Correlation energiesin the random phase approximation using realistic interactions
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The random phase approximation (RPA) based on a correlagédidtic nucleon-nucleon interaction is used
to evaluate correlation energies in closed-shell nuclgobd the Hartree-Fock level. The relevance of contri-
butions associated with charge exchange excitations dsw#ie necessity to correct for the double counting
of the second order contribution to the RPA ring summatieneamphasized. Once thed&eets are properly
included, the RPA ring summation provides dfiatent tool to assess the impact of long-range correlations
on binding energies throughout the whole nuclear chartchvts of particular importance when starting from
realistic interactions.

PACS numbers: 13.75.Cs,21.10.Dr,21.60.Jz,21.60.-n

The picture of a collection of independent particles movingto third order [12, 13]. In general, correlations beyond HF
in a common mean field is a common starting point for theare more relevant in studies based on realistic NN intevasti
description of several microscopic many-body systemgy+an than in models based on energy density functionals, because
ing from solid state physics to chemistry and nuclear stmgct  the latter already mimic part of the many-body correlations
However, this notion, which leads directly to the Hartressle  through the phenomenological fit.

(HF) theory, is just a first approximation and significant ef-  Going beyond low-order MBPT, correlation energies can
fortis required to adequately describe the correlatioyshé e gptained using the random phase approximation (RPA) as
mean field. For simple atoms and molecules, as an examplg,to| to evaluate a partial summation over particle-haig ri
many-body perturbation theory (MBPT) allows to predictcor giagrams. In the language of RPA, ground state correlations
relation energies already at the level of a per cent [1], @hil emerge from a coupling to giant resonances and surface-vibra
more accurate approaches such as Green's function [2, 3] aR@ns [14-17]. By applying the RPA method, these excitation
coupled-cluster [4] methods are also available. The s@inat are approximated as harmonic vibrations. The total binding
is less favorable in the case of nuclear physics, where afie hgnergy can then be evaluated as the sum of the zero-point en-
to face both, the diiculties in solving the nuclear many-body ergies of all the possible modes. The RPA framework has
problem and the ambiguities in the models of the nuclear-inte peen employed in several studies of the ground-state eerrel
action. Due to the strong short-range and tensor componengn energies mainly associated with quadrupole and ot#upo
of the interaction, exact ab-initio calculations have sofen  odes, and pairing vibrations [18-22]. It should be noted
restricted to the lightest systems [5, 6]. For larger nuitiei  that for systems made of more than one fermion species, other
most accurate scheme to obtain nuclear masses are still phgpges, e.g. Gamow-Teller transitions in nuclei, become pos
nomenological energy density functionals, e.g. Skyrmefun sjhle. However, no discussion is usually found in the litera

tionals, which lead to rms-deviations from the experimentaregarding the relevance of these charge exchange exnitatio
biding energies of the order of 1 MeV [7-9]. This remains

somewhat larger than the accuracies of a few hundred ke}{o
required for applications in nuclear astrophysics.

In this work we study RPA correlation energies in conjunc-
n with correlated realistic NN interactions derivedrfrohe
Argonne V18 potential [23] in the framework of the unitary
Recently, realistic nucleon-nucleon (NN) interactionséha Co'relation operator method (UCOM). The short-range cen-
been regulated for the use with standard nuclear structur§@l and tensor correlations induced by the realistic pren
methods using two novel approaches: (i) low-momentunf'® described by a unitary state—lndepe_ndent transfoomati
interactionsViewx derived from renormalization group the- [11, 24]. Only the short-range, system-independent carrel
ory [10] and (ii) correlated interactiond,com constructed in tions are descrlbeo_l explicitly by the unitary transforroafi
the framework of unitary correlation operator method [11]./0ng-range correlations have to be accounted for by the many
In connection with these interactions, the HF approxinmatio °0dy method employed. The unitary transformation of the
leads to bound nuclei but underestimates the binding enerdy@miltonian defines a correlated interactidgcom which is
due to its inability to describe long-range correlationsrd- ~ Phase-shift equivalent to, but much softer than the origina
cent HF studies based &fiw andViucow, these have been potential. The application d¥ycom in no-core shell model

. N . 4 .
accounted for via many-body perturbation theory (MBPT) uptalculations forrH and He shows a dramatic improvement
of the convergence behavior [24]. At the same time, the ten-

sor correlator can be tuned in order to minimize the contribu
tion to the binding energy of the net three-body force, which

*On leave of absence from Physics Department, Faculty oh8ejeUniver- ?S the sum of the genu_ine three-body potential supplement-
sity of Zagreb, Croatia ing the bare NN potential and the three-body terms induced



by the unitary transformation of the Hamiltonian. As noeor the formH(a) = Hiy + aT¢m and repeated the derivation of

shell model calculations show, the two-bodycom provides  Ref. [34]. We found that the RPA energy is given by

a good quantitative description of ground and low-lying ex- o

cited states throughout the p-shell. Using the same corre- Erpa = —Zhwvz o2 — TV HFIPIHF >, (5)

lated interactiorVycom we have performed HAMBPT and v#£0 ph T

HF+RPA calculations for closed shell nuclei throughout the + e

nuclear chart [13, 25]. In the following we show that correla Where the operatof, = 35 n[Pycpcn + (Py)"cicpl is de-

tions beyond HF estimated in these ways lead to good agreéned in terms of the amplitudes of the collective mo-

ment with experimental binding energies [13]. mentum [27] andMy is the total mass of the system.
In the present work we investigate th@eet of long-range < HF| P5 IHF > gives the square of the momentum of the

correlations in the framework of RPA [25]. Using the single- center of mass. Thus one.flnds a cgntrlbutlon prop_ortlonal to

particle basis resulting from HF, the RPA configuration gpac the fracu_o_n OfTem ac_tually included in th_e H_am|lton|an_ We

is built and the generalized eigenvalue problem posed by thaave verified numerically that the contribution from theaer

RPA equations is solved, energy mode vanishes with _ _
In comparison to an order-by-order summation of particle-
A B \/X 1 0\/X hole ring diagrams in MBPT, Eq. (4) implicitly double counts
( B* A* )( v ) = wv( 0 -1 )( 2 ) > (1)  the second-order contribution, as pointed out by Fukuda et

al. [14] and Ellis [28]. To show this, we expand the RPA

where the eigenvalues, correspond to RPA excitation ener- €igenvaluess, and the amplitudeX(,, andYy, in a pertur-
gies. The forward and backward-going particle-hole ampli-bation series of the interactidti, as done in Ref. [14]. In-
tudes,X”, andY?,, respectively, are related to the transition Serting these into Eq. (4) one obtains,

amplitudes to the excited statés, ) by Erpa = 2E@ + Eﬁisn)g + O(HY), (6)
¥,/ clog [Wo) = Z |6e.008n Xpy + Sandpp Yon] - (2)  whereE@ corresponds to the second order contribution in
ph MBPT
Here and in the following, the indicgs(h) always label par- E@ — 1 Z Hpspo.nahy Hing.psp, @)

ticle (hole) states while Greek letters refer to any orluitgc) €py + €p, — €y — €,
are the usual creation (annihilation) operators. The-RPA

scheme is applied in a fully consistent way, i.e. the samandEffr?g
translational invariant HamiltoniaHin = T — Tem + Vucow,

is used in the HF equations that determine the single-partic EG  _ Z Z (8)
basis and in the RPA matricésandB. This ensures that the pLp2Ps hihghs

RPA amplitudes do not contain spurious components associ-
ated with the center-of-mass translational motion [25].

In the quasi-boson approximation the ground state energy
is described as the zero point energy of a collection of harThese relations reveal two important points. First, thelbdiou
monic vibrations. Using the oscillator-projection methmd  counting of the second order contributigf? is evident and
Rowe [15], one is led to express the intrinsic energy of thehas to be corrected for explicitly. Second, the sum over all
system as possible combinations of proton and neutron orbits in E}. (7

is not achieved without including the charge exchange modes
E = Eyr + Erpa, (3) in Eq (4)
The double counting oE@ is intrinsic to the quasi-boson
where in addition to the HF binding energy a contribution ofapproximation and can be avoided only in a formalism that

p1pzhihy

to the contribution of the ring diagram at third order

leszhth Hp3h2,h3p2 Hh1h3,P1P3
(€p, + €p, — €n, — €n,)(€p, + €py — €n, — €ny)

the RPA correlation energy, (beyond the RPA approach) explicitly recouples particld an
hole states betweenftiérent phonons. This can be achieved at
Erpa = — Z hw, Z |Y,V)h|2 , (4) thelevel of the many—body self-energy [29, 30]. .Beyond the
=y oh second order, the expansion (6) B&pa does not introduce

any further overcountings [14]. However, one has to keep in
appears. Eq. (4) involves the RPA eigenvalugs and mind that the particle-hole ring summation does not include
backward-going amplitudéﬁ;h. We note that the kinetic en- all possible diagrams, e.g., the third order ring tdffﬁg is
ergy of the center of mas3.n,, has been fully subtracted in only one of three third-order contributions and two-pagtic
the intrinsic Hamiltonian and no correction associatechwit two-hole diagrams are neglected by Eq. (4). The latter are
the zero energy mode & 0) is needed. Although it has been known to be approximately compensated by Pauli exchange
shown that this contribution to the correlation energy amisu  effects between dierent phonons at high order [31].
to subtracting the kinetic energy of the centerof mass [2f,2  The inclusion of charge-exchange modes arises naturally,
this does not apply to the intrinsic Hamiltonian. To see whatfor example, in the presence of isospin symmetry: the cou-
happens in this case, we have considered an Hamiltonian @ling of isospins trivially leads to a factor of T2+ 1) in front



FIG. 1: (Color online) Partial contributions to the RPA adation
energies in*°Ca, °°Zr, and?%®Pb as a function of multipolarityl.
Solid and dashed lines correspond to contributions fromraband
unnatural parity excitations, respectively (left panéihe contribu-
tions from charge exchange excitations (C.E.) are showhamight
panel.

of Eq. (4) [28]. Also in the Green’s function formalism, the

Lehman representation of the polarization propagatouihes
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FIG. 2: (Color online) Binding energies per nucleon for aieser
of closed-shell nuclei in comparison with experiment. Shawe
the HF energy, the energy including RPA correlations adogrtb
Eq. (4) , and those including RPA correlations correctedterdou-
ble counting of the second order (denoted#HRPA-MBPT). All cal-
culations are based on the correlated Argonne V18 interacti

the completeness of all statesAparticles, regardless of the tain convergence for light nuclei; heavier isotopes stithw
total charge [3]. In this case, both the standard RPA and thehanges of 0.5MeV per nucleon when going to 15 shells.

charge-exchange RPA arise naturally a$edéent channels of

In Fig. 1 we display the individual contributions to the cor-

the same Bethe-Salpeter equation. Simply, the eigensiftes relation energies evaluated with Eq. (4) f§Ca, °°zr, and
the nuclei with A,Z + 1) should be regarded as possible ex-2%8Ph.  Shown are the contributions Erpa as function of
citations of the system. And the zero-point energy of thesghe multipolarityJ* = 0* — 13* separated into natural par-

modes contributes to Eq. (4).

ity, 7 = (=1)’, and unnatural parity; = (-1)’*1, excitations

For a microscopic theory based on realistic nucleon-as well as charge exchange excitations. In general, the RPA
nucleon interactions, the correlation energy beyond thre si correlation energy increases wilhreaches the maximum for
ple HF approximation is sizable. This remains true everrafteJ = 3 — 4, and slowly decreases towards higher multipolari-

regularizing the interaction to take into account shonge

ties. Both, natural and unnatural parity states are equraly

correlations. The residual long-range correlations nestif portant and charge exchange excitations also have sigrtifica

themselves in a sizable second-order contributE®), [13].

contributions to the correlation energy. Although in alknu

Therefore, the naive application of Eq. (4) would lead to aclei the largest contributions come from the-= 3 — 4 excited
strong overestimation of the correlation energy. In the-constates, one obviously needs to include all other multipolar
text of phenomenological models, Eq. (4) is often appliedties as well. This is especially important for heavier nijcle
without corrections for double countings [18—22]. This htig where the correlation energies are widely distributed gser

be partially compensated by also neglecting the contdbuti ious multipolarities up ta) = 13.

from charge exchange terms. However, this constitutes a com The overall sum of correlation energies displayed in Fig. 1

pletely uncontrolled approximation.

provides the correction to the binding energies in finitel@uc

We apply the above scheme to evaluate correlation energiés Fig. 2 we show binding energies per nucleon for several

for closed-shell nuclei throughout the nuclear chart basea
realistic NN interaction. We employ thé&,com derived from

closed-shell nuclei obtained in HF with and without the in-
clusion of the RPA correlation energies, in comparison & th

the Argonne V18 interaction using the optimal correlatipa 0 experimental binding energies [32]. The plain HF calcolagi
erators determined in Ref. [24]. The range of the tensor corunderestimate the binding energies due to the inadequate de
relator in the triplet-even channel was fixed to reproduee th scription of long-range correlations. Inclusion of thereda-
binding energies oA < 4 nuclei in no-core shell model cal- tion energies resulting from Eq. (4) without correction fioe
culations (s = 0.09 fn?). The same correlator was used suc-double-counting of the second order contribution leads to a
cessfully in HF and MBPT calculations reported in Ref. [13]. strong overbinding. As discussed by da Providencia[33; on
For a systematic calculation of the RPA correlations, EY. (1after explicit correction for the double counting by subtilag

was projected onto good angular momentdirand paritys
and all available multipolarities were taken into accouAlt.

the second order contribution, i.e. by usiBig: + Erpa— E®@,
we obtain a proper estimate for the binding energy including

calculations were performed using 13 major harmonic oscilcorrelation &ects which is in good agreement with experi-

lator shells. For both MBPT and RPA this isfBaient to ob-

ment.
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FIG. 3: (Color online) Binding energies per nucleon inchgiRPA
correlations and second-order correction ¢ffPA-MBPT) com-
pared to energies resulting from second-order pertunbatieory
only (labeled HR-MBPT). Compare to Fig. 2.
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For a more quantitative comparison of our calculated bind-
ing energies with the experimental data, we evaluate the rms
deviationoms [7]. Using the set of 17 nuclei considered in the
present study, we obtainms=24.1 MeV for HF-RPA-MBPT
binding energies. In comparison, phenomenological models
based on energy density functionals result in rms-deviatio
of typically 0.7 to 44 MeV [7, 9, 34], i.e. one order of magni-
tude smaller. Given that the present approach does notinonta
any parameters adjusted to nuclei bey@nd 4 this result
is remarkable. Refinements, such as the inclusion of a weak
residual three-body interaction, are presently undersitiga-
tion.

In conclusion, we have employed a consistent RPA ap-
proach to evaluate correlation energies based on a cadelat
realistic NN-potential beyond the HF level. We point out
the need to sum over all possible excitation modes, includ-
ing charge exchange excitations, and to correct for the ldoub
counting of the second-order contribution, when using-stan
dard expressions like Eq. (4) to evaluate the correlation en
ergy. Then the RPA ring summation provides #icént tool
to evaluate correlation energies throughout the nucleartch
In connection witiVycowm, the RPA correlation energies gen-

For a more detailed discussion, in Fig. 3 we show thegerally confirm the results of second order MBPT, indicating

corrected RPA energie&nr + Erpa — E@, in comparison

to the direct second-order perturbative estimaig; + E@.

that the net contribution of higher-order ring-diagrame ar
moderate although the second order itself is large. BotA, RP

The binding energies per nucleon obtained by employing théing summation and low-order MBPT, providéieient tools

second-order perturbation theory agree rather well wighréh

for nuclear structure calculations with correlated reialisN-

sults of the RPA ring summation. Although the second-ordefnteractions.

correction to the HF energy is large, the higher order contri
butions included in the ring summation seem to have a rela-
tively small net &ect. Beyond®Ca the binding energies per
nucleon includingErpa are in excellent agreement with the
perturbative second-order results and also with expeitahen
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