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Abstract

Recent developments in modern nuclear structure theory regarding the construction of phase-shift equiva-
lent effective interactions and their use inab initiocalculations are discussed. Two methods for the construc-
tion of tamed interactions via unitary transformations arereviewed and compared: the Unitary Correlation
Operator Method and the Similarity Renormalization Group.Furthermore, we present a simple importance
truncation scheme within the no-core shell model, which gives access to nuclei well beyond the p-shell.
Using the interactions discussed before, we show results for ground-state energies of closed-shell nuclei up
to 40Ca.
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1. Introduction

One of the prime goals of modern nuclear theory is to gain insight into the multitude of nu-
clear structure phenomena throughout the nuclear chart using a consistent theoretical framework
with a direct link to the fundamental theory of strong interactions. Though low-energy quantum
chromodynamics (QCD) will not be solved directly for a nuclear many-body problem for the
forseeable future, important steps towards a truly QCD-based nuclear structure theory are being
made. From the point of view of conventional nuclear structure theory the low-energy dynamics
of quarks and gluons determines the interaction between nucleons. There are recent attempts to
directly extract a nucleon-nucleon interaction from lattice QCD calculations of the two-nucleon
system [1]. A more established strategy for constructing a QCD-motivated nuclear interaction is
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provided by chiral effective field theory. Based on a chiral Lagrangian, which includes the long-
range pion dynamics explicitly and absorbs short-range physics in contact terms, consistent two-
and three-nucleon interaction have been derived [2,3].

The challenge now is to employ these interaction in nuclear structure calculations throughout
the nuclear chart. Apart from the lightest nuclei, the available approaches for the treatment of
the many-body problem are generally not able to provide converged results based on traditional
realistic interactions like the Argonne V18 potential [4] or the recent chiral interactions. For this
reason, ‘effective’ interactions which are derived from the ‘bare’ interactions using similarity
transformations are an important intermediate step. Amongthose transformation methods are the
Lee-Suzuki transformation used extensively in the contextof the no-core shell model [5,6] and
renormalization group methods leading to theVlowk low-momentum interaction [7]. We are going
to discuss two alternative methods, the Unitary Correlation Operator Method and the Similarity
Renormalization Group in the following section.

2. Unitarily Transformed Realistic Interactions

The description of short-range correlations poses a particular problem when solving the nu-
clear many-body problem based on conventional realistic interactions. As the wavefunction of
the deuteron indicates, the short-range repulsion of the potential suppresses the two-body density
at small interparticle distances and the tensor force generates the D-wave admixture. These fea-
tures are also present in exact solution of the many-nucleonproblem. In terms of an expansion
of the exact eigenstates in a basis of Slater determinants, e.g. in the context of the no-core shell
model in a finiteNmax~Ω space, a huge number of basis states involving high-lying states are
required for an adequate representation of these correlated states. Apart from the lightest nuclei
this is computationally not feasible. For heavier nuclei werely on simplified model spaces, which
cannot account for short-range correlations and thus prohibit the direct used of ‘bare’ realistic
interactions.

One strategy to tackle this problem is to ‘tame’ the initial interaction using a unitary trans-
formation. The transformation has to suppress the components of the interaction which generate
short-range correlations. In terms of many-body matrix elements of the Hamiltonian, this can be
viewed as a pre-diagonalization leading to a substantial improvement of the convergence behav-
ior in a no-core shell model picture. For this purpose, only the system- and state-independent
short-range part of the interaction-induced correlationsneeds to be considered—residual long-
range correlations can be described quite efficiently within simple model spaces.

These transformations can be constructed such that the experimentally constrained on-shell
properties of the initial potential, i.e. the asymptotic phase shifts, are exactly preserved. The
resulting tamed potential thus is phase-shift equivalent by construction and can be viewed as a
realistic interaction in its own right.

2.1. Unitary Correlation Operator Method

The idea of the Unitary Correlation Operator Method (UCOM) [8,9] is to explicitly construct
a unitary operatorC, which imprints the dominant short-range correlations onto an uncorrelated
many-body state|Ψ〉 via the transformation

|Ψ̃〉 = C |Ψ〉 . (1)
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Already the deuteron allows us to identified the two dominanttypes of short-range correlations
that C has to account for: (i) central correlations induced by the short-range repulsion of the
NN interaction which suppress the two-body density at shortinterparticle distances; (ii) tensor
correlations induced by the strong tensor force which generates the D-wave admixture or, in
other terms, a correlation between the relative spatial orientation of the two nucleons and their
spins.

Guided by this physical picture of the origin and the structure of central and tensor correlations,
we can construct unitary operators for describing them. Thecentral correlations can be generated
by a radial shift in the relative coordinate of a nucleon-pair. Pictorially speaking, if two nucleon
are within the region of the short-range repulsion, then thetransformation has to push then apart.
This kind of distance-dependent shift is described by the unitary operator

Cr = exp
[
− i

∑

i<j

gr,ij

]
with gr =

1

2
[s(r)qr + qrs(r)] , (2)

whereqr = 1
2 [q · (r/r) + (r/r) · q] is the radial component of the relative momentumq of a

particle pair. The functions(r) determines the distance-dependence of the shift and is determined
for each spin-isospin channel from a variational calculation in the two-body system.

The unitary operator inducing tensor correlations has to reflect the non-central nature of the
tensor force in order to generate admixtures of state with relative orbital angular momentum
L ± 2. This is achieved with the following operator

CΩ = exp
[
− i

∑

i<j

gΩ,ij

]
with gΩ =

3

2
ϑ(r)

[
(σ1 · qΩ)(σ2 · r) + (r ↔ qΩ)

]
, (3)

whereqΩ = q − r

r qr is the component of the relative momentumq perpendicular tor. Similar
to the central correlator,ϑ(r) describes the magnitude of the transformation as a functionof
distance.

The combined effect of the two transformationsC = CΩCr on a simplistic relative wavefunc-
tion in the deuteron channel is illustrated in Fig. 1. We start from a smoothL = 0 wavefunction,
which represents an uncorrelated state of a limited model space. The unitary transformation with
the central correlation operatorCr creates the correlation hole at short interparticle distance by
shifting the probability amplitude to larger distances. The tensor correlation operatorCΩ cre-
ates theL = 2 admixture out of the initialL = 0 state with an radial shape determined by
the functionϑ(r). In order to reconstruct the full deuteron wavefunction thetensor correlation
functionϑ(r) has to be long-ranged (dashed curves). These long-range tensor correlations are
an artifact of the two-body system—embedded into a many-body system the long-range tensor
correlations will be destroyed by tensor interactions withother nucleons. We therefore constrain
the range of the tensor correlation function (solid curve) and use the value of the volume integral
Iϑ =

∫
drr2ϑ(r) as a parameter, which will be fixed in subsequent few-body calculations.

Using the explicit form of the correlation operatorC, we can directly formulate the unitarily
transformed Hamiltonian in two-body space (2B)

H̃ = C† H C = C†(T + V)C
2B
= T + VUCOM , (4)

which defines the tamed or correlated two-body interactionVUCOM. We will come back to the
induced three-body contributions lateron. The fact thatC is given in an explicit operator represen-
tation is very convenient: It allows us to derive a closed operator form of the correlated interac-
tion VUCOM. Furthermore, operators of other observables, e.g. densities, form factors, transition
amplitudes, and exchange currents, can be correlated consistently without additional effort.
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Fig. 1. Construction of the deuteron wavefunction in the UCOM framework. Starting from a smooth uncorrelated wave-
function (a) the subsequent application of the central (b) and tensor correlation operator (c) leads to a realistic deuteron
wavefunction. The functionss(r) andϑ(r) determining the distance dependence of the transformations are shown in
panels (d) and (e), respectively.

As mentioned earlier, the tamed interactionVUCOM is phase-shift equivalent to the original
potential but has a different off-shell behavior. In an operator representation, higher-order mo-
mentum operators and momentum-dependent tensor operatorsappear, which are not present in
the usual parameterizations of realistic potentials.

2.2. Similarity Renormalization Group

The Similarity Renormalization Group (SRG) as a second method using unitary transforma-
tions to tame the interaction starts from a completely different background. Originally proposed
by Wegner [10,11] in the context of solid-state systems, it aims at the pre-diagonalization of the
Hamiltonian with respect to a given basis using renormalization group flow equations. Denoting
the flow parameterα, the evolution of the Hamiltonian is described by the flow equation [12]

dH̄(α)

dα
= [η(α), H̄(α)] , H̄(0) = H . (5)

Formally we can express the evolved HamiltonianH̄(α) via a unitary transformation of the initial
HamiltonianH̄(0) = H

H̄(α) = U(α)HU†(α)
2B
= T + VSRG(α) , (6)

where allα-dependent contributions have been absorbed in the renormalized interactionVSRG(α).
Again, the choice of the generatorη(α) is crucial. Whereas the UCOM transformation is based

on a static generator, the generator of the SRG transformation changes dynamically during the
flow evolution. A simple choice for the generator was suggested by Szpigel and Perry [13] and
used by Bogneret al. [14]

η(α) = [Tint, H̄(α)] =
1

2µ
[q2, H̄(α)] , (7)
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which aims to diagonalize the two-body HamiltonianH̄(α) in a basis of eigenstates of both
p2

r andL2. Hence, in a partial-wave momentum-space basis|q (LS)J T 〉 this generator drives
the matrix elements towards a band-diagonal structure withrespect to(q, q′) and(L, L′). The
flow equation (5) can be easily solved in this partial-wave momentum-representation yielding
momentum space matrix elements of the evolved Hamiltonian.

Already on the formal level, we can relate the SRG scheme to the UCOM transformation. Let
us assume a realistic NN interaction given in an operator representation similar to the Argonne
V18 potential. The most relevant components for this consideration are the central and the tensor
part of the interaction. If we formulate the initial Hamiltonian with this type of interaction and
evaluate the initial generatorη(0) via the commutator relation (7) we easily obtain [12]

−iη(0) =
1

2

[
qrS(r) + S(r)qr

]
+

3

2
Θ(r)

[
(σ1 · qΩ)(σ2 · r) + (r ↔ qΩ)

]
. (8)

This corresponds exactly to the structure of the central andtensor generators that were con-
structed in the UCOM approach based on physical considerations on the structure of short-range
correlations. Both approaches address the same physics of short-range correlations. We utilize
this connection to derive correlations funcitons in the UCOM framework, which correspond to
the full SRG evolution up to a given flow parameterα.

2.3. Three-body interactions

So far, we have evaluated both unitary transformations, UCOM and SRG, in two-body space
discarding induced interactions beyond the two-body level. When formulating the transforma-
tions in a generalA-body space, one inevitably generates three-body, four-body, and higher-
order interactions even if the initial Hamiltonian only contains a two-body force. Formally, we
may write the transformed Hamiltonian inA-body space in terms of a cluster expansion

H̃ = C†(T + VNN + V3N)C

= T̃[1] + (T̃[2] + Ṽ
[2]
NN) + (T̃[3] + Ṽ

[3]
NN + Ṽ

[3]
3N) + · · ·

= T + VUCOM + V
[3]
UCOM + · · · ,

(9)

where we have used the UCOM notation and assumed an initial Hamiltonian containing a two-
and three-nucleon force. In addition to the tamed two-body interactionVUCOM a three-body con-
tribution V

[3]
UCOM is generated. It contains induced three-body terms originating from the trans-

formed kinetic energy, from the transformed two-body interaction, and from the transformed
three-body interaction. Ideally the full three-body interaction—and possibly even higher-order
contributions—would be taken into account when solving themany-body problem. Although the
induced three-body contributions are formally well defined, their inclusion in an actual many-
body calculation is a challenging task. The solution of the many-body problem would simplify
tremendously if the effect of the three-body contributionscould be reduced, i.e., if one could
choose the unitary transformation such that the different three-body contributions, most notably
the genuine three-body interactionV

[3]
3N which is generally attractive and the induce three-body

termsT[3] + V
[3]
NN which are repulsive, cancel eachother.

Evidence that this is possible is provided by no-core shell model calculations in few-body
systems [15] using the two-body part of the unitarily transformed interactions only. If all contri-
butions were included, then the energy spectrum of the transformed and the initial Hamiltonian
would be identical because of unitarity. If we can find a transformation that reproduces the energy

5



-8.6 -8.4 -8.2 -8 -7.8 -7.6
E(3H) [MeV]

-30

-29

-28

-27

-26

-25

-24

.

E
(4

H
e)

[M
eV

]

AV18
Nijm II

Nijm I

CD Bonn

Exp. VUCOM

VSRG

Fig. 2. Binding energies of3H and4He obtained in the no-core shell model [15] for differentVUCOM (full circles) and
VSRG (open circles) two-body interactions derived from the Argonne V18 potential. The labelled symbols in the upper
part correspond to calculations with ‘bare’ interactions,the crosses around the experimental point indicate resultsfor
different two- plus three-body interactions [16].

eigenvalues of the initial Hamiltonian using only the two-body part of the transformed Hamilto-
nian, then the omitted higher-order terms must have vanishing contributions to the energy (not
necessarily to the states).

This is illustrated in Fig. 2, where the ground state energies of 3H and 4He are shown for
different ‘bare’ potentials and the ‘tamed’ potentials obtained in the UCOM and the SRG frame-
work. As function of the rangeIϑ of the tensor correlation functions and of valueα of the final
flow parameter, respectively, the calculations with the transformed potentials span the Tjon line.
For specific values of the parameter, the two-body potentials yield binding energies comparable
to the experimental values and to results with conventionaltwo- plus three-body interactions.
Thus it is possible to choose a transformation for the which effectively minimizes the impact of
higher-order interactions [17].

3. Importance Truncated No-Core Shell Model

These tamed interactions are the ideal input for different many-body approaches, ranging from
the no-core shell model to Hartree-Fock based methods. Previously, we have shown that self-
bound nuclei are obtained already on the level of Hartree-Fock [18], although long-range corre-
lations cannot be described. Their inclusion via low-ordermany-body perturbation theory [18]
or RPA ring-summations [19] leads to binding energies whichare in agreement with experiment
throughout the whole nuclear chart. This shows that the minimization of three-body contributions
to the energy in the case of UCOM still works for heavier nuclei.

Here we discuss a scheme to extend the range of the no-core shell model to nuclei well beyond
the p-shell [20]. The limiting factor for full no-core shellmodel calculations is the dimension of
the model space, which grows dramatically with particle number and maximum excitation level
Nmax~Ω. Therefore, converged no-core shell model calculations are presently limited to the p-
shell. Most of the basis states included in these model spaces are irrelevant for the expansion of
any particular eigenstate, i.e. their amplitudes are zero or extremely small. If one would exclude
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Fig. 3. Importance truncated no-core shell model calculations for 4He, 16O, and40Ca for an oscillator frequency
~Ω = 20 MeV using theVUCOM interaction fixed in the three- and four-body system. Shown are exact no-core shell
model results (+) and results for an importance truncated model-space with up to 2p2h (•), 3p3h (�), and 4p4h (�)
excitations [20].

those irrelevant basis states from the outset, then the dimension of the eigenvalue problem could
be reduced to a tractable size. A quantitativea priori measure for the imporantance of individual
basis states can be constructed within many-body perturbation theory. Starting from a reference
state |Ψref〉 which provides a zeroth-order approximation of the eigenstate we are interested in,
we can estimate the contribution of other basis states|Φν〉 via first order perturbation theory.
This defines the importance measureκν = −〈Φν |H

′ |Ψref〉/(ǫν − ǫref), whereH′ describes the
Hamiltonian associated with the perturbation andǫν and ǫref the unperturbed energies of the
configurations. These quantities depend on the partitioning of the Hamiltonian and the nature of
the reference state which can be a superposition of many shell-model basis states itself.

When starting from the single shell-model Slater determinant as reference state then the im-
portance measure provides nonzero importance weights onlyfor configurations containing up to
2p2h excitations. In order to access highernpnh-states, we embed the construction of the im-
portance truncated space into an iterative scheme. In a firstiteration all important basis states up
to the 2p2h-level are constructed and the eigenvalue problem in this space is solved. Using the
dominant components of the resulting eigenvector as a new reference state, we construct a new
importance truncated space which then contains up 4p4h configurations. This iterative procedure
can be repeated until the reference state does not change anymore. In the limitκmin = 0 this
procedure generates the full no-core model space. In practice we will perform calculations for
several values ofκmin ≥ 0.00005 and extrapolate the eigenvalues toκmin = 0.

Results for the ground-state energies of4He,16O, and40Ca as function of the model space size
Nmax obtained withVUCOM are summarized in Fig. 3. For these calculations we have restricted
ourselves to one iteration of the aforementioned cycle suchthat the model space is limited to 4p4h
configurations. In comparison to full no-core shell model calculations performed with Antoine
[21] (black crosses) the dramatic reduction of the model space dimension allows us to work in
much largerNmax~Ω spaces.

This simple scheme has several advantages: Since we solve aneigenvalue problem in a re-
stricted basis, we have direct access to the ground state as well as to excited states. The scheme
can be viewed as a variational calculation using an adaptivetrial state, the variational princi-
ple guarantees that we obtain an upper bound for the exact energy eigenvalues. Since we start
from a completeNmax~Ω-space, spurious center-of-mass excitations are absent and we have
verified that the importance truncation does not generate them artificially. We directly obtain a
shell model representation of the wavefunction which can easily be used to compute further ob-
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servables. Apart from simple expectation values we are presently studying densities and form
factors. The conceptual simplicity of the importance truncation scheme also allows for a variety
of systematic extensions and improvements, e.g., through perturbative corrections for the ex-
cluded configurations. We have implemented corrections up to the 6p6h level using second-order
perturbation theory. Similar importance selection techniques are being used in quantum chem-
istry in connection with configuration interaction methods[22]. In this context several simple
correction methods, like multi-reference Davidson corrections which approximately restore size
extensivity, have been developed and can be adopted for the importance truncated no-core shell
model as well.

4. Conclusions

Nuclear theory presently experiences several exciting developments affecting all building
blocks of our theoretical description of nuclei. The connection of nuclear interactions to the
underlying theory of QCD is employed to derive consistent realistic interaction. These interac-
tions can be used as basis for the construction of phase-shift equivalent tamed interactions, e.g.
in the framework of the Unitary Correlation Operator Methodor the Similarity Renormalization
Group. They, in turn are a universal starting point for various approaches for treating the many-
body problem. Also in this sector new approaches, like the importance truncated NCSM, will
help to provide a consistent picture of nuclear structure for stable and exotic nuclei.
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