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INTRODUCTION

The journey of nuclear physics began in 1932, when James Chadwick discovered the neu-

tron [1]. Shortly after, it was conceived that the neutron and the already known proton

were the fundamental constituents of the atomic nucleus, and the next goal was to study the

interaction of these so-called nucleons. Today we know that they are not elementary parti-

cles. The underlying theory that describes their substructure is quantum chromodynamics.

Here, nucleons are understood as a bound object of three quarks, that is held together by

an attractive interaction, mediated by messenger particles called gluons. Although possible

in principle, it is not yet feasible to provide a description of the atomic nucleus based on

interacting quarks and gluons. Instead, the effective concept of interacting inert nucleons is

adopted.

A first breakthrough in describing the nucleon-nucleon interaction was the introduction

of the meson theory by Hideki Yukawa in 1935 [2]. According to his theory, the interaction

between nucleons is mediated through the interchange of mesons, in analogy to electromag-

netism, which is mediated through the interchange of photons. The infinite range of the

electromagnetic interaction results from the masslessness of the photon. In contrast to that,

the range of the nucleon-nucleon interaction is limited by the non-zero meson mass. The

theory automatically meets several symmetry requirements, which in turn can provide the

basis to find the operator structure of the interaction [3].

First of all, some general symmetries have to be obeyed, like for instance translational and

rotational invariance, which are also obeyed by other interactions like gravitation or electro-

magnetism. In addition to that, the nucleon-nucleon interaction in particular is required to

feature parity invariance. Other interactions, like for example the weak interaction, break

this symmetry. Since only a limited set of operators meets these requirements, we can nar-

row the general operator structure of the nucleon-nucleon interaction. The remaining radial

dependencies include parameters that are adjusted to experimental results. Interactions

that reproduce deuteron properties and results of nucleon-nucleon scattering in particular

are called realistic nucleon-nucleon interactions.

Aside from general symmetry considerations, it is possible to take empirical findings into

account [3]. The binding energy per nucleon has a typical value of approximately 8 MeV

across the entire mass range, which suggests the dominance of the interaction between next

neighbors and therewith the overall short range of the nucleon-nucleon interaction. Further-

more, the fact that stable nuclei exist means that there must be an attractive component to

the nucleon-nucleon interaction. The average internucleon distance of 1− 2 fm implicates
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Introduction

the magnitude of this mid-range attraction. Another important characteristic is a strong

repulsion at short distances, which is observed at nucleon-nucleon scattering experiments.

Moreover, the non vanishing quadrupole moment of the deuteron shows that its ground

state is a superposition of states with different angular momenta. This can only be produced

by interactions with non-vanishing matrix elements between states with different angular

momenta. The so-called tensor interaction is the simplest of them. Finally, experimental

findings such as spin-orbit splitting of nuclear energy levels provide an indication of the

contribution of a spin-orbit interaction. The two most important types of correlations be-

tween nucleons suggested by empirical evidence are the central correlations, generated by

the short-range repulsion, and the tensor correlations, induced by the short-range component

of the tensor interaction.

In essence, there are two different approaches to solve the nuclear many-body problem on

this basis. One strategy to do so is by means of numerical calculations, without making any

conceptual approximations. The two most prominent of these so-called ab initio methods are

the No-Core Shell Model (NCSM) and the Green’s Function Monte Carlo (GFMC) method.

Unfortunately, the enormous computational costs resulting from the complexity of the prob-

lem limit the practicability of these methods to nuclei with small mass numbers. Another

strategy is to find approximate solutions, of which one group is given by the mean field meth-

ods. They are based upon the assumption of non-interacting nucleons, which are immersed

in an external one-body potential. This so called mean field potential can be derived from a

two-body interaction, as it is done for example in the Hartree-Fock method. However, these

methods prove to be incompatible with realistic nucleon-nucleon interactions, because the

strong short-range correlations induced by realistic nucleon-nucleon interactions go beyond

the concept of non-interacting nucleons.

In the first chapter we will present the Unitary Correlation Operator Method, a concept

that resolves this problem by imprinting the dominant short-range central and tensor cor-

relations into a many-body state. On this basis, we will subsequently in the second chapter

derive matrix elements of an interaction operator that includes the central and the tensor

correlations both in harmonic oscillator and momentum space representation. For our calcu-

lations we will use the Argonne v18 potential [4], a realistic nucleon-nucleon potential whose

corresponding operator can be decomposed into 18 operators. A summary and outlook will

be given in the third and final chapter.

vi



CHAPTER 1

THE UNITARY CORRELATION OPERATOR

METHOD

As we have described in the introduction, mean field methods for solving the nuclear many-

body problem cannot account for the strong short-range correlations induced by realistic

nucleon-nucleon interactions. The Unitary Correlation Operator Method (UCOM) provides

a solution to this problem [5, 6, 7, 8]. Here, the strong short-range correlations are explicitly

described by a state-independent unitary transformation:

|eΨ〉 = C|Ψ〉 , with C†C= 1 . (1.1)

The correlation operator C maps the uncorrelated state |Ψ〉 to the correlated state |eΨ〉, which

incorporates the strong short-range correlations. Matrix elements with correlated states of

an operator O are equivalent to matrix elements with uncorrelated states of a corresponding

correlated operator eO:

〈eΨ|O|eΨ′〉 = 〈Ψ|C†OC|Ψ′〉 = 〈Ψ|eO|Ψ′〉 . (1.2)

The correlated operator is defined by equation (1.2). The unitarity of C leads to

eO= C†OC = C−1OC . (1.3)

We construct the correlation operator to comprise the two dominant components of the

short-range correlations, the repulsion of the central interaction and the contribution of

the tensor interaction. For convenience we split the correlation operator into two unitary

operators Cr and CΩ that describe the different types of correlations:

C = CΩCr , (1.4)

where CΩ denotes the tensor correlator and Cr the central correlator. In order to ensure their

unitarity, they are written as exponentials of hermitian generators Gi, where i represents
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1 The Unitary Correlation Operator Method

either r or Ω:

Ci = exp{−iGi} , with Gi = G†
i . (1.5)

For systems with small densities, the correlations are in good approximation two-body cor-

relations, which means that we can express the hermitian generators in terms of two-body

operators:

Gi =
∑

m<n

g
(mn)

i . (1.6)

Consequently, the correlation operators read

Cr = exp{−i∑
m<n

g(mn)
r
} , (1.7)

CΩ = exp{−i∑
m<n

g
(mn)

Ω } . (1.8)

In the following sections we will discuss both the central and the tensor correlations.

1.1 Central Correlations

The short-range repulsion of the central interaction prevents two nucleons from moving too

close together. To this end, the central correlator is required to move apart two nucleons

in radial direction, depending on their relative distance. Radial shifts are generated by

the projection of the relative momentum q = 1

2
(p1 − p2) onto the relative distance vector

r = x1− x2, called radial momentum:

qr =
1

2

�
q ·

r

r
+

r

r
· q

�
. (1.9)

The radial shifts have to be large at small distances and subside at large distances. This

distance dependence is described by the shift function s(r). Thus, the generator of the

central correlations is given by

gr =
1

2

�
s(r) qr+ qr s(r)
�

. (1.10)

Next we consider the effect of the central correlator on a two-nucleon state |Ψ〉 = |Ψcm〉⊗

|Φ〉, which we separate into a center of mass and a relative component. Since the central

correlator only depends on relative coordinates, it has no effect on the center of mass com-

ponent |Ψcm〉. For the relative component |Φ〉 we assume LS-coupled angular momentum

eigenstates |φ(LS)J M T MT 〉. To simplify matters, we omit the projection quantum num-

bers M and MT in the following. According to equation (1.7), the central correlator for a

2



1.2 Tensor Correlations

two-nucleon system is given by cr = exp{−igr}.

In coordinate representation, the centrally correlated states are given by [9]

〈r|cr|φ〉=R−(r) 〈R−(r)|φ〉 , (1.11)

〈r|c†
r
|φ〉=R+(r) 〈R+(r)|φ〉 , (1.12)

using the definition

R±(r) =
R±(r)

r

r
∂R±(r)

∂r
. (1.13)

We note that only the radial component |φ〉 is affected, while the angular momentum and

spin components remain unchanged. The mutually inverse functions R±(r) are called corre-

lation functions, and are related to the shift function s(r) through

∫ R±(r)

r

dξ

s(ξ)
= ±1 . (1.14)

By approximation we obtain R±(r) ≈ r ± s(r), implying that in equation (1.11) the two

nucleons are moved apart by s(r), if they were previously separated by r.

Furthermore, we note that the similarity transformation of the relative distance operator

is given by [9]

c†
r
r cr = R+(r) . (1.15)

The unitarity of cr implies that an arbitrary function f (r) transforms as

c†
r

f (r) cr = f (c†
r
r cr) = f (R+(r)) , (1.16)

as can be inferred from its power series representation.

1.2 Tensor Correlations

The tensor interaction induces correlations between the spins σ1 and σ2 of two nucleons

with their relative distance vector r [3]. The tensor correlator is required to shift the nucle-

ons transversal to their relative distance vector, depending on the relative orientation and

distance of the two spins. Transversal shifts are generated by the difference between the

relative momentum and its radial component, called orbital momentum:

qΩ = q−
r

r
qr =

1

2

�
l×

r

r
−

r

r
× l

�
, (1.17)
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1 The Unitary Correlation Operator Method

where l = r × q denotes the orbital angular momentum. Analogous to s(r), the distance

dependence of the transversal shifts is described by the tensor correlation function ϑ(r). On

this basis, the generator of the tensor correlations is constructed:

gΩ = ϑ(r)
3

2

�
(σ1 · r)(σ2 · qΩ) + (σ1 · qΩ)(σ2 · r)

�
= ϑ(r) s12(r,qΩ) , (1.18)

where s12 denotes the general tensor operator

s12(a,b) =
3

2

�
(σ1 · a)(σ2 · b) + (σ1 · b)(σ2 · a)

�
−

1

2
(σ1 ·σ2)(a · b+ b · a) . (1.19)

Next we consider the effect of the tensor correlator on a two-nucleon state [9]. As in

the case of the central correlator, the center of mass component is invariant under the

transformation, since the tensor correlator only depends on relative coordinates. Again,

we assume LS-coupled angular momentum eigenstates |φ(LS)J T 〉 for the relative compo-

nent. According to equation (1.8), the tensor correlator for a two-nucleon system is given by

cΩ = exp{−igΩ}. To find relations for the tensor correlated two-nucleon states, we first ascer-

tain their possible angular momenta. Since they have to be antisymmetric, L+S+T must give

an odd number [3]. Furthermore, angular momentum coupling requires |L− S| ≤ J ≤ L+S.

As a result, L can only take values J or J ± 1 for S = 1, and only J for S = 0. Consequently,

L = J and L = J±1 are the only possibilities we have to analyze in general. We now consider

the non-zero matrix elements of the tensor operator [8]:

〈φ(J ± 1, 1)J T | s12(r,qΩ) |φ(J ∓ 1, 1)J T 〉 =± 3ipJ(J + 1) . (1.20)

Combining equations (1.18) and (1.20) yields the non-zero matrix elements of −igΩ:

〈φ(J ± 1, 1)J T | − igΩ |φ(J ∓ 1, 1)J T 〉 =±θJ(r) , (1.21)

where we have used the definition

θJ(r) = 3
p

J(J + 1) ϑ(r) . (1.22)

By evaluating the corresponding matrix exponential we find the matrix elements of the ten-

sor correlator:

cΩ |φ(J − 1, 1)J T 〉 |φ(JS)J T 〉 |φ(J + 1, 1)J T 〉

〈φ(J − 1, 1)J T | cosθJ(r) 0 − sinθJ(r)

〈φ(JS)J T | 0 1 0

〈φ(J + 1, 1)J T | sinθJ(r) 0 cosθJ(r)

From this we can directly read off explicit relations for the tensor correlated states.

For L = J the states are invariant under the transformation

cΩ |φ(JS)J T 〉 = |φ(JS)J T 〉 , (1.23)

4



1.3 Spin-Isospin Dependence

while states with L = J ± 1 transform like

cΩ |φ(J ± 1, 1)J T 〉 = cosθJ(r) |φ(J ± 1, 1)J T 〉 ∓ sinθJ(r) |φ(J ∓ 1, 1)J T 〉 . (1.24)

Similarly, for the adjoint tensor correlator c†
Ω = exp{igΩ} we find that states with L = J are

invariant

c†
Ω |φ(JS)J T 〉 = |φ(JS)J T 〉 , (1.25)

while states with L = J ± 1 transform like

c†
Ω |φ(J ± 1, 1)J T 〉 = cosθJ(r) |φ(J ± 1, 1)J T 〉 ± sinθJ(r) |φ(J ∓ 1, 1)J T 〉 . (1.26)

1.3 Spin-Isospin Dependence

The nucleon-nucleon interaction can be projected onto the different spin-isospin channels

[10]. This proves to be useful, since certain parts of the interaction do not contribute in all

of them. In particular, the tensor and spin-orbit components only have contributions in the

S = 1 channels. Accordingly, we can write the generators in general as

gi =
∑

ST

gi,STΠST , (1.27)

where i represents either r or Ω and where ΠST denotes the projection operator onto spin

and isospin. On this note, the generators of the central and the tensor correlations can be

written as

gr =
∑

S,T

1

2

�
sST (r) qr+ qr sST (r)

�
ΠST , (1.28)

gΩ =
∑

T

ϑT (r) s12(r,qΩ) Π1T , (1.29)

where sST (r) and ϑT (r) denote the shift function and the tensor correlation function for each

spin-isospin channel. For the correlators in a two-nucleon system, equation (1.27) yields

ci = exp{−igi} = exp{−i∑
ST

gi,STΠST}=
∑

ST

exp{−igi,ST }ΠST =
∑

ST

cSTΠST , (1.30)

implying that the correlators can be determined independently for the different spin-isospin

channels.

5



1 The Unitary Correlation Operator Method

1.4 Cluster Expansion

A correlated operator generated by the unitarity transformation (1.3) can be expanded into

a series of irreducible contributions to all particle numbers [5]:

eO= C†OC =

∞∑

n=1

eO[n] , (1.31)

where eO [n] denotes the irreducible n-body contribution. Equation (1.31) is called a clus-

ter expansion. If O is a k-body operator, all irreducible contributions with n < k vanish.

Provided the range of the correlation functions is small compared to the mean interparticle

distance, we can make use of the two-body approximation

eOC2 = eO[1]+ eO[2] , (1.32)

where three-body and higher-order contributions are neglected. In principle, all contribu-

tions to the cluster expansion can be evaluated [11]. However, for many-body calculations

their inclusion is an extreme challenge. Since we will only deal with two-body problems in

this work, equation (1.32) provides an exact description.
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CHAPTER 2

CORRELATED INTERACTION

Having introduced the Unitary Correlation Operator Method, we can now study the ma-

trix elements of the correlated interaction operator ev = c†vc for a two-nucleon system in

both harmonic oscillator and momentum space representation. As indicated in sections 1.1

and 1.2, we consider LS-coupled angular momentum eigenstates |φ(LS)J T 〉 for the relative

component of the two-nucleon state. In order to obtain the matrix elements of ev, we first

have to derive the matrix elements of the correlation operator c= cΩcr.

2.1 Harmonic Oscillator Representation

In harmonic oscillator representation, the radial wave function φ is represented by a generic

radial quantum number n. The relative wave functions are given by the harmonic oscillator

eigenfunctions:

〈r(LS)J T |n(LS)J T 〉= NnL r Le−ν r2

L L+1/2
n

(2ν r2) , (2.1)

using the definitions

NnL =

sr
2ν3

π

2n+2L+3n!ν L

(2n+ 2L + 1)!!
, ν =

µω

2
, (2.2)

where µ denotes the reduced mass andω the frequency of the harmonic oscillator. Here and

in the following, we employ a system of units with ħh = 1. For our calculations we assume

ν = 0.12 fm−2, which corresponds to ħhω = 20 MeV. The generalized Laguerre polynomials

are given by

L k
n
(x) =

n∑

i=0

�
n+ k

n− i

�
(−x)i

i!
. (2.3)
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2 Correlated Interaction

2.1.1 Correlation Operator Matrix Elements

Using the formal framework of the harmonic oscillator representation, we can derive the

corresponding matrix elements of the correlation operator:

〈n(LS)J T | cΩcr |n
′(L′S)J T 〉

=
∑

L′′S′′J ′′T ′′

∫
drr2 〈n(LS)J T |r(L′′S′′)J ′′T ′′〉〈r(L′′S′′)J ′′T ′′| cΩcr |n

′(L′S)J T 〉

=

∫
drr2 〈n(LS)J T |r(LS)J T 〉〈r(LS)J T | cΩcr |n

′(L′S)J T 〉 ,

(2.4)

where we have inserted the identity operator in position space representation and subse-

quently used the orthogonality of the harmonic oscillator eigenfunctions. For L and L′ we

distinguish three cases.

For L = L′ = J we find:

〈n(JS)J T | cΩcr |n
′(JS)J T 〉

(2.4)
=

∫
drr2 〈n(JS)J T |r(JS)J T 〉〈r(JS)J T | cΩcr |n

′(JS)J T 〉 .

According to equation (1.25), the tensor correlator does not have an effect here:

=

∫
drr2 〈n(JS)J T |r(JS)J T 〉〈r(JS)J T | cr |n

′(JS)J T 〉 .

Using equation (1.11) we evaluate the transformation of the central correlator:

=

∫
drr2 R−(r) 〈n(JS)J T |r(JS)J T 〉〈R−(r)(JS)J T |n′(JS)J T 〉 .

Analogous, for L = L′ = J ± 1 we find

〈n(J ± 1, 1)J T | cΩcr |n
′(J ± 1, 1)J T 〉

(2.4)
=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉〈r(J ± 1, 1)J T | cΩcr |n

′(J ± 1, 1)J T 〉 .

8



2.1 Harmonic Oscillator Representation

Here we use equation (1.26) to evaluate the transformation of the tensor correlator:

=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉

×
�
〈r(J ± 1, 1)J T | cosθJ(r) cr |n

′(J ± 1, 1)J T 〉

± 〈r(J ∓ 1, 1)J T | sinθJ(r) cr |n
′(J ± 1, 1)J T 〉
�

.

Inserting the identity operator cr c†
r

leads to an expression that can be evaluated using equa-

tion (1.16):

=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉

×
�
〈r(J ± 1, 1)J T | cr c†

r
cosθJ(r) cr |n

′(J ± 1, 1)J T 〉

± 〈r(J ∓ 1, 1)J T | cr c†
r

sinθJ(r) cr |n
′(J ± 1, 1)J T 〉
�

=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉

×
�
〈r(J ± 1, 1)J T | cr cosθJ(R+(r)) |n

′(J ± 1, 1)J T 〉

± 〈r(J ∓ 1, 1)J T | cr sinθJ(R+(r)) |n
′(J ± 1, 1)J T 〉
�

.

Making use of equation (1.11), we evaluate the transformation of the central correlator:

=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉R−(r)

×
�

cosθJ(R+(r)) 〈R−(r)(J ± 1, 1)J T |n′(J ± 1, 1)J T 〉

± sinθJ(R+(r)) 〈R−(r)(J ∓ 1, 1)J T |n′(J ± 1, 1)J T 〉
�

.

Since the harmonic oscillator eigenfunctions are orthonormal, we get

=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉R−(r)

× cosθJ(R+(r)) 〈R−(r)(J ± 1, 1)J T |n′(J ± 1, 1)J T 〉 .

Finally, for L = J ± 1 and L′ = J ∓ 1 we find

〈n(J ± 1, 1)J T | cΩcr |n
′(J ∓ 1, 1)J T 〉

(2.4)
=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉〈r(J ± 1, 1)J T | cΩcr |n

′(J ∓ 1, 1)J T 〉 .

9



2 Correlated Interaction

Again we use equation (1.26) to evaluate the transformation of the tensor correlator:

=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉

×
�
〈r(J ± 1, 1)J T | cosθJ(r) cr |n

′(J ∓ 1, 1)J T 〉

± 〈r(J ∓ 1, 1)J T | sinθJ(r) cr |n
′(J ∓ 1, 1)J T 〉
�

.

As before, inserting the identity operator cr c†
r

leads to an expression that can be evaluated

using equation (1.16):

=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉

×
�
〈r(J ± 1, 1)J T | cr c†

r
cosθJ(r) cr |n

′(J ∓ 1, 1)J T 〉

± 〈r(J ∓ 1, 1)J T | cr c†
r

sinθJ(r) cr |n
′(J ∓ 1, 1)J T 〉
�

=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉

×
�
〈r(J ± 1, 1)J T | cr cosθJ(R+(r)) |n

′(J ∓ 1, 1)J T 〉

± 〈r(J ∓ 1, 1)J T | cr sinθJ(R+(r)) |n
′(J ∓ 1, 1)J T 〉
�

.

With equation (1.11) we evaluate the transformation of the central correlator:

=

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉R−(r)

×
�

cosθJ(R+(r)) 〈R−(r)(J ± 1, 1)J T |n′(J ∓ 1, 1)J T 〉

± sinθJ(R+(r)) 〈R−(r)(J ∓ 1, 1)J T |n′(J ∓ 1, 1)J T 〉
�

.

The orthonormality of the harmonic oscillator eigenfunctions leads to

= ±

∫
drr2 〈n(J ± 1, 1)J T |r(J ± 1, 1)J T 〉R−(r)

× sinθJ(R+(r)) 〈R−(r)(J ∓ 1, 1)J T |n′(J ∓ 1, 1)J T 〉 .

For the sake of clarity, the resulting non-zero matrix elements 〈n(LS)J T |cΩcr |n
′(L′S)J T 〉 for

10



2.1 Harmonic Oscillator Representation

all combinations of L and L′ are listed below.

〈n(JS)J T | cΩcr |n
′(JS)J T 〉 =

∫
drr2 R−(r) 〈r(JS)J T |n(JS)J T 〉∗

× 〈R−(r)(JS)J T |n′(JS)J T 〉

〈n(J ± 1, 1)J T | cΩcr |n
′(J ± 1, 1)J T 〉 =

∫
drr2 R−(r) 〈r(J ± 1, 1)J T |n(J ± 1, 1)J T 〉∗

× cosθJ(R+(r)) 〈R−(r)(J ± 1, 1)J T |n′(J ± 1, 1)J T 〉

〈n(J ± 1, 1)J T | cΩcr |n
′(J ∓ 1, 1)J T 〉 =±

∫
drr2 R−(r) 〈r(J ± 1, 1)J T |n(J ± 1, 1)J T 〉∗

× sinθJ(R+(r)) 〈R−(r)(J ∓ 1, 1)J T |n′(J ∓ 1, 1)J T 〉 .

(2.5)

For some specific partial waves, the resulting matrices for all possible combinations of L

and L′ are illustrated in figures 2.1 and 2.2. We observe that all matrices with L = L′

share a similar structure. As a result of normalization, their main diagonal elements are

approximately equal to unity. Furthermore, the matrices with L 6= L′ share a similar structure

as well. Overall, we notice significant off-diagonal contributions in all cases.
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Figure 2.1: Correlation operator matrix elements for J = 0, S = 0 and T = 1 for the only

possible combination of L and L′
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Figure 2.2: Correlation operator matrix elements for J = 1, S = 1 and T = 0 for all possible

combinations of L and L′

2.1.2 Verification of Unitarity

In this section, we want to validate our numerical calculations and assess the applicability

of our results. Due to the unitarity of the correlation operator c, we expect the norm of any

state to be preserved under the transformation. Considering that the harmonic oscillator

eigenstates |n(LS)J T 〉 are mutually orthonormal, we have to verify that

〈n(LS)J T | c†c |n′(L′S)J T 〉
!
= 〈n(LS)J T |n′(L′S)J T 〉= δnn′δL L′ (2.6)

is satisfied. To this end, we express the matrix elements of c†c in terms of the matrix elements

listed above in (2.5) by inserting the identity operator in harmonic oscillator representation

12



2.1 Harmonic Oscillator Representation

and obtain

〈n(LS)J T | c†c |n′(L′S)J T 〉

=
∑

n′′L′′

〈n(LS)J T | c† |n′′(L′′S)J T 〉〈n′′(L′′S)J T | c |n′(L′S)J T 〉

=
∑

n′′L′′

〈n′′(L′′S)J T | c |n(LS)J T 〉∗〈n′′(L′′S)J T | c |n′(L′S)J T 〉 .

(2.7)

Here, we distinguish three cases. For L = L′ = J we find

〈n(JS)J T | c†c |n′(JS)J T 〉

(2.7)
=
∑

n′′L′′

〈n′′(L′′S)J T | c |n(JS)J T 〉∗〈n′′(L′′S)J T | c |n′(JS)J T 〉

(2.5)
=
∑

n′′

〈n′′(JS)J T | c |n(JS)J T 〉∗〈n′′(JS)J T | c |n′(JS)J T 〉 .

(2.8)

Analogous, for L = L′ = J ± 1 we find

〈n(J ± 1, 1)J T | c†c |n′(J ± 1, 1)J T 〉

(2.7)
=
∑

n′′L′′

〈n′′(L′′S)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(L′′S)J T | c |n′(J ± 1, 1)J T 〉

(2.5)
=
∑

n′′

�
〈n′′(J + 1, 1)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(J + 1, 1)J T | c |n′(J ± 1, 1)J T 〉

+ 〈n′′(J − 1, 1)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(J − 1, 1)J T | c |n′(J ± 1, 1)J T 〉
�

.

(2.9)

And for L = J ± 1 and L′ = J ∓ 1 we find

〈n(J ± 1, 1)J T | c†c |n′(J ∓ 1, 1)J T 〉

(2.7)
=
∑

n′′L′′

〈n′′(L′′S)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(L′′S)J T | c |n′(J ∓ 1, 1)J T 〉

(2.5)
=
∑

n′′

�
〈n′′(J + 1, 1)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(J + 1, 1)J T | c |n′(J ∓ 1, 1)J T 〉

+ 〈n′′(J − 1, 1)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(J − 1, 1)J T | c |n′(J ∓ 1, 1)J T 〉
�

.

(2.10)

In order to evaluate the matrix elements 〈n(LS)J T |c†c|n′(L′S)J T 〉 numerically, it is necessary

to truncate the summation over n′′. Due to the large off-diagonal contributions of the correla-

tion operator matrix mentioned before, the impact of truncation is more significant for large

quantum numbers n and n′. Consequently, we expect unitarity to be satisfied well for small

quantum numbers n and n′ only. For the same specific partial waves as in the previous sec-

tion, the matrices corresponding to the matrix elements δnn′δL L′−〈n(LS)J T |c†c |n′(L′S)J T 〉

are illustrated in figures 2.3 and 2.4 for all possible combinations of L and L′. In accor-
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2 Correlated Interaction

dance with equation (2.6), all matrices equal the zero matrix in good approximation for

small quantum numbers n and n′, while for large n and n′ there are substantial deviations

as expected.
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Figure 2.3: Unitarity verification for J = 0, S = 0 and T = 1 for the only possible combina-

tion of L and L′

2.1.3 Correlated Interaction Matrix Elements

Starting from the matrix elements of the uncorrelated interaction operator v, we can now

calculate the matrix elements of the correlated interaction operator ev with the results of the

previous sections. According to equation (1.3) we get

〈n(LS)J T |ev |n′(L′S)J T 〉

= 〈n(LS)J T | c†vc |n′(L′S)J T 〉

=
∑

n′′L′′

∑

n′′′L′′′

〈n(LS)J T | c† |n′′(L′′S)J T 〉〈n′′(L′′S)J T | v |n′′′(L′′′S)J T 〉

× 〈n′′′(L′′′S)J T | c |n′(L′S)J T 〉

=
∑

n′′L′′

∑

n′′′L′′′

〈n′′(L′′S)J T | c |n(LS)J T 〉∗〈n′′(L′′S)J T | v |n′′′(L′′′S)J T 〉

× 〈n′′′(L′′′S)J T | c |n′(L′S)J T 〉 ,

(2.11)

where we have inserted two identity operators in harmonic oscillator representation. Using

equation (2.5), we can evaluate this sum. Again, we distinguish three cases. For L = L′ = J
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Figure 2.4: Unitarity verification for J = 1, S = 1 and T = 0 for all possible combinations of

L and L′

we find

〈n(JS)J T |ev |n′(JS)J T 〉

(2.11)
=
∑

n′′L′′

∑

n′′′L′′′

〈n′′(L′′S)J T | c |n(JS)J T 〉∗〈n′′(L′′S)J T | v |n′′′(L′′′S)J T 〉

× 〈n′′′(L′′′S)J T | c |n′(JS)J T 〉

(2.5)
=
∑

n′′

∑

n′′′

〈n′′(JS)J T | c |n(JS)J T 〉∗〈n′′(JS)J T | v |n′′′(JS)J T 〉

× 〈n′′′(JS)J T | c |n′(JS)J T 〉 .

(2.12)
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2 Correlated Interaction

Analogous, for L = L′ = J ± 1 we find

〈n(J ± 1, 1)J T |ev |n′(J ± 1, 1)J T 〉

(2.11)
=
∑

n′′L′′

∑

n′′′L′′′

〈n′′(L′′S)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(L′′S)J T | v |n′′′(L′′′S)J T 〉

× 〈n′′′(L′′′S)J T | c |n′(J ± 1, 1)J T 〉

(2.5)
=
∑

n′′

∑

n′′′

�
〈n′′(L ± 1, 1)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(J ± 1, 1)J T | v |n′′′(J ± 1, 1)J T 〉

× 〈n′′′(J ± 1, 1)J T | c |n′(J ± 1, 1)J T 〉+ 〈n′′(L ∓ 1, 1)J T | c |n(J ± 1, 1)J T 〉∗

× 〈n′′(J ∓ 1, 1)J T | v |n′′′(J ± 1, 1)J T 〉〈n′′′(J ± 1, 1)J T | c |n′(J ± 1, 1)J T 〉

+ 〈n′′(L± 1, 1)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(J ± 1, 1)J T | v |n′′′(J ∓ 1, 1)J T 〉

× 〈n′′′(J ∓ 1, 1)J T | c |n′(J ± 1, 1)J T 〉+ 〈n′′(L ∓ 1, 1)J T | c |n(J ± 1, 1)J T 〉∗

× 〈n′′(J ∓ 1, 1)J T | v |n′′′(J ∓ 1, 1)J T 〉〈n′′′(J ∓ 1, 1)J T | c |n′(J ± 1, 1)J T 〉
�

.

(2.13)

And for L = J ± 1 and L′ = J ∓ 1 we find

〈n(J ± 1, 1)J T |ev |n′(J ∓ 1, 1)J T 〉

(2.11)
=
∑

n′′L′′

∑

n′′′L′′′

〈n′′(L′′S)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(L′′S)J T | v |n′′′(L′′′S)J T 〉

× 〈n′′′(L′′′S)J T | c |n′(J ∓ 1, 1)J T 〉

(2.5)
=
∑

n′′

∑

n′′′

�
〈n′′(L ± 1, 1)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(J ± 1, 1)J T | v |n′′′(J ± 1, 1)J T 〉

× 〈n′′′(J ± 1, 1)J T | c |n′(J ∓ 1, 1)J T 〉+ 〈n′′(L ∓ 1, 1)J T | c |n(J ± 1, 1)J T 〉∗

× 〈n′′(J ∓ 1, 1)J T | v |n′′′(J ± 1, 1)J T 〉〈n′′′(J ± 1, 1)J T | c |n′(J ∓ 1, 1)J T 〉

+ 〈n′′(L± 1, 1)J T | c |n(J ± 1, 1)J T 〉∗〈n′′(J ± 1, 1)J T | v |n′′′(J ∓ 1, 1)J T 〉

× 〈n′′′(J ∓ 1, 1)J T | c |n′(J ∓ 1, 1)J T 〉+ 〈n′′(L ∓ 1, 1)J T | c |n(J ± 1, 1)J T 〉∗

× 〈n′′(J ∓ 1, 1)J T | v |n′′′(J ∓ 1, 1)J T 〉〈n′′′(J ∓ 1, 1)J T | c |n′(J ∓ 1, 1)J T 〉
�

.

(2.14)

For J = 0, S = 0 and T = 1, the resulting matrix for L = L′ = 0 is illustrated in figure 2.5

together with the corresponding uncorrelated interaction matrix. We observe that the corre-

lation operator transformation truncates the large off-diagonal contributions and suppresses

the matrix elements for small quantum numbers n and n′. Following from the unitarity

verification of the previous section, the results are less reliable, the larger n and n′ are.
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Figure 2.5: Uncorrelated (a) and correlated (b) interaction matrix elements for J = 0, S = 0,

T = 1, L = 0 and L′ = 0

2.2 Momentum Space Representation

In momentum space representation, the radial wave function φ is represented by the contin-

uous relative momentum q. The relative wave functions are given by the radial momentum

eigenfunctions

〈r(LS)J T |q(LS)J T 〉 =

r
2

π
jL(qr) , (2.15)

which result from the partial wave decomposition of the plane waves [10]. The spherical

Bessel functions

jL(x) = (−1)L x L

�
1

x

∂

∂x

�L sin x

x
(2.16)

satisfy the closure relation

∫
drr2 jL(qr) jL(q

′r) =
π

2

δ(q− q′)

qq′
. (2.17)

2.2.1 Correlation Operator Matrix Elements

In analogy to the harmonic oscillator representation, we can derive the corresponding matrix

elements of the correlation operator, this time using the formal framework of the momentum

17



2 Correlated Interaction

space representation:

〈q(LS)J T | cΩcr |q
′(L′S)J T 〉

=
∑

L′′S′′J ′′T ′′

∫
drr2 〈q(LS)J T | cΩ |r(L

′′S′′)J ′′T ′′〉〈r(L′′S′′)J ′′T ′′| cr |q
′(L′S)J T 〉

=
∑

L′′S′′J ′′T ′′

∫
drr2 R−(r) 〈q(LS)J T | cΩ |r(L

′′S′′)J ′′T ′′〉〈R−(r)(L
′′S′′)J ′′T ′′|q′(L′S)J T 〉

×δL′L′′δSS′′δJJ ′′δT T ′′

=

∫
drr2 R−(r) 〈q(LS)J T | cΩ |r(L

′S)J T 〉〈R−(r)(L
′S)J T |q′(L′S)J T 〉 ,

(2.18)

where we have inserted the identity operator in position space representation, used equation

(1.11) to evaluate the transformation of the central correlator and subsequently used the or-

thogonality of the radial momentum eigenfunctions. As for the matrix elements in harmonic

oscillator representation, we distinguish three cases.

For L = L′ = J we find:

〈q(JS)J T | cΩcr |q
′(JS)J T 〉

(2.18)
=

∫
drr2 R−(r) 〈q(JS)J T | cΩ |r(JS)J T 〉〈R−(r)(JS)J T |q′(JS)J T 〉 .

In accordance with equation (1.25), the tensor correlator does not have an effect here:

=

∫
drr2 R−(r) 〈q(JS)J T |r(JS)J T 〉〈R−(r)(JS)J T |q′(JS)J T 〉 .

Analogous, for L = L′ = J ± 1 we get

〈q(J ± 1, 1)J T | cΩcr |q
′(J ± 1, 1)J T 〉

(2.18)
=

∫
drr2 R−(r) 〈q(J ± 1, 1)J T | cΩ |r(J ± 1, 1)J T 〉

× 〈R−(r)(J ± 1, 1)J T |q′(J ± 1, 1)J T 〉 .
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We use equation (1.26) to evaluate the transformation of the tensor correlator:

=

∫
drr2 R−(r) 〈R−(r)(J ± 1, 1)J T |q′(J ± 1, 1)J T 〉

×
�
〈q(J ± 1, 1)J T | cosθJ(r) |r(J ± 1, 1)J T 〉

± 〈q(J ∓ 1, 1)J T | sinθJ(r) |r(J ± 1, 1)J T 〉
�

=

∫
drr2 R−(r) 〈R−(r)(J ± 1, 1)J T |q′(J ± 1, 1)J T 〉

×
�

cosθJ(r) 〈q(J ± 1, 1)J T |r(J ± 1, 1)J T 〉

± sinθJ(r) 〈q(J ∓ 1, 1)J T |r(J ± 1, 1)J T 〉
�

.

The orthonormality of the radial momentum eigenfunctions leads to

=

∫
drr2 R−(r) 〈R−(r)(J ± 1, 1)J T |q′(J ± 1, 1)J T 〉

× cosθJ(r) 〈q(J ± 1, 1)J T |r(J ± 1, 1)J T 〉 .

Finally, for L = J ± 1 and L′ = J ∓ 1 we get

〈q(J ± 1, 1)J T | cΩcr |q
′(J ∓ 1, 1)J T 〉

(2.18)
=

∫
drr2 R−(r) 〈q(J ± 1, 1)J T | cΩ |r(J ∓ 1, 1)J T 〉

× 〈R−(r)(J ∓ 1, 1)J T |q′(J ∓ 1, 1)J T 〉 .

Again we use equation (1.26) to evaluate the transformation of the tensor correlator:

=

∫
drr2 R−(r) 〈R−(r)(J ∓ 1, 1)J T |q′(J ∓ 1, 1)J T 〉

×
�
〈q(J ± 1, 1)J T | cosθJ(r) |r(J ∓ 1, 1)J T 〉

± 〈q(J ∓ 1, 1)J T | sinθJ(r) |r(J ∓ 1, 1)J T 〉
�

=

∫
drr2 R−(r) 〈R−(r)(J ∓ 1, 1)J T |q′(J ∓ 1, 1)J T 〉

×
�

cosθJ(r) 〈q(J ± 1, 1)J T |r(J ∓ 1, 1)J T 〉

± sinθJ(r) 〈q(J ∓ 1, 1)J T |r(J ∓ 1, 1)J T 〉
�

.
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2 Correlated Interaction

As before, using the orthonormality of the radial momentum eigenfunctions we get

= ±

∫
drr2 R−(r) 〈R−(r)(J ∓ 1, 1)J T |q′(J ∓ 1, 1)J T 〉

× sinθJ(r) 〈q(J ∓ 1, 1)J T |r(J ∓ 1, 1)J T 〉 .

For the sake of clarity, the resulting non-zero matrix elements 〈q(JS)J T | cΩcr |q
′(JS)J T 〉 for

all combinations of L and L′ are listed below.

〈q(JS)J T | cΩcr |q
′(JS)J T 〉 =

∫
drr2 R−(r) 〈R−(r)(JS)J T |q′(JS)J T 〉

× 〈r(JS)J T |q(JS)J T 〉∗

〈q(J ± 1, 1)J T | cΩcr |q
′(J ± 1, 1)J T 〉 =

∫
drr2 R−(r) 〈R−(r)(J ± 1, 1)J T |q′(J ± 1, 1)J T 〉

× cosθJ(r) 〈r(J ± 1, 1)J T |q(J ± 1, 1)J T 〉∗

〈q(J ± 1, 1)J T | cΩcr |q
′(J ∓ 1, 1)J T 〉 = ±

∫
drr2 R−(r) 〈R−(r)(J ∓ 1, 1)J T |q′(J ∓ 1, 1)J T 〉

× sinθJ(r) 〈r(J ∓ 1, 1)J T |q(J ∓ 1, 1)J T 〉∗ .

(2.19)

We observe that matrix elements with L = L′ in equation (2.19) cannot be evaluated nu-

merically, because the integrand does not vanish for large values of r. For matrix elements

with L 6= L′ the sine function suppresses the integrand, because limr→∞ θJ(r) = 0. In order

to handle this problem, we reformulate the relevant matrix elements. Using the definitions

ejJ(q′r) =
Ç
π

2
R−(r) 〈R−(r)(J , 1)J T |q′(J , 1)J T 〉 ,

ejJ±1(q
′r) =

Ç
π

2
cosθJ(r)R−(r) 〈R−(r)(J ± 1, 1)J T |q′(J ± 1, 1)J T 〉 ,

(2.20)

the matrix elements read

〈q(LS)J T | cΩcr |q
′(LS)J T 〉

=
2

π

∫
drr2 jL(qr) ejL(q

′r) .
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2.2 Momentum Space Representation

Here, we first add and subtract jL(q
′r), and subsequently separate the integral:

=
2

π

∫
drr2 jL(qr)
�
ejL(q

′r)− jL(q
′r) + jL(q

′r)
�

=
2

π

∫
drr2 jL(qr)
�
ejL(q

′r)− jL(q
′r)
�
+

2

π

∫
drr2 jL(qr) jL(q

′r) .

With the closure relation of the spherical Bessel functions (2.17) this reduces to

= ξL(q, q′) +
δ(q− q′)

qq′
, (2.21)

where we have introduced the definition

ξL(q, q′) =
2

π

∫
drr2 jL(qr)
�
ejL(q

′r)− jL(q
′r)
�

. (2.22)

Since limr→∞R−(r) = r and limr→∞R−(r) = 1, we can infer from equation (2.20) that ejL

and jL are equal for large values of r. Consequently, the remaining integral ξL(q, q′) can be

evaluated numerically.

For the same specific partial waves as in harmonic oscillator representation, the matrices

corresponding to the matrix elements 〈q(LS)J T |cΩcr |q
′(L′S)J T 〉−

δ(q−q′)

qq′
δL L′ for all possible

combinations of L and L′ are illustrated in figures 2.6 and 2.7. Again, we observe large off-

diagonal contributions in all cases. We also note considerable fluctuations for the matrices

with L = L′ = 0 at very small momenta. Unlike in harmonic oscillator representation, a

structural disparity of the matrices with L 6= L′ is evident. The matrix elements of the matrix

corresponding to L = J + 1 and L′ = J − 1 surpass the scale by one order of magnitude for

very small momenta. Apart from that, all matrices are similar in structure.

2.2.2 Verification of Unitarity

In order to validate our numerical calculations and assess the applicability of our results, we

employ the same approach as for the matrix elements in harmonic oscillator representation

(see section 2.1.2). Accordingly, we have to verify that

〈q(LS)J T | c†c |q′(L′S)J T 〉
!
= 〈q(LS)J T |q′(L′S)J T 〉 =

δ(q− q′)

qq′
δL L′ . (2.23)

is satisfied. To this end, we express the matrix elements of c†c in terms of the matrix elements

listed above in (2.19) by inserting the identity operator in momentum space representation
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Figure 2.6: Correlation operator matrix elements for J = 0, S = 0 and T = 1 for the only

possible combination of L and L′

and obtain

〈q(LS)J T | c†c |q′(L′S)J T 〉

=
∑

L′′

∫
dq′′q′′2 〈q(LS)J T | c† |q′′(L′′S)J T 〉〈q′′(L′′S)J T | c |q′(L′S)J T 〉

=
∑

L′′

∫
dq′′q′′2 〈q′′(L′′S)J T | c |q(LS)J T 〉∗〈q′′(L′′S)J T | c |q′(L′S)J T 〉 .

(2.24)

Here, we differentiate between three cases. For L = L′ = J we find

〈q(JS)J T | c†c |q′(JS)J T 〉

(2.24)
=
∑

L′′

∫
dq′′q′′2 〈q′′(L′′S)J T | c |q(JS)J T 〉∗〈q′′(L′′S)J T | c |q′(JS)J T 〉

(2.19)
=

∫
dq′′q′′2 〈q′′(JS)J T | c |q(JS)J T 〉∗〈q′′(JS)J T | c |q′(JS)J T 〉 .

(2.25)
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Figure 2.7: Correlation operator matrix elements for J = 1, S = 1 and T = 0 for all possible

combinations of L and L′

Inserting equation (2.21) we get

=

∫
dq′′q′′2

�
ξJ(q

′′, q) +
δ(q′′− q)

q′′q

��
ξJ(q

′′, q′) +
δ(q′′− q′)

q′′q′

�

=

∫
dq′′q′′2

�
ξJ(q

′′, q) ξJ(q
′′, q′) +

δ(q′′− q)

q′′q

δ(q′′− q′)

q′′q′

+ξJ(q
′′, q)

δ(q′′− q′)

q′′q′
+ ξJ(q

′′, q′)
δ(q′′− q)

q′′q

�
.

Evaluating the integrals that include δ distributions yields

=

∫
dq′′q′′2 ξJ(q

′′, q) ξJ(q
′′, q′) +

δ(q− q′)

qq′
+ ξJ(q

′, q) + ξJ(q, q′) .
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Analogous, for L = L′ = J ± 1 we find

〈q(J ± 1, 1)J T | c†c |q′(J ± 1, 1)J T 〉

(2.24)
=
∑

L′′

∫
dq′′q′′2 〈q′′(L′′S)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(L′′S)J T | c |q′(J ± 1, 1)J T 〉

(2.19)
=

∫
dq′′q′′2
�
〈q′′(J + 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J + 1, 1)J T | c |q′(J ± 1, 1)J T 〉

+ 〈q′′(J − 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J − 1, 1)J T | c |q′(J ± 1, 1)J T 〉
�

.

(2.26)

Inserting equation (2.21) we get

=

∫
dq′′q′′2

��
ξJ±1(q

′′, q) +
δ(q′′− q)

q′′q

��
ξJ±1(q

′′, q′) +
δ(q′′− q′)

q′′q′

�

+ 〈q′′(J ∓ 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J ∓ 1, 1)J T | c |q′(J ± 1, 1)J T 〉

�

=

∫
dq′′q′′2 ξJ±1(q

′′, q) ξJ±1(q
′′, q′) +

δ(q− q′)

qq′
+ ξJ±1(q

′, q) + ξJ±1(q, q′)

+

∫
dq′′q′′2 〈q′′(J ∓ 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J ∓ 1, 1)J T | c |q′(J ± 1, 1)J T 〉 .

Finally, for L = J ± 1 and L′ = J ∓ 1 we find

〈q(J ± 1, 1)J T | c†c |q′(J ∓ 1, 1)J T 〉

(2.24)
=
∑

L′′

∫
dq′′q′′2 〈q′′(L′′S)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(L′′S)J T | c |q′(J ∓ 1, 1)J T 〉

(2.19)
=

∫
dq′′q′′2
�
〈q′′(J + 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J + 1, 1)J T | c |q′(J ∓ 1, 1)J T 〉

+ 〈q′′(J − 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J − 1, 1)J T | c |q′(J ∓ 1, 1)J T 〉
�

.

(2.27)
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Again, inserting equation (2.21) we get

=

∫
dq′′q′′2

��
ξJ±1(q

′′, q) +
δ(q′′− q)

q′′q

�
〈q′′(J ± 1, 1)J T | c |q′(J ∓ 1, 1)J T 〉

+ 〈q′′(J ∓ 1, 1)J T | c |q(J ± 1, 1)J T 〉

�
ξJ∓1(q

′′, q′) +
δ(q′′− q′)

q′′q′

��

= 〈q(J ± 1, 1)J T | c |q′(J ∓ 1, 1)J T 〉+ 〈q′(J ∓ 1, 1)J T | c |q(J ± 1, 1)J T 〉

+

∫
dq′′q′′2 ξJ±1(q

′′, q) 〈q′′(J ± 1, 1)J T | c |q′(J ∓ 1, 1)J T 〉

+

∫
dq′′q′′2 ξJ∓1(q

′′, q′) 〈q′′(J ∓ 1, 1)J T | c |q(J ± 1, 1)J T 〉 .

In order to evaluate the matrix elements 〈q(LS)J T | c†c |q′(L′S)J T 〉 numerically, it is neces-

sary to truncate the integration over q′′. Due to the large off-diagonal contributions of the

correlation operator matrix mentioned before, the impact of truncation is more significant

for large momenta q and q′. Analogous to our considerations in harmonic oscillator repre-

sentation, we consequently expect unitarity to be satisfied well for small momenta q and q′

only. For the same specific partial waves as in the previous section, the matrices correspond-

ing to the matrix elements
δ(q−q′)

qq′
δL L′−〈q(LS)J T |c†c|q′(L′S)J T 〉 are illustrated in figures 2.8

and 2.9 for all possible combinations of L and L′. Aside from so far unclear fluctuations at

very small momenta q and q′, all matrices with L = L′ equal the zero matrix in good approx-

imation for small momenta according to equation (2.23). However, the matrices with L 6= L′

have a fundamentally different structure. Contrary to our expectations, unitarity is satisfied

well for large but not for very small momenta. In the region of very small momenta, the

matrix elements surpass the scale by one order of magnitude. As of yet, the reason remains

unclear.

2.2.3 Correlated Interaction Matrix Elements

As for the harmonic oscillator representation (see section 2.1.3), starting from the matrix

elements of the uncorrelated interaction operator v, we can calculate the matrix elements

of the correlated interaction operator ev with the results of the previous sections. Equation
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Figure 2.8: Unitarity verification for J = 0, S = 0 and T = 1 for the only possible combina-

tion of L and L′

(1.3) yields

〈q(LS)J T |ev |q′(L′S)J T 〉

= 〈q(LS)J T | c†vc |q′(L′S)J T 〉

=
∑

L′′

∫
dq′′q′′2
∑

L′′′

∫
dq′′′q′′′2 〈q(LS)J T | c† |q′′(L′′S)J T 〉〈q′′(L′′S)J T | v |q′′′(L′′′S)J T 〉

× 〈q′′′(L′′′S)J T | c |q′(L′S)J T 〉

=
∑

L′′

∫
dq′′q′′2
∑

L′′′

∫
dq′′′q′′′2 〈q′′(L′′S)J T | c |q(LS)J T 〉∗〈q′′(L′′S)J T | v |q′′′(L′′′S)J T 〉

× 〈q′′′(L′′′S)J T | c |q′(L′S)J T 〉 ,

(2.28)

where we have inserted two identity operators in momentum space representation. We can

evaluate this integral with equation (2.19). Again, we distinguish three cases. For L = L′ = J
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Figure 2.9: Unitarity verification for J = 1, S = 1 and T = 0 for all possible combinations of

L and L′

we find

〈q(JS)J T |ev |q′(JS)J T 〉

(2.28)
=
∑

L′′

∫
dq′′q′′2
∑

L′′′

∫
dq′′′q′′′2 〈q′′(L′′S)J T | c |q(JS)J T 〉∗

× 〈q′′(L′′S)J T | v |q′′′(L′′′S)J T 〉〈q′′′(L′′′S)J T | c |q′(JS)J T 〉

(2.19)
=

∫
dq′′q′′2
∫

dq′′′q′′′2 〈q′′(JS)J T | c |q(LS)J T 〉∗〈q′′(JS)J T | v |q′′′(JS)J T 〉

× 〈q′′′(JS)J T | c |q′(JS)J T 〉 .

(2.29)
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In order to evaluate this numerically, we make us of equation (2.21) and get

=

∫
dq′′q′′2
∫

dq′′′q′′′2

�
ξJ(q

′′, q) +
δ(q′′− q)

q′′q

�
〈q′′(JS)J T | v |q′′′(JS)J T 〉

×

�
ξJ(q

′′′, q′) +
δ(q′′′− q′)

q′′′q′

�

=

∫
dq′′q′′2
∫

dq′′′q′′′2

�
ξJ(q

′′, q) ξJ(q
′′′, q′) +

δ(q′′− q)

q′′q

δ(q′′′− q′)

q′′′q′

+ξJ(q
′′, q)

δ(q′′′− q′)

q′′′q′
+ ξJ(q

′′′, q′)
δ(q′′− q)

q′′q

�
〈q′′(JS)J T | v |q′′′(JS)J T 〉

=

∫
dq′′q′′2
∫

dq′′′q′′′2 ξJ(q
′′, q) ξJ(q

′′′, q′) 〈q′′(JS)J T | v |q′′′(JS)J T 〉

+ 〈q(JS)J T | v |q′(JS)J T 〉

+

∫
dq′′q′′2 ξJ(q

′′, q) 〈q′′(JS)J T | v |q′(JS)J T 〉

+

∫
dq′′′q′′′2 ξJ(q

′′′, q′) 〈q(JS)J T | v |q′′′(JS)J T 〉 .

Analogous, for L = L′ = J ± 1 we find

〈q(J ± 1, 1)J T |ev |q′(J ± 1, 1)J T 〉

(2.28)
=
∑

L′′

∫
dq′′q′′2
∑

L′′′

∫
dq′′′q′′′2 〈q′′(L′′S)J T | c |q(J ± 1, 1)J T 〉∗

× 〈q′′(L′′S)J T | v |q′′′(L′′′S)J T 〉〈q′′′(L′′′S)J T | c |q′(J ± 1, 1)J T 〉

(2.19)
=

∫
dq′′q′′2
∫

dq′′′q′′′2
�
〈q′′(J ± 1, 1)J T | c |q(J ± 1, 1)J T 〉∗

× 〈q′′(J ± 1, 1)J T | v |q′′′(J ± 1, 1)J T 〉〈q′′′(J ± 1, 1)J T | c |q′(J ± 1, 1)J T 〉

+ 〈q′′(J ∓ 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J ∓ 1, 1)J T | v |q′′′(J ± 1, 1)J T 〉

× 〈q′′′(J ± 1, 1)J T | c |q′(J ± 1, 1)J T 〉+ 〈q′′(J ± 1, 1)J T | c |q(J ± 1, 1)J T 〉∗

× 〈q′′(J ± 1, 1)J T | v |q′′′(J ∓ 1, 1)J T 〉〈q′′′(J ∓ 1, 1)J T | c |q′(J ± 1, 1)J T 〉

+ 〈q′′(J ∓ 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J ∓ 1, 1)J T | v |q′′′(J ∓ 1, 1)J T 〉

× 〈q′′′(J ∓ 1, 1)J T | c |q′(J ± 1, 1)J T 〉
�

.

(2.30)
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As before, we have to use equation (2.21) for numerical evaluation. For simplicity, we omit

a detailed derivation here. Finally, for L = J ± 1 and L′ = J ∓ 1 we find

〈q(J ± 1, 1)J T |ev |q′(J ∓ 1, 1)J T 〉

(2.28)
=
∑

L′′

∫
dq′′q′′2
∑

L′′′

∫
dq′′′q′′′2 〈q′′(L′′S)J T | c |q(J ± 1, 1)J T 〉∗

× 〈q′′(L′′S)J T | v |q′′′(L′′′S)J T 〉〈q′′′(L′′′S)J T | c |q′(J ∓ 1, 1)J T 〉

(2.19)
=

∫
dq′′q′′2
∫

dq′′′q′′′2
�
〈q′′(J ± 1, 1)J T | c |q(J ± 1, 1)J T 〉∗

× 〈q′′(J ± 1, 1)J T | v |q′′′(J ± 1, 1)J T 〉〈q′′′(J ± 1, 1)J T | c |q′(J ∓ 1, 1)J T 〉

+ 〈q′′(J ∓ 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J ∓ 1, 1)J T | v |q′′′(J ± 1, 1)J T 〉

× 〈q′′′(J ± 1, 1)J T | c |q′(J ∓ 1, 1)J T 〉+ 〈q′′(J ± 1, 1)J T | c |q(J ± 1, 1)J T 〉∗

× 〈q′′(J ± 1, 1)J T | v |q′′′(J ∓ 1, 1)J T 〉〈q′′′(J ∓ 1, 1)J T | c |q′(J ∓ 1, 1)J T 〉

+ 〈q′′(J ∓ 1, 1)J T | c |q(J ± 1, 1)J T 〉∗〈q′′(J ∓ 1, 1)J T | v |q′′′(J ∓ 1, 1)J T 〉

× 〈q′′′(J ∓ 1, 1)J T | c |q′(J ∓ 1, 1)J T 〉
�

.

(2.31)

Again, equation (2.21) is required for numerical evaluation. As before, we omit a detailed

derivation for the sake of simplicity.

In principle, we can now calculate the resulting matrices numerically. However, the un-

expected results of the unitarity verification imply that such results cannot be considered

reliable, which is why we do not present them here.
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CHAPTER 3

SUMMARY AND OUTLOOK

As described in the introduction, the interaction between nucleons can be deduced by consid-

ering both general symmetry requirements and empirical findings. With a nucleon-nucleon

interaction available, there are different ways of solving the nuclear many-body problem.

While ab initio methods are not practicable for nuclei with large mass numbers due to the

computational costs, mean field methods are unable to account for the correlations induced

by realistic nucleon-nucleon interactions.

In chapter 1 we presented the Unitary Correlation Operator Method, a concept that cir-

cumvents these limitations by imprinting the dominant short-range central and tensor corre-

lations into a many-body state via the transformation of the correlation operator. In chapter

2, we derived the matrix elements of the correlation operator in both harmonic oscillator

and momentum space representation. We also examined a method to assess the applica-

bility of our findings, which revealed that the results in momentum space representation

are not reliable yet. Further research is required to discover the reason and solution of this

problem. On the basis of our studies of the correlation operator, we subsequently developed

a formalism with which we can calculate matrix elements of an arbitrary potential that take

the central and the tensor correlations into account in both representations.

Since many modern nucleon-nucleon interactions are only formulated via their matrix

elements in these representations, this formalism can be used to solve the nuclear many-

body problem based upon these interactions.
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