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Chapter 1

Introduction

In 1924 S.N. Bose worked out the statistical mechanics of a photon gas. In the
sequent year this work was generalized by A. Einstein from massless photons
to massive particles with integer spin. Einstein realized that these particles,
today known as bosons, prefer sharing the same quantum state. For bosonic
quantum gases he predicted the occurance phase transition from the domain of
high temperatures where, according to Bose statistics, the bosons are spread
over the whole momentum spectrum to a phase at low temperature, where the
zero-momentum ground state is macroscopically occupied.

It took 70 years to attain the experimental technique for creating this novel
form of matter. Its existence was proved in 1995 when Eric Cornell and Carl
Wieman succeeded in the creation of this so-called Bose-Einstein condensate [1].
They used a diluted gas of rubidium atoms trapped in an magnetic trap cooled
down to 170 nK.

Since then several properties of Bose-Einstein condensates (BEC) have been
investigated. Besides the pure condensates there is a growing interest in BEC
subjected to an optical lattice. These lattices can be created from standing op-
tical waves produced by counterpropagating laser beams. In combination with
Bose-Einstein condensates these lattices represent a valuable testing environ-
ment for strongly correlated quantum mechanical many-body systems. In the
BEC phase, the atoms’ wave functions are spread out over the whole lattice but
a transition into a phase where the wave functions are localized at individual
lattice sites can be observed. With the discovery of this Mott insulator phase
that has been predicted by Jaksch et al. [2] a regime of ultracold bosonic matter
beyond BEC has been reached.

In 1989 Fisher et al. applied the Hubbard model, known from solid-state
physics, to bosonic quantum gases. This Bose-Hubbard model is quite sim-
ple but it reproduces the properties of BEC held in an optical lattice and in
particular exhibits the BEC to Mott-insulator phase transition.

Although the Bose-Hubbard Hamiltonian can be in principle solved exactly
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for any lattice system, the computational effort sets an upper limit. The exact
solution is obtained by diagonalization of the Hamilton matrix. This matrix
grows fast with the system size and so the diagonalization of the full Hamilton
matrix soon can not be performed in reasonable time. For this reason this thesis
investigates the numerical renormalization group (NRG) approach to the Hub-
bard model, an approach that avoids these large matrices and that therefore can
be applied on problems practically inaccessible to the exact solution method.
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Chapter 2

Basics

2.1 Many-Body Systems

Ultracold atoms in an optical lattice represent a quantum mechanical many-
body system, in the case of this thesis one of identical bosonic atoms.

2.1.1 Distinguishable Particles

Consider a system of N distinguishable particles. Due to distinguishability it
is possible to number these particles, and it makes sense regarding the mathe-
matical treatment.

Let the single-particle Hilbert space of particle i be

H(i) (2.1)

with a complete basis
{
|α(i)

j 〉
}

, (2.2)

where α
(i)
j denotes the set of quantum numbers determining the ith particle’s

jth basis state.
The Hilbert space HN of the entire many-body system is given by the direct

product of these single-particle Hilbert spaces

HN = H(1) ⊗ H(2) ⊗ · · · ⊗ H(N) (2.3)

and a many-body basis {|φ〉} arises from the direct products of the single-particle
basis states

|φk1,k2,...,kN 〉 = |α(1)
k1
〉 ⊗ |α(2)

k2
〉 ⊗ . . . ⊗ |α(N)

kN
〉 = |α(1)

k1
α

(2)
k2

. . . α
(N)
kN
〉 . (2.4)

Any arbitrary eigenstate |ψN 〉 of the N -particle system can be expanded in this
product basis in the usual way:

|ψN 〉 =
∑

k1

∑

k2

· · ·
∑

kN

ξ(k1, k2, . . . , kN ) |φk1,k2,...,kN 〉 . (2.5)
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2.1.2 Identical Particles

Different from classical mechanics, in quantum mechanics identical particles can
not be distinguished from each other in principle. As a consequence of this a
physical observable can not apply on single particles as before. Under these
circumstances a numbering of the particles seems to be physically senseless
though is necessary to be able to treat the problem mathematically. However,
an exchange of two particles (and therefore any number of particles) must not
affect measurable quantities.

Therefore, in the case of identical particles the observable quantities will be
invariant under the exchange of particles. So a transposition operator π̂ij can
be defined that exchanges the ith and the jth particle. Obviously, exchanging
two particles twice represents the identity operator

π̂2
ij = 1 (2.6)

which leads to a restriction of the eigenvalues π of π̂ij

π = ±1 . (2.7)

Therefore, besides states without a defined symmetry character, two types of
many-body states exist: The symmetric ones, that are invariant under exchange
of particles and the antisymmetric ones that exchange their signs when two
particles are exchanged. From the spin-statistics theorem from quantum field
theory it follows that the symmetric states are associated with bosonic particles
whereas the antisymmetric states are associated with fermionic ones.

The Hilbert spaces of symmetric (H(+)) and antisymmetric (H(−)) states are
subspaces of the Hilbert space HN constructed in (2.1.1). From there it makes
sense to start with basis states from the HN and to (anti-) symmetrize them by
the use of (anti-) symmetrization operators.

An (anti-) symmetrized basis state |φk1,k2,...,kN
〉(±) of H(±) can be con-

structed from basis states of HN according to

|φ(k1, . . . , kN )〉(±) =
1

N !

∑

P

(±)p P |φk1,k2,...,kN 〉 , (2.8)

where the sum runs over all possible permutations P of the basis states |φ(k1, . . . , kN )〉.
p denotes the number of transpositions π̂ij the permutation P consists of.

2.2 Second Quantization

The use of the (anti-) symmetrized states constructed via (2.8) is obviously very
laborious. The Second Quantization’s formalism facilitates working with these
states.

The states constructed via (2.8) contain the information about which parti-
cles occupy which states, which is, however, due to indistinguishability mean-
ingless. One is rather interested in how many particles occupy a certain state.
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So it is suitable to express a many-body eigenstate in the occupation number
representation using occupation numbers ni

|φk1,...,kN 〉(±) = |n1, n2, . . . , nA〉(±) (2.9)

where ni stands for the number of particles that occupy the single-particle state
that has been labeled with i. An arbitrary N -particle state |ψN 〉 then can be
expressed via

|ψN 〉 =
∑
α

Cα |{n1, n2, . . . , nA}α〉(±) . (2.10)

Although the representation of eigenstates is drastically simplified by the oc-
cupation number representation, the (anti-) symmetrized eigenstates still are
completely determined by its occupation numbers.

A creation operator â†i and an annihilation operator âi that creates and
annihilates, resp., a particle in the state |i〉 can be defined. In the case of
bosons these operators must satisfy the commutator relations

[âi, âj ] = 0

[â†i , â
†
j ] = 0

[âi, â
†
j ] = δij . (2.11)

From these relations one can derive the action of these operators on states

âi|n1, . . . , ni, . . . , nA〉 =
√

ni |n1, . . . , ni − 1, . . . , nA〉
â†i |n1, . . . , ni, . . . , nA〉 =

√
ni + 1 |n1, . . . , ni + 1, . . . , nA〉 (2.12)

and can so construct an operator n̂i ≡ â†i âi, whose eigenvalue is the occupation
number ni:

â†i âi|n1, . . . , ni, . . . , nA〉 = â†i
√

ni |n1, . . . , ni − 1, . . . , nA〉
=

√
ni − 1 + 1

√
ni |n1, . . . , ni − 1 + 1, . . . , nA〉

= ni |n1, . . . , ni, . . . , nA〉 .

Any arbitrary operator can be represented in Second Quantization by us-
ing creation and annihilation operators. Thereby, single-particle operators in
general take the form

Â =
∑

i,j

aij â†i âj (2.13)

where aij is the matrix element

aij = 〈αi|Â|αj〉 . (2.14)

Similarly, two-particle operators take the form

Â =
1
2

∑

i,j,k,l

aijkl â†i â
†
j âkâl (2.15)
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with matrix elements

aijkl = aij = 〈αiαj |Â|αkαl〉 . . (2.16)

Both types of operators will appear in the Hubbard Hamiltonian.

2.3 The Hubbard Model

2.3.1 The Hubbard Hamiltonian

For an interacting gas in an optical lattice the Hamiltonian reads [8]

H =
∫

d3x Ψ̂†(x)
(
− ~

2m
∇2 + VL(x) + VT (x)

)
Ψ̂(x)

+
g

2

∫
d3x Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) , (2.17)

with the lattice potential VL(x), the trapping potential VT (x) and the bosonic
field operators Ψ̂†(x), Ψ̂(x). For the atom-atom interaction a contact potential
is assumed what lead to the second term in (2.17). Since the lattice poten-
tial is periodic the solutions of the Schrödinger equation can be expanded in
Bloch functions. From the Bloch functions’ reciprocal space one can move into
the more convenient real space via Fourier transformation which leads to the
Wannier functions

ωi(x−Rj). (2.18)

i is the index for energy bands. In the following it is assumed that the atoms
only populate the lowest energy band so the band index will be omitted.

The Wannier functions localized around Ri fulfill the orthonormalization
relation∫

d3x ω∗(x−Ri) ω(x−Rj) = δij . (2.19)

The field operators can be expanded in Wannier functions ω(x−Rj) with the
creation and annihilation operators â†i and âi

Ψ̂†(x) =
∑

i

â†i ω(x−Ri) . (2.20)

(2.20) now is used to rewrite the Hamiltonian (2.17).
Atoms are able to tunnel between lattice sites i, j and the tunneling strength

Jij arises from the overlap of the wave functions at lattice sites i and j. One
finds

Jij = −
∫

d3x ω∗(x−Ri)
(
− ~

2m
∇2 + VL(x) + VT (x)

)
ω(x−Rj) , (2.21)

The tunneling probability for hopping to a lattice site that is farther than the
next neighbor is small and can be neglected. For an isotropic lattice the prob-
ability for tunneling to next neighbors is a constant and thus Jij ≡ J .
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The case i = j not yet treated in formula (2.21) leads to the terms

εii =
∫

d3x ω∗(x−Ri)
(
− ~

2m
∇2 + VL(x) + VT (x)

)
ω(x−Ri)

=
∫

d3x ω∗(x−Ri) VT (x) ω(x−Ri) +
∫

d3x ω∗(x−Ri)
(
− ~

2m
∇2 + VL(x)

)
ω(x−Ri) . (2.22)

The second term in (2.22) yields a constant energy offset ∆E at each lattice site

εii =
∫

d3x ω∗(x−Ri) VT (x) ω(x−Ri) + ∆E . (2.23)

This energy offset can be set to zero, so that εii ≡ εi only depends on the
trapping potential VT (Ri) at lattice site i.

The atom-atom interaction is given in Wannier basis representation by

Uijkl =
g

2

∫
d3x ω∗(x−Ri) ω∗(x−Rj) ω(x−Rk) ω(x−Rl) . (2.24)

Since only on-site interaction is considered the interaction parameter becomes
constant Uijkl ≡ U δij δjk δkl.

Using (2.21), (2.23), (2.24) the Hamiltonian takes the form

Ĥ = −J
∑

〈i,j〉
â†i âj +

∑

i

εiâ
†
i âi +

U

2

∑

i

â†i â
†
i âiâi . (2.25)

The first sum runs over adjacent lattice sites 〈i, j〉 only. With the relations
n̂i = â†i âi and n̂i(n̂i − 1) = â†i â

†
i âiâi the Hamiltonian can be descriptively

reformulated into

Ĥ = −J
∑

〈i,j〉
â†i âj +

∑

i

εin̂i +
U

2

∑

i

n̂i(n̂i − 1) . (2.26)

The interaction term contains the expression 1
2 n̂i(n̂i−1) because from an amount

of ni atoms 1
2ni(ni − 1) pairs can be formed that interact with each other.

With increasing number of particles and lattice sites the Hilbert space di-
mension grows rapidly, which is the main motivation of the numerical renormal-
ization group ansatz. The Hilbert space dimension of a system consisting of N

particles within a lattice of I sites is in the case of bosons given by

dim(H) =
(N + I − 1)!
N !(I − 1)!

. (2.27)

Table 2.1 shows exemplarily some Hilbert space dimensions for systems with
I = N .
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I = N dim(H)

3 10

6 462

12 1.352.078

Table 2.1: Growth of the Hilbert space dimension for systems with I = N .

2.3.2 Properties of the Ground States

To estimate the capability of the NRG within different domains of the parameter
U/J it is useful to consider the exact ground-state of the Hubbard model in two
limiting situations.

In the case of the ideal gas where the interaction between the particles van-
ishes (U = 0) and with no trapping potential (εi = 0) the Hamiltonian reduces
to the tunneling term

H(U = 0, εi = 0) = −J
∑

〈i,j〉
â†i âj . (2.28)

Here, the ground-state energy is minimized if the single-particle wave functions
are spread over the entire lattice. The system then is in a superfluid state with
maximum phase coherence and the ground state is given by

|ψSF 〉 ∝
(∑

i

â†i

)N

|0 . . . 0〉 . (2.29)

Otherwise, in the case of dominating interaction U À J the system tends
towards a state with minimized fluctuation in occupation numbers. If the system
has an integer filling, due to the dominating interaction energy tunneling is
completely suppressed and the system finds itself in the Mott insulator state.
In this state the single-particle wave functions are localized at single lattice sites

|ψMI〉 ∝
∏

i

â†i |0 . . . 0〉 , (2.30)

so that phase coherence is lost but correlation of occupation numbers ni gets
maximized.

Between the superfluid U ¿ J and the Mott insulator regime U À J , a
phase transition takes place at U/J ≈ 4.65 [10, 11] which is among others
characterized by the appearance of a gap in the excitation spectrum.
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Chapter 3

The NRG Method

The one-dimensional Hubbard model can be solved exactly by diagonalizing the
Hamilton matrix. Determining the Hamilton matrix and the diagonalization do
not, in principle, pose a problem. However, the underlying Hilbert space and
so the Hamilton matrix dimension grows exponentially with the system size so
that in practice only smaller systems can be solved with reasonable effort.

The NRGmethod circumvents this problem by applying an iterative growing-
procedure, where in each iteration step the Hamilton matrix is rotated into a
truncated eigenbasis. In that way the dimension of the Hilbert space can be
kept constant in spite of the increasing system size. The asset of this method
is a linear increase of computational effort instead of the exponential increase
when the problem is to be solved within the untruncated Hilbert space. The
drawback comes from discarding of basis states that contain information about
the exact state. This is associated with a numerical error in every iteration step
that may lead step by step farther away from the exact solution. So one only
obtains an approximate solution. This error can be minimized by discarding
such eigenstates that are assumed not to contribute very much to the exact
solution. For the calculation of a ground state, that is of course at the lower
end of the energy scale, one will preferably discard the eigenstates at the upper
end.

3.1 NRG applied to the Ising Model

To illustrate the main ideas of the NRG method the one-dimensional Ising model
is more convenient than the Hubbard model.

3.1.1 The Ising Hamiltonian

The Hamilton operator of the Heisenberg model reads

Ĥ = −
∑

i,j

χij Ĵi · Ĵj +
1
~
gJµB

∑

i

Ĵi ·B0 . (3.1)
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It describes the interaction of magnetic dipoles localized at lattice sites. The χij

denote the coupling constants between separate lattice sites with the property

χij = χji

χii = 0 . (3.2)

The Ising model results as a special case of the Heisenberg model as a special
case. The magnetic dipoles considered in the Ising model are spins Ŝi

Ĵi · Ĵj → Ŝi · Ŝj = ξxŜx
i Ŝx

j + ξyŜy
i Ŝy

j + ξzŜ
z
i Ŝz

j , (3.3)

where the coefficients ξk are given by

ξx = ξy = 0 , ξz = 1 (3.4)

and B is chosen to point into z-direction

B = B0ez . (3.5)

So one has

Ĥ = −
∑

i,j

χij Ŝz
i Ŝz

j − Γ
∑

i

Ŝz
i (3.6)

with

Γ = −1
~
gJµBB0 . (3.7)

As an additional simplification, only the interaction between next neighbors is
considered with a constant coupling strength J

H = −J
∑

〈i,j〉
Ŝz

i Ŝz
j − Γ

∑

i

Ŝz
i . (3.8)

3.1.2 NRG applied to the Ising Model

Consider a system of N spins on N lattice sites:

• • • . . . •︸ ︷︷ ︸
N lattice sites

Figure 3.1: Spin system with N lattice sites.

For open boundary conditions, the Hamiltonian is given by

Ĥ = −J
∑

〈i,j〉
Ŝz

i Ŝz
j − Γ

∑

i

Ŝz
i (3.9)

and is therefore a sum over characteristic terms like

Ŝz
i Ŝz

j und Ŝz
i . (3.10)
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The first sum in (3.9) runs over adjacent spins so that only terms with index
pairs (i, i + 1) , (i + 1, i) remain. A more convenient notation is

Ĥ = −J

N−1∑

i=1

{
Ŝz

i Ŝz
i+1 + Ŝz

i+1Ŝ
z
i

}
− Γ

N∑

i=1

Ŝz
i . (3.11)

From the total system one picks out a subsystem, in the following called block,
with NB lattice sites and the Hamiltonian

ĤB = −J

NB−1∑

i=1

{
Ŝz

i Ŝz
i+1 + Ŝz

i+1Ŝ
z
i

}
− Γ

NB∑

i=1

Ŝz
i . (3.12)

The block’s size will affect the accuracy of the numerical results. Therefore,
blocks consisting of a single site are possible, but in general blocks will include
at least 2 lattice sites to get suitable results. Setting NB = 2 the Hamiltonian
for the isolated block

〈• •〉︸ ︷︷ ︸
Block

• . . . •

Figure 3.2: Separation of the block system.

is given by

ĤB = −J
{

Ŝz
1 Ŝz

2 + Ŝz
2 Ŝz

1

}
− Γ

{
Ŝz

1 + Ŝz
2

}
. (3.13)

The size of the system is increased by appending an additional subsystem adja-
cent to the block called the site. As with the block system, the site system can
in principle take any desired form, but in the case of NRG it will consist of a
single lattice site only.

The system formed from block and site

〈• •, •〉 • . . . •

Figure 3.3: The superblock system.

will in the following be called superblock system. The superblock Hamiltonian
is given by

ĤSuper = −J
{

Ŝz
1 Ŝz

2 + Ŝz
2 Ŝz

1 + Ŝz
2 Ŝz

3 + Ŝz
3 Ŝz

2

}
− Γ

{
Ŝz

1 + Ŝz
2 + Ŝz

3

}

= −J
{

Ŝz
1 Ŝz

2 + Ŝz
2 Ŝz

1

}
− Γ

{
Ŝz

1 + Ŝz
2

}

︸ ︷︷ ︸
ĤB

−J
{

Ŝz
2 Ŝz

3 + Ŝz
3 Ŝz

2

}

︸ ︷︷ ︸
ĤBS

−Γ
{

Ŝz
3

}

︸ ︷︷ ︸
ĤS

= ĤB + ĤBS + ĤS . (3.14)
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The Hamiltonians ĤB , ĤBS and ĤS act on different parts of the Hilbert space.
While HB only acts within the block’s Hilbert space HB and HB only acts
within the site’s Hilbert space HS , the Hamiltonian HBS operates within the
Hilbert space HBS of the superblock system.

During the NRG procedure the block system is increased iteratively (Fig.
3.1.2). As in (3.14) each iteration step the superblock Hamiltonian can be
divided into Hamiltonians acting on HB , HS and HBS .

• • • • . . . •
Iteration 1 〈• •, •〉 • . . . •
Iteration 2 〈• • •, •〉 . . . •

...

Figure 3.4: The growth of the block and superblock system over the course of the
NRG procedure.

Let |+〉 ≡ |+〉x, |−〉 = |−〉x denote eigenstates to the operator Ŝx that obey
the equations

Ŝx|+〉 = |+〉
Ŝx|−〉 = −|−〉 . (3.15)

This awkward choice of the basis produces off-diagonal matrix elements in the
matrix representations of the operators, as they will appear in general (and in
particular in the case of the Hubbard Hamiltonian). By the help of the relations

|±〉 =
1√
2

{
|+〉z ± |−〉z

}

Ŝz|±〉z = ±|±〉z (3.16)

one finds for the action of Ŝz on the eigenstates of Ŝx

Ŝz|+〉 = |−〉
Ŝz|−〉 = |+〉 . (3.17)

In the first iteration step the block consists of 2 lattice sites and so HB is
represented in a two-spin basis

{
|ε1 ε2〉

}
B

=
{
|+ +〉, |+−〉, | −+〉, | − −〉

}
. (3.18)

In this basis the matrix representation of Ŝz
1,2 becomes

Sz
1 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




, Sz
2 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




. (3.19)
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The site basis is given by
{
|ε〉

}
S

=
{
|+〉, |−〉

}
(3.20)

and the matrix representation of the site operator

Sz
3 =

(
0 1

1 0

)
. (3.21)

With this, one obtains the Hamiltonians HB and HS represented in their re-
spective bases

HB =




0 −Γ −Γ −2J

−Γ 0 −2J −Γ

−Γ −2J 0 −Γ

−2J −Γ −Γ 0




, HS =

(
0 −Γ

−Γ 0

)
. (3.22)

The Hamiltonian ĤBS connects the block and site basis leading to the su-
perblock basis

{
|ε1 ε2 ε3〉

}
Super

=
{
|ε1 ε2〉

}
B
⊗

{
|ε3〉

}
S

=
{
|+ ++〉, |+−+〉, | −++〉, | − −+〉,

|+ +−〉, |+−−〉, | −+−〉, | − −−〉
}

. (3.23)

The individual Hamiltonians ĤB and ĤS and the spin operators Ŝz
i do not

connect states of different Hilbert spaces HB ,HS or HBS . Setting
{
|k〉

}
B

:=
{
|ε1 ε2〉

}
B{

|l〉
}

S
:=

{
|ε3〉

}
S

(3.24)

one finds for the matrix elements

(O)kk′,ll′ = 〈k l|Ô|k′ l′〉 (3.25)

of the Hamiltonians ĤB and ĤS and the operators required for constructing
ĤBS represented in the superblock basis

(HB)kk′,ll′ = (HB)kk′ δll′

(HS)kk′,ll′ = δkk′ (HS)ll′

(Sz
2 )kk′,ll′ = (Sz

2 )kk′ δll′

(Sz
3 )kk′,ll′ = δkk′ (Sz

3 )ll′ . (3.26)
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One obtains

HB =




0 −Γ −Γ −2J 0 0 0 0

−Γ 0 −2J −Γ 0 0 0 0

−Γ −2J 0 −Γ 0 0 0 0

−2J −Γ −Γ 0 0 0 0 0

0 0 0 0 0 −Γ −Γ −2J

0 0 0 0 −Γ 0 −2J −Γ

0 0 0 0 −Γ −2J 0 −Γ

0 0 0 0 −2J −Γ −Γ 0




etc. (3.27)

To construct ĤBS one uses operators represented in the superblock basis. Using
(3.14) the superblock Hamiltonian becomes

HSuper = (−1) ·




0 Γ Γ 2J Γ 2J 0 0

Γ 0 2J Γ 2J Γ 0 0

Γ 2J 0 Γ 0 0 Γ 2J

2J Γ Γ 0 0 0 2J Γ

Γ 2J 0 0 0 Γ Γ 2J

2J Γ 0 0 Γ 0 2J Γ

0 0 Γ 2J Γ 2J 0 Γ

0 0 2J Γ 2J Γ Γ 0




. (3.28)

The eigenvalue problem of the superblock Hamiltonian can be solved. One
obtains 8 eigenvectors that can be sorted by their energy eigenvalues.

|E1〉, . . . , |E8〉 .

Consider the transformation matrix

Tfull =




↑ ↑
〈α|E1〉 . . . 〈α|E8〉
↓ ↓


 , (3.29)

where



↑
〈α|Ej〉
↓


 (3.30)

stands schematically for the projection of |Ej〉 on the basis {αi}.
Using the transformation matrix Tfull the superblock Hamiltonian HSuper

can be rotated into the energy eigenbasis

HSuper, diag = TT
voll HSuper Tvoll .
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The N -site problem can be solved exactly by diagonalizing the superblock
Hamiltonian in each iteration step and using it as the block Hamiltonian in the
subsequent iteration step. To distinguish the Hamiltonians of different iteration
steps an iteration index is introduced. Furthermore, the dimension dim (H(i)

x )
of a Hamilton matrix of the ith iteration step

H(i)
x , x : B, S, Super , (3.31)

will in the following be denoted by D
(i)
x .

Iteration 1 : 〈••, •︸︷︷︸〉 • • · · · • • D
(1)
B = 4, D

(1)
Super = 8

Iteration 2 : 〈︷︸︸︷• • •, •︸ ︷︷ ︸〉 • · · · • • D
(2)
B = 8, D

(2)
Super = 16

Iteration 3 : 〈︷ ︸︸ ︷• • ••, •︸ ︷︷ ︸〉 · · · • • D
(3)
B = 16, D

(3)
Super = 32

...

Iteration N-2 : 〈︷ ︸︸ ︷• • ••, • · · · •, •〉 D
(N−2)
B = (N − 1)2, D(N−2)

Super = N2

Figure 3.5: Transformation and growth of the Hilbert space dimensions.

Rotating the superblock Hamiltonian into the full energy eigenbasis in each
iteration step and using this Hamiltonian as the new block Hamiltonian is equiv-
alent to the full solution. In each iteration step the dimension of the block
system is multiplied by degrees of freedom of the site system, which means a
doubling in this example. Just as in the full solution, in the last iteration step
a superblock Hamiltonian of dimension N2 would have to be solved so that this
method would not bear any advantages.

The goal of the NRG method is to keep the block and superblock Hilbert
space dimensions constant. Since the size of the block and superblock system is
increasing in each iteration step this can only be achieved by a truncation of the
underlying bases and therefore their associated Hilbert spaces. In each iteration
step the superblock Hamiltonian of dimension DSuper has to be transformed into
a Hilbert space of dimension DB .

Iteration 1 : 〈••, •〉 • • · · · • • D
(1)
B = 4, D

(1)
Super = 8

Iteration 2 : 〈• • •, •〉 • · · · • • D
(2)
B = 4, D

(2)
Super = 8

...

Figure 3.6: Constant dimensions by Hilbert space truncation.

This can be achieved by DSuper×DB transformation matrices. In general the
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main interest is the ground state and the low-lying excited states of a system.
These states will mainly consist of basis states that for their part represent low
energies. By truncation of the energy eigenbasis one will minimize the error
induced by discarding the high-energy basis states. Therefore, the columns of
the transformation matrix are built up from the lowest-energy eigenvectors of
the superblock Hamiltonian

T (1) =




↑ ↑
〈α|E1〉 . . . 〈α|EDB 〉
↓ ↓


 . (3.32)

So the block Hamiltonian dimension determines the number of basis states that
are maintained in the truncated energy eigenbasis. With increasing dimension
of the block Hamiltonian the truncated Hilbert space and the energy values get
closer to the exact case.

The superblock Hamiltonian of the second iteration step

Iteration 2 : 〈• • •, •〉 • · · · • • (3.33)

Figure 3.7: The superblock Hamiltonian in the second iteration step.

is given by

H
(2)
Super = H

(2)
B + H

(2)
BS + H

(2)
S . (3.34)

The representation of H
(2)
B =

(
T (1)

)T
H

(1)
Super T (1) in the new block basis (≡

truncated superblock basis) is already known. Likewise, H
(2)
S ≡ H

(1)
S can be

assumed to be known in the new site basis because neither the site basis nor
the site Hamiltonian change in any way during the NRG process.

H
(2)
BS is built up from the spin operators at the border between the new block

and site. On the side of the block this is the spin operator Ŝz
3 that has been the

operator on the side of the side in the previous iteration step

H
(2)
BS = −J {Sz

3Sz
4 + Sz

4Sz
3} . (3.35)

So the old site operator has to be transformed from the old superblock basis
into the new block basis, too

(
T (1)

)T

S3
z T (1) . (3.36)

The relations (3.26) still hold for the new block basis. So in the second iteration
step one can proceed as in the first one: H

(2)
B , S3

z and H
(2)
S will be transfered

from block and site basis into the new superblock basis and from them H
(2)
BS

and H
(2)
Super will be constructed. For H

(2)
Super the eigenvalue problem will have to

be solved and the transformation matrix T (2) of the second iteration step will
have to be built. Again, the superblock Hamiltonian and the site spin operator
would have to be transformed and so on.
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3.2 NRG Scheme

Summarizing the discussions of Sec. 3.1.2 one can formulate the following NRG
algorithm.

1. Consider a subsystem (block system) and the adjacentlattice site (site
system)

2. Form the combined block-site system (superblock system) with

H
(1)
Super = H

(1)
B + H

(1)
BS + H

(1)
S

3. Calculate H
(1)
B ,H

(1)
S and the operator matrix representations O

(1)
k needed

to construct H
(1)
BS in the block and site basis

4. Transfer H
(1)
B ,H

(1)
S , Ô

(1)
k into the superblock basis

5. Construct the Hamiltonian H
(1)
BS from O

(1)
k and the superblock Hamilto-

nian H
(1)
Super from H

(1)
B ,H

(1)
BS , H

(1)
S

6. Solve the eigenvalue problem of the superblock Hamiltonian and build the
transformation matrix T (1) from the DB energetically lowest eigenvectors.

7. Transform the superblock Hamiltonian and use it as the new block Hamil-
tonian in the next iteration step

H
(2)
B =

(
T (1)

)T

H
(1)
Super T (1)

8. Transform the operator matrices needed to build the new H
(2)
BS Hamilto-

nian, O
(1)
j → O

(2)
j

9. Continue at step 4 with the next iteration.
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Chapter 4

NRG applied to the Hubbard
Model

The Hubbard Hamiltonian (2.26) describes a system of N ≡ ∑I
i=1 ni atoms in a

one-dimensional lattice of length I. Similar to the Ising Hamiltonian it is more
convenient to reformulate the sum running over direct neighbors 〈i, j〉 into a
sum running over lattice sites

Ĥ = −J

I−1∑

i=1

{
â†i âi+1 + â†i+1âi

}
+

I∑

i=1

εin̂i +
U

2

I∑

i=1

n̂i(n̂i − 1) . (4.1)

The atom-atom interaction and the trapping potential contribute at isolated
lattice sites i

ĤUi = εin̂i +
U

2
+ n̂i(n̂i − 1) (4.2)

while the tunneling term

ĤTi,i+1 = â†i âi+1 + â†i+1âi (4.3)

connects two neighboring lattice sites. The total Hamiltonian is the sum over
the contributions (4.2), (4.3) :

Ĥ =
I−1∑

i=1

ĤTi,i+1 +
I∑

i=1

ĤUi , (4.4)

ĤU1 ĤU2 ĤU3 ĤU4

• ⇔ • ⇔ • ⇔ • . . . .

ĤT12 ĤT23 ĤT34

Figure 4.1: The Hamiltonians associated to lattice sites.
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Again (as in Sec. 3.1.2), without a Hilbert space truncation the full prob-
lem could be solved by iterativ increase of the initial system. The aim is the
calculation of low-lying energy eigenstates so in each iteration step the system
has to be projected into the basis of the lowest-energy eigenvectors.

The system properties are dominated by the interplay of the kinetic term

−J

I−1∑

i=1

{
â†i âi+1 + â†i+1âi

}
, (4.5)

which strives to spread the single-particle wave functions over the whole lattice,
and the interaction term

U

2

∑

i

n̂i(n̂i − 1) , (4.6)

which tries to localize the wave function at single lattice sites. This leads for
U = 0 or J = 0 to the ground states described in Sec. 2.3.2. Therefore, a simple
estimate of the accuracy of the NRG method in the different domains of U/J

can be made.
In the superfluid regime the ground state is given by a superposition of

all possible basis states. Every eigenstate that will be discarded during the
NRG procedure will be missing in this superposition and will distort the result.
However, basis states to increasing energies lose their weight to the solution so
that NRG sure will not provide its best results in the superfluid regime but
should still work in principle.

One will expect more accurate results in the Mott insulator regime that
consists in the limit of strong interactions U/J → ∞ only of the state with
minimum fluctuation in occupation numbers.

4.1 Particle Numbers

In Sec. 3.1.2 no special consideration of particle numbers was necessary. The
Ising model describes a one-dimensional lattice, with one localized spin at each
lattice site. Therefore, the number of spins in the block and site system is strictly
determined by the number of lattice sites these systems consist of. This limita-
tion is missing in the case of the Hubbard model because the states can show
an arbitrary distribution of the atoms over the lattice. So the NRG method ap-
plied on the Hubbard Hamiltonian gets slightly more complicated than its Ising
counterpart, although the underlying scheme of Sec. 3.2 remains unchanged.
Besides the selection of eigenstates with respect to their energy eigenvalues an
additional selection condition is given by the particle numbers of the eigenstates
which implies an additional error source.

4.2 Block, Site and Superblock Basis

Consider a system with N particles and I lattice sites.

22



I Sites︷ ︸︸ ︷• . . . •︸ ︷︷ ︸
IB

•︸︷︷︸
IS

. . . •

Figure 4.2: Choice of the block and site system.

The NRG method begins by choosing the block system with IB lattice sites.
As mentioned in Sec. 3.1.2 the size of this block system will affect the NRG’s
accuracy and it should consist of at least 2 lattice sites IB ≥ 2. In the NRG
method usually site systems consisting of a single lattice site adjacent to the
block are employed, IS = 1.

Different from the Ising model the number of lattice sites does not fix the
number of particles that are in the (sub-) system. It is only known which particle
number N the entire system is supposed to have at the end, and possible basis
states correspond to arbitrary arrangements of the atoms within the lattice. For
example, one possible basis state is given by the state where all particles resides
on the last lattice site.

Therefore the basis will have to include a certain range of particle numbers
that will in the ideal case cover all possible particle numbers from 0 to N .
With increasing particle number the Hilbert space dimension will increase as
well, and so it can be reasonable to abandon some particle numbers (which
means all basis states to these certain particle numbers) when the block and
site basis are constructed. In the case of dominating interaction, the states that
exhibits a (almost) constant occupation of each lattice site will be dominant in
the ground state. In the superfluid regime the probability distribution of the
occupation numbers at a single lattice site is a Poissonian distribution so that
states with an (almost) homogeneous occupation will have the highest weight,
as well. Therefore the bases for block and site should be constructed around this
homogeneous occupation with a range of particle numbers NB,min . . . NB,max

(Block) and NS,min . . . NS,max (Site), respectively.

Blockbasis :
{
|k〉

}
:=

{
|n1, . . . , nIB

〉 : NB,min ≤
IB∑

i=1

ni ≤ NB,max

}

Sitebasis :
{
|l〉

}
:=

{
|nIB+1, . . . , nIB+IS 〉 : NS,min ≤

IB+IS∑

i=IB+1

ni ≤ NS,max

}
.

The superblock basis arises from the product of the block and site basis. So the
superblock basis includes the particle numbers

NB,min + NS,min . . . NB,max + NS,max . (4.7)

All bases should be constructed in a way that they are sorted with respect to
total particle numbers so that their associated Hamiltonians become block di-
agonal. This is due to the number conserving character of the Hubbard model.
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4.3 Block, Site and Superblock Hamiltonian

Similar to the way it was done in Sec. 3.1.2 the superblock Hamiltonian

Ĥ
(1)
Super = − J

{
â†1â2 + â†2â1 + â†2â3 + â†3â2

}

+ ε1n̂1 + ε2n̂2 + ε3n̂3

+
U

2

{
n̂1(n̂1 − 1) + n̂2(n̂2 − 1) + n̂3(n̂3 − 1)

}
(4.8)

can be separated and cast in the form

Ĥ
(1)
Super = Ĥ

(1)
B + Ĥ

(1)
BS + Ĥ

(1)
S (4.9)

with

Ĥ
(1)
B = −J

{
â†1â2 + â†2â1

}
+ ε1n̂1 + ε2n̂2 +

U

2

{
n̂1(n̂1 − 1) + n̂2(n̂2 − 1)

}

Ĥ
(1)
BS = −J

{
â†2â3 + â†3â2

}

Ĥ
(1)
S = +

U

2

{
n̂3(n̂3 − 1)

}
. (4.10)

The upper index denotes the iteration step. Using the creation and annihilation
operators represented in the block and site basis from (4.10) one immediately
obtains the block and site Hamiltonian, Ĥ

(1)
B and Ĥ

(1)
S , represented in their

respective basis. Single creation â†i or annihilation operators âj do not con-
serve the particle number, however, the operator products â†i âj of creation and
annihilation operators appearing in the Hamiltonians do. Therefore the Hamil-
tonians only connect number states with same particle numbers which means
that the Hamiltonians are block diagonal with respect to particle numbers and
take block form because the associated bases have been constructed sorted by
particle numbers.

In order to to be able to construct the operator products â†2â3 and â†3â2

appearing in Ĥ
(1)
BS , every operator has to be transfered into the superblock basis

separately. Therefore, a transformation of ĤB(1) and Ĥ
(1)
S is necessary as well

in order to be able to construct the superblock Hamiltonian via (4.9).
In line with the Ising model single operators do not connect states from

different Hilbert spaces so that in superblock basis representation the matrix
elements

(O)kk′,ll′ = 〈k l|Ô|k′ l′〉
of H

(1)
B and H

(1)
S and the operators needed to compose H

(1)
BS are given by

(
H

(1)
B

)
kk′,ll′

=
(
H

(1)
B

)
kk′

δll′

(
H

(1)
S

)
kk′,ll′

= δkk′
(
H

(1)
S

)
ll′

(
â†2

)
kk′,ll′

=
(
â†2

)
kk′

δll′

(
â2

)
kk′,ll′

=
(
â2

)
kk′

δll′
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(
â†3

)
kk′,ll′

= δkk′
(
â†3

)
ll′(

â3

)
kk′,ll′

= δkk′
(
â3

)
ll′

. (4.11)

Hence using (4.9) one obtains the superblock Hamiltonian.

4.4 Transformation

After having determined the superblock Hamiltonian, it has to be transformed
into a truncated eigenbasis. This transformation causes a problem with the
assignment of basis vectors to particle numbers because after the first trans-
formation the basis vectors do not correspond to a simple occupation number
representation anymore. Nonetheless an assignment to particle numbers is im-
perative since at the end of the NRG procedure one wants to have the result for
a particular filling fraction. Here the block structure of the block and superblock
Hamiltonian turn out to be useful.

4.4.1 Diagonalization of Block Matrices

Consider a square matrix M of dimension m that has block form with sub-blocks
kj . M is represented in the basis

{
|αi〉

}
. (4.12)

Each sub-block kj is spanned by a set of basis vectors

|α(kj)
i 〉 ε

{
|αi〉

}
(4.13)

that do not contribute to matrix elements outside of kj . Eigenvectors of M will
only be superpositions of basis vectors to one sub-block at a time.

Therefore, the diagonalization matrix Tfull built up from eigenvectors of M

(notation as in (3.29))

Tfull =




↑ ↑
〈α|E1〉 . . . α|Em〉
↓ ↓


 (4.14)

can be brought into a block form with sub-blocks tj that is identical to the block
structure of M. After diagonalization

M ′ =
(
Tfull

)T

M Tfull (4.15)

M ′ trivially has block form with diagonal sub-blocks k′j which also can be ob-
tained by

k′j =
(
tj

)T

. kj . tj . (4.16)

So the problem of diagonalizing a square matrix in block form M can be dis-
sected into their sub-block’s diagonalization.
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4.4.2 Transformation of the Superblock Hamiltonian

The aim is to rotate the superblock Hamiltonian into an eigenbasis in which
it has the dimension and block structure of the block Hamiltonian. Since the
superblock basis is the product basis of block and site basis, the superblock
Hamiltonian will contain more sub-blocks with different particle numbers than
the block Hamiltonian does. Using a transformation matrix built up from the
DB lowest eigenvectors, the dimension can be reduced as desired but the trans-
formed matrix will still have the number of sub-blocks the original superblock
Hamiltonian. So the block form of the block Hamiltonian can only be repro-
duced by restriction to certain sub-spaces that will be transformed following
Sec. 4.4.1.

According to Sec. 4.4.1, each sub-block of the superblock Hamiltonian is
transformed into a certain sub-block of the block Hamiltonian. In general, a sub-
block in the superblock Hamiltonian has greater dimension than its target block
in the block Hamiltonian. So it has to be transformed by a rectangular matrix
built up from the low-energy eigenstates, as described in Sec. 3.1.2. So, there
are two different mechanisms that reduces the dimension of the transformed
superblock Hamiltonian: The restriction to certain sub-blocks and the reduction
of the dimensions of the transformed blocks.

The transition from the block Hamiltonian H
(k)
B to the new block Hamilto-

nian H
(k+1)
B corresponds to an increase of the system size by the site system.

Therefore, the transformation will be chosen such that the particle numbers as-
sociated to sub-blocks in the block Hamiltonian grow by the average occupation
number of the site system.

4.4.3 Transformation Matrix

Since only selected sub-blocks will be transformed it is convenient to introduce
a superblock basis that has been reduced to the particle numbers one needs
in the following, called the reduced superblock basis, and to represent the su-
perblock Hamiltonian in this reduced basis. In order to directly use the trans-
formation matrix constructed below, this reduced superblock basis should be
sorted by particle numbers, so that all operators expressed in this basis assume
block form. The transformation matrix that transforms this reduced superblock
Hamitonian then has DB columns and its number of rows matches the dimen-
sion of the reduced superblock basis. Furthermore, as discussed in Sec. 4.4.1
the transformation matrix has block form, whereby each block is responsible
for the transformation of a certain sub-block of the superblock Hamiltonian.
The structure of a sub-block in the transformation matrix is determined by the
initial and the target sub-block (Fig. 4.3). The number of columns of such
a transformation matrix’s sub-block matches the dimension of the target sub-
block in the block Hamiltonian and the number of rows matches the dimension
of the sub-block in the superblock Hamiltonian that has to be transformed. In
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Di

Di Di

Dt

Di

Sub−block of the Super−
block Hamiltonian with
dimension

Rows and columns of
the transformation matrix
are determined by the
dimension of the sub−
blocks that are transformed
into each other

Dt

Dt

Dt

Target sub−block
  in the block
Hamilton matrix
with dimension

Figure 4.3: Rows and columns of a sub-block of the transformation matrix.

the transformation matrix a sub-block to a given particle number consists of the
low-energy eigenvectors to this given particle number

T =




↑
〈αN=n|E(N=n)

1 〉
↓

↑ ↑
〈αN=n+1|E(N=n+1)

1 〉 〈αN=n+1|E(N=n+1)
2 〉

↓ ↓
. . .




.

(4.17)

4.4.4 Transformation of the Operators

After transforming the superblock Hamiltonian block Hamiltonian for the next
iteration step is known. In addition to the superblock Hamiltonian the operators
that act in the Hilbert space of the new block that are needed to construct Ĥ

(2)
BS

have to be transformed too. Ĥ
(k)
BS is composed of the operators â

(†)
B and â

(†)
S

on the border between block and site. After the first transformation the block
basis contains no (at least no directly accessible) information about occupation
numbers. Therefore, a consideration of operators that act on certain lattice sites
is no longer possible. However one can interprete â

(†)
B as boundary operators of

the block and transform them using the transformation matrix constructed in
Sec. 4.4.3. Since this transformation matrix is designed to transform matrices
represented in the reduced superblock basis, the boundary operators have to be
expressed in the reduced superblock basis before the transformation.
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4.5 Starting the Next Iteration

After the transformation of the superblock Hamiltonian and the block boundary
operators into the new block basis the next iteration can be started. The new
site basis is identical to the old one and the representations of the site operators
do not change. The relations (4.11) still hold for the operators in the next
iteration step so they can be expressed in the new superbasis although there
is no simple occupation number representation anymore. The iteration is done
until the desired number of lattice sites is reached. The diagonal matrix elements
of the block Hamiltonian then are the energies and one can take out the ones
to the desired particle number.

4.6 Transformation for Filling Factor 1

At the beginning the size of the block and the site subsystem was determined
by choosing a certain number of lattice sites and a range of particle numbers
their associated bases should contain. The concrete choice of sub-blocks of the
superblock Hamiltonian depends on the problem that is to be solved and the
parameters that determines the block and site bases. In the following only
systems with equal numbers of lattice sites and particles are considered (filling
factor 1).

4.6.1 Consideration of All Particle Numbers

A system of N = 5 particles and I = 5 lattice sites now serves as an example.
The block sub-system shall include 2 lattice sites and the site system a single
lattice site. The problem takes the easiest form if each block and site basis
contain the range of particle numbers from 0 up to the maximum value N .
Obviously, states to a particle number N ′ > N (i.e. a sub-system contains more
particles than the total system) will not contribute to the solution.

If block and site basis contain a range of particle number from 0 up to 5
then the superblock basis will exhibit particle numbers from 0 to 10. However,
the sub-spaces to particle numbers N ′ > N can be discarded and the remaining
(≡ reduced) superblock Hamiltonian is transformed on the block Hamiltonian
in a way that sub-blocks to certain particle numbers are mapped onto sub-
blocks to the same particle numbers (Fig. 4.4). In this way in the last iteration
step all sub-spaces to particle numbers inherent in the block and site basis will
contribute to the solution. For example the block Hamiltonian sub-block to
particle number 5 will combine with the site Hamiltonian sub-block to particle
number 0 to form a part of the superblock Hamiltonian sub-block to particle
number 5 in which one will search for the total system’s solution. Furthermore,
the superblock Hamiltonian sub-block to the desired particle number has the
largest dimension. This makes sense since with growing Hilbert spaces the
information about the prevailing system grows as well.
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Figure 4.4: Transformation if block and site bases take all particle numbers into ac-
count.

4.6.2 Consideration of fewer Particle Numbers

If the block and site basis do not take into account all particle numbers from
0 up to N the transformation style has to change. Let the block and site basis
of Sec. 4.6.1 contain a range of particle numbers from 0 to 4, then a trans-
formation like in Sec. 4.6.1 is no longer convenient. In the last iteration step
sub-blocks will appear in the block and site Hamiltonian that cannot contribute
to the solution (in this example the sub-blocks to particle number 0). In the last
iteration step the block basis should take the form shown in Fig. 4.5. Therefore,
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Figure 4.5: Transformation if block and site bases do not take all particle numbers into
account.

one transformation has to raise the particle numbers of the block basis by trans-
forming sub-blocks to particle numbers n + 1 of the superblock Hamiltonian to
sub-blocks to particle numbers n of the block Hamiltonian. In the case of sys-
tems with filling factor 1 it makes sense to increase the particle number as late
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as possible. Furthermore, as in Sec. 4.6.1, from dimensional considerations it
follows that the desired particle number has to be the maximum particle num-
ber in the block basis. In this way one makes sure that in each iteration step
the maximum of information is used.
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Chapter 5

Results

All NRG calculations were performed with the Mathematica notebook presented
in the appendix. In the case of the Hubbard model the NRG method itself allows
a number of variations like the modification of the block size or the choice of
specific boundary conditions that will have an impact on the numerical results.
The influence of the trapping potential on the Hamiltonian (2.26) has not been
considered, i.e. εi ≡ 0.

The NRG method proves itself capable to reproduce qualitatively the de-
pendence of the ground-state energy on the interaction strength U/J . Figure
5.1 shows two sets of results from NRG using different basis dimensions in com-
parison to the exact solution.
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Figure 5.1: Results of the NRG method applied to an I = N = 8 system with different
accuracies in comparison with the exact solutions. Left: 2-site block basis
with dimension 10; Right: 2-site block basis with dimension 78.

As expected the energies converge to the exact result in the limit of strong
interaction U À J , where the exact ground states essentially consist only of a
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few eigenstates with low fluctuations.

5.1 Influence of Basis Dimensions

The goal of the NRG method is the reduction of the Hilbert space dimension
through an iterative truncation to reduce the computational effort. The dimen-
sion the Hilbert space is truncated to at every iteration step is determined by
the choice of the initial block and the dimension of its associated basis. This
dimension depends on the number of sites the block consists of and the number
of particles that are taken into account. These will be the main parameters to
control the accuracy of the NRG.

5.1.1 2-Site Block Bases

The numerical results presented in this chapter were obtained with an initial
block basis consisting of 2 sites. Since we deal with NRG the size of the site
system will be fixed to one site but with variable number of particles. Block
and site basis will be chosen such that both have the same range of particle
numbers. Figure 5.2 introduces the notation for bases that will be used in the
following chapters.

B
1 2

{

n n

Number of
lattice sites

Range of
particle
numbers,

Basis type
B : Block basis
S : Site basis

Figure 5.2: Basis denotation used in the follwing.

Blockbasis Sitebasis

Sites Nmax Dim. Sites Nmax Dim.

B••
0,3 2 3 10 S•0,3 1 3 4

B••
0,6 2 6 15 S•0,6 1 6 7

B••
0,8 2 8 45 S•0,8 1 8 9

B••
0,11 2 11 78 S•0,11 1 11 12

Table 5.1: Block and site bases used in this chapter

Figure 5.3 shows the numerical results of the NRG method using bases from
table 5.1. It is evident that the absolute deviations from the exact energies
decrease with increasing U/J . As expected, in the domain of dominating inter-
action the NRG and the exact results are getting closer with increasing block
basis dimension. However, for U/J < 5 bases with smaller dimensions can lead
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to better results. Therefore, one can only expect an improvement of accuracy
with increasing basis dimensions in the domain of strong interaction.
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Figure 5.3: Absolute and percentage deviations of the numerical results to the exact
solution of an I = N = 11 system.

A block basis of dimension 78 provides good results for U/J ≥ 10. The
Hilbert space of the exact solution has a dimension of 350.000 so the NRG
block basis dimension is tiny what makes this result quite remarkable. For some
bases in spite of decreasing absolute deviations the relative deviations increase
because the absolute energy gets smaller similar to the behavior shown in Fig.
5.1.

5.1.2 3-Site Block Bases

For the solution of the I = N = 11 system from Sec. 5.1.1 it was sufficient to
consider particle numbers up to 11 because particle numbers greater than 11
will only produce new subspaces that will not contribute to the solution.

So the dimension of an initial block basis with fixed number of sites has
a limit beyond which an improvement of the NRG results is not possible. By
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choosing bases for block and site system that take into account particle numbers
from 0 up to the maximum number of particles one obtains the best achievable
results to a given block basis with fixed number of sites. Therefore, using a
2-site block basis, for the I = N = 11 system the limit dimension is determined
by B••

0,11 to 78 which is quite small.
To increase the block basis dimension anyway, the initial number of sites can

be increased. Table 5.2 lists the 3-site block bases and their dimensions used in
this chapter.

Blockbasis Sitebasis

Sites Nmax Dim. Sites Nmax Dim.

B•••
0,3 3 3 20 S•0,3 1 3 4

B•••
0,5 3 5 56 S•0,5 1 5 6

B•••
0,6 3 6 84 S•0,6 1 6 7

B•••
0,7 3 7 120 S•0,7 1 7 8

Table 5.2: Block and site bases used in this chapter

In comparison to a NRG using 2-site block bases B••
0,N the 3-site block bases

B•••
0,N (site basis each time S•0,N ) will lead to better results. Both bases contain

the same number of subspaces to particle numbers, but in the case of 3 initial
sites the dimension of each subspace is either equal or greater than in the 2-site
case.

Figure 5.5 compares results of the NRG using B••
0,N with the NRG using

B•••
0,N . Figure 5.4 illustrates the different growth of B••

0,N and B•••
0,N basis dimen-

sions for increasing N .
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Figure 5.4: Basis dimensions for 2- and 3-site bases with all particle numbers taken
into account.
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Figure 5.5: Absolute deviations of 2- and 3-site block bases to the exact solution of an
I = N = 11 system.

However, considering only the block basis dimension is not enough to esti-
mate the quality of the results. Figure 5.6 shows that a 3-site block basis with
larger dimension than a 2-site basis but with fewer particle-number sub-spaces
can yield less accurate results, especially in the domain of strong interaction.
Hence, the absence of subspaces has a greater negativ influence on the results
than a smaller dimension of these subspaces. Therefore, in practice one should
prefer a small number of sites but a large range of particle numbers.
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exact solution of an I = N = 11 system. Although the 3-site basis has a
larger dimension it provides worse results than the 2-site basis because its
range of particle numbers is smaller.
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5.2 Excited States

In addition to ground states the NRG method is able to produce approximations
for excited states too. Figure 5.7 shows NRG results using the bases B••

0,11, S
•
0,11

for the first excited state of an I = N = 11 system in comparison with the
exact results. The larger relative deviation that emerges around U/J ≈ 8 is a
consequence of the zero-crossing of the energy value. One obtains good results
for 20 ≤ U/J ≤ 30, where the relative deviation is clearly under 1 %.
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Figure 5.7: The NRG result for the first excited state of an I = N = 11 system in
comparison to the exakt solution.

Since the employed method is designed for the calculation of ground states it
is actually not quite correct for the excited states. One expects a loss of accuracy
with increasing energy of the excited state. For instance, without an adaption
of the choice of the eigenstates used for transformation a particle-number sub-
space of dimension 1 will always contain only the information of the ground state
and no information about any excitation. With increasing excitation level less
and less subspaces will contain information about the considered state. Figure
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5.8 shows the absolute deviations of NRG results for the first 50 respectively 60
excited states of a I = N = 9 resp. I = N = 10 system to the exact values.
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Figure 5.8: Absolue deviations of the numerical results to the exact solutions for the
excited states of an I = N = 9 and I = N = 10 system at fixed U/J = 20.

The tendency to worsen with excitation level is visible for the first 25 and
30 excited states, then a surprising phase of improvement of the NRG results
appears after which the deviations begin to worsen again.

5.3 Growing Lattices and Error Estimate

With growing lattice dimensions more iteration steps are necessary to solve the
problem. Since every iteration step is associated to a numerical error, one ex-
pects a decay of accuracy for growing lattices. Fig. 5.9 shows the best achievable
results of an initial 2-site block basis for growing lattices in comparison to the
exakt values.

5.3.1 Error Estimate

Considering the NRG solution of an I = N = 11 system using the bases
B••

0,11, S
•
0,11 one realizes that the way to this solution leads through the solutions

of all I ′ = N ′ systems with I ′ = N ′ < 11 (in this example, in the first iteration
step the I ′ = N ′ = 3 system is solved, in the second step the I ′ = N ′ = 4
system and so on). Since the initial bases take all particle numbers into account
from 0 up to 11, these interim results are the best achievable results for the
I ′ = N ′ < 11 systems.

Therefore the increase of the absolute deviations ∆i of two subsequent best
achievable results (the results from iteration steps i − 1 and i) represents the
error the NRG method produces in the iteration step i. Looking at Figure 5.9,
∆i seems to be approximately constant at a fixed U/J so this could be used for
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Figure 5.9: Absolute deviations of best achievable results from the exact solutions. For
larger systems these deviations grow since more iteration steps are needed
to solve the problem

a prediction of the error margins. Figure 5.10 (left) displays more precisely how
the best achievable results deviate more and more from the exakt solution with
each iteration step.
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Figure 5.10: Evolution of the error produced by the NRG procedure. Left: Absolute
deviations of the best achievable results of the first 8 iteration steps. Right:
Error produced between two iteration steps.

Figure 5.10 (right) shows the development of ∆i for a 2-site block basis at
fixed U/J = 25. ∆i seems not quite to be constant but shows a rather linear
dependence after the third iteration step. On the supposition that this behavior
holds for further iteration steps one can predict the error margin of the numerical
results for a I = N system for this special case of a 2-site block basis with all
particle numbers B••

0,N and fixed U/J = 25:
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∆U/J=25(I)
J

= 8.36 · 10−4 + 2.10 · 10−4 · I, I ≥ 3. (5.1)

A NRG calculation for the I = N = 20 system for U/J = 25 using
B••

0,20, S
•
0,20 yields as the best achievable result −3.076, so, if ∆i(I) keeps its

linearity, after (5.1) the exact value is estimated to be within the interval
−3.076± 0.005.

This error estimation applies to NRG results that employ bases that take all
particle numbers into account. Under these circumstances the error emerges
from the transformations of particle-number subspaces from the superblock
Hamiltonian with dimensions DSuper into subspaces from the block Hamilto-
nian with lesser dimensions DB < DSuper.

If the initial bases do not contain all particle numbers, in every iteration
step some subspaces have to be discarded because the block Hamiltonian does
not provide enough subspaces (see Sec. 4.6). So the choice of specific subspaces
that are transformed in every iteration step produces another error that can not
be treated as easily as the former consideration.

5.4 Periodic Boundary Conditions

So far, all results were calculated for box boundary conditions. This boundary
conditions force the wave functions to vanish at the border of the superblock

For homogeneous systems periodic boundary conditions are often used which
requires wave functions that obey

ψ(xbegin) = ψ(xend). (5.2)

For periodic boundary conditions, as discussed in Ref. [9], the renormaliza-
tion group yields results that are much worse than the open boundary counter-
parts, with relative deviations of up to 2000 %.
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Appendix A

NRG applied to the Hubbard
Model with Mathematica

A.1 Modules

This chapter presents the Mathematica notebook used for the NRG calcula-
tions. Some parts (A.1.1, A.1.3, A.1.10) were borrowed from Felix Schmitt’s
implementation of DMRG and many others were at least deeply inspired by
him.

The Mathematica environment provides an comparatively easy access to
a NRG calculation but it becomes apparent that it suffers from performance
problems. Surprisingly, not the actual diagonalization takes most of the CPU
time but the matrices’ transitions into different bases. Figure A.1 shows the
CPU time needed for the different procedures within the NRG calculation and
how this CPU times evolves with growing basis dimensions.
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Figure A.1: Comparison of the CPU time needed for the different operations for in-
creasing block and site basis dimensions.
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A.1.1 CreateBasis[]

CreateBasis[] creates the initial bases for the block and the site system. These
bases have to contain a certain range of particle numbers. Usually the minimum
particle number is 0 since usually one considers small filling rates.

These created bases have to be sorted by particle numbers so that the block
Hamiltonian gets block form in respect to particle numbers. The bases created
in CreateBasis[] are automatically sorted by particle numbers by the way they
are created so an explicit sorting will not be necessary.

A complete basis to a given particle number consists of all possible occupa-
tion number arrangements on the lattice sites whose sums yield this given parti-
cle number. This is exactly what Compositions[] does so Compositions[] will
have to be executed for each particle number of the range the basis contains,
and the results have to be stored in Basis.

Basis has to be flatted one level to get a form in which Basis denotes the
ith basis vector.

CreateBasis[SitesNumber_, ParticlesNumberMin_, ParticlesNumberMax_] :=
Module[{ Basis, ParticleNumbersLoop },

Basis = {};

For[ ParticleNumbersLoop = ParticlesNumberMin,
ParticleNumbersLoop <= ParticlesNumberMax,
ParticleNumbersLoop++,

Basis = Append[Basis, Compositions[ParticleNumbersLoop, SitesNumber]];
]; (* For ParticleNumbersLoop *)

Basis = Flatten[Basis, 1];

Return[Basis];
]; (* Module *)

A.1.2 CreateTransformationsList[]

According to Sec. 4.4 the transformation matrix transforms sub-spaces to par-
ticle numbers of the superblock and the block Hamiltonian into each other.
The information which sub-spaces are transformed whereto will be stored in
TransformationsList.

This module only works properly for filling factor 1 so it will have to be
modified for other filling rates. Alternatively, TransformationsList can in
case of need easily be created by hand too.

TransformationsList exhibits the structure

{ { {SH
(1)
1 , BH

(1)
1 }, {SH

(1)
2 , BH

(1)
2 }, . . . },

{ {SH
(2)
1 , BH

(2)
1 }, {SH

(2)
2 , BH

(2)
2 }, . . . },

...

{ {SH
(k)
1 , BH

(k)
1 }, {SH

(k)
2 , BH

(k)
2 }, . . . } }
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where adjoined SH
(t)
i , BH

(t)
i denote particle numbers to the sub-spaces of block

and superblock Hamiltonian that are to be transformed into each other in itera-
tion step t. For example a transformation list for the case that the first iteration
sub-spaces to the same particle number and in the second iteration step sub-
spaces of the superblock Hamiltonian to particle numbers n+1 are transformed
into sub-spaces of the block Hamiltonian to particle numbers n (as it would be
for the solution of an I = N = 5 system using B•••

0,4 , S•0,4) is given by

{ { {0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}},
{ {1, 0}, {2, 1}, {3, 2}, {4, 3}, {5, 4}} }.

The entries each for the block and superblock particle numbers have to be rising
to be properly evaluated.
CreateTransformationsList[] :=

Module[{ RaisingTransformationsNumber,ConstantTransformationsNumber,
ConstantTransformationsLoop, RaisingTransformationsLoop,
TransformationsList, Transformation },

TransformationsList = {};

RaisingTransformationsNumber = FinalParticlesNumber - BlockBasisParticlesNumberMax;
ConstantTransformationsNumber = IterationsNumber - RaisingTransformationsNumber;

For[ ConstantTransformationsLoop = 1,
ConstantTransformationsLoop <= ConstantTransformationsNumber,
ConstantTransformationsLoop++,

Transformation = Table[{ BlockBasisParticlesNumberMin + Loop - 1,
BlockBasisParticlesNumberMin + Loop - 1 },

{ Loop,
BlockBasisParticlesNumberMin - BlockBasisParticlesNumberMin + 1,
BlockBasisParticlesNumberMax - BlockBasisParticlesNumberMin + 1 }

]; (* Table *)

TransformationsList = Append[TransformationsList, Transformation];
]; (* For ConstantTransformationsLoop *)

For[ RaisingTransformationsLoop = 1,
RaisingTransformationsLoop <= RaisingTransformationsNumber,
RaisingTransformationsLoop++,

Transformation = Table[
{ BlockBasisParticlesNumberMin + Loop - 1 + RaisingTransformationsLoop,

BlockBasisParticlesNumberMin + Loop - 1 + RaisingTransformationsLoop - 1 },
{ Loop,
BlockBasisParticlesNumberMin - BlockBasisParticlesNumberMin + 1,
BlockBasisParticlesNumberMax - BlockBasisParticlesNumberMin + 1 }

]; (* Table *)

TransformationsList = Append[TransformationsList, Transformation];
]; (* For RaisingTransformationsNumber *)

Return[TransformationsList];
];

A.1.3 CreateCreatorAnnihilatorMatrices[]

The Hamiltonian of an I-lattice site system (2.26) can completely be expressed
by the use of creation and annihilation operators acting on the lattice sites. For

43



this reason these operators are calculated for each lattice site and from them the
single terms of the Hamiltonian are constructed. Depending on the basis which
is given to the module the operators for the block or for the site are calculated.

Submodul: CreateAnnihilatorMatricesOnSite[]

This sub-module calculates the annihilation operator matrices for a given lattice
site. The matrix elements are given by

(â)ij = 〈i|â|j〉 (A.1)

where for annihilation operators

â|n〉 =
√

n|n− 1〉 (A.2)

holds (boson).
A matrix element 〈i|â|j〉 exists if the new state â|j〉 that arises from applying

the operator on |j〉 is part of the basis too. Then the basis states |j〉 and |i〉
are connected by the operator â, the matrix element is given by (A.1.3) and its
position within the matrix is determined by |j〉 and |i〉’s positions within the
basis.

In general the creation operator is the annihilator’s adjoint operator so it
suffices to calculate the annihilator matrix elements only and get the creators
by transposition.

The module is called with the basis and the lattice site the operator is acting
on.

CreateAnnihilatorMatricesOnSite[Basis_, Site_] :=
Module[{ BasisDimension, TempVector, AnnihilatorMatrix,

BasisVectorLoop, MatrixElement, BasisVectorCompareLoop },

First the basis’ dimension is determined. The annihilator matrix then is a
square matrix of this dimension. This matrix is created as a sparse array so
that only the non-zero matrix elements have to be stored.

BasisDimension = Length[Basis];
AnnihilatorMatrix = SparseArray[{1, 1} -> 0, {BasisDimension, BasisDimension} ];

The annihilator is applied on each basis vector what regarding the occupa-
tion numbers means a decrease of the lattice site’s occupation number. If the
annihilator acts on the vacuum the matrix element is 0 and the loop can be
aborted. If not, the matrix element is calculated via (A.1.3).

For[ BasisVectorLoop = 1,
BasisVectorLoop <= BasisDimension,
BasisVectorLoop++,

TempVector = Basis[[BasisVectorLoop]];

TempVector[[RightDoubleBracket]]--;
If[ TempVector[[Site]] < 0, Continue[] ];

MatrixElement = Sqrt[ TempVector[[Site]] + 1];
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The new state TempVektor is compared with each basis vector. If TempVektor
matches an existing basis vector the matrix element is inserted at the right posi-
tion. Then the loop can be aborted since TempVektor can match only one basis
vector.

For[ BasisVectorCompareLoop = 1,
BasisVectorCompareLoop <= BasisDimension,
BasisVectorCompareLoop++,

If[ TempVector == Basis[[BasisVectorCompareLoop]],
AnnihilatorMatrix += SparseArray[

{BasisVectorCompareLoop, BasisVectorLoop} -> MatrixElement,
{BasisDimension, BasisDimension}

]; (* SparseArray *)
Break[];

]; (* If *)
]; (* For BasisVectorCompareLoop *)

After having applied the annihilator to all basis vectors the complete anni-
hilator matrix is returned.

Return[AnnihilatorMatrix];
]; (* Module *)

CreateCreatorAnnihilatorMatrices[]

Using the sub-module for all lattice sites the annihilator matrices are calcu-
lated and from then the creator matrices are gained which will successively be
stored in AnnihilatorMatrices and CreatorMatrices so one gets access to
the annihilator acting on ith lattice site the via AnnihilatorMatrices[[i]].

The corresponding basis has to be handed over to the module.

CreateCreatorAnnihilatorMatrices[Basis_] :=
Module[{ SitesNumber, TempMatrix, AnnihilatorMatrices,

CreatorMatrices, SitesLoop },

The number of lattice sites is determined by a basis vector’s length (number
of occupation number entries ≡ number of lattice sites).

SitesNumber = Length[ Basis[[1]] ];

AnnihilatorMatrices = {};
CreatorMatrices = {};

For each lattice sites the annihilator matrix is obtained using the sub-module
and is stored with its transpose in the corresponding list.

For[ SitesLoop = 1,
SitesLoop <= SitesNumber,
SitesLoop++,

TempMatrix = CreateAnnihilatorMatricesOnSite[Basis, SitesLoop];

AnnihilatorMatrices = Append[AnnihilatorMatrices, TempMatrix];

CreatorMatrices = Append[CreatorMatrices, Transpose[TempMatrix]];
]; (* For SitesLoop *)
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After the loop over all the lattice sites the complete lists can be returned.

Return[ { CreatorMatrices, AnnihilatorMatrices } ];
]; (* Module *)

CreateHamiltonMatrix[]

The Module CreateHamiltonMatrix[] creates depending on the basis and list
of operators that was handed over the Hamiltonians for block resp. site.

The tunneling term

−J

I−1∑

i=1

{
â†i âi+1 + â†i+1âi

}
(A.3)

is calculated and thereafter the interaction term

U

2

I∑

i=1

â†i â
†
i âiâi. (A.4)

CreateHamiltonMatrix[Basis_, CreatorMatrices_, AnnihilatorMatrices_] :=
Module[{ SitesLoop, SitesNumber, BasisDimension, HamiltonMatrix },

BasisDimension = Length[Basis];
HamiltonMatrix = SparseArray[ {1, 1} -> 0, {BasisDimension , BasisDimension } ];

SitesNumber = Length[ Basis[[1]] ];

For[ SitesLoop = 1,
SitesLoop <= SitesNumber - 1,
SitesLoop++,

HamiltonMatrix += - TunnelParameter *
( CreatorMatrices[[SitesLoop]] . AnnihilatorMatrices[[SitesLoop + 1]] +

CreatorMatrices[[SitesLoop + 1]] . AnnihilatorMatrices[[SitesLoop]] );
]; (* For SitesLoop *)

For[ SitesLoop = 1,
SitesLoop <= SitesNumber,
SitesLoop++,

HamiltonMatrix += InteractionParameter / 2 *
( CreatorMatrices[[SitesLoop]] . CreatorMatrices[[SitesLoop]] .

AnnihilatorMatrices[[SitesLoop]] . AnnihilatorMatrices[[SitesLoop]] );
]; (* For SitesLoop *)

Return[HamiltonMatrix];
]; (* Module *)

OperatorsInFullHilbertSpace

The annihilation and creation operators as well as the block’s and site’s Hamil-
tonians were represented in their respective basis. To be able to construct the
block-site tunneling term HBS in the superblock Hamiltonian

HSuper = HB + HBS + HS (A.5)

a transfer of these operators into the superblock basis has to take place. More
precisely, only the block and site Hamiltonians and the boundary operators of
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block and site have to be transfered. The matrix elements in this basis are given
by (4.11). There are two separated modules for the block and site operators since
the site operators has to transfered only once.

SiteOperatorsInFullHilbertSpace[SiteOperator_] :=
Module[{ SiteOperator4D, ArrayRulesListe,

OperatorMatrixElementLoop,
DeltaLoop, RowPositionMatrixElement,
ColoumnPositionMatrixElement },

The operator in the superblock Hilbert space is created as a 4D object since
a matrix element (O)kk′ll′ has 4 indices. Into ArrayRulesList the replacement
rules for the matrix elements are loaded. Using this list, one gets direct access to
the non-zero matrix elements and no loop over the whole object will be needed.

SiteOperator4D = SparseArray[ {1, 1, 1, 1} -> 0,
{ BlockBasisDimension, BlockBasisDimension,

SiteBasisDimension, SiteBasisDimension }
]; (* SparseArray *)

ArrayRulesListe = ArrayRules[SiteOperator];

Each matrix element is read in from the old operator representation. The
loop runs only to Length[ArrayRulesList] -1 because the last entry of
ArrayRulesList contains noinformation about a matrix element.

For[ OperatorMatrixElementLoop = 1,
OperatorMatrixElementLoop <= Length[ArrayRulesListe] - 1,
OperatorMatrixElementLoop++,

RowPositionMatrixElement = ArrayRulesListe[[OperatorMatrixElementLoop, 1, 1]];
ColoumnPositionMatrixElement = ArrayRulesListe[[OperatorMatrixElementLoop, 1, 2]];

MatrixElement = ArrayRulesListe[[OperatorMatrixElementLoop, 2]];

The matrix element (O)ll′ of a site operator will in the 4D objects appear
plurally, after (4.11) at all positions (kk′ll′) where the block basis vectors are
equally k = k′.

For[ DeltaLoop = 1,
DeltaLoop <= BlockBasisDimension,
DeltaLoop++,

SiteOperator4D[[ DeltaLoop, DeltaLoop,
RowPositionMatrixElement, ColoumnPositionMatrixElement

]] = MatrixElement;
]; (* For DeltaLoop *)

]; (* For OperatorMatrixElementLoop *)
Return[SiteOperator4D ];

];

The same, slightly adapted, considerations hold for the block operators.

BlockOperatorsInFullHilbertSpace[BlockOperator_] :=
Module[{ BlockOperator4D, ArrayRulesListe,

OperatorMatrixElementLoop, DeltaLoop,
RowPositionMatrixElement, ColoumnPositionMatrixElement },
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BlockOperator4D = SparseArray[ {1, 1, 1, 1} -> 0,
{ BlockBasisDimension, BlockBasisDimension,

SiteBasisDimension, SiteBasisDimension }
]; (* SparseArray *)

ArrayRulesListe = ArrayRules[BlockOperator];

For[ OperatorMatrixElementLoop = 1,
OperatorMatrixElementLoop <= Length[ArrayRulesListe] - 1,
OperatorMatrixElementLoop++,

RowPositionMatrixElement = ArrayRulesListe[[OperatorMatrixElementLoop, 1, 1]];

ColoumnPositionMatrixElement = ArrayRulesListe[[OperatorMatrixElementLoop, 1, 2]];

MatrixElement = ArrayRulesListe[[OperatorMatrixElementLoop, 2]];

For[ DeltaLoop = 1,
DeltaLoop <= SiteBasisDimension,
DeltaLoop++,

BlockOperator4D[[ RowPositionMatrixElement, ColoumnPositionMatrixElement,
DeltaLoop, DeltaLoop ]] = MatrixElement;

]; (* For DeltaLoop *)
]; (* For OperatorMatrixElementLoop *)

Return[BlockOperator4D];
]; (* Module *)

A.1.4 ParticlesNumberInState[]

In various situations it will be necessary to know the particle number of a given
state. This particle number is simply determined by the sum over all occupation
numbers.

ParticlesNumberInState[State_] :=
Module[{ TempState, SitesNumber, SitesLoop, ParticlesNumber },

TempState = Flatten[State];
SitesNumber = Length[TempState];

ParticlesNumber = Sum[TempState[[SitesLoop]], {SitesLoop, 1, SitesNumber} ];
Return[ParticlesNumber];

]; (* Module *)

A.1.5 CreateSuperBasis[]

The superblock basis is the product basis from the block and the site basis. This
"full superblock basis" and therefore the superblock Hamiltonian contains the
range of particle numbers

NBlock, min + NSite, min ... NBlock, max + NSite, max . (A.6)

The superblock Hamiltonian doesn’t have to be diagonalized for all these particle
numbers, but for those occuring in the transformation list. That is why besides
the full superblock basis the reduced superblock basis is created which only
consists of basis vectors with needed particle numbers. The whole information

48



needed then stands in the superblock Hamiltonian expressed in the reduced
superblock basis.

However, one can not express the operators in the reduced superblock basis
from the beginning because some matrix elements will be lost. This happens be-
cause single creation or annihilation operators do not conserve particle numbers
but the occuring operator products of annihilators and creators do.

CreateSuperBasis[] :=
Module[{ ParticlesNumberMin, ParticlesNumberMax, SiteBasisLoop, BlockBasisLoop,

ReducedSuperBasis, FullSuperBasis, ParticlesNumber },

The reduced superbasis’ range of particle numbers has to be determined.
Since this range of particle numbers contains all the particle numbers whose
sub-blocks shall be transformed one finds the needed information in the trans-
formation list.

ParticlesNumberMin = Min[Transpose[Transformations[[IterationsLoop]]] [[1]] ];
ParticlesNumberMax = Max[Transpose[Transformations[[IterationsLoop]]] [[1]] ];

ReducedSuperBasis = {};
FullSuperBasis = {};

The full superblock basis yields from all possible combinations of a block
and a site basis vector.

For[ SiteBasisLoop = 1,
SiteBasisLoop <= SiteBasisDimension,
SiteBasisLoop++,

For[ BlockBasisLoop = 1,
BlockBasisLoop <= BlockBasisDimension,
BlockBasisLoop++,

FullSuperBasis = Append[FullSuperBasis,
{ BlockBasis[[BlockBasisLoop]], SiteBasis[[SiteBasisLoop]] }

]; (* Append *)

To find the reduced superblock’s basis vectors the particle number of each
created vector is determined. If this particle number lies within the range the
reduced superblock’s basis particle numbers it will be appended to
ReducedSuperBasis.

ParticlesNumber = ParticlesNumberInState[{ BlockBasis[[BlockBasisLoop]],
SiteBasis[[SiteBasisLoop]] }];

If[ Or[ParticlesNumber < ParticlesNumberMin,
ParticlesNumber > ParticlesNumberMax],
Continue[];

]; (* If *)

ReducedSuperBasis = Append[ReducedSuperBasis,
{ BlockBasis[[BlockBasisLoop]], SiteBasis[[SiteBasisLoop]] }

]; (* Append *)
]; (* For BlockBasisLoop *)

]; (* For SiteBasisLoop *)
Return[{FullSuperBasis, ReducedSuperBasis}];

]; (* Module *)
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A.1.6 OperatorMap2D[]

Since the annihilators, creators and Hamiltonians exist as 4D objects they
have to be mapped to a 2D form to be able to build their matrix products
from the rules of matrix multiplication. After mapping they are represented
in the full superblock basis which then conforms to the basis constructed via
CreateSuperBasis[].

OperatorMap2D[Operator_] :=
Module[{ Operator2D, MatrixElementsNumber, MatrixElementLoop,

BlockRowPosition, BlockColumnPosition, SiteRowPosition,
SiteColumnPosition },

Operator2D = SparseArray[ {1, 1} -> 0,
{ SiteBasisDimension*BlockBasisDimension,

SiteBasisDimension*BlockBasisDimension }
]; (* SparseArray *)

ArrayRulesListe = ArrayRules[Operator];

MatrixElementsNumber = Length[ArrayRules[Operator]] - 1;

For[ MatrixElementLoop = 1,
MatrixElementLoop <= MatrixElementsNumber,
MatrixElementLoop++,

MatrixElement = ArrayRulesListe[[MatrixElementLoop, 2]];

BlockRowPosition = ArrayRulesListe[[MatrixElementLoop, 1, 1]];
BlockColumnPosition = ArrayRulesListe[[MatrixElementLoop, 1, 2]];

SiteRowPosition = ArrayRulesListe[[MatrixElementLoop, 1, 3]];
SiteColumnPosition = ArrayRulesListe[[MatrixElementLoop, 1, 4]];

Operator2D[[(SiteRowPosition - 1)*BlockBasisDimension + BlockRowPosition,
(SiteColumnPosition - 1)*BlockBasisDimension + BlockColumnPosition

]] = MatrixElement;
]; (* For MatrixElementLoop *)

Return[Operator2D];
]; (* Module *)

A.1.7 CreateSuperHamiltonMatrix[]

The superblock Hamiltonian is given by

HSuper = HB + HBS + HS (A.7)

with the block-site tunneling matrix HBS

HBS = −J
(
â†B âS + â†S âB

)
(A.8)

where â
(†)
B,S denote the boundary creation and annihilation operators on the

border between block and site. Since these operators are expressed in the full
superblock basis the superblock Hamiltonian constructed this way still contains
all particle numbers (A.6).
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CreateSuperHamiltonMatrix[] :=
Module[{ BlockSiteTunnelMatrix2D, SuperHamiltonMatrix },

BlockSiteTunnelMatrix2D = - TunnelParameter *
( BlockBoundaryCreator2D . SiteBoundaryAnnihilator2D +

SiteBoundaryCreator2D . BlockBoundaryAnnihilator2D );

SuperHamiltonMatrix = BlockHamiltonMatrix2D + BlockSiteTunnelMatrix2D + SiteHamiltonMatrix2D;

Return[SuperHamiltonMatrix];
]; (* Module *)

A.1.8 OperatorInReducedSuperBasis[]

Expressing the superblock Hamiltonian in the reduced superblock Basis has
several advantages. The superblock Hamiltonian is block diagonal with respect
to particle numbers and by the transistion into the reduced superblock basis the
sub-blocks to unneeded particle numbers are dropped. For the construction of
the transformation matrix one will have to diagonalize each sub-block separately
and the transition into the reduced superblock basis makes sure that all existing
sub-blocks have to be diagonalized. Furthermore, all operator matrices that
shall be transformed have to be expressed in the reduced superblock basis.

Same as in CreateSuperBasis[] the range of particle numbers is gained
from the transformation list. The module checks which basis states from the
full superblock basis do not lie in the desired range of particle numbers and
deletes the corresponding rows and columns from the matrices. This works
because the 2D map conserves the sorting of the superblock’s basis states. One
has to start from behind because deleting rows and columns affect the following
rows’ and lines’ positions.

OperatorInReducedSuperBasis[Operator2D_] :=
Module[{ ParticlesNumberMin, ParticlesNumberMax,

ReducedOperator, FullSuperBasisLoop },

ParticlesNumberMin = Min[Transpose[Transformations[[IterationsLoop]]] [[1]] ];
ParticlesNumberMax = Max[Transpose[Transformations[[IterationsLoop]]] [[1]] ];

ReducedOperator2D = Operator2D;

For[ FullSuperBasisLoop = Length[FullSuperBasis],
FullSuperBasisLoop >= 1 ,
FullSuperBasisLoop--,

ParticlesNumber = ParticlesNumberInState[FullSuperBasis[[FullSuperBasisLoop]] ];

If[ Or[ ParticlesNumber < ParticlesNumberMin,
ParticlesNumber > ParticlesNumberMax ],

ReducedOperator2D = Delete[ReducedOperator2D, FullSuperBasisLoop];
ReducedOperator2D = Transpose[

Delete[Transpose[ReducedOperator2D], FullSuperBasisLoop]
]; (* Transpose *)

]; (* If *)
]; (* For FullSuperBasisLoop*)

Return[ReducedOperator2D];
]; (* Module *)
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A.1.9 CreatePositionsList[]

CreatePositionsList[] returns two different things. PositionsList is needed
to build the sorting matrix. This matrix will later be used to transfer the reduced
superblock Hamiltonian and other operator matrices into a basis in which they
have block form. ParticleSpaceDimensions provides the information on how
big a sub-space to a given particle number is in this basis. This information will
be needed at very least when the transformation matrix is built.

CreatePositionsList[Basis_] :=
Module[{ BasisDimension, ParticlesNumberListe, ParticlesNumberMax,

ParticlesNumberMin, BasisLoop, ColoumnLoop, ParticlesNumber,
PositionsList, ParticlesNumberLoop, ParticleSpaceDimensions },

First the range of particle number of the basis is determined. Since this mod-
ule works with any basis this range can not be gained from the transformations
list (that only provides the particle numbers of the reduced superblock basis).
Using Map[] the particle number to each basis state is determined and stored in
ParticlesNumberList. Minimum and maximum numbers are obtained directly
from this list.

BasisDimension = Length[Basis];

ParticlesNumberList = Map[ParticlesNumberInState, Basis];
ParticlesNumberMin = Min[ParticlesNumberList];
ParticlesNumberMax = Max[ParticlesNumberList];

At the end PositionsList is supposed to have the structure

{ { p1(Nmin), p2(Nmin), . . . },
{ p1(Nmin + 1), p2(Nmin + 1), . . . },
...

{ p1(Nmax), p2(Nmax), . . . } }
where pj(N) denotes the position of the jth basis vector to particle number N .
So PositionsList is created as list with ParticlesNumberMax+1 empty sub-
lists. ParticlesNumberMax+1 since 0 is a possible value for ParticlesNumberMin.
However, if ParticlesNumberMin > 0 one has created too many sub-lists so that
at the end these surplus lists will be deleted. This way it is easier to store the
positions.

PositionsList = Table[{}, {ColoumnLoop, 1, ParticlesNumberMax + 1}];

The particle number Ni of each basis vector i is determined and stored in
the Ni + 1th sub-list of PositionsList.

For[ BasisLoop = 1,
BasisLoop <= BasisDimension,
BasisLoop++,

ParticlesNumber = ParticlesNumberInState[Basis[[BasisLoop]]];
PositionsList[[ParticlesNumber + 1]] =

Append[ PositionsList[[ParticlesNumber + 1]], BasisLoop];
]; (* For BasisLoop *)
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Now the surplus sub-lists are deleted. The kth sub-list corresponds to par-
ticle number k + 1 so PositionsList gets the desired form.

PositionsList = Drop[PositionsList, ParticlesNumberMin];

The determination of the sub-spaces’ dimensions confines on counting the
basis vectors to a given particle number. This number can directly be obtained
by the number of entries of the corresponding sub-lists in PositionsList.

ParticleSpaceDimensions is supposed to have the form

{ { Nmin, dim (Nmin)},
{ Nmin + 1, dim (Nmin + 1)},
...

{ Nmax, dim (Nmax)} } .

ParticleSpaceDimensions = {};

For[ ParticlesNumberLoop = 1,
ParticlesNumberLoop <= Length[PositionsList],
ParticlesNumberLoop++,

ParticlesNumber = ParticlesNumberMin + ParticlesNumberLoop - 1;

ParticleSpaceDimensions = Append[ ParticleSpaceDimensions,
{ ParticlesNumber, Length[PositionsList[[ParticlesNumberLoop]]] }

]; (* Append *)
]; (* For ParticlesNumberLoop *)

Return[{PositionsList, ParticleSpaceDimensions}];
]; (* Module *)

A.1.10 CreateSortMatrix[]

The sorting matrix’ task is to transfer operators expressed in the reduced su-
perblock basis into the same basis that is sorted by particle numbers so that the
operators get block form with respect to particle numbers.

CreateSortMatrix[] :=
Module[{ PositionsList, SortMatrix, SuperBasisLoop },

PositionsList = CreatePositionsList[SuperBasis][[1]];

The sorting matrix shall exchange rows and columns of the operator matri-
ces. This can be achieved by an identity matrix whose entries are shifted in
the right way. For example, an identity matrix 1′ where the ith and jth row
has been exchanged will, when applied to another matrix M , exchange M ’s ith
and jth columns. Therefore, 1′ M 1′T will exchange M ’s ith and jth rows and
columns as desired in this case.

SortMatrix = SparseArray[{1, 1} -> 0, {SuperBasisDimension, SuperBasisDimension}];

For[ SuperBasisLoop = 1,
SuperBasisLoop <= SuperBasisDimension,
SuperBasisLoop++,
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SortMatrix += SparseArray[
{SuperBasisLoop, Flatten[PositionsList][[ SuperBasisLoop]]} -> 1,
{SuperBasisDimension, SuperBasisDimension}

]; (* SparseArray *)
]; (* For SuperBasisLoop *)

Return[SortMatrix];
]; (* Module *)

A.1.11 CreateSortetSuperHamiltonEigenSystems[]

This module solves the eigenvalue problem of the reduced superblock Hamil-
tonian that, according to Sec. 4.4.1 can be solved for each sub-space to parti-
cle numbers seperately. The Hamiltonian has been sorted by the sorting ma-
trix so it has block form which will be used to direct access to the sub-spaces
to particle numbers. The dimensions of these sub-spaces have been stored in
SuperHamiltonParticleSpaceDimensions.

CreateSortetSuperHamiltonEigenSystems[] :=
Module[{ SubSpacesNumber, SubSpaceLoop, ParticleSpacePosition,

SubSpaceDimension, SubSpace, SubSpaceEigenSystem,
SuperHamiltonEigenSystems },

SuperHamiltonEigenSystems = {};
SubSpacesNumber = Length[SuperHamiltonParticleSpaceDimensions];

ParticleSpacePosition, ParticleSpacePosition denotes the positions
of the sub-block in the (reduced and sorted) superblock Hamilonian. SubMatrix[]
takes these sub-blocks at these positions using the dimensions from
SuperHamiltonParticleSpaceDimensions. Since SubMatrix[] does not work
with SparseArrays one has to transfer them to the standard matrix form first.

ParticleSpacePosition = 1;

For[ SubSpaceLoop = 1,
SubSpaceLoop <= SubSpacesNumber,
SubSpaceLoop++,

SubSpaceDimension = SuperHamiltonParticleSpaceDimensions[[SubSpaceLoop, 2]];
SubSpace = SubMatrix[ Normal[SortetSuperHamiltonMatrix],

{ParticleSpacePosition, ParticleSpacePosition},
{SubSpaceDimension, SubSpaceDimension}

]; (* SubMatrix *)

For each sub-block the eigenvalue problem is solved. Since later eigenvec-
tors are selected by their energies the eigensystems are sorted by the energy
eigenvalues. All eigensystems are stored in SuperHamiltonEigenSystems.

SubSpaceEigenSystem = Eigensystem[N[SubSpace]] // Chop;
SubSpaceEigenSystem = Transpose[Sort[Transpose[SubSpaceEigenSystem]]];
SubSpaceEigenSystem[[2]] = Map[Normalize,SubSpaceEigenSystem[[2]]];

SuperHamiltonEigenSystems = Append[SuperHamiltonEigenSystems, SubSpaceEigenSystem];

The sequent’s sub-block position is given the by the actual’s sub-block po-
sition plus its dimension.
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ParticleSpacePosition += SubSpaceDimension;
]; (* For SubSpaceLoop *)

Return[SuperHamiltonEigenSystems];
]; (* Module *)

A.1.12 CreateTransformationMatrix[]

The transformation matrix transforms the reduced superblock Hamiltonian and
the block’s boundary operators. As described in 4.4.3 the transformation ma-
trix is a rectangular matrix that transform the superblock Hamiltonians’s sub-
blocks into the block Hamiltonian’s sub-blocks. Since the sub-blocks from the
superblock Hamiltonian has in general greater dimensions than the ones from
the block Hamiltonian the transformation matrix has to reduce their dimensions
so that it will have block form with rectangular blocks. This is the point where
the actual truncation of the Hilbert space takes place.

CreateTransformationMatrix[] :=
Module[{ TransformationsMatrix, FrontZeros, BackZeros,

SubSpaceLoop, SubSpaceEigenVectors, SubSpaceZeilenLoop },

The transformation matrix is rectangular matrix whose dimension is deter-
mined by the dimensions of the block and site Hamiltonian/basis.

TransformationsMatrix = SparseArray[
{1, 1} -> 0, {BlockBasisDimension, SuperBasisDimension}

]; (* SparseArray *)

Due to the block structure there will be a certain number of zero matrix
elements before and behind the actual matrix elements of a block. Regarding the
module’s performance these zero entries at the front and the back are inserted
in one stretch so that a loop only has to run over the eigenvectors that have to
be inserted. TransformationsMatrixRow stores the number of the actual row
of the transformation matrix.

FrontZeros = {};
BackZeros = SparseArray[{1} -> 0, {SuperBasisDimension}];

TransformationsMatrixRow = 1;

All blocks to different particle numbers are created separately. Such a block
consists of the number of eigenvectors that matches the dimension of the target
sub-block.

For[ SubSpaceLoop = 1,
SubSpaceLoop <= Length[BlockHamiltonParticleSpaceDimensions],
SubSpaceLoop++,

SubSpaceEigenVectors =
SortetSuperHamiltonEigenSystems[[SubSpaceLoop, 2]];

This adjusts the number of zeroes before the eigenvector entries.

55



If[ SubSpaceLoop != Length[BlockHamiltonParticleSpaceDimensions],
BackZeros = Take[ BackZeros,

Length[BackZeros] - SuperHamiltonParticleSpaceDimensions[[SubSpaceLoop, 2]]
], (* Take *)

BackZeros = {}
]; (* If *)

These are the actual entries. A line of the transformation matrix is composed
by the front zeroes, an eigenvector, and the zeroes to the end of the line.

For[ SubSpaceRowLoop = 1,
SubSpaceZeilenLoop <= BlockHamiltonParticleSpaceDimensions[[SubSpaceLoop, 2]],
SubSpaceRowLoop++,

TransformationsMatrix[[TransformationsMatrixRow]] =
{ FrontZeros, SubSpaceEigenVectors[[SubSpaceRowLoop]], BackZeros }
// Flatten;

TransformationsMatrixRow++;
]; (* For SubSpaceRowLoop *)

This adjusts the number of zeroes behind the eigenvector entries.

FrontZeros = SparseArray[ {1} -> 0,
{Length[FrontZeros] + SuperHamiltonParticleSpaceDimensions[[SubSpaceLoop, 2]]}

]; (* SparseArray *)
]; (* For SubSpaceLoop *)

Return[TransformationsMatrix];
]; (* Module *)

A.1.13 CreateNewBlockBasis[]

After the first iteration the concrete form of the block basis doesn’t matter any
more. It is only necessary to know the particle numbers to the basis vectors, for
example to determine the particle numbers of the new superblock basis states.
Therefore it is enough to store the information about the particle numbers in
their corresponding basis vectors.

From the transformation list one obtains the information which sub-spaces
of the superblock Hamiltonian have been transformed into which sub-spaces of
the block Hamiltonian. Therewith one can determine the particle numbers of
the block basis states.

CreateNewBlockBasis[] :=
Module[{ NewBlockBasis, BlockBasisLoop, OldParticlesNumber, NewParticlesNumber },

NewBlockBasis = BlockBasis;

For[ BlockBasisLoop = 1,
BlockBasisLoop <= BlockBasisDimension,
BlockBasisLoop++,

OldParticlesNumber = ParticlesNumberInState[BlockBasis[[BlockBasisLoop]]];
NewParticlesNumber =

Transformations[[
IterationsLoop,
Position[

Transpose[
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Transformations[[IterationsLoop]]
][[2]],

OldParticlesNumber
] // Flatten,

1
]];

NewBlockBasis[[BlockBasisLoop]] = NewParticlesNumber;
];

Return[NewBlockBasis]
]; (* Module *)

A.1.14 CreateEnergyList[]

CreateEnergyList[] creates lists with the results of the individual iteration
steps. Using the MatrixForm output it has the form

number of sites number of particles energy eigenvalue no 1

number of sites number of particles energy eigenvalue no 2
... .

CreateEnergyList[] :=
Module[{ SitesNumber, NewEnergies, BlockBasisLoop,

Energy, ParticlesNumber },
If[ IterationsLoop == 1, EnergyList = {} ];

SitesNumber = BlockBasisSitesNumber + IterationsLoop * SiteBasisSitesNumber;

NewEnergies = {};

For[ BlockBasisLoop = 1,
BlockBasisLoop <= BlockBasisDimension,
BlockBasisLoop++,

Energy = BlockHamiltonMatrix[[BlockBasisLoop, BlockBasisLoop]];
ParticlesNumber = BlockBasis[[BlockBasisLoop]];

NewEnergies = Append[NewEnergies, Flatten[{SitesNumber, ParticlesNumber, Energy} ]];
]; (* For BlockBasisLoop *)

EnergyList = Append[EnergyList, NewEnergies];
Return[EnergyList];

];

A.2 NRG

This section shows how the NRG calculations can be done using the modules
presented in the preceding chapters.

Some modules use Mathematica procedures from packages that are not stan-
dardly loaded at the start-up so these packages have to be loaded manually.
<< DiscreteMath‘Combinatorica‘

<< LinearAlgebra‘MatrixManipulation‘

<< LinearAlgebra‘Orthogonalization‘
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The initial parameters of the NRG method are listed below.
FinalParticlesNumber and FinalSitesNumber determines N and I of the sys-
tem. The initial block and site bases are determined by their number of sites
they consist and their range of particle numbers which is defined by the mini-
mum and maximum initially occuring particle number.

TunnelParameter = 1;
InteractionParameter = 20;

FinalParticlesNumber = 11;
FinalSitesNumber = 11;

BlockBasisSitesNumber = 2;
BlockBasisParticlesNumberMin = 0;
BlockBasisParticlesNumberMax = 11;

SiteBasisSitesNumber = 1;
SiteBasisParticlesNumberMin = 0;
SiteBasisParticleNumberMax = 11;

IterationsNumber is the number of iterations needed to solve the problem.
It only depends on the number of lattice sites in the initial block system and the
number of sites in the site system that are appended in each iteration step. One
has to take care that the desired number of lattice sites can be exactly reached
by the chosen sizes of block and sites. However, as long as 1-site site systems
are used this problem does not arise.

IterationsNumber = (FinalSitesNumber-BlockBasisSitesNumber) / SiteBasisSitesNumber;

Block and site basis are created with respect to their properties that has
been set above and their dimensions are determined.

BlockBasis = CreateBasis[ BlockBasisSitesNumber,
BlockBasisParticlesNumberMin,
BlockBasisParticlesNumberMax ];

SiteBasis = CreateBasis[ SiteBasisSitesNumber,
SiteBasisParticlesNumberMin,
SiteBasisParticleNumberMax ];

BlockBasisDimension = Length[BlockBasis];
SiteBasisDimension = Length[SiteBasis];

From the parameters the transformations list is built which tells what sub-
spaces are transformed and where they are transformed to.

Transformations = CreateTransformationsList[];

Get the matrix representations of the creation and annihilation matrices.

{BlockCreatorMatrices, BlockAnnihilatorMatrices} =
CreateCreatorAnnihilatorMatrices[BlockBasis];

{SiteCreatorMatrices, SiteAnnihilatorMatrices} =
CreateCreatorAnnihilatorMatrices[SiteBasis];

From these operator matrices the block and site Hamiltonians are gained.
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BlockHamiltonMatrix = CreateHamiltonMatrix[ BlockBasis,
BlockCreatorMatrices,
BlockAnnihilatorMatrices ];

SiteHamiltonMatrix = CreateHamiltonMatrix[ SiteBasis,
SiteCreatorMatrices,
SiteAnnihilatorMatrices ];

Get the boundary operators for block and site from the operator lists. The
block boundary operator acts on the rightmost lattice site of the block system
and is therefore the last entry in the list of the block creation matrices. In
contrast the site boundary acts on the (if there are more than 1 lattice sites)
leftmost lattice site and is given by the first entry of the site creation matrices
list. Since the annihilator matrices can be obtained by transposing the creator
matrices it is sufficient to get the creator matrices only.

BlockBoundaryCreator = BlockCreatorMatrices[[Length[BlockCreatorMatrices]]];
SiteBoundaryCreator = SiteCreatorMatrices[[1]];

Now construct the 4D objects of matrix elements (O)kk′ll′ from the site
operators and Hamiltonian. This procedure remains the same for any arbitrary
block basis with fixed dimension. So the result only depends on the site basis
(which determines the site operator matrix elements). Because the site basis
does not change (and the block basis dimension is kept constant) during the
NRG procedure these 4D objects do not change either. So it is enough to create
them once (which means outside the iteration loop that starts below).

SiteBoundaryCreator = SiteOperatorsInFullHilbertSpace[SiteBoundaryCreator];
SiteHamiltonMatrix = SiteOperatorsInFullHilbertSpace[SiteHamiltonMatrix];

Since the site 4D objects remain the same over the NRG procedure their 2D
representations do not change on their part. So they have to be created only
once, too. These matrices represent in each iteration step the operators in the
full superblock bases that have not necessarily to be known at this moment.

SiteBoundaryCreator2D = OperatorMap2D[SiteBoundaryCreator];
SiteBoundaryAnnihilator2D = Transpose[SiteBoundaryCreator2D];

SiteHamiltonMatrix2D = OperatorMap2D[SiteHamiltonMatrix];

Erase no longer needed variables from the memory.

Clear[BlockCreatorMatrices]; Clear[BlockAnnihilatorMatrices];
Clear[SiteCreatorMatrices]; Clear[SiteAnnihilatorMatrices];

Here the actual iteration starts.

For[ IterationsLoop = 1,
IterationsLoop <= IterationsNumber,
IterationsLoop++,

Create the block operator 4D objects and from them the 2D matrix repre-
sentations. In each iteration step the block operator’s matrix elements change,
so this procedure has to be executed each time.
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BlockBoundaryCreator = BlockOperatorsInFullHilbertSpace[BlockBoundaryCreator];
BlockHamiltonMatrix = BlockOperatorsInFullHilbertSpace[BlockHamiltonMatrix];

BlockBoundaryCreator2D = OperatorMap2D[BlockBoundaryCreator];
BlockHamiltonMatrix2D = OperatorMap2D[BlockHamiltonMatrix];
BlockBoundaryAnnihilator2D = Transpose[BlockBoundaryCreator2D];

Create the full superblock basis, FullSuperBasis, and the reduced one,
SuperBasis. Needed in the follwoing is the dimension of the reduced superblock
basis so this is stored in an extra variable.

FullSuperBasis = CreateSuperBasis[][[1]];

SuperBasis = CreateSuperBasis[][[2]];
SuperBasisDimension = Length[SuperBasis];

Create the superblock Hamiltonian and transfer it into the reduced su-
perblock basis. Thereafter the block boundary creator has to be transferd into
this basis as well, so that it can later be transformed with the same transfor-
mation that transformes the reduced superblock Hamiltonian.

SuperHamiltonMatrix = CreateSuperHamiltonMatrix[];

SuperHamiltonMatrix = OperatorInReducedSuperBasis[SuperHamiltonMatrix];
BlockBoundaryCreator2D = OperatorInReducedSuperBasis[BlockBoundaryCreator2D];

Create the sorting matrix and sort the reduced superblock Hamiltonian and
the block boundary creator (which is a transfer into a reduced superblock basis
that is sorted by particle numbers).

SortMatrix = CreateSortMatrix[];

SortetSuperHamiltonMatrix = SortMatrix.SuperHamiltonMatrix.Transpose[SortMatrix];
SortetBlockBoundaryCreator2D = SortMatrix.BlockBoundaryCreator2D.Transpose[SortMatrix];

For the construction of the transformation matrix the sub-space dimension
of the block and superblock Hamiltonians have to be known.

BlockHamiltonParticleSpaceDimensions = CreatePositionsList[BlockBasis][[2]]];
SuperHamiltonParticleSpaceDimensions = CreatePositionsList[SuperBasis][[2]];

Solve the reduced superblock Hamiltonians eigenvalue problem and create
the transformation matrix from its eigensystems.

SortetSuperHamiltonEigenSystems = CreateSortetSuperHamiltonEigenSystems[];

TransformationsMatrix = CreateTransformationMatrix[];

Transform the the reduced superblock Hamiltonian and the block boundary
creator into the new block basis. This is the main step in the NRG procedure
because here is where the superblock Hamiltonian is rotated into its truncated
eigenbasis.
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BlockHamiltonMatrix = TransformationsMatrix.
SortetSuperHamiltonMatrix.
Transpose[TransformationsMatrix] // Chop;

BlockBoundaryCreator = TransformationsMatrix.
SortetBlockBoundaryCreator2D.
Transpose[TransformationsMatrix] // Chop;

Create the new block basis that from now on only contains the information
about the particle number of the basis vectors.

BlockBasis = CreateNewBlockBasis[];

Store this iteration step’s energy results.

EnergiesList = CreateEnergiesList[] ;

Make some free memory and finish this iteration step.

Clear[BlockBoundaryCreator2D]; Clear[BlockBoundaryAnnihilator2D];
Clear[BlockHamiltonMatrix2D]; Clear[SiteBoundaryCreator2D];
Clear[SiteBoundaryAnnihilator2D]; Clear[SiteHamiltonMatrix2D];
Clear[SuperHamiltonMatrix]; Clear[SortMatrix];
Clear[SortetSuperHamiltonMatrix]; Clear[SortetBlockBoundaryCreator2D];
Clear[SortetBlockBoundaryAnnihilator2D];
Clear[BlockHamiltonParticleSpaceDimensions];
Clear[SuperHamiltonParticleSpaceDimensions];
Clear[SortetSuperHamiltonEigenSystems];
Clear[TransformationsMatrix];

]; (* For IterationsLoop *)

After all iterations the result is displayed.

EnergiesList[[IterationsNumber]] // MatrixForm
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