for a whole threshold se-On the state and the energy remains moderate, facilitaging a

guence. proximations to estimate theirffect on the energy without
The dependence of the energy and of the model-space di?¢luding them explicitly in the model space.
mension on the importance threshejg, in IT-NCSM(2) cal- The simplest approximate way to account for the excluded

culations for'®0 with differentNyay is illustrated in Fig. 3. basis states is tha posteriorienergy correctiomexci(kmin)

The energy eigenvalug(xmin) obtained in the importance given by Eq. (17) on the basis of the second-order MCPT
truncated space decreases monotonically with decreaging contribution. The corrected energiBmin) + Aexci(kmin) are

as expected from the variational principle and the Hyllsraa also depicted in Fig. 3(a). Althoughexci(kmin) provides only
Undheim theorem. At the same time, the dimension of thed rough estimate for the contribution of excluded states, th
importance truncated space increases exponentially weith d kmin-dependence of the corrected energy is much weaker than
creasingmin. The number of configurations of highepnh  the dependence of the uncorrected eigenveltifesi,)—if the
order in particular grows rapidly as the threshold is lowlere correction were exact we would expect the corrected ergrgie
This behavior reflects the mechanism behind the importanct® be independent afin. In many cases the corrected energy
truncation scheme: The configurations which are most imporat a single value omin can already serve as a good approxi-
tant for the description of the target state have laggend are  mation for the full results in the limitmi, — 0.

included already for large thresholds. With decreasingdy A more reliable way to recover the contribution of excluded
old xmin basis states of lesser importance are successively irconfigurations is a@a posterioriextrapolation of the energies
cluded. Their number increases dramatically but tfeceé  to vanishing importance threshold. Due to the smooth and
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monotonic behavior of the energiB$«min) one can attempt a the perturbative correctiofexci(kmin) Provides a more stable
direct numerical extrapolatiok,i, — 0 as done in Ref. [7]. result. The reason is thg,n-dependence Aeyxci(kmin), Which
Since the general shape of tB€«min) curve varies, we will  in very small spaces shows structures that interfere wigh th
generally use polynomials ity fitted to a stficiently large  polynomial extrapolation.

number of diferent threshold values for the extrapolation. In-

stead ofE(kmin) One can extrapolate the perturbatively cor-

rected energyE(kmin) + Aexcl(kmin), Which shows a weaker V. APPLICATIONS & BENCHMARKS: MAGIC NUCLEI
threshold dependence than the eigenvalues and, therafore,

lows for a more stable extrapolation. The extrapolationtzan We employ the IT-NCSM now for the series of calcula-
stabilized further by performing a simultaneous fitffkmin)  tions for the O ground state energies of various closed and
and E(kmin) + Aexci(kmin). Since the perturbative correction gpen shell nuclei in the p-shell. The aim is to compare the
Aexci(kmin) has to vanish in the limikmis — O both extrapo-  resyits to the full NCSM in dferent cases in order to demon-
lations should formally give the same valuexgl, = 0, In-  strate the robustness of the importance truncation schathe.
dependent of the absolute quality of the perturbative @&8m | NCSM calculations presented in the following were per-

The formal propertyE(0) = E(0) + Aexci(0) is used as a con-  formed with the Aroe code [45].
straint in the simultaneous fit and reduces the uncertaiofie

the threshold extrapolation significantly.
One can even go one step further and define a family of A. Helium-4
energy CUTVGfNA(Kmin) = E(kmin) + AAexci(kmin) With a con-
trol parametenl. Independent of the choice dfthe formal
propertyE,(0) = E(0) holds. Using this as a constraint in
a simultaneoug?-fit of a set of curves for several values of
A provides very robust extrapolation results. This techaiqu
has been pioneered by Buenker and Peyeritrihahe early
applications of configuration-selecting Cl approachesizng
tum chemistry [34]. It solely relies on the fact that the earr

tion Aexci(kmin) IS @ monotonous function which goes to zero gt \ye consider the simple iterative scheme IT-NCBM(
(smoothly) asmin — 0. for the construction of the importance truncated model spac
Examples for this type of threshold extrapolation in the oy fixed Nmay We perform up to three iterations of the im-
case of IT-NCSM(2) calculations féfO in differentNma/i2  portance update starting with the Slater determinant of the
model spaces are presented in Fig. 4. The starting point aiggependent-particle model as initial reference. In eg@tai
the energiesE(kmin) and perturbative correctionSexci(kmin)  tion we solve the eigenvalue problem for a sequence of impor-
obtained for a sequence of importance thresholds in theerangace thresholds in the rangen = 3x 1075 to 14x 10°% and
from kmin = 3 x 10° to 14x 10°°. Using this input we  extrapolate the eigenvalu@xmn) to the limit of vanishing
construct data sets for the corrected enerdigfmin) for  thresholdkmin — 0 as discussed in Sec. Il F. For very light
1=0,05115 and 2 a_nd simultaneously flt_each of the setsyyclei like?He the direct extrapolation &(kmin) Without per-
by a 4th order polynomial under the constraint that all carve yrpative corrections for excluded configuration provities
meet atkmin = 0. The individual data sets and the polyno- most stable results. For the definition of the referenceestat
mial fits are shown in Fig. 4. Itis evident that this extrapola for the next iteration a reference thresh@lg, = 5x 104 is
tion scheme is most stable if the curves approach the commqygeq.

E,(0) va]ue more or less symmetrically. This is the reason for Tpe threshold-extrapolated ground-state energies and the
the particular set of-values adopted here. dimensions of the maximum importance-truncated model
We employ the following threshold extrapolation protocol spaces as function dfi,ax are depicted in Fig. 5. The con-
for the applications presented in Sec. IV. Using a sequehce @ergence with respect to the importance updates of the model

12 equidistant threshold values in the rargg = 3x 10°to  space is very fast. After two iterations, i.e. at the IT-NQ@M
14x107° we perform a constrained simultaneous fit of the cor-level, we already obtain stable results which is within 169k
rected energiel, (xmin) for a sequence of at least Siéirentl-  of the full NCSM result. The third iteration only lowers the
values using low-order polynomials. The setleparameters ground-state energy a little further bringing it into exeat
is chosen such that the common point of all fit curves atagreement with the full NCSM, as seen in Fig. 5(b). In the
«min = 0, which gives the final threshold-extrapolated energycase of*He this convergence pattern may be expected. Af-
is approached symmetrically. In order to assess the uncefer two iterations the importance truncated space contgins
tainty of the extrapolation, we drop the smallestand thgelsir  to 4p4h excitations, i.e., the full model space can be gener-
value, respectively, from the-sequence and perform the si- ated in the limit of vanishing thresholds. The minimal chang
multaneous fit for the remaining data sets. The variance o the third iteration is due to a relaxation of the importnc
this set of extrapolations defines an uncertainty interwal f truncated space, i.e., through the reassessment of the-impo
the threshold extrapolated energy. tance of all basis states with respect to a new referenae, stat
Exceptions are very light nuclei, e.dHe, where a direct which includes all possiblepnhorders, the importance trun-
extrapolation of the energy eigenvalléxnyn) without using  cated space is better adapted . Further importance updates d

As the simplest benchmark we study the ground-state en-
ergy of *He using theVycowm interaction. In this case full
NCSM calculations can be performed up to very laxgg.aQ
spaces such that convergence is observed. Furthermoee, oth
few-body methods, e.g. the hyperspherical harmonics basis
expansion [51], have been employed and yield an independent
reference value for the ground-state energy.
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FIG. 5: (color online) Ground-state energy and model-space dimenFIG. 6: (color online) Ground-state energy, (a) and (b), and model-
sion as function ofNpay for *He obtained within the IT-NCSNM)Y space dimension (c) as function Nf,. for *He obtained within the
scheme foi = 1 (o), i = 2 (4), andi = 3 iterations @) using the  IT-NCSM(seq) schemes] using theVcom interaction foriQ = 40
Vucowm interaction foriQ = 40 MeV. Panels (a) and (b) show the MeV. For comparison the results of full NCSM calculations with the
ground-state energies onflirent scales, including the uncertainty same Hamiltonian are includest)

estimates for the threshold extrapolation. Panel (c) depicts the maxi-

mum dimension of the importance-truncated model space. For com-

parison the results of full NCSM calculations for the same Hamilto-in Sec. IlID. Starting from the A2 space we use the im-

nian are includeck). portance measure to construct an importance truncated 2
space. This is used as reference space to construct the-impor
tance truncated742 space, and so on. As before we use a

not change the resulting energies anymore. reference threshold @i, = 5x 10 and a sequence of im-

The agreement with the full NCSM demonstrates the efportance thresholds starting from, = 3 x 10°°. The results
ficiency of the importance measure and the reliability of thefor the ground-state energies‘ie are summarized in Fig. 6
threshold extrapolation. The dimensi@n,.x oOf the largest and compared to the full NCSM. The IT-NCSM(seq) scheme
model space considered for the threshold extrapolatiop is uleads to the same excellent agreement with the full NCSM as
to two orders of magnitude smaller than the dimension of thehe IT-NCSM(3). However, the IT-NCSM(seq) is computa-
full NCSM space, as illustrated in Fig. 5(c). Note that thetionally more dficient, since only one importance update is
full NCSM dimension is obtained by exploiting all relevant needed for each value dfax.
symmetries, including parity and time-reversal, to redihee The dependence of the ground-state energy obtained in the
dimension of the eigenvalue problem—it corresponds to théT-NCSM(seq) on the oscillator paramete® is depicted in
‘effective dimension’ used by thendome code. Thus this  Fig. 7. The comparison with the full NCSM results shows that
substantial reduction of the model-space dimension byhe i the excellent agreement persists for all frequenai@s The
portance truncation goes beyond generic symmetries and r@articular oscillator frequenchQ = 40 MeV used in Figs. 5
ally exploits the specific properties of the Hamiltonian. and 6 corresponds to the minimum for the larger space.

As an alternative to the simple iterative model-space up- Inorderto compare our results with other many-body meth-
date at fixedNyax We can perform these calculations using ods and with experiment, we perform an exponential extrapo-
the sequential model-space update IT-NCSM(seq) proposddtion of the IT-NCSM(seq) energies fof2 = 40 MeV. Since
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FIG. 7: (color online) Ground-state energies'bie obtained for the : :
Vucowm interaction as function of the oscillator frequerigy for dif- 100} ]
ferentNma,/2Q model spaces. Shown are the results of IT-NCSM(seq)
calculations (full symbols) in comparison to full NCSM calculations 108} |
(crosses). x
£ 10} .
the calculations are practically converged with respeblte 104 |
the main purpose of the extrapolation is to smooth out the
fluctuations due to the uncertainties of the threshold pxtra 10°¢ 1

olation. Using the five data points frohM,x = 16 to 24 we
obtain a*He ground-state energy e28.52(10) MeV. This is
in excellent agreement with the value-28.57 MeV that was

obtained previously in the framework of the hypersphericalg;g g: (color online) Ground-state energy and model-space dimen-
harmonics approach using the saWigowm interaction [51].  sjon as function 0Ny for 10 obtained within the IT-NCSMY

The comparison to the experimental binding energy28.29  scheme foii = 1 (o) andi = 2 () iterations using th&ycou in-
MeV only reveals the rough nature of the adjustment of theeraction forzQ = 22 MeV. In addition the IT-NCSM(2) energies
UCOM tensor correlator randg that was used in Ref. [49] after inclusion of the multi-reference Davidson correction are shown
to fix the Vuycowm interaction. In principle one could selegt ~ (m). Panels (a) and (b) show the ground-state energiesfteretit

such that the experimentiHe binding energy is reproduced Scales, including the uncertainty estimates for the threshold extrapo-
exactly. lation. Panel (c) depicts the maximum dimension of the importance-

truncated model space. For comparison the results of full NCSM
calculations for the same Hamiltonian are includey (

0 2 4 6 8 1012141618 2022
Nmax

B. Oxygen-16

The ground state dfO poses a more challenging problem. ence threshold is set @in = 5 107
At present, full NCSM calculations can be done routinely for A summary of the IT-NCSM] results for the ground-state
spaces up tdimay = 8 with an efective dimension of almost energies of°0 up toNmax = 18 is presented in Fig. 8, se-
0.6x10°. ForNmax = 10 and 12 theféective dimension grows lected numerical values are given in Tab. I. As for the much
to 14 x 10'° and 24 x 10, respectively, which is clearly be- lighter nucleus*He the convergence of the iterative impor-
yond the reach of present NCSM codes. The importance trurfiance updates is excellent. Already after two iteratiores, i
cation is crucial in this domain and enables us to treat moddpPr IT-NCSM(2), the full NCSM energies up tmax = 8 are
spaces of up tdlmax = 22 and beyond. This limit is set by the Produced to an absolute accuracy of better than 600 keV.
available two-body matrix elements and not by the IT-NCSM Instead of performing a third iteration explicitly, we caseu
calculation itself. computationally simpler estimates for the small corractie-

As for “He, we first consider the simple iterative IT- sulting from 55h and §6h configuration that are not present
NCSM() scheme using up to two iterations for eadhax  inthe IT-NCSM(2) model space. As discussed in Sec. Il E, the
to construct the importance truncated model space. We usemplesta posterioricorrection is the multi-reference David-
a set of 12 equidistant importance thresholds in the rangson correction (MRD) given by Eq. (19) since it does not
kmin = 3 x 107 to 14 x 10°° as input for the simultaneous require any additional computation beyond IT-NCSM(2). The
threshold extrapolation as discussed in Sec. Il F. Tha+efe MRD corrected IT-NCSM(2) energies are also shown in Figs.
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TABLE |: Ground-state energies (in units of MeV) f$iO obtained 160 (a)

for the Vycowm interaction atiQQ = 22MeV with different levels of -60r 1

the IT-NCSM. For the IT-NCSMJ results fori = 1 and 2 itera- < IT-NCSM(seq)

tions are shown. Furthermore IT-NCSM(2) results with the MRD o -80f R = 22 MeV 1

correction (19) and the perturbative correction (18) for tfieat of =

the next iteration are reported. For the IT-NCSM(seq) twitedent w -100} .

reference thresholds have been used:Qg) = 5x 10 and (b)

Cmin = 3x 10™*. Numbers in parentheses are uncertainty estimates -120t J

for the threshold extrapolation. L e

Nmax 8 12 16

Eo ~4669 4669 ~4669 100l ®) |

IT-NCSM(1) -9510(2) -10324(2) -107.81(2)

IT-NCSM(2) -10418(15) -11632(15) -12281(50) S 110

IT-NCSM2+MRD -10475(15) -117.22(15) -12375(50) 2 1

IT-NCSM(2+PT(3) -10481(15) -117.62(15) - =

IT-NCSM(seq) - (a) -10449(10) -11686(25) -12314(70) W -120¢ 1

IT-NCSM(seq) - (b) —10443(10) -11712(25) -12345(70)

full NCSM -10475 - - -130t 1
1010 E 3

8(a) and (b). The contribution of the MRD correction grows 1084 )

slightly with Npax and reaches about 1 MeV fdiax = 18. .

As seen from Tab. |, the IT-NCSM(2MRD energy is in ex- £ 10°} ]

cellent agreement with the full NCSM. A computationally e

more demandin@ posterioricorrection based on the explicit 10k 1

calculation of the second-order energy contribution onabp

the IT-NCSM(2) eigenstate as defined by Eq. (18) yields very 107§ 1

similar results. The IT-NCSM(2)PT(3) energies shown in 0 2 4 6 8 1012 14 1618 2022

Tab. | agree very well with both, IT-NCSM(2MRD and full Nimnax

NCSM.

The good agreement with the full NCSM energies is yet anIG. 9: (color online) Ground-state energy, (a) and (b), and model-
other indication of theficiency of the importance truncation space dimension (c) as function Nf,.x for 60 obtained within the
scheme in selecting the relevant configurations and of the re IT-NCSM(seq) scheme using thécom interaction forzQ = 22
ability of the threshold extrapolation for recovering tloatri- ~ MeV. Two different values of the parent threshold were usgg =
bution of excluded configurations. The importance trurttate 5 x 10°* (¢) andCpi, = 3x 10" (#). For comparison the results of
space is substantially smaller than full NCSM space as seen full NCSM calculations with the same Hamiltonian are includeyl (
Fig. 8(c). ForNmax = 8 the importance truncation reduces the
dimension by two orders of magnitude, fdf.x = 12 already
by four orders of magnitude. This dramatic reduction allowssystematically below the IT-NCSM(2) results. This is due to
us to go to much larger values bk, than ever possible in the presence of ibh and §6h configurations in the model
the full NCSM. space of the IT-NCSM(seq), which are excluded from the IT-

We can improve the ficiency even further by using the NCSM(2) space. States beyond thgsh level are suppressed
sequential IT-NCSM(seq) scheme, which requires only ondy the importance truncation, i.e. they do not have impaean
importance update for each value Ny since it uses a ref- Mmeasures above the smallest threshgid = 3x 10°° used in
erence state constructed from the eigenstate il\thg — 2 this calculation. The IT-NCSM(seq) calculations for thetw
space. In this way athipnhstates that are possible in a given different reference threshol@sax agree within the uncertain-
NmadiQ space are generated in the limit, Cmin) — O. ties of thexnmin extrapolation, which indicates that the values

The results of IT-NCSM(seq) calculations for the ground-chosen here are Siciently small to capture all relevant com-
state energy off0 for #Q = 22 MeV and the sequence of Ponents of the reference state.

Nmax Values starting fronNmax = 0 up toNmax = 22 are pre- The quality of the IT-NCSM(seq) in comparison to the full
sented in Fig. 9. We study twoffiérent values o€, the ~ NCSM is independent of the oscillator frequeriig of the
threshold used in the definition of the reference stateesincunderlying basis. As shown in Fig. 10 both sets of calcu-
this is the only parameter left after thg, — O extrapolation. lations are essentially on top of each other. The maximum
The set ofkmin Values used for the threshold extrapolation isdeviations are around 300 keV, with the IT-NCSM tending to
the same as before. higher energies due to its variational character.

We observe an excellent agreement with the full NCSM and Based on the results of Fig. 9 we can attempt an extrapo-
with the IT-NCSM(2) of Fig. 8. The numerical results in lation Nmax — 0. Close inspection of th&lnax dependence
Tab. | reveal that the IT-NCSM(seq) energies are slightly bureveals a non-exponential behavior for lafdgax which af-
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FIG. 10: (color online) Ground-state energies% obtained forthe  FIG. 11: (color online) Intrinsic ground-state energy'% obtained
Vucowm interaction as function of the oscillator frequericy for dif- in the IT-NCSM(seq) atQ = 22 MeV using the modified Hamil-
ferentNma,iQ model spaces. Shown are the results of IT-NCSM(seq)onianH,. Panel (a) shows the intrinsic energies foe 0 () and
calculations (solid symbols) in comparison to full NCSM calcula- g = 10 (#) in comparison to the full NCSM«). Panel (b) depicts the
tions (crosses). energy diferenceSEj, = Eini(8 = 10) — Eine(8 = 0).

fects the quality of the extrapolation. This is a property of CM motion.
the Vucowm interaction used here and is not related to the IT- A well-known tool to probe the presence and extent of the
NCSM itself. Similar calculations with other interactioesg.  coupling is an artificial shift of the excitation spectrumtoé

the chiral N3LO potential after an Similarity Renormalipat ~ CM component of the many-body states. Following Gloeck-
Group evolution used in Ref. [5, 56], do not have this prob-ner and Lawson [57] this can be implemented by adding a
lem. If we, nevertheless, use the energies for five conseclarmonic-oscillator Hamiltonian with respect to the CMipos
tive values ofNmay to perform an exponential extrapolation, tion Xcm and the CM momentuBcm,

the extrapolated energy has a sizable dependence on the cho- 1 MAQ2
sen window iNNmax. When using the IT-NCSM(seq) energies Hem = =—P2, +
in the window 14< Npax < 22 we obtain-1331 MeV, for 2mA 2

the range 12< Npnax < 20 we obtain-1324 MeV, and for  The modified Hamiltonian

10 < Npax < 18 we get-1308 MeV. In order to arrive at

a stable extrapolation for théycom interaction, one would Hz = Hint + BHem (24)
have to go to even largeéMax OF use &ective model space

interactions constructed via a Lee-Suzuki transformation

X2, - gm : (23)

is then used instead of the intrinsic Hamiltonian (22) at all
stages of the calculation.

If intrinsic and center-of-mass motion are properly decou-
pled, then this shift will not fiect the intrinsic state whatso-
ever. The intrinsic ground-state energy, defined via theexp
tation valueEin(8) = (¥l Hint [¥5) computed with the eigen-

An important advantage of the NCSM is the possibility states|¥;) obtained forHg, has to be completely independent
to exactly separate the intrinsic and the center-of-mas4) (C of 5. Any dependence d&in:(8) on 3 signifies an unphysical
component of the many-body states. Only in this way a noneoupling of the intrinsic state to the CM state of the nucleus
spurious description of the translationally-invariantriimsic As an example for this check, we discuss tf® ground-
state of the nucleus—and all the observables derived from it—state energy obtained in the IT-NCSM(seq) scheme. The IT-
is guaranteed. As discussed in Sec. Il A, this properteseli NCSM(seq) is set up as described in Sec. IV B. Fig. 11 depicts
on the use of a completdy./iQ2 model space constructed the intrinsic energies for a sequenceNyfa-values obtained
from a harmonic oscillator single-particle basis. Any othe for 8 = 0, i.e. with the intrinsic Hamiltonian used in all previ-
model-space truncation will destroy the formal separgbili ous calculations, and f@r= 10. The intrinsic energies of both
and lead to CM contaminations of the intrinsic states. calculations agree almost perfectly. As shown in Fig. 11(b)

Since the importance truncation reduces the model spadée diterence is always below 300 keV and consistent with
to a subset of the fulNy,o2Q2 space, it might induce a cou- 0 within the uncertainty of the threshold extrapolation.i-Ev
pling between intrinsic and CM motion and destroy the exactdently, the importance truncation does not induce any eetic
separability. We have to check explicitly that the IT-NCSM able coupling between intrinsic and CM degrees of freedom
eigenstates still exhibit the separation between intiasid and thus the eigenstates are free of CM contaminations.

C. Center-of-Mass Contamination
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The situation is completely fierent if we start from a -10 L
model space which is not based on tHg,iQ2 truncation. -20} 12¢c @ 7
A well known example is the core-plus-valence-space shell 230 ]
model, where the model space is spanned by Slater deter- S-40] ';&Nfgi"ﬁg\‘j) ]
minants generated by all possible occupations of a few va- © -
lence orbitals. A number of studies show the severity of the =-50
problem: As discussed in Ref. [58], e.g., spurious admégur w -60¢
cause the ground-state energy'®® to be overestimated by -70¢
several MeV. Similar fects are observed when using the im- -80}
portance truncation idea with a no-core model space defined S S S S S S R
through a truncation of the single-particle basis. Thes€IllT -60¢t .
calculations, as discussed in Ref. [8], exhibit sizable @i-c 65 (b)

taminations of the intrinsic states which also lead to eperg
shifts of several MeV for thé®0O ground state. A detailed

';_70_ _
investigation of the CM contaminations in IT-Cl and coupled %
cluster calculations will be presented elsewhere [59]. 'II-75- .
-80r ]
V. APPLICATIONS & BENCHMARKS: NON-MAGIC -85} ]
NUCLEI f
10°% 1

The IT-NCSM is not limited to doubly-magic or closed-
shell nuclei. We can apply the same ideas and computational 107k

techniques, in particular the IT-NCSM(seq) scheme, withou g
any changes to non-magic or open-shell nuclei. In thiseecti ]
we demonstrate this flexibility and discuss the performanice 107 3
the IT-NCSM scheme for selected non-magic even-even nu-
clei from the p-shell in comparison to the full NCSM. A sys- 103k 1
tematic study of p-shell nuclei with filerent unitarily trans- oo
formed realistic interactions will be presented in a footme 0 2 4 6 81012141618 2022
ing publication. Nmax
FIG. 12: (color online) Ground-state energy, (a) and (b), and thode
A Carbon-12 space dimension (c) as function M., for 12C obtained within the

IT-NCSM(seq) scheme using thé&,com interaction fornQ = 24
MeV. Two different values of the parent threshold were usig; =
As a first step towards open-shell nuclei we consider thé x 10 (e) andCpin = 3 x 107* (4). For comparison the results of
ground state of?C in the IT-NCSM. The computational com- full NCSM calculations with the same Hamiltonian are includej (
plexity of this problem is similar to th&O ground state, be-
cause of the incomplete filling of the p-shell. The full NCSM
is typically limited toNmax = 8, whereas the IT-NCSM can be  The evolution of the ground-state energy and the model-
extended tdNmax = 22 and beyond. space dimension witNax obtained in the IT-NCSM(seq) for
Both schemes for constructing the importance truncatethe Vucowm interaction is depicted in Fig. 12. For the refer-
space, the iterative IT-NCSN)( and the sequential IT- ence threshold we use twoflirent valuesCpin = 3 x 1074
NCSM(seq) scheme, can be applied without change. For thand 5x 10™%. The sensitivity of the ground-state energy to
IT-NCSM() scheme a natural choice for the initial referencethe reference threshold is slightly larger than for the dpub
state is the ground state obtained fron®@alculation inthe  magic*®O because of the absence of a single dominant basis
full NCSM instead of the single Slater determinant that spanstate. However, the fierence between the two sets of ener-
the 0iQ space for a magic nucleus. For the IT-NCSM(seq)gies remains well below 1 MeV.
scheme we start with a full NCSM calculation in &CD or As for 10 the general rate of convergence is rather slow
2hQ) space in any case, so there is no technid@édince be- and of non-exponential character for model spaces beyond
tween closed- and open-shell nuclei. For brevity, we retstri Nmax ~ 14. To a large extend this can be traced back to the
ourselves to the IT-NCSM(seq) scheme in this section. Asigh-momentum behavior of the first-generat\iiton inter-
in Sec. IV we employ a set of calculations with importanceaction. A rough extrapolation based on the five data points
thresholds in the rangeynin = 3 x 10°° to 14 x 107 for in the range 14< Npax < 22 leads to an estimated ground-
eachNnax. On this basis we perform a constrained thresh-state energy 0f84.6(1.5) MeV, where the uncertainty is de-
old extrapolation as described in Sec. lll F making use of theéermined by comparing with extrapolations for other sets of
second-order perturbative estimate of the energy cotitvibu  five consecutive points. This is almost 8 MeV above the ex-
of excluded configurations. perimental ground state energy-82.16 MeV [60]. Keeping
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FIG. 13: (color online) Ground-state energies®sfe (a) and®He

(b) as function ofNax Obtained within the IT-NCSM(seq) scheme
(e) using theVycowm interaction forzQ = 24 MeV. For comparison
the results of full NCSM calculations with the same Hamiltonian are
included ).

in mind that the calculated ground-state energy'%@ was
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results of full NCSM calculations where the latter are fbksi
For largerNmax the threshold extrapolation shows uncertain-

ties of up to 700 keV foPHe. If necessary, these uncertain-
ties can be reduced by considering lowgf,-values for the
threshold extrapolation. The general convergence as a func
tion of Nmay is rather slow, particularly fofHe. In addition

to the properties of th&ycowm interaction discussed before,
the structure of these nucleffects the convergence rate. Ob-
viously, the description of the neutron halo in an oscillato
basis requires high-lying single-particle states and targe
Nmax- Only through the importance truncation these large
model spaces are accessible.

Because of the slow convergence and the relatively large
uncertainties of the threshold extrapolation, an extrapol
tion to Nmax — oo only provides a rough estimate. Using
the results for the five largest spaces we obtain an extrap-
olated ground-state energy eR27.4(10) MeV for ®He and
of —26.5(15) MeV for 8He. A systematic study including
a variation of the oscillator frequency is needed to provide
more precise extrapolations. The comparison of these esti-
mates with the experimental binding energies-29.27 MeV
and —-3141 MeV [60] for ®He and®He, respectively, con-
firms our observations regarding the deficiencies of the first
generationVycowm interactions. The systematic underbind-
ing of these open-shell systems could be remedied, e.g., by
a stronger spin-orbit component of the interaction. Agtin,
NCSM studies with the JISP16 interactions presented in Ref.
[6] show a similar trend, though the absolute deviations are
smaller.

at least 5 MeV below the experimental value, this can be in-

terpreted as evidence for deficiencies in the spin-orbit gfar
the first generatioWycowm interactions, which in turn could be
related to missing three-body interactions.

Interestingly, a similar pattern has been observed for the

JISP16 interaction in the full NCSM calculations preserited
Ref. [6]. Although these NCSM calculations were limited
to Nmax < 8 the softness of the JISP16 interaction allows for
guantitative conclusions already in these small spacesedBa
on systematic extrapolations the authors conclude'fi@ats
overbound by approximately 2 MeV afD is overbound by
15 to 18 MeV. Hence the fierence in the binding energies of
the two nuclei is of the same order as for #hgon interaction
although the JISP16 overbinéRO significantly.

B. Helium-6 and Helium-8

VI. CONCLUSIONS & OUTLOOK

We have introduced an importance truncation scheme with
all its technical aspects as a new tool to facilitate abaniti
nuclear structure calculations beyond the domain of conven
tional Cl approaches. Based on apriori importance mea-
sure derived from multiconfigurational perturbation theee
identify the important configurations for the descriptidrire
dividual target states such that the dimension of the emjaav
problem that needs to be solved is dramatically reduced. The
effect of excluded configurations can be reliably included by
combining a perturbative estimate of their energy contidou
with threshold extrapolation techniques.

In combination with theNy.,1Q space of the NCSM the
importance truncation provides a powerful tool to asses all
aspects of nuclear structure in light and medium-heavy nu-

As a second example we consider the neutron-rich Heliuntlei. The importance truncation preserves a crucial ptgper

isotopes’He and®He. Whereas fofHe one is able to reach
large Nimax With the full NCSM already, the few additional
neutrons in these isotopes significantly reduce the rantieof
full NCSM, typically to Nmay < 16 for8He andNpax < 12 for

of the NCSM: the decoupling of intrinsic and center-of-mass
degrees of freedom which guarantees that the intrinsiaebse
ables are free of unphysical center-of-mass contamirgtion
We have discussed two schemes for setting up the importance-

8He [61]. With the importance truncation we can overcometruncated space, the iterative IT-NCSMénd the sequential

this limitation easily.

The IT-NCSM(seq) results for the ground state§tdé and
8He obtained withVycom at iQ = 24 MeV with Cpin =
5 x 10 are summarized in Fig. 13. As before, the IT-
NCSM(seq) energies show an excellent agreement with th

IT-NCSM(seq) scheme. The latter is mofii@ent since we
have to construct the importance-truncated space only once
for eachNmax.

Moreover, the IT-NCSM(seq) scheme is conceptually supe-
gor, because in the limit of vanishing thresholdgi, and«min
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the completdNnq1Q2 space is obtained without any truncation tio description of nuclear structure. The next crucial stepas t
regarding thenpnporder at each step of the sequenc®gfx  extension of the IT-NCSM to excited states. The importance-
values. Hence, the full NCSM results are recovered in théruncation scheme can be generalized in a straight-forward
limit (Crin, kmin) — 0 at eaciNmax. Based on this property we manner for the simultaneous description of a few targe¢stat
use a numerica posteriorithreshold-extrapolation to obtain In this way it becomes possible to describe, e.g., groundand
an approximation to the full NCSM with well-defined error few excited states simultaneously and on the same footing. A
bounds. The stability of this extrapolation is greatly emded  detailed discussion of the methodical details will be pnéesa
by using information on the contribution of excluded config-in a subsequent paper, together with a variety of applinatio
urations from perturbation theory. Further improvemerits o Since we automatically obtain a representation of the eigen
these extrapolation techniques, e.g. along the lines sk&tll  states in a shell-model basis, all observables of inter@st ¢
in Refs. [39] or [62], will be investigated in the future. be computed directly. Although we discussed only energies
Our series of benchmark calculations confirms the excelfor the purpose of the present benchmark, we have computed
lent agreement of the IT-NCSM with the full NCSM in all a variety of properties, e.qg., radii, density distributipand
cases where the latter is computationally feasible. The-conmform factors. We have even used the IT-NCSM eigenstates
parison also demonstrates that the IT-NCSM gives access #s input for the calculation of phase-shifts for low-energy
much largeMNma/iQ2 spaces and to heavier nuclei than the full nucleon-nucleus scattering reactions in the frameworkef t
NCSM. The range of the IT-NCSM in botNmaxandAisonly  NCSMresonating group method (NCSRIGM) [56, 63].
limited by the computing time and not by memory. Moreover, This demonstrates that the IT-NCSMers the same possi-
the time-consuming steps of the computation can be easilljjlities for completeab initio calculations of nuclear structure,
parallelized with minimal communication overhead. spectroscopy, and reactions as the full NCSM. At the same
The present calculations also allow for a detailed astime, the IT-NCSM extends the range of thedeinitio stud-
sessment of the first-generatiofcom interactions used. jes to heavier nuclei and larger model spaces, which isaruci

Whereas théHe binding energy is in agreement with experi- for developing a consistent framework for nuclear strutur
ment by construction, the grOUnd Staté'% is overbound by theory throughout the whole nuclear chart.

atleast 5 MeV. This level of agreement is still satisfactang

is not found with most other realistic two-body interactpn
be it bare of &ective. For the non-magic nuclei discussed
here the binding energies are systematically underesamat
with the Vycowm interaction, which might hint at deficiencies
in the spin-orbit part of the interaction. Furthermore, the | would like to thank Petr Nauwtil, Bruce Barrett, Piotr
NCSM calculations show that the convergence rate of the firstPiecuch, Hans Feldmeier, and Heiko Hergert for numerous
generationVycom When going to large spaces is rather slow, fruitful discussions and comments. This work is supported
which might result from the high-momentum behavior of theby the Deutsche Forschungsgemeinschaft through contract
interaction. All of these deficiencies will be addressedrdyr SFB 634 and by the Helmholtz International Center for FAIR
the construction of the next generation of UCOM-transfatme within the framework of the LOEWE program launched by
interactions and the IT-NCSM provides a indispensable toothe State of Hesse. | thank the Institute for Nuclear Theory

Acknowledgments

for assessing these aspects. at the University of Washington for its hospitality and the-D
Obviously, the investigation of ground states of closedt an partment of Energy for partial support during the completio
open-shell nuclei is only a first step towards a compddteni-  of this work.

[1] C. D. Sherrill and H. F. Schaefer Ill, Adv. Quantum Che34, [10] P. Navétil and W. E. Ormand, Phys. Rev.88, 034305 (2003).

143 (1999). [11] P. Navatil, J. P. Vary, and B. R. Barrett, Phys. Rev. L&,
[2] F. Ouchni, J. Schnack, and J. Schulenburg, Phys. Rex6,B 5728 (2000).

195106 (2007). [12] P. Navatil, J. P. Vary, and B. R. Barrett, Phys. Rev.62,
[3] F. Becca, A. Parola, and S. Sorella, Phys. Reb1BR16287 054311 (2000).

(2000). [13] P. Navatil, G. P. Kamuntavicius, and B. R. Barrett, Phys. Rev.
[4] E. Caurier, G. Maiinez-Pinedo, F. Nowacki, A. Poves, and C 61, 044001 (2000).

A. Zuker, Rev. Mod. Phys5, 427 (2005). [14] P. Navatil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, and
[5] P. Naviatil, S. Quaglioni, I. Stetcu, and B. Barrett (2009), in A. Nogga, Phys. Rev. Letf9, 042501 (2007).

preparation. [15] D. R. Entem and R. Machleidt, Phys. Rev.68, 041001(R)
[6] P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev.78, (2003).

014308 (2009). [16] E. Epelbaum, A. Nogga, W. Gtkle, H. Kamada, UIf-
[7] R. Roth and P. Nawtil, Phys. Rev. Lett99, 092501 (2007). G. Meil3ner, and H. Witala, Phys. Rev.66, 064001 (2002).
[8] R. Roth, J. R. Gour, and P. Piecuch (2008), arXiv:0806.033317] S. C. Pieper and R. B. Wiringa, Ann. Rev. Nucl. Part. Sdi.

[nucl-th]. 53 (2001).

[9] P. Naviatil and W. E. Ormand, Phys. Rev. Le88, 152502 [18] R. B. Wiringa and S. C. Pieper , Phys. Rev. L&9, 182501
(2002). (2002).



[19] S. C. Pieper, R. B. Wiringa, and J. Carlson, Phys. RevOC
054325 (2004).

19

[42] F. Andreozzi, N. Lo ludice, and A. Porrino, J. Phys. G: Nucl.
Part. Phys. 2319 (2003).

[20] G. Hagen, T. Papenbrock, D. J. Dean, and M. Hjorth-Jensen43] F. Andreozzi, A. Porrino, and N. Lo ludice, J. Phys. A: Math.

Phys. Rev. Lett101, 092502 (2008).

Gen. L61 (2002).

[21] G. Hagen, D. J. Dean, M. Hjorth-Jensen, T. Papenbrock, anf44] M. Horoi, B. A. Brown, and V. Zelevinsky, Phys. Rev. %D,

A. Schwenk, Phys. Rev. @6, 044305 (2007).
[22] P. R. Sur@n, Z. Rolik, A. Szabados, and DdKalmi, Annalen
der Physikl3, 223 (2004).

[23] Z. Rolik, A. Szabados, and P. R. Surjan, J. Chem. Phys. of

Chemical Physic419 1922 (2003).

[24] R. Langhdtf and E. R. Davidson, Int. J. Quantum Che8n61
(1974).

[25] W. Duch and G. Diercksen, J. Chem. Phi81, 3018 (1994).

[26] E. R. Davidson and D. W. Silver, Chem. Phys. L&®2, 403
(2977).

[27] P. E. M. Siegbahn, Chem. Phys. L&k, 386 (1978).

[28] E. A. Hylleraas and B. Undheim, Z. Physik@5, 769 (1930).

[29] R. Roth and P. Natil, Phys. Rev. Lett101, 119202 (2008).

[30] D. J. Dean, G. Hagen, M. Hjorth-Jensen, T. Papenbrock, and

A. Schwenk, Phys. Rev. Lett01, 119201 (2008).

[31] J. L. Whitten and M. Hackmeyer, J. Chem. Ph$4, 5584
(1969).

[32] M. Hackmeyer and J. L. Whitten, J. Chem. Ph$d, 3739
(1971).

[33] R. J. Buenker, S. D. Peyerimfipand W. Butscher, Mol. Phys.
35, 771 (1978).

[34] R. J. Buenker and S. D. PeyerinthioTheor. Chim. Acta39,
217 (1975).

[35] R. J. Buenker and S. D. Peyerinthalrheor. Chim. Acte85, 33
(1974).

[36] B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. PBgs.
5745 (1973).

[37] R. Cimiraglia and M. Persico, J. Comp. Che8n39 (1987).

[38] S. Evangelisti, J.-P. Daudey, and J.-P. Malrieu, Chem. Ptys.
91 (1983).

[39] C. Angeli, R. Cimiraglia, M. Persico, and A. Toniolo, Theor.
Chem. Acc98, 57 (1997).

[40] R. J. Harrison, J. Chem. Phy&#, 5021 (1991).

[41] T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y. Utsuno,
Prog. Part. Nucl. Phygl7, 319 (2001).

R2274 (1994).

[45] E. Caurier and F. Nowacki, Acta Phys. Pol3B, 705 (1999).

[46] R. Roth, T. N&, H. Hergert, and H. Feldmeier, Nucl. Phys.

A745, 3 (2004).

[47] T. Neff and H. Feldmeier, Nucl. PhyA713, 311 (2003).

[48] H. Feldmeier, T. N&, R. Roth, and J. Schnack, Nucl. Phys.
A632, 61 (1998).

[49] R. Roth, H. Hergert, P. Papakonstantinou, TfiNend H. Feld-
meier, Phys. Rev. @2, 034002 (2005).

[50] R. Roth, S. Reinhardt, and H. Hergert, Phys. Rev.7(064003
(2008).

[51] S. Bacca, Phys. Rev. T5, 044001 (2007).

[52] R. Roth, P. Papakonstantinou, N. Paar, H. Hergert, T, dad

H. Feldmeier, Phys. Rev. T3, 044312 (2006).

[53] C. Forssen, J. P. Vary, E. Caurier, and P. Navratil, Phys. Rev
77, 024301 (2008).

[54] E. Caurier, P. Natil, W. E. Ormand, and J. P. Vary, Phys. Rev.
C 66, 024314 (2002).

[55] R. B. Lehoucq, D. C. Sorensen, and C. YaARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with Im-
plicitly Restarted Arnoldi MethodSiam, 1998).

[56] P. Navatil, R. Roth, and S. Quaglioni (2009), in preparation.

[57] D. Gloeckner and R. Lawson, Phys. L&8B, 313 (1974).

[58] P. K. Rath, A. Faessler, H. Muther, and A. Watts, J. Phys. G:
Nucl. Part. Physl6, 245 (1990).

[59] J. R. Gour, P. Piecuch, and R. Roth, in preparation.

[60] G. Audi, A. Wapstra, and C. Thibault, Nucl. Phys729, 337
(2003).

[61] E. Caurier and P. Na#til, Phys. Rev. 3, 021302(R) (2006).

[62] H. Zhan, A. Nogga, B. R. Barrett, J. P. Vary, and P. Ny
Phys. Rev. B9, 034302 (2004).

[63] S. Quaglioni and P. Nadtil, Phys. Rev. Lett101, 092501
(2008).



