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Abstract

The Unitary Correlation Operator Method (UCOM) provides a means folean structure
calculations starting from realistic NN potentials. The dominant short-raeggat and

tensor correlations are described explicitly by a unitary transformatiomapplication of
UCOM in the context of the no-core shell model provides insight into theptagrbe-

tween dominant short-range and residual long-range correlations muthear many-body
problem. The use of the correlated interaction within Hartree-Fock, mady-perturba-
tion theory, and Random Phase Approximation gives access to varicleanstructure
observables throughout the nuclear chart.
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1 Introduction

In recent years several realistic nucleon-nucleon intenas like the Argonne V18
[1] and the CD Bonn potentials as well as interactions derivechfa chiral effec-
tive field theory [2,3] have been constructed on the basiggbf-precision nucleon-
nucleon scattering data. These potentials are useld initio nuclear structure cal-
culations throughout the p-shell, e.g., in the frameworkha Green’s function
Monte Carlo method or the no-core shell model [4]. The use e$dtrealistic po-
tentials for nuclear structure studies in heavier nuclsgsan enormous challenge.
Traditional many-body methods, like the Hartree-Fock apph or the Random
Phase Approximation, cannot be used in connection with dne NN interaction.

* This work is supported by the Deutsche Forschungsgemeinschaft)(Fgsigh con-
tract SFB 634.
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The reason is the inability of the simple model spaces uyithgrthese approaches
to describe the dominant short-range correlations, whiehpaesent in the exact
many-body eigenstates.

The two most important types of many-body correlations hosé induced by the
short-range repulsion and the strong tensor part of the Ntantion. Already in
the deuteron their presence is evideitThe probability amplitude for finding the
two nucleons at very small distances is strongly depletea r@sult of the short-
range repulsive interactioni Apart from the, = 0 component the ground state
exhibits aL. = 2 admixture which is essential for the binding and is generaie
the tensor part of the NN interaction. Also for heavier nythese central and ten-
sor correlations have a dominant impact on the structuréefrtany-body state.
Neither of these correlations can be described properly fmgle or a superpo-
sition of few Slater determinants. Therefore, a naive isicin of the bare realistic
NN-potential into a Hartree-Fock-type calculation hasatih f

For nuclei beyond the p-shell one is bound to use simplifiedehspaces for an
approximate solution of the many-body problem. Therefte,short-range cor-
relations have to be accounted for explicitly, e.g., by sfarming the bare real-
istic interaction into an effective interaction adaptedhe available model space.
One possible approach to construct a phase-shift equivaftattive interaction

is the Unitary Correlation Operator Method discussed ini8ec. The result-
ing correlated interactioW ycom can then be used as a universal input for differ-
ent many-body approaches, ranging from the no-core shelei&ection 3) over
Hartree-Fock and many-body perturbation theory (Sect)do the Random Phase
Approximation (Section 5).

2 Unitary Correlation Operator Method

The basic idea of the Unitary Correlation Operator Method (M} @ to include
the dominant correlations into the many-body state by me&asunitary transfor-
mation [5-8]. Starting from an uncorrelated many-bodyestat), in the simplest
case just a Slater determinant, a correlated Qiﬁ)e&s defined through the applica-
tion of the unitary correlation operatar.

W) =C|v). (1)
Alternatively, one can perform a similarity transformatiof the operators of all
relevant observables (e.g. the Hamiltonian, coordinateraomentum space den-

sities, transition operators, etc.):

O = CtocC. (2)



Due to unitarity both approaches are equivalent. For mostysady calculations
the formulation through correlated operators is, howawere convenient.

The correlation operatar is decomposed into a central correlatgr and a ten-
sor correlatoiCq, reflecting the two dominant types of correlations in thelearc
many-body problem:

(3::CQC»::exp[—-iE:ggx@n]exp[—-iE:gT@jﬂ . (3)

1<J 1<J

Both operators are defined as exponentials of Hermitian wady-lgeneratorg,
andg,, respectively. They are given in a closed analytic form \whieflects the
mechanism by which correlations are induced by the intemact

The task of the central correlat@y. is to generate the hole in the two-body density
distribution at small particle distances caused by thelsamicore in the central
part of the interaction. Pictorially speaking, has to shift pairs of particles that
are closer than the core radius apart from one another. Tadbdy generator
for this distance-dependent shift can be writtegas= $[s(r)q, + q,s(r)], where

q, = 3[q- (r/r) + (r/r) - q] is the radial component of the relative momentyrof

a particle pair. The function(r) determines the distance-dependence of the shift.
It is large for small- and vanishes at large distances.

The tensor correlation operat@k, has to generate the complex entanglement be-
tween the angular structure of the relative two-body statekthe spin orientation.
An essential ingredient is the component of the relative eraionmq perpendicular
tor, the so-called orbital momentuqy, = q — 7 q,. The generator has the form

go = 39(1) [(al-qﬂ)(ch-r)Jr (r < qQ)} which is similar to the tensor operatqs.
The functiony(r) describes the magnitude of the shift as a function of diganc

For the following many-body calculations, the notion ofredated operators is ad-
vantageous. The operators of all observables under coasimtehave to be trans-
formed consistently. Since the correlation operators afmed as exponentials of
two-body operators, the correlated operators contaiduicile contributions for
all particle numbers. We organize the different irredueiterms according to their
rank in a cluster expansion

H=CHC=H"+H? + 08 4 ... . (4)

Here we used the Hamiltonidih = T + V as an example, but the same holds true
for any other operator. If the range of the correlators ifigehtly small compared

to the average particle distance in the many-body systemee-thody and higher
order terms in the cluster expansion are small and we camctestirselves to the
two-body approximation

HO? = T 4+ TR 4 VB = T 4+ Vicom (5)



whereTM) = T andT!? are the one- and two-body contributions of the correlated
kinetic energy, resp., and(? is the two-body part of the correlated NN-potential.
All two-body contributions are subsumed in the correlatedractionVycowm. It is

by constructiorphase-shift equivalend the original, uncorrelated NN-potential as
long as the correlators have finite range.

The remaining task is the determinantion of the correlafiomctions s(r) and
J(r) entering into the generators of the unitary transformatidfor each spin-
isospin channel their parameters can be obtained from agyen@nimization in
the two-body system. This procedure and the optimal cameddor the Argonne
V18 (AV18) potential are discussed in Ref. [8]. The tensoreation functions re-
quire a special treatment. Since it originates from the pine-exchange, the tensor
force is long-ranged, and so are the tensor correlationsexdlin the two-body sys-
tem. In a many-body system, the long-range component ofetigot correlations
between two nucleons is screened due to the presence ofmitieons. In antici-
pation of this effect, we restrict the range of the tensoradator by a constraint on
the integral of the correlation functioy = [ dr r?9(r). Hence, only short-range
correlations are described explicitly by the unitary tfan®ation. Long-range cor-
relations have to be covered by the many-body states—tHibevillustrated in the
following sections.

3 No-Core Shell Model Calculations

As a first application of the correlated realistic interantV ycom We consider a
straightforward no-core shell model diagonalization with harmonic oscillator
basis. The shell model basis itself is able to describe gaiteomany-body cor-
relations, depending on the size of the model space. Hercaegpendence of the
energy on the model-space size provides information ondheaf short-range
correlations and on the contribution from residual longg@correlations. For the
calculations we employ the translationally invariant rmwecshell model code de-
veloped by Petr Naatil [9], but without using the Lee-Suzuki transformatidie
computation of the relevant two-body matrix element3/gtom in the harmonic
oscillator basis and further results are discussed in REf. [8

Figure 1 shows the ground state energyldé as a function of the oscillator pa-
rameteri(? for different sizes of the model space, characterized byrthgimum
relative oscillator quantum numbaf,,... The upper panel corresponds to a calcu-
lation with the bare AV18 potential. Evidently, even for tlegest feasible model
spaces, the energy is not yet converged. The reason is thiatlagcription of short-
range central and tensor correlations requires even langdel spaces, which are
computationally not tractable. The picture changes if weVWigcow, i.€., include
the unitary transformation of the Hamiltonian. The conesce is dramatically
improved since the short-range central and tensor cowataaire now treated ex-
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Fig. 1. Results of no-core shell model calculations using the correlatéd pdgtential. Left
panel: convergence of the ground state energyHaf for bare (upper plot) and correlated
AV18 potential (lower plot). Right panel: Tjon-line and dependence ofetinergy on the
correlator range as described in the text (taken from [8]).

plicitly by the unitary correlation operator. Note that aubd nucleus is already
obtained with a single Slater determinant (N&... = 0). With increasing size of
the model space, the ground state energy is lowered fufitheris the result of the
improved description of long-range correlations—not acted for by the unitary
transformation—by the model space.

A second interesting aspect is illustrated on the righthside of Fig. 1, where
the converged ground state energiesldfand*He are plotted. Each data point
corresponds to a different interaction. The exact enefgigbe different bare NN-
interactions, like the Av18, the CD Bonn and the Nijmegen iat#&ons (circles),
fall onto the so-called Tjon-line [10] but are far away frohetexperimental point.
Three-nucleon interactions (diamonds) are needed torobiading energies in
the experimental region. The exact energies for the cdelateractionVycom
based on AV18 (triangles) depend on the rangef the triplet-even tensor corre-
lation function. With increasing range the energy is lowdesad the full Tjon-line
is mapped out. This is related to the omission of three-baahy (higher-order)
terms in the cluster expansion of the correlated Hamiltonifithese terms were
included, the energies would be exactly the same, indepe¢ralehe correlator
range, because of the unitarity of the transformation. Bieéthat the range of the
tensor correlator can be chosen such that the energiesogeetol experiment (e.g.
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Fig. 2. Ground state energy of various closed shell nuclei obtained wittotinelated AV/18
potential within a HF calculation (circles) and in HF + MBPT (squares and diasjoin
comparison to experimental binding energies (bars) (taken from [11]).

for Iy = 0.09 fm®) can be explained by a cancellation between genuine thodg-b
forces and the induced three-body contributions of thetefusxpansion. In other
words, the impact of the net three-body force on the bindmeygies can be mini-
mized by a proper choice of the correlator range.

4 Hartree-Fock & Many-Body Perturbation Theory

Using the Vycowm interaction fixed within the no-core shell model we perform
Hartree-Fock (HF) calculations of nuclear ground statesutphout the nuclear
chart. Since the HF many-body state (Slater determinaatjeais not able to de-
scribe any many-body correlations, the use of bare realisteractions does not
lead to bound nuclei. The explicit inclusion of the shomga correlations, e.g., via
the unitary correlation operators is inevitable.

We have implemented the HF scheme in the harmonic-oscillafaresentation,
using the translationally invariant Hamiltonidh,, = T — T¢m + Vucom, Where
Vucowm contains charge-dependent and Coulomb terms [11]. Thesdeuround
state energies of closed-shell nuclei ranging frdte to2°*Pb are depicted in Fig.
2. The optimal correlator fofy = 0.09 fm?® is used, and the single-particle basis
includes 13 major oscillator shells. Evidently, the HF bingdenergies are signif-
icantly smaller than the experimental ones. This is notrssirg, since residual
long-range correlations as they appeared in the no-colérebedel calculations
cannot be described by the HF ground state.

An estimate for the impact of residual long-range correfaion the binding ener-
gies can be obtained within many-body perturbation theébng evaluation of the
second and third order perturbative contributions on tap@®HF result is straight-



forward [11]. Figure 2 summarizes the results for the grostate energies includ-
ing second order correlations (for light nuclei also thirder). Again,13 major
oscillator shells are included to obtain a satisfactoryrée@f convergence for the
perturbative correction. The agreement with the expertaidninding energies per
nucleon is remarkably good throughout the whole mass raffgeabsence of any
systematic deviation for larger mass numbers proves tieatdhcellation between
genuine three-body force and induced three-body conioibsitwhich we observed
in the no-core shell model for light isotopes, works throogfhthe nuclear chart.
Furthermore, the calculations establish the perturbatmesacter of the long-range
correlations. Note that a perturbative treatment of thetsfamge correlations is
not possible—in our approach they are covered by the unitamglation operators
from the outset.

However, the good agreement with experimental data doesatdtfor all observ-
ables. The charge radii obtained in HF for heavier nucleitacesmall in com-
parison to experiment [11]. The inclusion of perturbatieerections improves the
result but still leaves deviations of up idm for the heaviest nuclei. This is an
indication that a net three-body force is needed to repredilicobservables, al-
though its impact on the energy might be small. This issudastopic of future
investigations.

5 Random Phase Approximation

In addition to global ground state properties, collectixei&@tions provide a value-
able probe to understand the role of correlations in theganechany-body problem.
We use the standard Random Phase Approximation (RPA) [12]tamctensions
[13] to study the behavior of collective excitations basaedvgcom. Starting from
the HF solution for the ground state we solve the RPA equaiiorsfully self-
consistent way using the same intrinsic Hamiltonian as Hier HiF treatment. In
this way the spurious center-of-mass mode appears fullpujded at very low
excitation energies of the order obkeV and the energy-weighted sum rules are
fulfilled with maximum deviations of-3%.

The results obtained for isoscalar monopole, isovectaldj@nd isoscalar quadru-
pole excitations infCa,°Zr, and?*®Pb using the standarfdycow interaction are
summarized in Figure 3. In all cases a collective resonappeas in the RPA re-
sponse, which is not trivial since we use a realistic NNfat&on. The centroid
energies for the isoscalar giant monopole resonances aneenagreement with
experiment. Keeping in mind that there are no free parametieis is a remark-
able result indicating that the incompressibility genedaby Vycowm is reasonable.
However, for the isovector dipole and the isoscalar quamleugiant resonances the
calculated centroid energies are systematically largen the experimental ones.
This hints at too small a value for the effective mass whicboissistent with the
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Fig. 3. RPA strengths distributions for isoscalar monopole (ISM), isovelipmle (1VD),
and isoscalar quadrupole (ISQ) excitations'i€a, *°zr, and?°®*Pb usingVycom. The
curves result from a Lorentzian folding of the discrete strength distribsitamd the black
triangles indicate the centroid energies extracted from experiment (sgfd 2]%

very wide single-particle spectra resulting from the HFcaldtions [11]. Again
this could be an indication of a residual repulsive thredybimrce but also of the
importance of additional correlations not included in ttendard RPA framework.

6 Conclusions & Outlook

We have used the correlated realistic interactiQgoy derived from the Argonne
V18 potential as a universal starting point for nuclearctrce calculations through-
out the nuclear chart. Different many-body approachesingngom no-core shell
model to Hartree-Fock, many-body perturbation theory, BRA have been em-
ployed using the same interaction. We observe that the fneinergies per nu-
cleon resulting fromVycom are in good agreement with experiment through the
whole mass range, indicating that the impact of residuaetfirody forces on this
observable is minimal. However, for other observablesesyatic deviations from
experiment emerge minly in heavier nucle). the rms-radii are too smallii{ the
mean level-spacing of the HF single-particle spectra islaoge leading to a too
small effective massji() the centroid energies of isovector dipole and isoscalar
giant quadrupole resonances are overestimated. One [gossdin of these devia-
tions, besides missing long-range correlations, is auesi@pulsive three-body in-
teraction not included in the present calculations. Ihd#éculations using a simple
phenomenological three-body contact interaction inéi¢hat all aforementioned



discrepancies can be reduced. The inclusion of effectikeetbody interactions
into the many-body schemes discussed here is the subjectgoing investiga-
tions.
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