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The random phase approximation (RPA) based on a correlated realistic nucleon-nucleon interaction is used
to evaluate correlation energies in closed-shell nuclei beyond the Hartree-Fock level. The relevance of contri-
butions associated with charge exchange excitations as well as the necessity to correct for the double counting
of the second order contribution to the RPA ring summation are emphasized. Once these effects are properly
included, the RPA ring summation provides an efficient tool to assess the impact of long-range correlations
on binding energies throughout the whole nuclear chart, which is of particular importance when starting from
realistic interactions.
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The picture of a collection of independent particles moving
in a common mean field is a common starting point for the
description of several microscopic many-body systems, rang-
ing from solid state physics to chemistry and nuclear structure.
However, this notion, which leads directly to the Hartree-Fock
(HF) theory, is just a first approximation and significant ef-
fort is required to adequately describe the correlations beyond
mean field. For simple atoms and molecules, as an example,
many-body perturbation theory (MBPT) allows to predict cor-
relation energies already at the level of a per cent [1], while
more accurate approaches such as Green’s function [2, 3] and
coupled-cluster [4] methods are also available. The situation
is less favorable in the case of nuclear physics, where one has
to face both, the difficulties in solving the nuclear many-body
problem and the ambiguities in the models of the nuclear inter-
action. Due to the strong short-range and tensor components
of the interaction, exact ab-initio calculations have so far been
restricted to the lightest systems [5, 6]. For larger nucleithe
most accurate scheme to obtain nuclear masses are still phe-
nomenological energy density functionals, e.g. Skyrme func-
tionals, which lead to rms-deviations from the experimental
biding energies of the order of 1 MeV [7–9]. This remains
somewhat larger than the accuracies of a few hundred keV
required for applications in nuclear astrophysics.

Recently, realistic nucleon-nucleon (NN) interactions have
been regulated for the use with standard nuclear structure
methods using two novel approaches: (i) low-momentum
interactionsVlowk derived from renormalization group the-
ory [10] and (ii) correlated interactionsVUCOM constructed in
the framework of unitary correlation operator method [11].
In connection with these interactions, the HF approximation
leads to bound nuclei but underestimates the binding energy
due to its inability to describe long-range correlations. In re-
cent HF studies based onVlowk andVUCOM, these have been
accounted for via many-body perturbation theory (MBPT) up
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to third order [12, 13]. In general, correlations beyond HF
are more relevant in studies based on realistic NN interactions
than in models based on energy density functionals, because
the latter already mimic part of the many-body correlations
through the phenomenological fit.

Going beyond low-order MBPT, correlation energies can
be obtained using the random phase approximation (RPA) as
a tool to evaluate a partial summation over particle-hole ring
diagrams. In the language of RPA, ground state correlations
emerge from a coupling to giant resonances and surface vibra-
tions [14–17]. By applying the RPA method, these excitations
are approximated as harmonic vibrations. The total binding
energy can then be evaluated as the sum of the zero-point en-
ergies of all the possible modes. The RPA framework has
been employed in several studies of the ground-state correla-
tion energies mainly associated with quadrupole and octupole
modes, and pairing vibrations [18–22]. It should be noted
that for systems made of more than one fermion species, other
modes, e.g. Gamow-Teller transitions in nuclei, become pos-
sible. However, no discussion is usually found in the literature
regarding the relevance of these charge exchange excitations.

In this work we study RPA correlation energies in conjunc-
tion with correlated realistic NN interactions derived from the
Argonne V18 potential [23] in the framework of the unitary
correlation operator method (UCOM). The short-range cen-
tral and tensor correlations induced by the realistic potential
are described by a unitary state-independent transformation
[11, 24]. Only the short-range, system-independent correla-
tions are described explicitly by the unitary transformation,
long-range correlations have to be accounted for by the many-
body method employed. The unitary transformation of the
Hamiltonian defines a correlated interactionVUCOM which is
phase-shift equivalent to, but much softer than the original
potential. The application ofVUCOM in no-core shell model
calculations for3H and 4He shows a dramatic improvement
of the convergence behavior [24]. At the same time, the ten-
sor correlator can be tuned in order to minimize the contribu-
tion to the binding energy of the net three-body force, which
is the sum of the genuine three-body potential supplement-
ing the bare NN potential and the three-body terms induced
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by the unitary transformation of the Hamiltonian. As no-core
shell model calculations show, the two-bodyVUCOM provides
a good quantitative description of ground and low-lying ex-
cited states throughout the p-shell. Using the same corre-
lated interactionVUCOM we have performed HF+MBPT and
HF+RPA calculations for closed shell nuclei throughout the
nuclear chart [13, 25]. In the following we show that correla-
tions beyond HF estimated in these ways lead to good agree-
ment with experimental binding energies [13].

In the present work we investigate the effect of long-range
correlations in the framework of RPA [25]. Using the single-
particle basis resulting from HF, the RPA configuration space
is built and the generalized eigenvalue problem posed by the
RPA equations is solved,
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where the eigenvaluesων correspond to RPA excitation ener-
gies. The forward and backward-going particle-hole ampli-
tudes,Xνph andYνph, respectively, are related to the transition
amplitudes to the excited states|Ψν〉 by

〈Ψν| c
†
αcβ |Ψ0〉 =

∑

p h

[

δα,pδβ,h Xνph + δα,hδβ,p Yνph

]

. (2)

Here and in the following, the indicesp (h) always label par-
ticle (hole) states while Greek letters refer to any orbits.c† (c)
are the usual creation (annihilation) operators. The HF+RPA
scheme is applied in a fully consistent way, i.e. the same
translational invariant HamiltonianHint = T − Tcm + VUCOM,
is used in the HF equations that determine the single-particle
basis and in the RPA matricesA andB. This ensures that the
RPA amplitudes do not contain spurious components associ-
ated with the center-of-mass translational motion [25].

In the quasi-boson approximation the ground state energy
is described as the zero point energy of a collection of har-
monic vibrations. Using the oscillator-projection methodby
Rowe [15], one is led to express the intrinsic energy of the
system as

E = EHF + ERPA, (3)

where in addition to the HF binding energy a contribution of
the RPA correlation energy,

ERPA = −
∑

ν>0

~ων

∑

p h

|Yνph|
2 , (4)

appears. Eq. (4) involves the RPA eigenvaluesων and
backward-going amplitudesYνph. We note that the kinetic en-
ergy of the center of mass,Tcm, has been fully subtracted in
the intrinsic Hamiltonian and no correction associated with
the zero energy mode (ν = 0) is needed. Although it has been
shown that this contribution to the correlation energy amounts
to subtracting the kinetic energy of the center of mass [26, 27],
this does not apply to the intrinsic Hamiltonian. To see what
happens in this case, we have considered an Hamiltonian of

the formH(α) = Hint + αTcm and repeated the derivation of
Ref. [34]. We found that the RPA energy is given by

ERPA = −
∑

ν,0

~ων

∑

p h

|Yνph|
2 −

α

2MT
< HF |P2

0|HF > , (5)

where the operatorPν ≡
∑

p,h[Pνphc
†
pch + (Pνph)

∗c†hcp] is de-
fined in terms of the amplitudes of the collective mo-
mentum [27] andMT is the total mass of the system.
< HF | P2

0 |HF > gives the square of the momentum of the
center of mass. Thus one finds a contribution proportional to
the fraction ofTcm actually included in the Hamiltonian. We
have verified numerically that the contribution from the zero
energy mode vanishes withα.

In comparison to an order-by-order summation of particle-
hole ring diagrams in MBPT, Eq. (4) implicitly double counts
the second-order contribution, as pointed out by Fukuda et
al. [14] and Ellis [28]. To show this, we expand the RPA
eigenvaluesων and the amplitudesXνph andYνph in a pertur-
bation series of the interactionHint, as done in Ref. [14]. In-
serting these into Eq. (4) one obtains,

ERPA = 2E(2)
+ E(3)

ring + O(H4) , (6)

whereE(2) corresponds to the second order contribution in
MBPT

E(2)
= −

1
4

∑

p1p2h1h2

Hp1p2,h1h2 Hh1h2,p1p2

εp1 + εp2 − εh1 − εh2

, (7)

andE(3)
ring to the contribution of the ring diagram at third order

E(3)
ring =

∑

p1p2p3

∑

h1h2h3

(8)

Hp1p2,h1h2 Hp3h2,h3p2 Hh1h3,p1p3

(εp1 + εp2 − εh1 − εh2)(εp1 + εp3 − εh1 − εh3)
.

These relations reveal two important points. First, the double
counting of the second order contributionE(2) is evident and
has to be corrected for explicitly. Second, the sum over all
possible combinations of proton and neutron orbits in Eq. (7)
is not achieved without including the charge exchange modes
in Eq. (4).

The double counting ofE(2) is intrinsic to the quasi-boson
approximation and can be avoided only in a formalism that
(beyond the RPA approach) explicitly recouples particle and
hole states between different phonons. This can be achieved at
the level of the many-body self-energy [29, 30]. Beyond the
second order, the expansion (6) ofERPA does not introduce
any further overcountings [14]. However, one has to keep in
mind that the particle-hole ring summation does not include
all possible diagrams, e.g., the third order ring termE(3)

ring is
only one of three third-order contributions and two-particle
two-hole diagrams are neglected by Eq. (4). The latter are
known to be approximately compensated by Pauli exchange
effects between different phonons at high order [31].

The inclusion of charge-exchange modes arises naturally,
for example, in the presence of isospin symmetry: the cou-
pling of isospins trivially leads to a factor of (2T + 1) in front
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FIG. 1: (Color online) Partial contributions to the RPA correlation
energies in40Ca, 90Zr, and 208Pb as a function of multipolarityJ.
Solid and dashed lines correspond to contributions from natural and
unnatural parity excitations, respectively (left panel).The contribu-
tions from charge exchange excitations (C.E.) are shown in the right
panel.

of Eq. (4) [28]. Also in the Green’s function formalism, the
Lehman representation of the polarization propagator includes
the completeness of all states ofA particles, regardless of the
total charge [3]. In this case, both the standard RPA and the
charge-exchange RPA arise naturally as different channels of
the same Bethe-Salpeter equation. Simply, the eigenstatesof
the nuclei with (A,Z ± 1) should be regarded as possible ex-
citations of the system. And the zero-point energy of these
modes contributes to Eq. (4).

For a microscopic theory based on realistic nucleon-
nucleon interactions, the correlation energy beyond the sim-
ple HF approximation is sizable. This remains true even after
regularizing the interaction to take into account short-range
correlations. The residual long-range correlations manifest
themselves in a sizable second-order contribution,E(2) [13].
Therefore, the naive application of Eq. (4) would lead to a
strong overestimation of the correlation energy. In the con-
text of phenomenological models, Eq. (4) is often applied
without corrections for double countings [18–22]. This might
be partially compensated by also neglecting the contribution
from charge exchange terms. However, this constitutes a com-
pletely uncontrolled approximation.

We apply the above scheme to evaluate correlation energies
for closed-shell nuclei throughout the nuclear chart basedon a
realistic NN interaction. We employ theVUCOM derived from
the Argonne V18 interaction using the optimal correlation op-
erators determined in Ref. [24]. The range of the tensor cor-
relator in the triplet-even channel was fixed to reproduce the
binding energies ofA ≤ 4 nuclei in no-core shell model cal-
culations (Iϑ = 0.09 fm3). The same correlator was used suc-
cessfully in HF and MBPT calculations reported in Ref. [13].
For a systematic calculation of the RPA correlations, Eq. (1)
was projected onto good angular momentumJ and parityπ
and all available multipolarities were taken into account.All
calculations were performed using 13 major harmonic oscil-
lator shells. For both MBPT and RPA this is sufficient to ob-
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FIG. 2: (Color online) Binding energies per nucleon for a series
of closed-shell nuclei in comparison with experiment. Shown are
the HF energy, the energy including RPA correlations according to
Eq. (4) , and those including RPA correlations corrected forthe dou-
ble counting of the second order (denoted HF+RPA-MBPT). All cal-
culations are based on the correlated Argonne V18 interaction.

tain convergence for light nuclei; heavier isotopes still show
changes of∼ 0.5MeV per nucleon when going to 15 shells.

In Fig. 1 we display the individual contributions to the cor-
relation energies evaluated with Eq. (4) for48Ca, 90Zr, and
208Pb. Shown are the contributions toERPA as function of
the multipolarityJπ = 0± − 13± separated into natural par-
ity, π = (−1)J, and unnatural parity,π = (−1)J+1, excitations
as well as charge exchange excitations. In general, the RPA
correlation energy increases withJ, reaches the maximum for
J = 3 − 4, and slowly decreases towards higher multipolari-
ties. Both, natural and unnatural parity states are equallyim-
portant and charge exchange excitations also have significant
contributions to the correlation energy. Although in all nu-
clei the largest contributions come from theJ = 3− 4 excited
states, one obviously needs to include all other multipolari-
ties as well. This is especially important for heavier nuclei,
where the correlation energies are widely distributed overvar-
ious multipolarities up toJ = 13.

The overall sum of correlation energies displayed in Fig. 1
provides the correction to the binding energies in finite nuclei.
In Fig. 2 we show binding energies per nucleon for several
closed-shell nuclei obtained in HF with and without the in-
clusion of the RPA correlation energies, in comparison to the
experimental binding energies [32]. The plain HF calculations
underestimate the binding energies due to the inadequate de-
scription of long-range correlations. Inclusion of the correla-
tion energies resulting from Eq. (4) without correction forthe
double-counting of the second order contribution leads to a
strong overbinding. As discussed by da Providencia [33], only
after explicit correction for the double counting by subtracting
the second order contribution, i.e. by usingEHF+ERPA−E(2),
we obtain a proper estimate for the binding energy including
correlation effects which is in good agreement with experi-
ment.
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FIG. 3: (Color online) Binding energies per nucleon including RPA
correlations and second-order correction (HF+RPA-MBPT) com-
pared to energies resulting from second-order perturbation theory
only (labeled HF+MBPT). Compare to Fig. 2.

For a more detailed discussion, in Fig. 3 we show the
corrected RPA energies,EHF + ERPA − E(2), in comparison
to the direct second-order perturbative estimate,EHF + E(2).
The binding energies per nucleon obtained by employing the
second-order perturbation theory agree rather well with the re-
sults of the RPA ring summation. Although the second-order
correction to the HF energy is large, the higher order contri-
butions included in the ring summation seem to have a rela-
tively small net effect. Beyond48Ca the binding energies per
nucleon includingERPA are in excellent agreement with the
perturbative second-order results and also with experimental
values. The ring summation provides systematically larger
correlation energies than the plain second-order.

For a more quantitative comparison of our calculated bind-
ing energies with the experimental data, we evaluate the rms-
deviationσrms [7]. Using the set of 17 nuclei considered in the
present study, we obtainσrms=24.1 MeV for HF+RPA-MBPT
binding energies. In comparison, phenomenological models
based on energy density functionals result in rms-deviations
of typically 0.7 to 4.4 MeV [7, 9, 34], i.e. one order of magni-
tude smaller. Given that the present approach does not contain
any parameters adjusted to nuclei beyondA = 4 this result
is remarkable. Refinements, such as the inclusion of a weak
residual three-body interaction, are presently under investiga-
tion.

In conclusion, we have employed a consistent RPA ap-
proach to evaluate correlation energies based on a correlated
realistic NN-potential beyond the HF level. We point out
the need to sum over all possible excitation modes, includ-
ing charge exchange excitations, and to correct for the double
counting of the second-order contribution, when using stan-
dard expressions like Eq. (4) to evaluate the correlation en-
ergy. Then the RPA ring summation provides an efficient tool
to evaluate correlation energies throughout the nuclear chart.
In connection withVUCOM, the RPA correlation energies gen-
erally confirm the results of second order MBPT, indicating
that the net contribution of higher-order ring-diagrams are
moderate although the second order itself is large. Both, RPA
ring summation and low-order MBPT, provide efficient tools
for nuclear structure calculations with correlated realistic NN-
interactions.
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[6] P. Navrátil and W. E. Ormand, Phys. Rev. C 68, 034305 (2003).
[7] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev. Lett.

94, 102503 (2005); Phys. Rev. C 73, 034322 (2006).
[8] G. F. Bertsch, B. Sabbey, and M. Uusnakki, Phys. Rev C 71,

054311 (2005).
[9] S. Goriely, M. Samyn, J. M. Pearson, and E. Khan, Eur. Phys.

J. A 25, s01, 71 (2005).
[10] S.K. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1

(2003).
[11] R. Roth, T. Neff, H. Hergert, and H. Feldmeier, Nucl. Phys. A

745, 3 (2004), and references therein.
[12] L. Coraggio, A Covello, A. Gargano, N. Itaco, T. T. S. Kuo, and

R. Machleidt, Phys. Rev. C 71, 014307 (2005).
[13] R. Roth, P. Papakonstantinou, N. Paar, H. Hergert, T. Neff, and

H. Feldmeier, Phys. Rev. C 73, 044312 (2006).
[14] N. Fukuda, F. Iwamoto, and K. Sawada, Phys. Rev. 135, A932

(1964).
[15] D. J. Rowe, Phys. Rev. 175, 1283 (1968).
[16] F. Dönau, D. Almehed, and R. G. Nazmitdinov, Phys. Rev.Lett.

83, 280 (1999).
[17] Y. R. Shimizu, P. Donati, and R. A. Broglia, Phys. Rev. Lett.

85, 2260 (2000).
[18] N. Ullah and D. J. Rowe, Phys. Rev. 188, 1640 (1969).
[19] J. Friedrich and P.-G. Reinhard, Phys. Rev. C 33, 335 (1986).
[20] J. A. McNeil, C. E. Price, and J. R. Shepard, Phys. Rev. C 42,

2442 (1990).
[21] I. Stetcu and C. W. Johnson, Phys. Rev. C 66, 034301 (2002).
[22] S. Baroni, M. Armati, F. Barranco, R. A. Broglia, G. Col`o, G.

Gori, and E. Vigezzi, J. Phys. G 30, 1353 (2004).
[23] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[24] R. Roth, H. Hergert, P. Papakonstantinou, T. Neff, and H. Feld-

meier, Phys. Rev. C 72, 034002 (2005).
[25] N. Paar, P. Papakonstantinou, H. Hergert, and R. Roth, Phys.

Rev. C 74, 014318 (2006).



5

[26] E. R. Marshalek and J. Weneser, Ann. of Phys 53, 569 (1969).
[27] P. Ring and P. Schuck,The Nuclear Many-Body Problem,

(Springer, New York, 1980)
[28] P. J. Ellis, Nucl Phys. A 155, 625 (1970); Nucl Phys. A 467,

173 (1987).
[29] C. Barbieri and W. H. Dickhoff, Phys. Rev. C 63, 034313

(2001); Phys. Rev. C 65, 064313 (2002).

[30] C. Barbieri, Phys. Lett. B 643, 268 (2006).
[31] H. Feshbach and F. Iachello, Ann. Phys. (N.Y.) 84, 211 (1974).
[32] G. Audi and A. Wapstra, Nucl. Phys. A 595, 409 (1995).
[33] J. da Providencia, Nucl. Phys. A 116, 396 (1968).
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