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The collective excitation phenomena in atomic nuclei are studied in two different

formulations of the Random Phase Approximation (RPA): (i) RPA based on cor-

related realistic nucleon-nucleon interactions constructed within the Unitary Corre-

lation Operator Method (UCOM), and (ii) relativistic RPA (RRPA) derived from

effective Lagrangians with density-dependent meson-exchange interactions. The for-

mer includes the dominant interaction-induced short-range central and tensor cor-

relations by means of an unitary transformation. It is shown that UCOM-RPA

correlations induced by collective nuclear vibrations recover a part of the residual

long-range correlations that are not explicitly included in the UCOM Hartree-Fock

ground state. Both RPA models are employed in studies of the isoscalar monopole

resonance (ISGMR) in closed-shell nuclei across the nuclide chart, with an emphasis

on the sensitivity of its properties on the constraints for the range of the UCOM

correlation functions. Within the Relativistic Quasiparticle RPA (RQRPA) based

on Relativistic Hartree-Bogoliubov model, the occurrence of pronounced low-lying

dipole excitations is predicted in nuclei towards the proton drip-line. From the anal-

ysis of the transition densities and the structure of the RQRPA amplitudes, it is

shown that these states correspond to the proton pygmy dipole resonance.
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I. INTRODUCTION

Among various theoretical approaches to nuclear structure, two pathways have been

extensively pursued over the past decades: (i) models based on effective nuclear interactions

constrained by the properties of nuclear matter and bulk properties of finite nuclei (e.g.

Skyrme [1], Gogny [2], and relativistic models based on exchange of effective mesons [3]),

and (ii) models which start from a realistic nucleon-nucleon (NN) interaction. Recently,

several modern realistic NN interactions have been constructed, e.g., the Argonne V18 [5],

the CD-Bonn [4], and chiral potentials [6], which reproduce the experimental NN phase-

shifts with high accuracy. Within ab initio Green’s function Monte Carlo [7] and no-core

shell model calculations [8] of ground state properties and low-lying excitation spectra of

light nuclei it was shown that realistic NN interactions, supplemented by a three-nucleon

force, allow for a quantitative description of experimental data [9, 10].

Realistic NN interactions cannot be directly employed in a standard Hartree-Fock (HF)

scheme due to the importance of interaction-induced correlations in the many-body state

beyond the simple HF Slater determinant. Therefore, an effective, phase-shift equivalent

interaction has to be derived by explicitly accounting for the dominant correlations. One way

to tackle this issue is the Unitary Correlation Operator Method (UCOM) which describes the

short-range central and tensor correlations by means of an unitary transformation [11–14].

The unitary transformation of the Hamiltonian including a realistic NN potential results

in a correlated effective interaction well suited for the application with simple uncorrelated

many-body states. An alternative method to derive phase-shift equivalent, low-momentum

effective interactions is the Vlow−k renormalization group approach [15].

Studies of collective excitation phenomena in atomic nuclei provide valuable insight into

many properties of the underlying effective interactions employed in solving the nuclear

many-body problem. In order to describe small-amplitude collective excitations within the

UCOM framework, one can employ the random-phase approximation (RPA) [16], based on

the HF single-nucleon basis. Since three-body interactions presently are not included, the

results provide information on their importance for the understanding of collective nuclear

excitations. The UCOM-RPA model can also be employed to evaluate the contributions of

RPA correlations to the ground state energy which go beyond the mean-field picture [17]. In

addition to the short-range correlations described explicitly by the unitary transformation,
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the RPA ground state calculations allow for the inclusion of residual long-range correlations

necessary to obtain a realistic, ab initio-type description of nuclei.

On the other side, models based on phenomenological nuclear interactions have been well

established over the past decades, and have been very accurately tuned to the properties

of finite nuclei. These models are nowadays successful not only in the region of stable nu-

clei, but also in the description of exotic nuclear structure and collective excitations in nuclei

away from the valley of β-stability, both in the non-relativistic [18–20] and relativistic frame-

work [21, 22]. Particularly interesting is the phenomenon of the pygmy dipole resonance in

neutron-rich nuclei (PDR), indicating that the loosely bound neutrons might coherently os-

cillate against the approximately isospin-saturated proton-neutron core [23]. Very recently

it has been shown that for proton rich nuclei in the lower region of the nuclide chart, one also

could expect the appearance of a low-energy exotic collective mode, i.e. the proton PDR,

when loosely-bound protons vibrate against the rest of the nucleons [24]. The experimental

evidence about low-lying excitations in nuclei towards the drip-lines is still rather limited,

and actually available only in light nuclei up to the oxygen isotopes [25]. The present article

will summarize the recent progress in studies of low-lying excitations towards the proton

drip-line within the Relativistic Quasiparticle RPA (RQRPA).

II. THE HARTREE-FOCK MODEL IN THE UCOM FRAMEWORK

The UCOM approach aims at an explicit treatment of interaction-induced short-range

central and tensor correlations in nuclei [11–14]. These correlations are imprinted into

an uncorrelated many-body state |Ψ〉 through a state-independent unitary transformation

defined by the unitary operator C, resulting in a correlated state, |Ψ̂〉 = C |Ψ〉. Due to the

unitarity of the correlation operator, matrix elements of an operator O in correlated many-

body states are equal to those evaluated using the correlated operator Ô and uncorrelated

many-body states, i.e.

〈Ψ̂|O |Ψ̂′〉 = 〈Ψ|C†O C |Ψ′〉 = 〈Ψ| Ô |Ψ′〉. (1)

The short-range central and tensor correlations are separately included via the unitary op-

erators Cr and CΩ, respectively, and formulated as exponential functions of the two-body

Hermitian generators gr and gΩ. The operator form of the generators is motivated by the
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basic physics of the two types of correlations we are going to describe explicitly.

The short-range central correlations are induced by the strong short-range repulsion in

the central part of realistic NN interactions. This repulsive core prevents nucleons in a

many-body system to approach each other closer than the characteristic size of the core.

In the two-body density matrix these correlations are revealed through the depletion of

the probability density for particle distances smaller than the core radius. In order to

include these correlations into an uncorrelated many-body state, e.g., the Slater determinant

of the Hartree-Fock approach, we perform a distance-dependent radial shift with respect

to the relative coordinate of two-particles. The corresponding Hermitian generator gr =

1
2
[s(r)qr + qrs(r)] contains the radial component of the relative momentum operator, qr,

and a function s(r) which controls the distance-dependence of the shift. Implementation

of the correlation operator in coordinate representation corresponds to a norm-conserving

coordinate transformation r 7→ R−(r)r

r
of the relative coordinate. The radial correlation

function R−(r) and its inverse R+(r) are related to the shift function s(r) [13, 14].

For the following calculations the Argonne V18 (AV18) potential [5] is used. In practice,

the correlation functions R+(r) are parameterized and the optimal parameters are deter-

mined for each spin-isospin channel from an energy minimization in the two-body system

[14]. Since the (S = 1, T = 1)-channel of the AV18 potential is purely repulsive, we employ

a simple constraint on the range of the correlation function in this channel in order to avoid

artificial long-range correlation functions. We have checked explicitly that the effect of vari-

ations of this constraint around the value that ensures the short-range of the correlation

function, is negligible for all calculations presented here.

A second, equally important type of correlations is induced by the tensor part of the

interaction [12]. They entangle the relative spatial orientation of two nucleons with their

spin orientation. The generator gΩ has to describe an angular shift depending on the spin

orientation. This is achieved by gΩ = 3
2
ϑ(r)[(σ1 · qΩ)(σ2 · r) + (σ1 · r)(σ2 · qΩ)], where

qΩ = q− r

r
qr [12]. As for the central correlations, the tensor correlation functions ϑ(r), which

control the distance-dependence of the tensor correlator, are parameterized and determined

by a two-body energy minimization. A characteristic of the tensor part of realistic NN

interactions and thus of tensor correlations is their long range. We are not aiming at a

description of long-range tensor correlations by the unitary transformation, since they are

strongly system-dependent. In contrast to the deuteron, the long-range tensor correlations
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in heavier nuclei will be largely screened. During the determination of the tensor correlators

we therefore constrain the range or volume of ϑ(r) given by

I
(ST )
ϑ =

∫

dr r2ϑ(r). (2)

In the present study, we use the optimal tensor correlators for I
(S=1,T=0)
ϑ = 0.07, 0.08,

and 0.09 fm3 and investigate the effect on the global properties of collective excitation

phenomena. No tensor correlator is employed in the (S = 1, T = 1)-channel, because

there the tensor interaction is rather weak. It has been shown within no-core shell model

calculations that for I
(10)
ϑ = 0.09 fm3 the experimental binding energies for A ≤ 4 are

reproduced quite well [14].

The correlated operators constructed by the unitary transformation contain irreducible

contributions, not only of one-body and two-body operators, but also higher n-body parts.

This cluster expansion is truncated after the two-body level, leading to the so-called two-

body approximation. In previous studies it has been verified that higher order contributions

due to central correlations can be neglected in the description of nuclear structure properties

[13]. For the tensor correlators the range constraint is important for the validity of the two-

body approximation. The size of residual three-body and higher order contributions was

estimated in [14].

Starting from the uncorrelated Hamiltonian for the A-body system, consisting of the

kinetic energy operator and the bare AV18 potential, the central and tensor correlation

operators are employed to construct the correlated Hamiltonian in the two-body approxi-

mation. Therein the one-body contributions come only from the uncorrelated kinetic energy,

while two-body contributions arise from the correlated kinetic energy and the correlated po-

tential, which together constitute the low-momentum correlated interaction VUCOM [13, 14].

The VUCOM interaction can directly be employed in the HF model to determine the single-

particle wave functions and energies. By using the expansion in the harmonic oscillator

basis, the HF equations are solved in a self-consistent way, with restrictions on the max-

imal value of the major shell quantum number Nmax = 12, and maximal orbital angular

momentum quantum number lmax = 8.

In Fig. 1 the UCOM-HF single-nucleon spectra are displayed for the case of 40Ca. The cal-

culations are based on the correlated Argonne V18 interaction, with the constraint I
(10)
ϑ =0.09

fm3 for the correlation volume of the tensor correlator, Eq. (2). The UCOM-HF energy levels
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are compared with the HF spectrum obtained with the low-momentum NN potential Vlow−k

[26], with two standard phenomenological interactions in the nonrelativistic (Skyrme) [27]

and relativistic (NL3) [28] framework, and with experimental levels [27]. The spectra ob-

tained from the HF model based on realistic NN interactions appear distributed too wide

in energy. In addition, the HF binding energies and radii are too small compared to the

experimental values [13].

These deviations can be attributed to several missing pieces in the UCOM-HF description:

(i) Long-range correlations are not covered by the unitary correlation operators and should

be described by the model space, i.e. the available many-body states. The independent-

particle states of the HF approach are clearly not able to do so and one has to go beyond the

mean-field level. In the next section we are going to include long-range correlations due to

collective vibrations, by means of RPA. (ii) Three-body forces, either genuine or induced by

the unitary transformation, generally play a role for the quantitative description of nuclear

structure. These are not included in the present study. Hence the results presented here

will provide some information on their importance.

III. RANDOM-PHASE APPROXIMATION BASED ON THE VUCOM

The HF description of the nuclear ground state is to some extent oversimplified, and

correlation effects going beyond mean-field should be included. Giant resonances may have

some influence on the nuclear binding energies [17], and it is known that correlations due to

surface vibrations have a considerable influence on the ground state densities [33]. In this

section, we will employ an RPA model based on the UCOM Hamiltonian (UCOM-RPA) to

evaluate the ground state correlations due to collective vibrations and to study the properties

of such excitations themselves.

The UCOM-HF single-particle states are used for the construction of the ph configuration

space for the RPA model. One of the standard approaches to derive the RPA equations is

the equation of motion method with the quasiboson approximation [16], resulting in the

eigenvalue problem formulated as a set of coupled equations for the forward and backward

amplitudes, X
k,JM

ph and Y
k,JM

ph respectively,




AJ BJ

B
∗J A

∗J









Xk,JM

Y k,JM



 = ωk





1 0

0 −1









Xk,JM

Y k,JM



 . (3)
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The eigenvalues ωk correspond to RPA excitation energies and the RPA matrices are given

by,

AJ
php′h′ = 〈φ|

[

[

AJM
ph , HUCOM

]

, AJM
p′h′

+
]

|φ〉 (4)

BJ
php′h′ = −〈φ|

[[

AJM
ph , HUCOM

]

, (−1)J−MAJ−M
p′h′

]

|φ〉, (5)

where the operator AJM
ph

+
(AJM

ph ) creates (annihilates) a ph state of angular momentum JM .

We consistently use the intrinsic Hamiltonian HUCOM = T − Tcm + VUCOM, i.e., the center

of mass contribution to the kinetic energy is subtracted on the operator level. The Coulomb

interaction is included explicitly.

An essential property of the present model is that it is fully self-consistent, i.e. the same

correlated realistic NN interaction VUCOM is used in the HF equations that determine the

single-particle basis, and in the RPA residual interaction entering the calculation of the

RPA matrices. This essential property of our model ensures that RPA amplitudes do not

contain spurious components associated with the center-of-mass translational motion. We

have verified that the spurious 1− state is properly decoupled from the physical excitation

states. We also have examined, for closed-shell nuclei across the nuclide chart, that the

UCOM-RPA model essentially exhausts the isoscalar energy-weighted sum rules [16] with

maximal discrepancies of ± 3%.

In the present study, the correlation energies are evaluated within the UCOM-RPA frame-

work,

δE = −
∑

k,J

(2J + 1)~ωJ
k

∑

ph

|Y k,J

ph |2, (6)

by using the RPA eigenvalues ωJ
k , and backward-going amplitudes Y

k,J

ph . Both, the natural

π = (−1)J and unnatural parity π = (−1)J+1 excitations are included, in the range of

Jπ = 0± − 10±. The HF binding energies together with RPA correlations due to collective

excitations are shown in Fig. 2 for several closed-shell nuclei. The HF binding energies

and UCOM-RPA correlations are calculated in a consistent way by using the correlated

AV18 interaction for various ranges of the tensor correlator, constrained by I
(10)
ϑ =0.07, 0.08,

and 0.09 fm3. In general, the tensor correlator with longer range provides stronger binding

both on the HF level and when the correlations are taken into account. In comparison

with the experimental binding energies [34], the present model with full implementation of

RPA correlations seems to favor the tensor correlator with shorter range. However, one
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should keep in mind that the method used to evaluate the correlation energy, Eq. (6), is

not free of over-counting [35] and therefore the correlation effects are overestimated. Within

many-body perturbation theory or configuration interaction calculations, the longer ranged

correlator provides a very good agreement with experimental binding energies for all nuclei

in accord with the no-core shell model calculations discussed in [14].

By examining the electric transition strength, one can also study the properties of the cor-

related interaction VUCOM. This is exemplified in Fig. 3, where the UCOM-RPA strength

distributions, corresponding to the isoscalar giant monopole resonance (ISGMR) are dis-

played for the correlated AV18 interaction with different restrictions on the range of the

tensor correlator, I
(10)
ϑ =0.07, 0.08, and 0.09 fm3. For the lighter nuclei 16O, 40Ca, and 48Ca,

the ISGMR is fragmented into two-three peaks, whereas for 90Zr, 132Sn, and 208Pb the IS-

GMR is strongly collective, resulting essentially in a single peak. For a comparison, the

monopole response is also calculated in the framework of relativistic RPA based on effective

Lagrangian with density-dependent meson-nucleon vertex functions, with DD-ME1 inter-

action (more details are given in Sec. IV). In addition, the calculated ISGMR strength

distributions are compared with the nonrelativistic RPA based on Woods-Saxon potential

and G-matrix formalism [32], and with experimental data from (α, α) [29, 30] and (3He,3He)

scattering [31]. One can observe that a decrease of the range of the tensor correlator system-

atically pushes the transition strength towards lower energies. In particular, by decreasing

the range of the tensor correlator, i.e. its constraint I
(10)
ϑ =0.09 fm3 towards 0.07 fm3, the

excitation energy of ISGMR lowers by ≈4 MeV. This means that by varying the range of

the tensor correlator, one can effectively control the impact of the missing correlations on

the transition strength of ISGMR.

IV. PROTON PYGMY DIPOLE RESONANCE IN THE RELATIVISTIC QRPA

In this section we discuss recent developments regarding the response of nuclei far from

β-stability. One of the major challenges in this region is the understanding of soft modes

of excitations which involve loosely bound nucleons. In particular, in neutron-rich nuclei,

nucleons from the neutron skin may give rise to a soft low-energy dipole mode known as

the pygmy dipole resonance (PDR) [36–38]. The structure of nuclei on the proton-rich side

is equally important for many aspects of the underlying many-body problem and effective
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nuclear interactions. In a recent relativistic QRPA study, it has been predicted that in nuclei

with proton excess one could expect the appearance of a proton PDR mode where loosely

bound protons vibrate against the rest of the nucleons [24, 39]. The relativistic QRPA [21]

is formulated in the canonical single-nucleon basis of the relativistic Hartree-Bogoliubov

(RHB) model and is fully self-consistent. For the interaction in the particle-hole channel

effective Lagrangians with nonlinear meson self-interactions or density-dependent meson-

nucleon couplings are used [40], and pairing correlations are described by the pairing part of

the finite-range Gogny interaction [2]. The parameters of the effective relativistic interaction

have been adjusted to properties of nuclear matter and to binding energies, charge radii, and

differences between neutron and proton radii of spherical nuclei [40]. In the small-amplitude

limit, the RQRPA equations are derived from the equation of motion for the generalized

nucleon density [21]. The RQRPA configuration space is constructed from standard (2qp)

pairs, but one also needs to include transitions to the unoccupied states from the Dirac sea

[3, 42].

The RQRPA dipole strength distributions for N=20 isotones, displayed in Fig. 4, are

dominated by the isovector giant dipole resonances (GDR) at ≈ 20 MeV excitation energy.

With the increase of the number of protons, low-lying dipole strength appears in the region

below the GDR and, for 44Cr and 46Fe, a pronounced low-energy peak is found at ≈ 10 MeV

excitation energy. In the lower panel of Fig. 4 we plot the proton and neutron transition

densities for the peaks at 10.15 MeV in 44Cr and 9.44 MeV in 46Fe, and compare them with

the transition densities of the GDR state at 18.78 MeV in 46Fe. Obviously the dynamics

of the two low-energy peaks is very different from that of the isovector GDR: the proton

and neutron transition densities are in phase in the nuclear interior and there is very small

contribution from the neutrons in the surface region. By exploring the RQRPA amplitudes,

we note that, rather than a single proton 2qp excitation, the low-lying states are characterized

by a superposition of a number of mainly proton 2qp configurations. The low-lying state

does not belong to statistical E1 excitations sitting on the tail of the GDR, but represents

a fundamental mode of excitation: the proton electric pygmy dipole resonance (PDR).
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V. SUMMARY

In the present study, a fully self-consistent RPA model is constructed in the single-

nucleon Hartree-Fock basis, by using correlated realistic NN interactions obtained within the

UCOM framework. It is shown that the VUCOM interaction generates a strongly collective

ISGMR mode, whose energy is sensitive to the range of the tensor correlator. The UCOM-

RPA correlations due to collective vibrations provide important contributions to the nuclear

binding energies. In addition, by employing the fully self-consistent relativistic quasiparticle

RPA, it is indicated that the nuclei towards the proton drip-line are characterized by the

appearance of the proton pygmy dipole resonance, i.e. an exotic mode where loosely bound

protons oscillate against the isospin-saturated proton-neutron core.
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FIG. 1: The UCOM-HF neutron and proton single particle spectrum for 40Ca, along with the cor-

responding spectra from the HF model based on the low-momentum NN potential Vlow−k [26], HF

with SIII Skyrme-type interaction [27], relativistic mean field theory with NL3 effective interaction

[28], and experimental spectrum [27]. The UCOM-HF calculations are based on the correlated

Argonne V18 interaction (I
(10)
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tensor correlator ( I
(10)
ϑ =0.07, 0.08, and 0.09 fm3).
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FIG. 3: The UCOM-RPA monopole transition strength distributions for the correlated Argonne

V18 interaction, using different restrictions on the range of the tensor correlator (I
(10)
ϑ =0.07, 0.08,

and 0.09 fm3). The grey lines correspond to the monopole response from the relativistic RPA,

based on the effective Lagrangian with density-dependent meson-nucleon couplings [40], with DD-

ME1 parameterization [41]. The ISGMR centroid energies obtained from nonrelativistic (Drożdż

et al.) calculations [32] and experimental data [29–31] are denoted by arrows.
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FIG. 4: The RHB+RQRPA isovector dipole strength distributions in the N=20 isotones, calculated

with the DD-ME1 effective interaction. For 44Cr and 46Fe the proton and neutron transition

densities for the main peak in the low-energy region are displayed in the lower panel and, for 46Fe,

the transition densities for the main GDR peak.


