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Summary

In this work ultracold atomic gases in one-dimensional optical lattices
are studied in the framework of the Hubbard model. We investigate the dy-
namical behaviour of both, Bose gases and two-component Fermi mixtures,
by performing an exact time-evolution while perturbing the system. The
response is measured by evaluating several observables during the evolution,
mainly in the strongly repulsive regime.

To this end, we give a short historical overview on the realisation of Bose-
Einstein condensation and introduce briefly the field of ultracold gases in op-
tical lattices. We review the Bose-Hubbard model and introduce the Hamil-
ton operators for Bose gases and two-component Fermi mixtures. Moreover,
several observables for both systems are discussed in view of the superfluid
to Mott-insulator phase transition.

The time-evolution of quantum systems is discussed in general and the
technical details in order to evolve Hubbard systems are outlined. Since we
perform simulations of atomic gases in amplitude modulated lattice poten-
tials, we derive the according time-dependent parameters of the Hubbard
model. Furthermore, we discuss the mechanisms of particle-hole excitation
which occur in the strongly repulsive regime.

We perform time-evolutions for Bose and Fermi gases with two different
kinds of perturbation in order to investigate the excitation spectrum: as
a stationary perturbation we apply linear potential gradients of different
strengths. The system shows a continuous excitation spectrum in the weakly
repulsive regime, whereas at strong interactions narrow resonances appear.
These results are in good agreement with the particle-hole excitation picture.
As a dynamic perturbation we simulate the behaviour of atomic gases in
amplitude modulated optical lattices. We present several simulations with
different system sizes, filling factors of the lattice, and boundary conditions.
The resonance structure resulting from this perturbation is more complex
than in the case of the gradient. We observe an additional fine-structure

which seems to be beyond the simple particle-hole excitation picture.
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Chapter 1

Introduction

Quantum theory is the theory which describes nature on a microscopic scale.
It required some experimental skill to reveal macroscopic quantum phenom-
ena, like superconductivity found by Heike Kammerlingh-Onnes' in 1911.
He observed the vanishing of the resistance of mercury below the tempera-
ture of 4.2 K. Onnes assumed, that the explanation of this phenomenon
requires the quantum theory, which was in an early stage at that time.
Another macroscopic quantum effect is superfluidity, which was found by
Kapitsa, Allen, and Misener in 1937: They observed liquid helium ‘He flow-
ing without friction below a critical temperature.

Both effects are connected to a phenomenon called Bose-Einstein conden-
sation, which was originally conceived by Albert Einstein in 1925. Initiated
by the studies of Satyendra Nath Bose on the statistics of photon gases,
Einstein predicted the phase transition of a dilute gas of atoms into a spe-
cial state, if cooled below a critical temperature. In this special state — the
Bose-Einstein condensate — all atoms are in the same single-particle state.
Particles of that kind are called bosons and they obey the Bose-Einstein
statistics. The many-body wavefunction of bosons is symmetric under ex-
change of two particles, which means the wavefunction does not change. On

the other hand, particles, whose wavefunction is anti-symmetric under parti-

!Heike Kammerlingh-Onnes received the Nobel prize of physics in 1913
"for his investigations on the properties of matter at low temperatures
which led, inter alia, to the production of liquid helium". (taken from
http://nobelprize.org/physics/laureates/1913/index .html)
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cle exchange, are called fermions. They obey the Fermi-Dirac statistics. The
anti-symmetry under particle-exchange implies, that two identical fermions
must not be in the same state: Assuming two fermions to be in the same
state, the interchange of these particles can not lead to the required sign-
change of the wavefunction. This is known as the Pauli exclusion principle.
Therefore, a phenomenon like the collective condensation of all particles into
the same state is not possible for fermions. The symmetry of the many-body
wavefunction is connected to the spin of the particles via the spin-statistics-
theorem. Particles, whose spin is an integer multiple of the Planck constant

h are bosons, whereas particles with half-integer multiples of & are fermions.

The observation of the Bose-Einstein condensate (BEC) proved to be
more difficult, since liquid *He is a complex interacting system, instead of a
the dilute gas as in Einsteins theory. London proposed the superfluid state
of 4He as a manifestation of the Bose-Einstein condensate in 1938 [1]. The
evidence for a condensate in liquid helium has been established in 1995 by

neutron scattering.

The experimental goal was to create a pure Bose-Einstein condensate
from a dilute atomic gas as theoretically predicted by Einstein. In the be-
ginning 1980s several groups tried to generate a pure condensate of hydro-
gen, which was cooled close to the transition point, but the recombination

to molecules inhibited the condensation.

The most successful technique to generate a pure Bose-Einstein conden-
sate is the combination of laser and evaporative cooling in magnetic traps.
Laser cooling was invented by Steven Chu, Claude Cohen-Tannoudji, and
William D. Phillips and honoured with the Nobel prize in physics in 1997.
The preferred atoms to be cooled by this technique are alkalis, since their
optical transitions match the wavelengths of current laser systems. More-
over, these atoms can be kept in magnetical traps at low field strengths, due
to their large magnetic moments. Condensation cannot be achieved by laser
cooling alone; the sample can be cooled far below the temperature needed,
but the condensation requires also high densities, at which the sample simply
absorbs the photons. Thus, in a second stage, the sample is kept in a mag-
netic trap and cooled further by evaporation. This technique is similar to
cooling coffee: one allows the "hottest" atoms to leave the ensemble whereby
the average temperature of the sample decreases. The only drawback is, that

the number of atoms is reduced, but by this method the condensation of 2000
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Figure 1.1: The image shows the matter-wave interference of a ultracold
Bose gas in a three dimensional lattice with about 100.000 occupied sites.
The sequence shows the phase-transition from the superfluid phase (upper
left image) to the Mott-insulator phase with a complete loss of phase co-
herence (upper right image). The sequence ends by the transition back
into the superfluid phase with restored phase coherence. (Taken from
http://www.physik.uni-mainz.de/quantum/bec/gallery/index.html)

87Rb atoms (rubidium) was achieved in 1995 by Eric Cornell and Carl Wie-
man [2] et al. (JILA). Four months later Wolfgang Ketterle et al. (MIT)
observed the condensation of a sample of 5 x 10° 23Na atoms (sodium) [3].
These experiments have been repeated by several groups with different alkali
atoms, and in 2001 Cornell, Wieman, and Ketterle received the Nobel prize
for their discoveries. The ability to create this new kind of matter opened

whole new range of possibilities to study quantum phenomena.

In 1998 Jaksch et al. proposed the observation of another phase transition
of a BEC in a optical lattice [4]. This optical lattice is generated by two
counter-propagating lasers, which form a standing wave. The laser frequency
is far detuned from resonances of the atoms, and due to the induced dipole
force they gather in the minima or maxima (depending on the detuning
relative to the atom resonance) of the standing wave. The physics of these
systems is characterised by the ratio of the on-site interaction strength (U)
and the strength of tunnelling (J) between the sites. The key feature is that
this ratio is controlled by the intensity of the lasers. For a low ratio U/; the

tunnelling dominates and condensate behaves like a superfluid. On the other
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hand, a high ratio U/; suppresses the mobility of the atoms in the lattice, and
the interactions dominate. In a setup with one atom per site the preferred
state in the strongly repulsive regime is one with each atom pinned at a
single site. While increasing the ratio U/;, the former superfluid condensate
has undergone a quantum phase transition to the so-called Mott-insulator.

The studies of Jaksch et al. have been performed within the Bose Hub-
bard model, which they proposed as the mathematical framework. Initially,
the Hubbard model was conceived by John Hubbard in 1963 to describe in-
teracting electrons in the periodic lattice of solids. In this formalism effects
like the magnetic behaviour and the metal-insulator transition of solids are
studied. Another application of the Hubbard model is the description of su-
perfluid *He in Vycor?, a porous glass. The Bose Hubbard model as well as
the Hubbard Hamiltonian of a two-component Fermi gas in optical lattices
are reviewed in chapter 2.

In 2001, the group of Theodor Hansch (LMU and MPQ Garching) con-
firmed the Mott-insulator phase transition in experiment [5]. Figure 1.1
depicts the matter-wave interference images during the transition from the
superfluid to the Mott insulating phase and back into the superfluid state.
One observes the complete loss of phase coherence in the Mott-phase which
is restored by the transition back in the superfluid phase.

The advantage of these systems is the possibility to study the rich physics
of strongly correlated system, which is not feasible in complex systems like
solids or liquids. The systems provide the possibility to convert a weakly
interacting gas into a strongly correlated system in which the physics is

dominated by the interaction.

In this work we study the behaviour of ultracold atomic gases subjected
to an external perturbation of the lattice, in order to reveal information on
the excitation spectrum especially in the region of the phase transition. A
simple method to probe the excitation spectrum is to apply a linear po-
tential gradient across the lattice [5, 6]. Qualitatively, narrow resonances
have been observered at strong repulsions, whereas in the superfluid regime
a continuous spectrum appears. An alternative method to excite the sys-
tem is two-photon Bragg spectroscopy via an amplitude modulation of the

lattice potential. In experiment [7] one observes again also a broadening of

2Vyc0r is a product of Corning Glass Works. (URL http://www.corning.com)



the excitation spectrum in the weakly interacting regime and rather narrow
resonances for strong repulsions.

After outlining the technical details of time-evolution within the Hubbard
model and discussing the basic mechanisms of excitation in chapter 3, we
present the numerical simulations of Bose gases in chapter 4. We simulate
the excitation of a potential gradient and a modulated lattice amplitude
by performing the exact time-evolution of the perturbed systems and the
evaluation of several observables in order to measure the response. Besides
Bose gases in various setups like different numbers of sites, filling factors
of the lattices and boundary conditions, we also simulate a two-component

Fermi gas and present the results in chapter 5.
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Chapter 2

Hubbard Model

In this chapter the Bose Hubbard model is reviewed. The number state ba-
sis for a single-component boson system is discussed and several observables
in view of the superfluid to Mott insulatior phase transitions are reviewed.
The Hubbard Hamiltonian for a two component Fermi system as well as its

number state basis is introduced and the main observable will be outlined.

2.1 Atomic gases in optical lattices

The theoretical framework to describe atoms in periodic potentials is given
by the Hubbard model. This model was initially applied in solid state physics
to describe magnetism. In 1998 Jaksch et al. employed a bosonized version of
this model to describe bosonic atoms in optical lattices at zero temperature
[4].

The Bose-Hubbard Hamiltonian can be derived from the Hamilton op-

erator for bosonic atoms in an external potential:

(2.1)

in which +(z) and ¢(z) are the bosonic field operators for a given atomic
state, Viat(x) is the optical lattice potential and Vp(x) is an slowly varying

external potential (e.g. parabolic trapping potential). In this model contact
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Chapter 2 - Hubbard Model

interaction between the atoms is assumed. The parameter of this short-range

4ragh?
m

pseudopotential g = is the two-body interaction strength, where ag
denotes the s-wave scattering length. The first term of this equation is a non-
interacting Hamilton operator and the second one describes the atom-atom

interaction. The optical lattice potential Vi¢(z) in one dimension reads

Viat(z) = Vp sin® <2§x> : (2.2)

with the wavelength X of the laser. Assuming the atoms to be in the lowest
vibrational state the field-operators &(m)T and ¢)(x) can be expanded in the

Wannier basis:
R I R I
d(x) =D wolr —&)a, and P(x) =Y wilz—&al,  (2.3)
i=1 i=1

with I the number of lattice sites and &, and é;r the annihilation and creation

operators, which obey the commutator relations

[4;,,4;] =T[al,al] =0 and [4;,4]] =0 (2.4)

The wo(z — &;) are the groundstate Wannier functions (denoted by the in-
dex 0) localised at site i. The shape of the Wannier functions, e.g. their
width, is depending on the lattice potential; this is crucial when discussing
the dependency of the modulated lattice and the parameters of the Hubbard
Hamiltonian in section 3.2.3.

Rewriting the Hamilton operator (2.1) using the expansions above gives
H= Z(éﬁ& +al, 4 [dz wi(z) —h—2V2 + Vat (x) ) wo(z — 9)
T Vi1 i+1 ’'"m

+ 3 ala, [ Ve (@) oo - )P

(2.5)

For rewriting the first term nearest neighbour hopping was assumed; ¢ is
the lattice spacing, which is assumed to be constant over the system. The
second term is isolated from the first integral, Assuming that the external

potential Vr(x) is slowly varying on the scale of the lattice spacing 4, the

8



2.2 - The Bose-Hubbard Model

off-diagonal contributions can be neglected. In the last term only one sum
over all lattice sites remains, since on-site interaction is assumed only.

In this work we are dealing with regular a lattice potential, thus the first
integral in equation (2.5) is independent of the site index i. The integrals
can be carried out for a given system and define the parameters of the Bose-
Hubbard Hamiltonian:

7= [ une) (~g 9+ Via (@) ) (e ) (26)
€ = /dm Vr (z) |wo(z — 8)? (2.7)
U= g/dm oz — 8)[1. (2.8)

The parameter J represents the tunnelling strength®, €; is a site-dependent
external potential and U is the interaction strength. The integrals leading to
J and U (equations (2.6) and (2.8)) only depend on the lattice potential (as
discussed, the shape of the Wannier function is also depending on the lattice
potential). Consequently, the physics of the Hubbard model are driven by the
ratios U/y and ¢i/;. With these parameters the Bose Hubbard Hamiltonian
finally reads

s U atata a
:—JZ( a, z+1+az+la ) —i—ZeZaTa —i-;z:a;razaiai. (2.9)
(2

2.2 The Bose-Hubbard Model

2.2.1 Number State Basis

As discussed in the previous paragraph the Bose-Hubbard model assumes
that the lattice potential is sufficiently deep to use localised single particle
wave functions. This allows to describe states within the Hubbard model by
the occupation number of the lattice sites. A single state in a system of I

lattice sites and N particles is characterised by the I-tuple

{TLl,TLQ,"' 7”[}

! Also called Josephson strength, termed after the british physicist Brian David Joseph-
son (*1940), the discoverer of the Josephson effect. It describes the tunnelling of paired
electrons through an thin insulating barrier between two superconductors (Josephson junc-
tion) [8]. The arrangement of a potential barrier between two wells of the optical lattice

behaves similar.



Chapter 2 - Hubbard Model

with ZZL:I n; = N, since the number of atoms in the lattice is assumed to
be constant. By running through all compositions of N bosons on [ lattice

sites a model space is constructed which consists of the number states
{n1,-nr}) = [m) @ [n2) @+ @ |ng). (2.10)

Each ket-vector of this tensor product represents a single site i with its

occupation number n;. The number states obey

({n1,-- ,nj}a‘{m,--- ,nr}g) =0ap  orthonormality (2.11)

Z {n1, - nrta)({ni, -+ nrtg| = 1 completeness?,  (2.12)
o,
in which the sums are evaluated by running through all compositions {n,--- ,nr}

under the constraint 21‘1:1 n; = N. Since bosons are allowed to be in an equal
state at the same site the dimension of this model space grows tremendously
with the number of atoms and sites. For N bosons on I lattice sites the

dimension is
(N+1-1)!

NI —1)!
For example, for a system of 6 bosons on 6 sites D = 462, for the composition
of 8 bosons on 8 sites D = 6435, and for 12 bosons on 12 sites D = 1352078.

D= (2.13)

2.2.2 Bose-Hubbard Hamiltonian

Before introducing the Hamilton operator we briefly discuss how operators
work on the Fock space. Analogue to the number state (2.10), operators,
which affect a specific site are defined. For example, an operator n; which

acts on site ¢ is defined by

Lh=191l® -1 ---®1 (2.14)
in which 1 is the i-th operator in this product. We also abbreviate (2.14) by
n;, in which the index ¢ denotes the site which n operates on.

The Hamilton operator of the Bose-Hubbard model in second quantisa-

tion for bosons is given by equation 2.9:
v N 4 ta o UNT atafs s
H= _JZ (aiaiJrl + aiJrlai) + Z €idya; + o Zaz’aiaz’ai’ (2.15)
1 7 1

®The completeness (2.12) is restricted to the model space spanned by the first energy
band.

10



2.2 - The Bose-Hubbard Model

with the tunnelling strength J and the interaction strength U. The parame-
ter ¢; is a site-dependent external potential, e.g. a trapping potential. The éz

and a, are creation and annihilation operators which obey the commutator

relations
4,4, =[alal] =0 and [a,al] =4 (2.16)
These operators create (éuj) or remove (3, ) a particle at site ¢ in the following
fashion:
é‘j Ny 3Ny 7n1> = Vni_{_l{nla"' 7(n2+1)7 7n1>

(2.17)
éi ‘nlj... s My e 7n[>:\/n_i‘n17"' 7(nz_l)7 7nI>

This allows to define the number operator 1; = é}éi, which counts the atoms

at site ¢, and by using the commutator relations (2.16) one can rewrite the

interaction part of the Hamilton operator:
A R . . . U A
H= —JZ <ajai+1 + a;[+1ai) + Z €0 + 3 Zni (n; —1). (2.18)
(2 (2 7

For the following discussion we assume the Hamilton operator not to be
explicit time-dependent. Moreover, we consider a translational invariant
lattice and leave out the external potential part of the Hamiltonian (2.18)
for convenience.

As discussed earlier, the external parameter which controls the physics
of the model is the ratio of U/;. For large values of U/; the (repulsive) inter-
action dominates over the kinetic energy and thus hopping between lattice
sites is suppressed. In the number basis discussed above, the groundstate in

the strongly repulsive regime is represented by the single number state

‘T;Z)O> = "I’L,TL,TL,"' an>a

where n = 1,2,3,... . In this state exactly n atoms are pinned at each site.
By thinking of charged atoms it is obvious why this is called an insulat-
ing phase: since hopping between sites is completely suppressed there is no
charge transport. The insulating property is driven by the particle-particle
interaction; insulators of this kind are called Mott insulators, in contrast to
band-, Peierls- or Anderson- insulators, in which the transport is suppressed
due to particle-lattice interactions (see [9] for details). By decreasing the
ratio U/; the hopping term of (2.18) cannot be neglected anymore. Hence,

the groundstate consists of more than a single number state because the

11



Chapter 2 - Hubbard Model

inter-site hopping weakens the strong localisation of the former Mott insu-
lator state. This delocalisation corresponds to a groundstate consisting of a
linear combination of number states, in which number states with the atoms
bunched at a single site have a much lower weight than states with all atoms
distributed over the whole lattice.

While decreasing the ratio U/; the interaction term of (2.18) gets more
and more irrelevant, until in the limit U/; — 0 all number states are occu-
pied. The system is called to be in a superfluid phase.

Generally, the groundstate of a Bose-Hubbard system is given by

D
{¢0> = ZC§~O) H’I’Ll,TLQ,- c ,n[}j>, (219)

J=1

in which D is the dimension of the Fock space given by (2.13) and C§0) is
the coefficient of the j-th number state. These coefficients are obtained by

solving the time-independent Schrédinger equation:

H|y,) = B, [4,),

in which |¢,,> is the v-th energy eigenstate and F, the corresponding energy
eigenvalue. This eigenvalue problem is solved numerically by expressing the

Hamiltonian (2.18) in the number basis with the matrix elements
<n17n27"'7nI‘I:I|n,17n,27"'7nII>' (220)

In order to construct this matrix one has to run over all combinations of
{ni,--- ,nr} and {n},--- ,n’} under the constraints Zle n; = Zi[:l n =
N, which makes D x D matrix elements. Since nearest neighbour hopping

is assumed, the number of non-zero matrix elements is only ~ 5D, though.

2.2.3 Observables

MEAN OCCUPATION NUMBER. The groundstate and the few excited
states one obtains by exact diagonalisation of the Hamilton matrix allow to
evaluate several simple observables. An observable we already used in the
discussion above is the average occupation number at a specific site ¢. It
is obtained by calculating the expectation value of the occupation number

operator of the i-th site:

12



2.2 - The Bose-Hubbard Model

n; = (o | Bi | o) (2.21)
With the groundstate (2.19) one can rewrite the expectation value and gets
D D .
n; = Z (C§O)) C]E;O)< {n1,n2a o anl}j | ﬁz | {’I’Ll,TLQ, o 7nl}k‘ >
j=1 k=1

Since the Fock basis is an eigenbasis of the occupation number operator,
the expectation value in the sum can be easily evaluated and by using the

orthogonality of the Fock basis one arrives at

D D "
n; = ZZ<C§O)> c,go)ngk)5j

j=1 k=1
D
-
= Y1V (2:22)
j=1

where the integer nl(-k) are the number of atoms on the i-th site of the k-
th number state. For translational invariant lattices this observable will be

site independent and represents the filling factor /.

NUMBER VARIANCE. Another observable is the number variance at a site ¢
which was also used in the discussion above. The number variance reveals
information on the composition of the groundstate in terms of number states.
In the strongly repulsive regime, i.e. for a large ratio U/;, the groundstate
consists approximately of a single number state and thus the number variance
will be small. In contrast, all number states contribute to the groundstate
in the superfluid regime, which results in a larger number variance. The
number variance at the i-th site is given by the expectation value

1
%o >2> . (2.23)

o = (<¢0\ﬁ?wo>—<¢o fi;
where the second term in the square root is the square of the occupation
number at the i-th site. This means, one has to calculate the occupation
number and the expectation value of the operator ﬁf in order to compute
the number variance o; of the i-th site. Although the number variance
provides information to identify the phase of the system, it is not suited
as an order parameter to identify the superfluid to Mott insulator phase

transition [10]: as shown on the left hand side of figure 2.1, in the region of
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0.6} ]

number variance o

vs. the

Figure 2.1: Shown are the number variance o and the max. coefficient C2,

interaction strength U of a system of 6 bosons on 6 sites (solid lines) and 8 bosons
on 8 sites (dashed lines). The lattice potential is translational invariant, thus the

number variance o is site independent.

the phase transition (U/s), = 4.65, which was determined by Monte-Carlo
calculations [11, 12|, the fluctuations change linearly with the interaction

strength and do not indicate a transition point.

MAXIMUM COEFFICIENT. Similar characteristics of the groundstate are re-

vealed by the maximum coefficient

e = max ({[c!”?}) (2.24)
=~ 1 indicates that the groundstate

‘¢0> consists of a single number state; in contrast, a small value ¢2,, means

of the expansion (2.19). A value c?

max
that the state is a superposition of many number states.

ENERGY GAP. Another simple observable is the energy gap, which is a
feature of the Mott insulator phase. It is defined as the energy difference
between the groundstate energy Ej and the first excited state E7, and so it

can be evaluated directly from the first two energy eigenvalues:
Egop = E1 — Ey (2.25)

Figure 2.2 (left) depicts the energy of the first 50 energy eigenstates of a sys-

tem of 6 bosons on 6 sites at different repulsive interaction strengths U. One

14
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Figure 2.2: The graph on the left shows the first 50 energy eigenvalues of a system
of 6 bosons on 6 sites for different interaction strengths U. The lines show the
interaction strengths (bottom to top) U = J, 5J, 20.J, 50J. One can see the rising
energy gap between the ground and the first excited state (on the very left of the
plot) in the Mott cases (U/y > 4.65J, [11, 12]). Right hand side shows the energy
gap Egap vs. the interaction strength U for a system of 6 bosons on 6 sites (solid
line) and 8 bosons on 8 sites (dashed line).

clearly sees that several energy gaps open up at higher interaction strengths
(figure 2.2). The graph on the right hand side shows the energy gap of
two bosonic systems of commensurate filling factors (6 atoms on 6 sites and
8 atoms on 8 sites) versus the interaction strength U. The behaviour of a
growing energy gap with increasing ratio U/; can be explained by consid-
ering a system with commensurate filling factor, e.g. number of particles
equals number of sites NV = I. As discussed earlier in this section, for small
values of U/; the system is in the superfluid phase and all number states
contribute to the groundstate. With increasing ratio U/;, the interaction
between the atoms becomes more and more dominant and thus Fock states
with more than one atom per site are suppressed, because they are energeti-
cally unfavourable. In the limit of an infinite interaction strength U, only the
Fock state with one atom per site remains, which has a groundstate energy
Ey = 0. Due to admixtures of Fock states with two or more atoms per site
in the first excited state and the strong interaction strength U an energy
gap appears. The plot on the right of figure 2.2 shows, that the energy gap
Eg.p is increasing slowly with the interaction strength U in the superfluid

phase, but in the region of the phase transition at U/; ~ 5, the slope starts
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Chapter 2 - Hubbard Model

to increase up to 1 in the Mott insulator regime. This indicates that the first
excited state in the Mott insulator regime is dominated by number states
with exactly one doubly occupied site. Since the energy of the Fock states
with one doubly occupied site is approximately U, variation of U by a cer-
tain amount changes the energy gap Eg., by the same amount. In contrast,
for systems in the superfluid regime in which all Fock states contribute to
the groundstate the energy spectrum (left hand side of figure 2.2) is rather
smooth.

ENERGY TRANSFER. The energy transfer AF is a valuable observable in
case of time-dependent Hamiltonians ﬂ(t), which are utilised in chapters 4
and 5. The energy transfer AFE is defined as the expectation value of the
initial Hamilton operator Hy = ﬁ(t = 0) and the current state w, t> minus
the energy of the starting state. Initial Hamilton operator means in that

case, that the starting state W, 0> is an eigenstate of Ho:

AE = (1,t|Ho|w,t) — (1,0 Ho |4,0) (2.26)

This observable provides the energy which is taken by the system under

perturbation, and thus indicates excitement of the system.

CONDENSATE FRACTION. Bose Einstein condensation takes place below a
specific transition temperature, if the lowest single particle energy levels are
occupied. Since systems described by the Hubbard model are assumed to be
at zero temperature, the condition of being lower than the transition tem-
perature is always satisfied. In order to define a condensate fraction we refer
on the formulation of Penrose and Onsager [13], which says that a conden-
sate is present if one of the natural orbitals is macroscopically occupied. The
natural orbitals are the eigenvectors of the one-body density matriz defined

by the matrix elements

pﬁ) = (4o | aja | vo) (2.27)

in which W0> is the given groundstate. The occupation number of a natu-
ral orbital is the corresponding eigenvalue. The macroscopic occupation is
satisfied if the ratio of the occupation number and the total atom number re-
mains finite in the thermodynamical limit (N, — oo while N/; = const.).

Thus, we define the condensate fraction f. = Nc/n. From the trace of the
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m
ij
the largest eigenvalue is less or equal N/r. This implies that the condensate

one-body density matrix is Trp;.” = N follows directly, that in finite systems

fraction is always larger than 1/; and remains finite.

SUPERFLUID FRACTION. Macroscopically, superfluidity is the property of
a system to flow without friction. The superfluid fraction of a liquid can be
defined within the two-fluid model: We consider a fluid in a tube which is
moving with a velocity v. In the rest frame of the tube only the superfluid
fraction of the fluid is moving. In this frame the kinetic energy of the super-
fluid fraction is evaluated by the difference of the energies in a system with
a moving tube and one with a tube at rest. From the kinetic energy and the
velocity v the superfluid fraction can be obtained.

Analogue to this macroscopic picture one can define the superfluid frac-
tion f of the Bose-Hubbard system. We consider a lattice with cyclic bound-
ary conditions, this means that the atoms can hop between the sites 1 and
I directly. We force the atoms in the system to move by a velocity v in the

lattice by a Galilei boost.

N .
1 N
W)boost> = 1_[1€Xp <ﬁvsmxi> ‘¢>7 (228)
1=
in which m is the mass of a particle, N the number of particles and X; the
position operator of the ¢-th particle. In position space the operator X; is

simply the variable z; and thus the boost operator is reduced to a phase
exp (i¥(z;))

N
Uboost (1, -+, 2n) = [ [ €7@, -+, an), (2.29)
i=1
with the many-boson wavefunction ¢ (z1,--- ,zn) = (x1,-- ,an|¥) in co-

ordinate representation. The phase ¥(x;) is connected to the velocity wvs
via
Vg = ﬁVﬁ(mi). (2.30)
m
This means, that the velocity field vs results from a spatial variation of the
phase ¥(z;). We assume a total phase twist of § over the length L of the

lattice in the following fashion:
w(xla'“ y Ll +L7 7xN) = eiew(xla'“ s Lyt 7$N) Vka (231)
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which is equivalent to a flow with the velocity vs = % This flow is non-
dissipative and irrotational which are properties of the superfluidity. Ana-
logue to the macroscopic definition given above, the portion of the system,
which follows the flow is defined as the superfluid fraction. This fraction is
calculated from difference between the groundstate energies of the twisted
and non-twisted systems.

In order to obtain the groundstate of the twisted system we map the

unitary transformation onto the Hamiltonian. We consider

al N i0
By = HUM = Hexp <fx> (2.32)
=1 =1

as the boost operator for a system of N particles. The UAgJ are local unitary
boost operators acting on site ¢. The operator By is not unitary, because
it does not respect the cyclic boundary conditions of the Hamiltonian: we
want the atoms to gain the phase ¢/5s by hopping from site to site, with ¢ the
lattice spacing; this includes also hopping between the sites 1 and I. The
cyclic boundary conditions would require a phase gain of # for this hop.

The Hamilton operator for a system with the phase twist 0 reads then
H, = B} HBy (2.33)

with H the Hamiltonian of the non-twisted system. Introducing the Bose-
Hubbard Hamiltonian (2.18) one gets

~ N . R N R U A .
Hy = Bg (—JZ (aja@dr1 + azHaZ-) + Zeini + 5 Zni (h; — 1)) By.
1 1 (3

Since the occupation number operator does not change the position of a par-
ticle the position operator %; of the j-th particle and the operator 1;, which
counts the atoms at site 7, commute. The boost operator can be expanded
in a Taylor series, which consits of powers of X;, and thus it commutes with
the number operator, too. This means the interaction and external potential
term of the Hamiltonian are not affected by By and by using the property

U};ﬂ. = U(;Zl of unitary operators one gets:
1, — atata B, L Bial 4B L U
Hy = _JZ (Beaz‘ 8;11Be + Bga 113, BG) + Z eni + < Z n; (B — 1).
K3 7 7

To figure out how the boost operator (2.32) acts on the hopping term we

rewrite it in a product over lattice sites instead of particles. The particles
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are indistinguishable and since (2.32) affects all particles in the lattice one

can express the Up; in (2.32) by
A . 0
Up; — Uy, = exp Z&-ni , (2.34)

with & the coordinate of the i-th lattice site and 1i; the occupation number

operator at site ¢. Therefore, the boost operator reads

1 .
B,g = Hexp (%Szﬁz> . (235)
i=1

As an example we evaluate the expression
! i ! i
Blafa,, By = [ [ exp (-Zgjﬁj> ala, . [ ] exp (ngﬁk> . (2:36)
j=1 k=1

We consider a Fock state on the right. At first the operator Uy acts on this

state and produces a product of exponential terms

i0 i0 0 0
exp Zflnl - exp Zéjnj exp Z£j+1nj+1 “--exp Z&nl ,
(2.37)

without affecting the state itself. Then the state is changed by a hop of one
particle from site j + 1 to site j gaining the factor \/n; + 1,/n;17. Subse-
quently the boost operator on the left of (2.36) acts on this new state and

creates also a product of exponential terms:

exp <—%£1n1> ---exp <—%£j(nj + 1)) X

i0 0
exp <—ffj+1(”j+1 - 1)> T eXp <_f£m[> ’

in which n; are the occupation numbers of the initial Fock state. These
terms are almost cancelled with the previous ones, only a phase remains due
to the hopping:

10 10 0
exp (% (&1 — Ej)) = exp (;—55> = exp (%) ;

in which ¢ is the lattice spacing. For the second, hermitian adjoint term
one gets the conjugated expression of (2.38). Finally, the Hamiltonian for

twisted boundary conditions reads

A DT —i0/1~ . . U A
Hy = —JZ <610/Ia;rai+1 +e G/Iaj+1ai> —i—Zeini + 3 Zni (n; — 1),

(2.38)
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Figure 2.3: The graph shows the super- 1 .
fluid fraction f; of a system of 10 bosons -
on 10 sites vs. the interaction strength U. g 0.8 ]
In the region of the superfluid to Mott in- £ 0.6 ]
sulator phase transition U/j ~ 5 — 8 one ugg ’
can see the sharp decline of the superfluid E 0.4 .
fraction. :g

2 0.2 -

%
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interaction strength U [J]

in which eT?/! are the so-called Peierls phase factors.

The groundstate energies of the twisted and non-twisted Eéo) and E©)
system are obtained by exact diagonalisation of the Hamiltonians Hy and
H. The difference between these energies is the kinetic energy of the flowing

superfluid:

EY - BO = %MSUE (2.39)

With the velocity vs = % and by introducing the superfluid fraction via

the mass M = fsNm one obtains

omI2 EY) — EO
N 62

(2.40)

with m the mass of one atom, N the number of atoms and L the length
of the lattice. This equation is valid for small twist angles 6. By replacing
the prefactor of the kinetic energy % by the tunnelling strength J and the
length L of the lattice by the number of lattice sites I one finally gets an

expression for the superfluid fraction in the lattice:

2 EY) - EO

s=38" ¢

(2.41)

Figure 2.3 shows the superfluid fraction f; of a system of 10 bosons on
10 sites versus the interaction strength U. The sharp decline in the region
U/y ~ 5 — 8 indicates the phase transition between the superfluid and Mott

insulator phase.
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2.3 The Fermi-Hubbard Model

In this section the Hubbard model for a two-component Fermi gas is dis-
cussed. The number state basis and the Hamilton operator is introduced

and the main observables are reviewed.

2.3.1 Number State Basis

Analogue to the Bose-Hubbard model (section 2.2) the lattice potential is
assumed to be sufficiently deep and all atoms are in their groundstate, thus
they can be described by localised Wannier functions. A composition of these

single-particle states for two particle species is represented by two I-tuples
{ngc),--- ngc)} and {ngd),--- ngd)} (2.42)

in which ngc) is the number of particles at site ¢ of species ¢ and I the number
of lattice sites. Since we are describing a system of fermionic atoms which
obey the Pauli exclusion principle, at most one atom of a kind is allowed
at a site. Thus, the occupation numbers are restricted to ngc) = {0,1}.
This implies that the number of atoms of a certain species cannot exceed
the number of lattice sites. The model space is then constructed by all

compositions (2.42) under the constraints

I I
Sl =N.<T and Y nl® =Ny<T (2.43)
=1 i=1

in which N, is the particle number of species c¢. The elements of this model

space are the number states
c c d d
i, niYa) @ [{ni®, - nf)s). (2.44)

This means that the model space consists of all combinations of the possible
number basis states of the two species. The dimension of a single species

Fock space is

I I
D.— S — 2.4
(M) NIV, — 1) (249)

and thus the dimension of the Fock space of a two-component Fermi system
is Dprp = D. X Dy. For example, for a system of three fermions N, = 3

and I = 6 lattice sites the dimension is D, = 20. A Fermi-Fermi mixture
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with N, = Ny = 3 on 6 sites has Dpp = 400. In comparison with the
Bose-Hubbard model the dimension is extremly reduced due to the Pauli

principle. The number state basis is also orthonormal

= 0ar08s
(2.46)
and complete

St i) @ [t X i, Yol 0l
afBvyd

=1
(2.47)
A alternative notation for a certain Fock state of a Fermi-Fermi mixture in

a lattice is realised by assigning the arrows T and | to the species ¢ and d:

in which 7 (|) denotes exactly one fermion of species ¢ (d) at the according

site. This state is equivalent to

1,1,---0,0)® [1,0,---,0,1). (2.49)

In contrast to a bosonic system one has to use creation (¢') and annihilation

(¢) operators which obey the anti-commutator relations

6. ¢;], = [el,el], =0and [¢,¢l], =0, (2.50)

and thus introduce the Pauli exclusion principle. These operators create (éj)

or remove (¢;) a fermion of species c at site .

77‘36)7"' 7n('C)7"' 7n§C)> ® ‘ngd)7 7n§d)> =

= {ngc),--- ,nl(-c)—i-l,--- ,n§6)> ® {ngd),--- ,ngd)> (2.51)

and

(Aii {ngc),... ,n§0)> ® ‘ngd),"' ’nl(d),__. 7ngd)> _
= ‘n§0)? ’n§0)> ® |’I’L§d), n(d)—l, ngd)> (252)

2Ty
In the case of any of the occupation numbers is different from {0, 1} the state

is invalid and the term vanishes.
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2.3.2 Fermi Hubbard Hamiltonian

Since we describe two different species a hopping term for each is necessery;

the hopping part of the Fermi-Fermi Hamiltonian reads then
T=-7) (é;'réiJrl + éjﬂéz’) —Jy <aj’az’+1 + azT'Hai) ; (2.53)
i i

in which éj (¢;) is the creation (annihilation) operator of the first and aj (d,)
for the second species. Both pairs of operators obey the anti-commutator re-
lation (2.50). Generally, the tunneling strengths J of both species are inde-
pendent, but for our purposes a single J is assumed.

Since at most one particle of a species is allowed on a certain site there is
no two-body interaction within the species itself. Only the inter-species in-
teraction contributes to the Hamiltonian. The interaction part of the Fermi-

Fermi Hubbard Hamiltonian is then

I
V=Uqd an® (2.54)
i=0
where U, is the interaction strength between two fermions of species ¢ and d,
(c) f
i i

Fermi Hubbard Hamiltonian reads

ﬂFF = _JZ (é;'réi—i—l + ézT+1éz‘> - JZ <&Z&i+1 + azTJrlai)

I
+ Uy aa,
=0

and ;= ¢;¢; is the number operator of species c at site 7. Finally, the

(2.55)

Analogue to the Bose Hubbard system in section 2.2 the energy eigenstates
are obtained by solving the time-independent Schrédinger equation which
means diagonalisation of the Hamilton matrix. The Hamilton matrix in

number state representation consits of the matrix elements

(<{n§0)’ ) n§0)}a‘®<{n§d)a o 7n§d)}ﬁDI:IFF<Hn§C)a o '7n§0)}'y>®‘{n§d), Tty ngd)}5>>

(2.56)
The diagonalisation provides the energy eigenstates
D. Dy
o) =323 cap [l nfYa) @ [{nf, - ) (2.57)
a=1p=1
with cgg the coefficients of the i-th energy eigenstate.
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2.3.3 Observables

Generally, the observables are defined in the same manner as in the Bose-
Hubbard model. Here, they are briefly reviewed in terms of a two-component

Fermi system.

MEAN OcCcCUPATION NUMBER. The mean occupation number at site ¢ of
species c¢ is defined as the expectation value of the according occupation

number operator:

i = (o |8 | o ). (2.58)
()

W0> is an arbitary state of the system, e.g. an eigenstate (2.56), and 1, is
the occupation number operator of species ¢ counting the number of atoms
at site ¢. In contrast to the pure boson system the mean occupation number
of the system is in the interval ﬁl(-c) = (0 — 1) due to the Pauli principle.
In case of an translational invariant lattice the mean occupation number is
site-independent ﬁgc) = Ne/p.

NUMBER VARIANCE. Due to the Pauli principle the number variance does
not provide much information on Fermi systems. It is defined for species ¢

at site ¢ by

(02 = (o] (89) o) — (o[ 89| w0 )?, (259)

The number operator ﬁgc) acts on states with occupation numbers nl(-c) = {0,1}
only which implies that (ﬁgc))2 = ﬁgc). Thus, the site independent number

variance in a translational invariant lattice is

(0\9)2 = Ne _ <&>2. (2.60)

In case of a non-translational invariant system the number variance is site

dependent but invariant under variation of the ratio U/;.

CONDENSATE FRACTION. In the case of a Fermi-Fermi mixture conden-
sation of a single species will not occur since the atoms obey Fermi-Dirac-
statistics. However, the condensation of two fermions, the so-called composite
bosons, is still possible. Especially the investigation of the phase transition

from a condensate of fermion pairs to a Bardeen-Cooper-Schrieffer (BCS)
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superfluid is currently of great interest [14, 15]. This is possible by control-
ling the atom-atom interactions via a magnetic-field Feshbach resonance [16].
These resonances occur at certain strengths of the magnetic field. By small
variations of the field around these values one can change the interactions

from attractive to repulsive and vice versa.

DRUDE WEIGHT. The analog to the superfluid fraction in the case of a
bosonic system is the Drude weight, which characterises a transport prop-
erty in fermion systems. The Drude weight is a direct probe for the metal-
insulator phase transiton in a system of electrical charged fermions and thus
proportional to the conductivity.

The Drude weight for a mixture of two fermionic species is defined by

IZ Eéo) _ E(O)

(6 _
fp = TN, 2 , (2.61)

with fl(jc) the Drude weight of species ¢ and N, the number of particles.
Eéo) and E©) are the groundstate energies of the twisted and non-twisted
Hamiltonian. They are obtained by solving the Schrodinger equations of the
non-twisted system (2.55) and

ferg = —J > (¢7ele,y + el e, ) = T Y (0dld, , + el d, )
7 7

1
+ Uy a0,
1=0

which is the Fermi Hubbard Hamiltonian for a system with an external phase
twist 6.
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Chapter 3

Time Evolution

In this chapter the time evolution of quantum systems, especially Hubbard
systems, 1is discussed. First, an overview over time-evolution of quantum
systems in general is given. The technical details of evolving Hubbard systems
as well as the basic mechanisms of excitation are discussed. Finally, different

numerical methods will be outlined.

3.1 General Notes

In quantum mechanics the temporal evolution of a state is given by the

time-dependent Schrédinger equation
., 0 A
ifi— 1, t) = H|u,t), (3.1)

where !1/), t> is the time-dependent state of the system and H is the Hamilton
operator. In the first paragraph of this section the time-evolution of systems
described by time-independent Hamilton operators will be discussed and the
general form of a time-evolution operator will be given. We consider the
initial state of the system ‘1/), t0> at time t = ty. One possible way to derive
an explicit expression for the time evolution operator is to plug the ansatz
for the state ‘¢,t> at time ¢

[0,t) = U(t,to) 4, to), (3.2)

with ﬂ(t, to) unitary time-evolution operator, into the Schréodinger equation

(3.1). This leads to a differential equation for the time-evolution operator
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U(t7 tO)

%fj(t,to) — —;Iﬁlﬂ(t,to), (3.3)

: t
U(t, tg) = exp (—%H/ dt’) :
to

For the state ‘1/1, t> follows then

=

with the solution

[v,t) = Ult,to) ¥, t0) (3.4)
= exp< hH t—t0> |0, t0).

For a given system with an Hamiltonian H one has to derive the time evo-
lution operator. For a time-independent system the most obvious way to

realise this is to take advantage of the eigenbasis of the Hamiltonian H:
H [n) = E,|n) (3.5)

(time-independent Schrédinger equation) with the Eigenstates |n> and the
energy eigenvalues E,. The initial state W),to> is expanded in the eigen-

basis { ‘ )} by using the basis decomposition of the identity operator 1=

> [m)(n]:
‘¢,t> = Z ‘n><n‘1/1,t> = ch |n> (3.6)

with the complex coefficients ¢, := <n|1/1, t>. Now the time evolution operator
can be applied easily: in which the time-independency of H was used. By
introducing the expansion of the initial state (3.6) one gets

|1, t) = exp (—%H (t — t0)> ;cn n)

where the Schrédinger equation (3.5) can be applied:

‘1/), t) = Z Cp €Xp (—%En (t— t0)> ‘n> (3.7)

n
This method requires the solution of the complete eigenproblem, which is
simply not feasible for many systems: To solve the eigenproblem numerically
one has to choose a basis to get the matrix representation of the Hamilton
operator. This Hamilton matrix has to be diagonalised by standard numer-
ical techniques. In many cases, one can at best compute a fraction of the

eigenspectrum, due the high dimension of the problem.
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In order to integrate the Schrédinger equation for systems which are not
exactly solvable in terms of the aforementioned methods, one can try to solve
the problem approximately. There exist a large number of numerical methods
which integrate differential equations with high accuracy and performance.

The integration of time-dependent systems can be performed by splitting
up the time interval in several small steps of At, in which the Hamiltonian
is assumed to be constant. One has to evaluate the time-evolution operator
ﬂ(t, to) for each sub-interval in order to obtain the trajectory of the system.
We apply this method in combination with a second-order approximation of
the time-evolution operator for the simulations discussed in the chapters 4
and 5.

3.2 Bose-Hubbard Model

Probing the properties of ultracold atomic gases in optical lattices by using
excitations has been subject of recent experimental [5, 7, 17] and theoretical
[18] work. These techniques provide much information on the physics of
strongly correlated systems and especially the superfluid to Mott insulator
phase transition (SF-MI).

Different approaches have been employed to probe these strongly corre-
lated systems by excitation. For instance Greiner et al. [5] examined a Bose
gas in the Mott regime by applying a potential gradient. In the language of
the Bose Hubbard model (equation 2.18) this corresponds to a linear increase
of the energies ¢; across the lattice. By repeating this experiment with differ-
ent linear gradients (tilts) one observes excitations at certain values. In the
picture of particle-hole excitations these excitations occur when the energy
of atoms at neighbouring sites overcomes the repulsive interaction. These
sharp resonances are a direct indicator of the energy gap which indicates the
presence of an Mott insulating state. Tilting was examined theoretically in
[18] and is part of this work.

Another technique is the excitation by time-dependent perturbations.
Stoferle et al. [7] examined the SF-MI phase transition by Bragg spec-
troscopy [19]. Modulation of the trapping potential with a frequency wmoqd
adds two sidebands twy,0q relative to the laser frequency. This defines an
energy difference of AE = Awy,oq which in view of particle-hole excitations

transfers energy to the atomic gas. This method is less sensitive to Bloch
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oscillations and, unlike in lattices with linear gradients, heating of the sys-
tem will not occur. Investigation of dynamical excitations of that kind are
part of this work and were also investigated in [18].

In the following subsections the theoretical framework for the numerical
simulation of the two techniques, tilting and modulating the lattice, are

discussed.

3.2.1 Excitation of Atoms in Optical Lattices

BosonNs. This section will briefly discuss the mechanisms of excitations
in the Mott regime. Basically, we assume that predominantly particle-hole
excitations take place — since the atoms are separated by high barriers and
the perturbations are assumed to be sufficiently low — collective excitations
are neglected. The groundstate for a system of I lattice sites and N=nl
bosonic atoms (n = 1,2,3,...; commensurate filling factor) in the number

basis representation is approximately given by a single Fock state:
‘ground> = ‘n,n,--- ,n>.

Exciting this state in the particle-hole picture — one atom hops from the
(7 + 1)-th to the i-th site — gives the normalised state

!excited> = ‘ ground>

1
——a'a.
/—’I’L ¥ ]_\/ﬁ T i1
= ‘n,n,--- ,(n+1),(n—-1), - ,n>.
Here, ég and a, are the bosonic creation and annihilation operators for site 4,
again. Deep in the Mott regime (U > J) only the interaction term of the

Bose Hubbard Hamiltonian remains:

I
Z f; (i — 1)
i1

Thus, the energy one has to provide for a hop is

A
HN
~

bo|

AE = <excited ‘ H ! excited > — < ground ! H ‘ ground>
U

= 3 <(I -2)n(n—1)+n+1)n+(n—1)(n- 2)> - %In(n -1)

= U

Therefore, a system in the Mott regime which is perturbed by an exter-
nal force can respond with a particle-hole excitation if the available energy

corresponds to the interaction strength, AE = U.
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FERMI-FERMI MIXTURES. For a system of fermions one has to respect the
Pauli principle which does not allow two identical fermions to be in the same
state. We consider a system of I lattice sites filled with !/ fermions of one
species and /> fermions of a second one, denoted by ’1” and ’|’, respectively.
Furthermore, we assume strong repulsion between the two species. As dis-
cussed in chapter 2 a Fermi-Fermi system is described by a Hamilton operator
(2.55) with a hopping-term for each species and an interspecies-interaction
term. Again we consider the limit of strong repulsive interactions neglecting

the hopping term. The Hamilton operator then reads

I
Hpr =~ Upp Z 1, ﬁll
i=0
In this picture the groundstate is presented by a linear combination of all
Fock states with each site occupied by exactly one atom of any species. For

instance, we excite the state

‘a>: ""7T7l7 o
=

site 7

)

in which an arrow (7 or |) means exactly one fermion of the according type
at that site. This Fock state, which is an element of the groundstate, is
occupied with an atom T at site ¢ and with an atom | at the neighbouring
site ¢ + 1. All other sites are occupied with exactly one atom if any species.
Because of the Pauli exclusion principle only Fermions of different states
can share the same site. Therefore, only hopping to a site with an atom of

different spin can occur:

‘excited> = a]l,iéL(iJrl) ‘oz>
— aliéi,(iﬂ) ‘ L)
= |"',Tl,0,"'>,

with é{ ; and a L the fermionic creation and annihilation operators at site ¢

of species |. The energy needed for a hop to a neighbouring site is then

AE = <excited ‘ Hpp | excited > - <a ‘ Hpp | a>
= Upr — 0 = Upr.
(3.8)
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m lattice sites

lattice

sites

Figure 3.1: Effect of a external potential gradient: The steeper gradient enables
hopping to a neighbouring site; the lower tilt enforces hopping over two sites.

Analogous to the bosons in the previous paragraph a two-component Fermi
gas in an optical lattice potential will show resonant behaviour when excited

with an energy AE = Upg.

3.2.2 Tilted Lattices

Probing atomic gases in optical lattices by tilting the potential reveals valu-
able information on strongly correlated systems in experiment [5] and theory
[18]. The tilting is realised by a potential gradient across the lattice. In terms
of the Hubbard model, the on-site energy ¢; increases linearly with the site

index i:

€ = 1€¢ilt, (3.9)

in which i is the site index and the parameter ey controls the energy differ-
ence between neighbouring sites. If, in view of the particle-hole excitations
discussed in section 3.2.1, the energy difference between neighbouring sites
corresponds to the energy needed for a hop one will observe a resonant be-

haviour.

Besides the trivial case of hopping from site to site, next nearest neigh-
bour hopping is also possible at lower tilting, but, since the Hamiltonians
(2.18) and (2.55) do not directly connect these states, its a second order pro-
cess with a lower probability. These resonance will occur at tilting € = U/
as shown in figure 3.1. It is also possible to hop over more than two sites, but

since these are processe of higher order they occur with lower probabilities.
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3.2.3 Modulated Lattice Potential

The investigation of atomic gases in optical lattices by two-photon Bragg
spectroscopy was subject of recent experiments [7, 20]. In contrast to apply-
ing a gradient this method is not susceptible to effects like Bloch oscillations
or heating effects. Moreover, the excitation energy is tuneable very precisely.
In experiment this is done by modulating the amplitude of the lattice lasers
with a frequency wpoq- This generates two sidebands +wy,oq relative to the
laser frequency which define an energy AF = hwpoq-

In order to perform computer simulations of atomic gases in modulated
optical lattices in the framework of the Hubbard model one has to account
for the time-dependency of the (modulated) lattice. The one-dimensional

static lattice potential reads
Viat () = Vpsin?(kz).

For amplitude modulated lattices this static potential is modified by a time-
dependent factor which provides the oscillation of the amplitude by a fre-

quency wmod and a dimensionless modulation amplitude F":
Vinod(,t) = Vo sin?(kz) (1 4 F sin(wmoqt)) - (3.10)

In order to translate this potential into the language of the Hubbard model
one has to figure out how the time-dependency of V04 affects the tunnelling
strength J and the interaction strength U. In analogy to the definition given
in section 2.1 the time-dependent tunnelling strength is given by

2 2
Jij(t) = /dw wo (v — &, 1) (-;—m% + Vmod@i)) wo (z = &5, t)

in which wg (z — &;,t) are the Wannier-functions localised at the i-th lattice
site for the lowest band (denoted by the index 0). This term gives the energy
for hopping from site ¢ to site j; only nearest-neighbour-hopping is assumed,

therefore, one arrives at the simpler expression

2 42
J(t) = /dx wo (z,t) <—2h—m% + Vmod(x,t)> wp (x —6,t), (3.11)

in which § = &1 —¢&; is the lattice spacing. The Wannier functions are time-
dependent as well — their shape depends on the lattice potential Vi,oq(x,t):

For shallow lattice potentials it is easier for an atom to hop to an other site,
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Chapter 8 - Time Evolution

so its wavefunction will be broadened. In contrast, for deeper lattices the
atom will be pinned to a site — its wavefunction is rather narrow.

The interaction strength

4h?
Uy = 0 / dz wo(z, )], (3.12)

(with ag the s-wave scattering length) also depends on the shape of the
wavefunction and thus it depends on time because of the oscillating lattice
potential.

In order to ease the solution of the integrals (3.11) and (3.12) the Wannier
functions can be approximated by a Gaussian wavefunction in a harmonic
potential, approximating a single well of the lattice potential (3.10) (tight-

binding approximation):

W(z) = \1/%0 exp (-%) (3.13)

with o the width of the Gaussian, which depends on the lattice potential.
The assumed harmonic potential is then

m <v0(1 + Fsin(wmodt))k2> .2

2 m

Vi(w,t) = (3.14)

again, with the modulation frequency wp,oq and the amplitude F'.

As discussed before for the Wannier functions a rather shallow lattice
will result in a broader Gaussian — the parameter o will become larger.
The method to figure out this dependency, as applied in [21] and [18], is to
minimise the Gross-Pitaevskii energy functional:

siol = fas |2

Integrating this equation using the Gaussian @ (equation 3.13) with the pa-

di(x) | 1 47h?
O 4 Vi) i)

- ()

(3.15)

rameter o leads to an expression for the energy as a function of the Gaussian

width /3 9
h V2 m Arh*a,

Flo| = F = — 2o 4+ Q)%+ S,

(W] (0) =53 7 (t)o g

in which the abbreviation Q(t) = Vo(1+ F'sin(wt)) was used for clarity. The
stationary points of the energy functional F(o) are obtained by setting the

(3.16)

derivative with respect to o to zero:

K2 4Arh2a
VamQiot - —vV2 - —= =0 3.17
m V2mmo? ( )
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3.2 - Bose-Hubbard Model

Solving this equation leads to an implicit expression for o(t):

h2
ot = —p (1+2y/Taso) (3.18)

This equation must be solved in order to get the width o at a time t.
As shown in [18] one can neglect the interaction part of the energy func-

tional (3.15) and gets the simpler approximation

E[w] = /dm [%

which provides an explicit expression for the width o(¢):

dw(z) |2
dx

+ Vi (x, t) ]ﬁ)(x)\zl , (3.19)

,1/4

Tnon—int(t) = (mVpk*(1 + F sin(wmoat))) (3.20)

Evaluating the integrals (3.11) and (3.12) using (3.20) as width of the Gaus-

sians ¢(t) leads to the equations

) = h Ak*o* — 72
= Bmk2o2 P 4k?0?
(¥ (72 + 2k202 (Vo (1 4 Fsin(wt))o® — 1) —  (3.21)

— 2Vp(1 + Fsin(wt))k?0?)),

X

with 0 = opon—int(t) and

B 2V 2mash _
= 70(15) =

After identifying the constant factor Uy (by amplitude F' — 0) from equa-

U(t) 2v2mash (mVok*(1 + Fsin(wt))) & (3.22)

tion (3.22) one finally arrives at
U(t) = Up (1 + Fsin(wt)) . (3.23)

In case of the time-dependent expression for J(t) we use the following ap-

proximation mentioned in [18] instead of implementing equation (3.21)
J(t) = Jyexp(—F sin(wt)). (3.24)

This is based on the assumption of a linear dependency of the overlap of
the Wannier functions in equation (3.11) with the amplitude of the lattice

potential which is valid for small modulation amplitudes F'.
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Chapter 8 - Time Evolution

3.3 Methods

In this section we discuss the methods used to evolve a system of atoms
in periodic potentials in time. Generally, the time evolution of quantum

systems is given by the time-dependent Schrédinger equation
0 i
p |9, t) = —ﬁH |, t) (3.25)

with the state W, t> and the Hamilton operator H. Numerical calculations
require to express the Hamiltonian in a basis in order to get the Hamilton
matrix. The Hamilton matrix in number basis representation is a sparse
matrix of a huge dimension (see section 2.1). As discussed in section 3.1
solving the Schrédinger equation (3.25) by solving the eigenvalue problem is
not efficient. Especially time-dependent systems would require to diagonalise
the Hamilton matrix at each timestep and thus consume lots of CPU time.

More efficient are numerical solvers for ordinary differential equations
(ODEs): We employ mainly the so-called Crank-Nicholson scheme (CN),
which is a mixture of the Euler explicit and implicit method and known to
be unconditionally stable. Another technique is the explicit Runge-Kutta
method (RK). These methods will be discussed in application to Hubbard

systems and the advantages and disadvantages will be outlined.

IMPLICIT AND EXPLICIT METHODS. The Euler-methods are first order!
methods for the integration of ordinary differential equations. In the case of

the Schrodinger equation (3.25) they are given by

|Yne1) = |vn) + % |n)At  Euler explicit,
{¢n+1> = {¢n> + % {¢n+1>At Euler implicit,
—_——

timestep

in which |¢n> denotes the state at the n-th timestep and At is the size of
timestep. ﬂ(tn) is the Hamilton operator at time ¢,, = nAt. For instance,
the equation for the explicit method means that the next state {1/1n+1> is
the current state ‘¢n> plus the so-called timestep-function % ‘T,Z)n>At. The

derivative inside the timestep function is given by the Schrédinger equation

'A solver is of order n if the error is of order O (At""!)
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3.8 - Methods

(3.25) so the evolution equations finally read

1At fi

[Yn1) = [¥n) = ——H(ta) [Un), (3.26)
I IA%H( tns1) [Png1)- (3.27)

The difference between these two methods is that the timestep function of
the explicit method can be evaluated directly using the present state and
Hamilton matrix; in contrast, the implicit method involves the (n + 1)-th
state in its timestep function, which is not yet known. By rewriting equation
(3.27) one gets

N A
<1+ %H (tnt1 ) [Vnt1) = |Un),

which is a set of linear equations for the state |¢n+1>. Thus, in order to solve
an ordinary linear equation like the Schrédinger equation using an implicit
methods one has to solve a set of linear equations in each timestep. The
benefit of this effort is the better stability of these algorithms compared to

explicit methods.

3.3.1 C(Crank-Nicholson scheme

DERIVATION. As mentioned earlier the Crank-Nicholson scheme is a mix-
ture of the two Euler methods presented in the previous paragraph. Unlike

the Euler method it is second order in time. The implicit iterative equation

reads
i) = i) = 5 () [0 + o) o)) (629)
which can be rewritten analogously to the implicit Euler equation into linear
equations:

(i + izA—;H (tns1 > ns1) = (i —~ lA—htﬂ > %) (3.29)

The right hand side is a matrix-vector product of known values. Equation
(3.29) can be rewritten into the so-called Caley form of the approximation

of the time-evolution operator:

- 1 Gt
TG (3.30)

U(ti-i—l?ti) iAt
_h ( n+1)
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Chapter 8 - Time Evolution

This is the Crank-Nicholson propagator which evolves a state by At in time.
Assuming that the Hamilton operator hardly changes in the time interval
[t,t + At] one may evaluate both Hamiltonians in equation (3.30) at the
same time and gets

>
i

A~

. (thi1y)
Utizr,ts) = U'tizr,ts) = 2

, (3.31)

e

Y,
2h
1 iAt
1 + 12_h (tn—I— 1/2)
which is a unitary form of equation (3.30) and thus assures the conservation
of the norm of the state over time. The time ¢ L = At(n + k) means

that the Hamiltonian is evaluated in the middle of the time interval.

NUMERICAL IMPLEMENTATION. In order to perform the time-evolution it-
self some preparatory work has to be done: One has to generate the hopping
matrix (off-diagonal elements of the Hubbard Hamilton matrix) in number
basis representation and the basis itself. In our case these are obtained by
a single software package which requires the number of lattice sites, number
of atom types and the number of atoms of each type. The initial state for
the time-evolution is the groundstate of the Hamilton matrix consisting of
the hopping matrix and a potential matrix for a certain interaction strength
U (see section 2.1).

The time evolution itself starts by loading the initial state, the hopping
matrix and the number basis. The hopping matrix is stored in the com-
pressed column format which is required by the linear equation solver. The
number basis is stored in the basis-object. This object allows to perform all
operations needed, e.g. calculating the on-site potential and external poten-
tial part of a certain fock state as well as applying creation and annihilation
operators to states.

The evaluation of various observables is also encapsulated in a class: The
objects of this class must also be initialised with the system parameters.

Equation 3.29 gives the linear equations that has to be solved at each
timestep. We rewrite it in the unitary form as discussed in the previous
paragraph:

<i+ iQA—;ﬁ(tn+1/2)> nsr) = <i - ij—h’fmtml@)) ). (3.32)

The matrices on both sides of equation (3.32) differ only by the sign; in or-

der to save memory we construct the left hand side matrix from the hopping
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matrix and the potential. The right hand side of equation (3.32) is evaluated
via a matrix-vector product of left hand side matrix and the current state
respecting the change of sign in this operation. The set of linear equations
is solved using the UMFPACK package (version 4.3) by Davis [22]. The
matrices in equation (3.32) have the same structure as the Hamilton matrix
in the off-diagonal-part (zero matrixelements are conserved), the diagonal
part is non-zero. In contrast, due to Fock states with one or zero particles
per site, the Hamilton matrix might have zeros in the potential part. Never-
theless, the sparsity of the matrix is conserved. The new state is passed to
the observables object, which evaluates and stores the data. This process is

repeated until the complete time-interval has been covered.

Solving the time-dependent Schrédinger equation using the combination
of the Crank-Nicholson scheme and the UMFPACK sparse linear solver works
very well for all our problems. The method is very stable with respect to
changes in the stepsize, thus it allows a coarse analysis with a rather large
timestep to get a qualitative picture.

A drawback of this and probably all implicit solving routines is the linear
equation problem, which consumes lots of CPU time. For example, evolv-
ing a system of 6 bosons on 6 lattice sites (number basis dimension 462)
takes about 30 seconds for 1000 timesteps; a system of 8 bosons on 8 sites
(dimension 6435) takes 30 seconds per step (both on a standard PC).

Promising in that case is changing from the UMFPACK solver to the
PARDISO package by Schenk et.al. [23]: This software package combines di-
rect and iterative solvers and its performance is less dependent on the system
size than UMFPACK. Additionally, the package allows parallel computing on
SMP machines (multi-processor machines) with an auspicious performance
gain. Although this package is not yet fully implemented in our code we were
able to estimate its performance. It should be possible to examine bosonic

systems up to 10 sites and 10 atoms on standard 64bit machines.

3.3.2 Runge-Kutta methods

In order to go to bigger system sizes we implemented the Runge-Kutta
method as used by Braun-Munzinger [18]. As an explicit method it does

not require to solve linear equations. The classical Runge-Kutta is a fourth
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order method which is based on the explicit Euler method presented in this
section. It gains accuracy by taking smaller trial steps instead of the full
timestep and summing these up. For instance, the classical fourth order
Runge-Kutta takes 4 trial steps and the summing up cancels out the lower
order error terms (see [24]). Generally, the higher order of explicit methods
is not sufficient keep the error small in comparison to the Crank-Nicholson
method. Thus we employ the embedded fifth order Runge-Kutta method from
Numerical Recipes |24], which uses an adaptive stepsize control to reduce its
error. Unlike the original form of this method by Fehlberg [25], it is equipped
with optimised Cash-Karp [26] parameters.

However, the algorithm did not yet perform as expected: A first explicit
version of the fifth order Runge-Kutta algorithm was quite fast but also very
unstable. The performance gain was lost due to the significant reduction
of the step size. The embedded fifth order Runge-Kutta method with step-
size control is slightly faster than the Crank-Nicholson method but it lacks

accuracy in direct comparison.
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Bosons

In this chapter the simulations of bosonic atoms in optical lattices are pre-
sented, and different configurations of interaction strengths, filling factors
and system sizes are discussed. In the first part we discuss the results for
stationary pertubations of these systems by a tilted lattice potential. In the
main part, the simulations of dynamic excitations via a modulated lattice po-
tential are presented. For convenience all quantities throughout this chapter

are given in natural units, that means that c = h = 1.

4.1 'Tilted Lattice Potential

In this section we present the results of a system of bosons in a tilted lattice.
As discussed in section 3.2.2 tilting the lattice potential is a simple method
to probe the excitation spectrum of a strongly correlated system. In terms
of the Bose Hubbard model, a tilted lattice potential means, that a linearly

increasing on-site energy enters the into Hamiltonian:

1 1 1

I:I:—JZ<ZHl—}—alﬂa)—}—Zeznz—i—an n; — 1), (4.1)
=1
in which ¢; is a single-particle on-site energy contribution to the overall

potential. The ¢; are defined by

€; = 1€tilt,
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where € is the site-independent energy difference between neighbouring
sites.

For a system in the Mott insulator regime U > J we assume that exci-
tations are adequately described in the particle-hole picture (section 3.2.1).
Furthermore, the groundstate of a system of N bosons and I = N lattice

sites is given by
|1/}>: |171717 s T 7171>'

As discussed in section 3.2.2, if the lattice tilting equals the interaction
strength €y, = U, i.e., the external potential provides enough energy for
an atom to hop down the tilted lattice onto another atoms site.

We simulate a system of 6 bosons with 6 lattice sites using cyclic bound-
ary conditions, that means, atoms can hop between first and last site di-
rectly. Moreover, a certain ratio U/j is chosen, at which the simulation takes
place. As initial state, the groundstate of the non-tilted Hamiltonian (4.1)
is computed. In order to explore the excitation spectrum of this system we
performed the time evolution for lattice tilts in the range from ey, = 0 to 2U.
The evolution starts with the non-tilted Hamiltonian and its groundstate.
After a time ¢t = 0.1 J~! the lattice tilt is instantly applied and kept until
the simulation ends at time ¢t = 20 J~!'. At each timestep the observables
energy transfer and number variance are evaluated.

Figures 4.1, 4.2, and 4.3 illustrate the results of the simulations for sys-
tems with U/; = 50, 20, and 10. In all figures the energy transfer is illus-
trated on the left hand site, and the number variance at the third site is
depicted on the right of each figure. The density plots (lower plots) show the
observables as function of time and lattice tilting e, in which the magni-
tude of the observable is indicated by the colour scheme. The colour reaches
from dark blue for lower values via green up to red for larger magnitudes.
The plots above of the density plots illustrate the averaged values over the
full time ¢ = 0 to tmax) = 20 J 1. In both systems, resonances occur if the
lattice tilting equals the interaction strength ey = U as proposed above.
Moreover, resonances occur at fractional values of U, as discussed in section
3.2.1: a resonance at the lattice tilting ey = U/ indicates a hop to the
next nearest neighbouring site. Additionally, in the case of U/; = 50 and
U/y = 20 resonances at ey = U/s are clearly visible, which indicate hops
over four sites.

In conclusion, at smaller ratios U/; the excitation spectrum is broad

42



4.1 - Tilted Lattice Potential
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Figure 4.1: The figure illustrates a system of 6 bosons on 6 sites of a tilted lattice at
the ratio Uo/y, = 50. On the left hand side the energy transfer is depicted, on the
right the number variance is shown. The lower images show these observables as
function of time (vertical axis) and external potential e;;; (horizontal axis), i.e. the
potential difference between neighbouring sites. The images on top of the density
plots show the time-averaged data. The red line in the energy transfer plots denotes
the tilting ey = U.

and continuous. On the other hand, sharp peaks appear in the strongly
repulsive regime, forming rather sharp resonance structure, which is in very
good agreement with the picture of particle-hole excitations. The sequence
of simulations with decreasing U/; (figures 4.1-4.3) shows also the rise of a
background in the number variance due to the increasing mobility of the

atoms.
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Figure 4.2: The figure illustrates a system of 6 bosons on 6 sites of a tilted lattice
at the ratio U/j = 20. On the left hand side the energy transfer is depicted, on the
right the number variance is shown. The lower images show these observables as
function of time (vertical axis) and external potential e, (horizontal axis), i.e. the
potential difference between neighbouring sites. The images on top of the density
plots show the time-averaged data. The red line in the energy transfer plots denotes

the tilting ey = U.
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Figure 4.3: The figure illustrates a system of 6 bosons on 6 sites of a tilted lattice
at the ratio U/j = 10. On the left hand side the energy transfer is depicted, on the
right the number variance is shown. The lower images show these observables as
function of time (vertical axis) and external potential e, (horizontal axis), i.e. the
potential difference between neighbouring sites. The images on top of the density
plots show the time-averaged data. The red line in the energy transfer plots denotes
the tilting ey = U.
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4.2 Modulated Lattice Potential

In this section, the simulations of various configurations of bosonic gases in
amplitude modulated optical lattices. As shown in section 3.2.3, the am-
plitude modulation of the lattice potential provides an energy AFE = wmod
with wmoq the modulation frequency. By variation of this modulation fre-
quency one can probe the many-body in the lattice, i.e., excite the system
as discussed in section 3.2.1. The modulation of the lattice has to be trans-
lated to the Hubbard model, which leads, as shown in section 3.2.3, to the

parameters

Jmod(t) = JOeXp(_FSin(wmodt))
Umod(t) = Up(l + Fsin(wmoqt)) /.

These are the time-dependent parameters of the Bose Hubbard Hamiltonian,
with the constants Jy (tunnelling strength) and Uy (interaction strength) as
well as the modulation amplitude F'.

In order to perform a time-evolution we have to choose an initial state.
This state is obtained by exact diagonalisation of the initial Hamilton matrix
at the time ¢ = 0 for a given ratio Uo/j,. This means, the time-evolution
always starts with the energy eigenstate, generally the groundstate. The
ratio Uo/;, also defines the regime in which the simulation takes place.

The results presented in this section are generated by performing time-
evolutions for several modulation frequencies wyoq. The response of the
system during the time-evolution is measured via the energy transfer and
the number variance.

We study a system of six bosons on six sites of an amplitude modulated
optical lattice. The lattice has cyclic boundary conditions, i.e., particles at
the first site may hop to the last site and vice versa. By these conditions
one avoids boundary effects. First, we look at a system with the interaction
strength Uy = 20 Jy: we compute time evolutions for modulation frequencies
in the range wpoq = (0 —40)Jy in steps of Awpeq = 0.1Jy and evaluated the
observables at each timestep. Figure 4.4 shows the energy transfer, which is
given by the energy expectation value evaluated with the time-evolved state
|9, t) via

E=(4,t|Ho|,t) — Ey
with Ejy the energy of the initial state and the initial Hamilton operator

Hy = H(t = 0). Shown is the full data as function of time and modulation
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Figure 4.4: The lower density plot on the left hand side shows the energy transfer
as function of time t (vertical axis) and modulation frequency w; the plot above
shows the energy transfer — averaged over time — vs. modulation frequency w. The
vertical red line denotes the energy U, = 20 Jy, at which one would expect the
main resonance in the pure Mott case. The images on the right show the number

variance.

frequency and the time averaged energy transfer. One observers a triple of
resonances; this triple seems to be a signature of systems with 6 bosons on
6 sites. A resonance nearby the modulation frequency wmeq = Up can be
explained by a particle-hole excitation of the groundstate, which consists
mainly of the Fock state |17 1,1,1,1, 1> in the Mott regime. As discussed
in section 3.2.1 one has to provide the energy Uy to put one atom onto
another in this Fock state. This energy is available at a modulation frequency
wmod = Up and thus leads to the a resonance. The centroid of this triple is

slightly shifted off the AF = wy,0q-line towards higher frequencies.
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Figure 4.5: Energy transfer and the number variance of a system of 6 bosons on
6 lattice sites at a ratio Uo/y, = 50. The lower density plots show the energy
transfer and number variance as function of time and modulation frequency wmoq-
The vertical red line denotes the frequency wmoa = Yo/,

The images on the right of Figure 4.4 show the number variance

oi = (n7) — ()%,

in which 7 is the site index. Since the lattice is translational invariant
and thus the number variance is site independent, only the fluctuations at
the first site are shown. The density plot on the right of figure 4.4 shows
the number variance as function of time and modulation frequency, the plot
above shows the time-averaged number variance. Globally, the structure
is similar to the energy transfer. One observes a resonance triple and an
additional, oscillatory structure in the density plot. In contrast to the energy

transfer, the time averaged plot of the number variance shows a constant
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background. This background is directly connected to the ratio Uo/j,: by
increasing the interaction strength Uy (or lowering the tunnelling strength
Jo) hopping will be suppressed and the number variance will disappear. In
the limit of an infinite interaction strength, the system can be assumed as the
single Fock state

1,1,1,1,1,1), thus, there is no variance in the occupation
number. The oscillatory structure in the number variance plots is due to the
oscillating strengths J(¢) and U(t) which depend on sin(wpeqt). Plotting the

values of this sine function in an array wpoq versus t leads to this structure.

Figure 4.5 depict the results for a many-body system of six bosons on
six lattice sites with an interaction strength Uy = 50 Jy. In contrast to
the previous case, this system is deeper in the Mott regime. Again, one
can see the triple-resonance structure in the energy transfer (images on the
left figure 4.5) as well as in the number variance (images on the right of
figure 4.5). In the time-averaged plot of the number variance one can see
an additional resonance near a modulation frequency wpyoq &~ Uofo = 25 Jy,
which also shows the triple peak signature. Thus, in the further discussion
we call such a bunch of peaks a resonance. In the case of system above
that would be 2 resonances at wyoq = 50 and wpeq = 25, each consiting of
3 peaks. Later in this chapter we will discuss systems of different sizes and
boundary conditions, which also show a different structure of resonances.

As mentioned in section 3.2.3 the excitation at wyoq = Up is induced by
the absorption of a photon of this frequency. Similarly, this state can be
excited by two photons of half of the energy, which results in a resonance at
the modulation frequency wyoq = Uo/e. Accordingly, since the absorbtion of

two photons is less propable the resonance is weaker.

Figures 4.6 and 4.7 show the variation of the modulation amplitude in
different regimes of a system of six bosons on six lattice sites. Figure 4.6
depicts the energy transfer and figure 4.7 shows the number variance ver-
sus time and frequency. The modulation amplitude F' is changed in the
columns from F' = 0.01 up to F' = 0.1. The rows show different ratios Vo/j,,
increasing from top to bottom. By comparing the rows of figure 4.7 one
can see the background of the number variance decreasing towards higher
ratios Uo/j,. The upper rows illustrate the system in the superfluid regime
at Uo/j, = 3, which shows very weak excitation in comparison to the rather
Mott-like systems in the second and third row. For the small modulation am-

plitude F' = 0.01 the perturbation can only be seen in the number variance as
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Figure 4.6: Energy transfer of a system of 6 bosons on 6 sites at different interaction
strengths Uy and modulation amplitudes F' = Vmod,0/y;. Each plot shows the energy
transfer in the time interval ¢t = (0 —30) J; ! vs. the modulation frequency wmea =
(0 —2) Uy. The rows show the interaction strengths Uy = 3Jy, 10Jp, 20Jy (top to
bottom); the columns show the modulation frequencies F' = 0.01, 0.05, 0.1.
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Figure 4.7: Number variance of a system of 6 bosons on 6 sites at different inter-
action strengths Uy and modulation amplitudes F' = Vmod.0/y;. Each plot shows
the number fluctuation in the time interval ¢ = (0 — 30) J; ' vs. the modulation
frequency wmoa = (0 — 2) Up. The rows show the interaction strengths U, =
3Jo, 10Jg, 20Jy (top to bottom); the columns show the modulation frequen-
cies F'=0.01, 0.05, 0.1.
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a change in the oscillatory structure at wyeq ~ 4Jy. At stronger modulation
amplitudes one observers also a weak resonance at wyoq ~ 4Jy appearing in
the energy transfer. The second row shows the system at Uo/;; = 10, which
is slightly above the superfluid to Mott insulator phase transition. One can
see the triple peak signature again, clearly visible in the energy transfer as
well as in the number variance for modulation amplitudes F' > 0.05. The
third row corresponds to a ratio Uo/s, = 20, which shows clear signs of res-
onances in the number variance already at small modulation amplitudes in
the number variance.

By comparing the central peaks at different ratios Uo/;, above the super-
fluid to Mott insulator phase transition (figures 4.6 and 4.7), one finds that
the central peak slips onto the frequency wyoq = Uy when going deeper into
the Mott regime. In the limit of a very large ratio Uo/j, the groundstate of this
1,1,1,1,1,1), which

requires exactly the energy F = Uy to be excited in terms of a particle-hole

system is approximately described by the Fock state

excitation (section 3.2.1). By decreasing the ratio Uo/s, towards the phase
transition this energy is increased due to admixtures of additional number
states.

In order to analyse the excitation mechanisms in the case of a modulated
lattice we have a more detailed look at the resonances. In the Mott regime,
the dominant Fock state is, assuming a system in which the number of atoms

equals the number of lattice sites,

{¢0> ~ {1,1317"' 71>7

with |1/10> denoting the groundstate. Obviously, one has to excite this state
in order to transfer energy into the system. Since a state W, t> at time ¢ is

characterised by the coefficients ¢, (t)

D
.ty = c(t) [{n1, -+ ,nrh),
v=1
with I the number of lattice sites and D the dimension of the number basis
(see section 2.2), one can analyse the excitations by tracking the coefficients
during the time evolution.
Therefore, we study a system of 6 sites with 6 bosons at Uo/;, = 20.
In contrast to the previous calculations, we consider only the three main

peaks (see figure 4.8, left hand side), and perform time-evolutions at the
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Figure 4.8: Left hand sides plot shows the average energy transfer. The plot on the
right depicts the time evolution of contribution of the state }1/1, t> at the modulation
frequency wmod = 20.8Jy: The dotted line illustrates the evolution of the Fock
state |1,1,1,1,1,1), the solid line shows the contribution of Fock states with one
doubly occupied site, and the dashed line are states with two doubly occupied sites.
1,1,1,1,1,1) and the Fock
states with one doubly occupied site, which is driven by particle-hole excitations.

One can see clearly the challenge between the state

modulation frequencies wyoqg = 15.3 Jo, 20.8 Jy, 25.5 Jy. Instead of directly
evaluating observables during the calculations, we record the coefficients of
all 462 basis states for each timestep. These coeflicients allow us to analyse
the composition of the state W,tn> at each timestep t¢,, of the evolution,
and to obtain information on the mechanisms which lead to excitation in the
case of a resonance. In order to reduce the large amount of information the
coefficients provide, we classified the Fock states according to the distribution
of the occupation numbers. For example, all states with exactly one doubly
occupied site represent a class, all states with two doubly occupied sites
constitute another, and so on. In terms of this classification scheme one can
sum up the square of the magnitude of the coefficients |c;|? (since |¢;|? is the
propability of the i-th Fock state) corresponding to a certain class for each

timestep.

Figures 4.8 and 4.9 show the results of these calculations. The plot on
the left hand side of figure 4.8 depicts the time-averaged energy transfer for
comparison. The plot on the right hand side of figure 4.8 illustrates the
contributions to the central peak: the dotted line shows the square of the
1,1,1,1,1,1>, which is assumed

magnitude of the coefficient of the state
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Figure 4.9: Left hand sides plot shows the composition of the system state of the
peak at wmoq = 15.3 Jy, and the plot on the right at wyoq = 25.5 Jy. The dotted
line is the coefficient of the Fock state ‘1, 1,1,1,1, 1>, the solid line shows the
contribution of all states with exactly on doubly occupied site, and the dashed line
are states with two doubly occupied sites.

to be dominantly occupied in the Mott regime. The solid line shows the
contribution of Fock states with exactly one doubly occupied site. One can
see, that a decrease of the coefficient for the Fock state !1, 1,1,1,1, 1> leads
to an increase of the coefficients of the states with doubly occupied sites,
and vice versa. Moreover, Fock states with two doubly occupied sites also
contribute to the state. These Fock states are not directly populated from of
the state

2Uy. These states are more likely populated via particle-hole excitations of

1,1,1,1,1,1 >, since this excitation would require the energy AF ~

states with one doubly occupied site, which would also explain the delayed
increase of the coefficients visible in figure 4.8.

Figure 4.9 illustrates the evolution of the summed coefficients at the
modulation frequencies wpoq = 15.3 Jp (left hand side) and wyeq = 25.5 Jo
(plot on the right). In both cases one can see the same behaviour as for the
central peak: the Fock states with one doubly occupied site are populated at
the expense of the Fock state !1, 1,1,1,1,1 > One can also see the population
of Fock states with two doubly occupied sites, but their coefficient is smaller
as in the case of the central resonance peak. In contrast to the central peak,
one observers an oscillation of the coefficients with a larger frequency.

In order to get an impression of the excitations mechanisms we have

a closer look at the Fock states with one doubly occupied site. These Fock
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Figure 4.10: The graph depicts the co-
efficients of Fock states with exactly one
doubly occupied site. The solid line
shows the contribution of direct particle-
1,1,1,1,1,1), the
other two represent states connected to
|1,1,1,1,1,1) via one (dashed line) and
two (dotted line) additional hops.

hole excited states of

20 40
t[Jo]

states can again be subdivided into different classes, since they include states
which are directly connected to the pure Mott state |1, 1,1,1,1, 1> via a hop

to a neighbouring site (particle-hole excitation), e.g.
aldy[1,1,1,1,1,1) = v2[2,0,1,1,1,1).

Directly connected means, that the matrix element of the Hamiltonian be-
tween these two states is non-vanishing. Therefore, the particle-hole excited
states are classified by the distance between the doubly occupied and non-
occupied site. All Fock states with the distance d = 0 (the doubly and
non-occupied site are direct neighbours) are directly connected to the pure
Mott state

hop, and so on. In the further discussion, we leave out the '=’-sign and use

1,1,1,1,1, 1>, d = 1-states are connected to d = 0 states via a

dn-state as a abbreviation for all states, which are connected by n hops to a
d = O-state:

12,0,1,1,1,1) — [2,1,0,1,1,1) —

2,1,1,0,1,1).

d0-state d1-state d2-state
Figure 4.10 illustrates the evolution of the coefficients of Fock states
directly connected to {1, 1,1,1,1, 1> (solid line), and Fock states which are
connected to this state via an particle-hole excitation and one (dotted line) or
two (dashed line) hops. The d0-states are mainly occupied, since they benefit
1,1,1,1,1, 1>. Interestingly,
1,1,1,1,1,1) by an additional hop are

almost not occupied in comparison to d2-states.

from the direct connection to the Fock state

dl-states, which are connected to

Figure 4.11 shows the same situation in the case of the peaks at wyoq =
15.3 Jy (left hand side) and wpoq = 25.5 Jy (right hand side). In compar-
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Figure 4.11: The graph depicts the coeflicients of Fock states with exactly one
doubly occupied site on the peaks at wmoa = 15.3 Jo (left) and wmoa = 25.5 Jo
(right). The solid line shows the contribution of direct particle-hole excited states
of |1,1,1,1,1,1), the other two represent states connected to |1,1,1,1,1,1) via
one (dashed line) and two (dotted line) additional hops.

ison to the central resonance peak the Fock states which are not directly
connected to the pure Mott state are much stronger: In the case of the reso-
nance peak, at wmoq = 15.3 Jy the dl-states are populated dominantly. The
particle-hole excited d0-states themselfes show a superposed oscillation with

a rather high frequency in both peaks, woq = 15.3 Jy and wpyeq = 25.5 Jo.
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Figure 4.12: Energy transfer of a system of 4 bosons on 4 lattice sites (left) and
5 bosons on 5 lattice sites, both at a ratio Uo/j, = 20. Shown is the energy transfer
as function of time and modulation frequency wmoq (lower images) and the time-
averaged values (upper images). In both cases one can see a 2-peak signature.

We assume the structure of the resonances to be an effect of the finite
size of the lattices. Therefore, we varied the number of atoms and sites in the
following simulations. Figure 4.12 illustrates the energy transfer of systems
of 4 (left hand side) and 5 (right hand side) sites, both with an average
filling factor of 1 boson per site. Both simulations are performed at the ratio
Uo/y, = 20. The density plots show the energy transfer as function of time
and modulation frequency wpeq, the plots above depict the energy transfer,
time-averaged over the whole simulation from ¢ = 0 to 20 J; 1. In contrast
to the 6 boson systems discussed before, these show a two-peak resonance
structure. Again, the resonance frequency wy,oq = Up, regarding the centroid

of the resonance, is in agreement with the particle-hole excitation picture.

Figure 4.13 illustrates the energy transfer of 7 bosons on 7 sites (left hand
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Figure 4.13: Energy transfer of a system of 7 bosons on 7 lattice sites (left) and
8 bosons on 8 lattice sites, both at a ratio Uo/j, = 20. Shown is the energy transfer
as function of time and modulation frequency wmea (lower images) and the time-
averaged values (upper images). The 7 boson system shows a 3-peak signature
similar to the 6 boson-6 sites system; the 8 boson-8 sites system shows a 4 peak

resonance structure.

side) and 8 bosons on 8 sites (right hand side) at the ratio Uo/;; = 20. The
7-boson system shows a similar resonance structure as the 6-boson system;
again the centroid of the triple peak is close to the frequency wmoq = Up as
proposed by the particle-hole excitation picture. The same holds true for the
8 boson system, although the resonance consists of 4 peaks, whose centroid
is also close to the frequency wmoq = Up.

Figure 4.14 shows a lattice of 5 sites with 10 bosons at Uo/j, = 20,
which shows a rich excitation spectrum: The strongest peak appearing in
the energy transfer at wyoq = Up (left hand side of figure 4.14) represents
the particle-hole excitations of the pure Mott-state to d0-states. Left of it one

can see a resonance at Uo/y, which indicates the absorbtion of two photons
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Figure 4.14: Energy transfer (left hand side) and number variance (right hand side)
of 10 bosons on 5 lattice sites with a ratio Uo/j, = 20. The density plots depict the
observables as function of time and modulation frequency wp0q, the plots on top
illustrate these values averaged over time ¢ = (0—20) Jy. The red line in the energy
transfer plots denote the frequency wmoq = U0/j,. This system shows resonances
nearby the frequencies wyoq = Uy, 2Uy, ~ 3Ujp.

of the energy F = Uojy, which also leads to the excitation of the pure Mott
state. The tiny peak at Uo/3 indicates a three photon absorbtion, each of the
energy F = Uo/3. Additionally, resonances appear at integer multiples of Uy:
the multi-peak structure at wy,oq = 2U) is generated by two parallel particle-
hole excitations of the pure Mott state with a photon of the energy F = 2Uj.
The resonance at ~ 3Uj indicates 3 parallel particle-hole excitations. The
propability of these excitations is reduced in comparision to the resonances
at wmod = Uy and wpoq = Vo, since the Hamiltonian does not connect the
pure Mott state |2,2,2,2,2> with a state |3,3, 1, 1,2>.

Figure 4.15 shows the simulation of a system of 7 bosons on 6 lattice

sites at the ratio Uo/;, = 20. In contrast to the parameter sets discussed
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Figure 4.15: Energy transfer (left hand side) and number variance (right hand side)
of 7 bosons on 6 lattice sites with an ratio Uo/j, = 20. The density plots depict
the observables as function of time and modulation frequency wp,oq, the plots on
top illustrate these values averaged over time ¢ = (0 — 40) Jy. The red line in the
energy transfer plots denote the frequency wmed = U0/J,.

earlier in this chapter, this system has a non-commensurate filling factor.
This results in a stronger background in the number variance (right hand
side of figure 4.15) even at large Uo/j,. Six of the seven bosons would form a
Mott insulating state as discussed earlier in this chapter, but the remaining
boson is delocalised over the whole lattice and generates fluctuations due to
its mobility. This arrangement produces a resonance structure different from
that of the systems with commensurate filling factor, which implies, that the
number of peaks appearing depends on the size of the lattice as well as on
the filling factor.

Finally, we simulated a 6 boson 6 site system with box-boundary con-
ditions. The figures 4.16 (UYo/;, = 20) and 4.17 (Uo/s, = 50) illustrate the

energy transfer and number variance of such systems. Compared to the
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Figure 4.16: The density plot on the left shows the energy transfer of a system of
6 bosons on 6 sites of a lattice with box boundary conditions at the ratio Uo/, = 20.
The lower image shows the energy transfer plotted over modulation frequency woq
and time. The gray line in the time-averaged plot denotes the centroid of the peaks
in the region wmod = (15 — 25) Jy. The plots on the right illustrate the number
fluctuations o at the first site; the lower plot shows the fluctuation over time and
modulation frequency wmoq & (15—25) Jy, the graph above shows the time-averaged
fluctuations.

cyclic boundary conditions two more peaks appear in the resonance struc-
ture, but the resonance frequency is again in good agreement with the pre-
diction of the particle-hole excitation picture. In comparison with the same
system with cyclic boundary conditions, the width of the resonance structure
stays the same. In both cases, the distance between the two outer peaks is
Awmog =~ 10 Jy. Both non-cyclic systems show also a weak resonance struc-

ture at the frequency wpoq = Uojo.

The simulation illustrated in figure 4.18 is again a system of 6 bosons on

6 lattice sites with box boundary conditions and an superposed harmonic
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Figure 4.17: Energy transfer (left hand side) and number variance (right hand
side) of 6 bosons on 6 lattice sites with a ratio Uo/j, = 50 and box boundary condi-
tions. The density plots depict the observables as function of time and modulation
frequency wmod, the plots on top illustrate these values averaged over the time
t = (0 — 20) Jo. The red line in the energy transfer plots denote the frequency

Wmod = UO/JO'

trapping potential, which resembles the actual experimental setups. This
external potential is introduced through the on-site energy ¢; of the Bose
Hubbard Hamiltonian. In case of a harmonic trapping potential these pa-

rameters read
. 2
7 1
€ = 4Wrap,0 (f - 5) (42)

with I the number of lattice sites and Vi;ap,o the trapping potential at the
outer sites. This harmonic trap is symmetric with respect to the centre
of the lattice, where the potential vanishes. The spectrum is similar to
the system without a harmonic trapping potential, it shows a resonance for

the modulation frequency wpnoq = Up and an additional weak resonance at
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Wmod = 3Up.

In conlusion, for the modulated lattice one can say that the resonance
frequencies motivated by the particle-hole excitation picture are in good
agreement with the resonances obtained in the simulation. Nevertheless, we
cannot explain the fine structure of these resonances, which depend on the

size of the lattice as well as on the number of atoms and boundary conditions.
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Figure 4.18: Six bosonic atoms on six sites of an amplitude modulated lattice with
non-cyclic boundary conditions and a parabolic trapping potential, at an interaction
strength Uy = 20 and tunnelling strength Jy = 1. Depicted is the energy transfer
(left hand side) and the number fluctuations (right hand side). The density plots
show the observables as function of time and modulation frequancy, the plots above
show the values averaged over the time of the simulation. The trapping potential
is Virap = Up at the boundaries (sites 1 and 6) and Virap = 0 in the centre of the
lattice (between sites 3 and 4).

64



Chapter 5

Fermions

In this chapter the simulations of a two-component fermion gas in an opti-
cal lattice are presented. Analogously to the calculations of the Bose gases,

pertubations by tilted and modulated lattices amplitudes are discussed.

5.1 Tilted Lattice Potential

In this section the excitation spectrum of a two-component fermion system
with 6 lattice sites is probed by lattice tilting. Each of the two fermionic
species contributes 3 atoms. Analogous to the discussion for a bosonic sys-
temin section 3.2.2 , the Fermi Hubbard Hamiltonian (2.55) can be extended

in the same way: by introducing an additional on-site energy term
; Lorte LAt Lo At
Hpp = —J Z <Cici+1 + CiJrlci) —-J 21 <didi+1 + diJrldi)

Generally, each species would have its own on-site energy term. In our case,
this external potential is assumed to be the same for both kinds of fermions.

The parameter ¢; is defined by
€; = U€tlt,

with ey the site-independent energy difference between neighbouring sites

and ¢ the site index. The excitation spectrum is probed by variation of the
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Figure 5.1: Energy transfer of a system of two fermionic species on 6 lattice sites.
Each species contributes 3 atoms. Left hand side shows the system at the ratio
Ueca/y = 5, right hand side at Uca/; = 10. Depicted is the energy transfer as
function of time and lattice tilting ey (density plots in the lower row) and the
time-averaged energy transfer over the whole simulation. The red line denotes the
tilting €5 which corresponds to the interaction strength Uq.

lattice tilting €;. In the strongly repulsive regime, the groundstate does
not contain Fock states with doubly occupied sites. If the energy difference
between sites overcomes the interaction energy due to the tilt, the system
responds with a particle-hole excitation. One has to keep in mind, that, due
to the Pauli exclusion principle, interaction occurs only between two fermion
of different species.

Figures 5.1 and 5.2 illustrate the simulation of a two-component fermion
system at different ratios Ued/;, increasing from a weakly interacting system
with Uyq = 5 J up to Usq = 50 J. In all cases the simulation starts with
the groundstate corresponding to the ratio Ued/; at the time ¢ = 0 with the
non-tilted Hamiltonian. At time ¢ = 0.1 J the tilt is immediately applied
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Figure 5.2: Energy transfer of a system of two fermionic species on 6 lattice sites.
Each species contributes 3 atoms. Left hand side shows the system at the ratio
Uea/y = 20, right hand side at Uca/; = 50. Depicted is the energy transfer as
function of time and lattice tilting ey (density plots in the lower row) and the
time-averaged energy transfer over the whole simulation. The red line denotes the
tilting €5 which corresponds to the interaction strength Ugq.

with a constant parameter ey until the simulation ends at ¢ = 63 J. The
figures show the energy transfer as function of time and lattice tilt €4, and
time-averaged as a function of the tilt. The time-averaging is performed over
the whole time span.

The sequence of simulations illustrate the change of the excitation spec-
trum with the variation of the ratio Uea/;. At weak interaction strengths
(figure 5.1) one observes a broad and continuous spectrum, whereas in the
strongly repulsive regime (figures 5.2) a discrete spectrum with sharp peaks
appears.

The strongest resonance at ey = Ucq indicates the trivial resonance due

to hopping to a neighbouring site, as discussed above. For the simulations
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with ratios Uea/; > 10 peaks at fractional values of U.q appear. For tilting
ety = Ued/o the energy difference between next neighbouring sites is AE =
Ucq- In the same scheme, resonances at ey = Ued/3 and ey = Ued/s (hopping

across 4 sites) occur.

5.2 Modulated Lattice Potential

In this section the simulations of two fermionic species in an amplitude mod-
ulated lattice potential are presented. As discussed in section 2.3.2 the Fermi
Hubbard Hamiltonian consits of two kinetic terms for each species. Further-
more, since fermions have to obey the Pauli exclusion principle and short-
range on-site interactions are assumed, only inter-species interaction are pos-
sible. Thus, the parameters of the Fermi Hubbard Hamiltonian are the tun-
nelling strengths J of each species and the inter-species interaction strength
U.q. In this work, we restrict outselfes to a single tunnelling strength J, i.e.
the parameters .J of both kinetic terms are equal. The amplitude modulation
of the lattice potential is implemented as it was done for the Bose Hubbard
model in section 3.2.3. The time-dependent parameters of the Hamiltonian
(2.55) are

J(t) = Jyexp(—F sin(wmodt))
Ua(t) = Uea (14 Fsin(wmoat))

with the constant parameters Jy and U, the modulation frequency wod,
and the modulation amplitude F. The ratio Ued/;, controls the physics of
this system, which means that for large positive ratios Ucd/j, the system is
in the strongly repulsive regime. Systems with commensurate filling factors,
i.e. the sum of the atoms of both species equals the number of lattice sites
suppresses the transport of particles in that case and form an insulating
phase. On the other hand, for a dominant kinetic term .Jy > U.q the atoms
can move almost freely. In comparison to the bosons, even for an infinite
strong tunnelling term the mobility is restricted due to the Pauli principle.

In order to perform a time evolution an initial state is obtained by com-
puting the groundstate corresponding to the ratio Ued/s,. The propagation is
then performed using the Hamilton operator (2.55) with the time-dependent
parameters given above. During this time evolution the energy transfer into

the system is evaluated. As discussed in section 2.3.2 the number variance
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Figure 5.3: Energy transfer of a system of two fermionic species on 6 lattice sites.
Each species contributes 3 atoms. Left hand side shows the system at the ratio
Uea/j, = 5, right hand side at Uca/j, = 10. Depicted is the energy transfer as
function of time and modulation frequency wmoq (density plots in the lower row)
and the time-averaged energy transfer over the whole simulation. The red line
denotes the resonance frequency wpoq = Ucq-

o does not reveal much information for fermionic systems due to the Pauli
principle (discussed in section 2.3.3).

We have computed the time evolution of a system of 6 lattice sites with
6 fermions, 3 atoms of each species. The figures 5.3 and 5.4 illustrate the
energy transfer during the time evolution of these arrangements at the ratios
Uea/s, =5, 10, 20, and 50.

The fermions show a similar behaviour as the bosons in the previous
chapter. The picture of particle-hole excitations predicts a resonance at
the modulation frequency wpyoq = Ucq, which is the energy needed to place
one atom of each species on the same site. Similar to the bosonic systems,

the multi-peak structure of the resonances seems not to be explainable by
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Figure 5.4: Energy transfer of a system of two fermionic species on 6 lattice sites.
Each species contributes 3 atoms. Left hand side shows the system at the ratio
Uea/j, = 20, right hand side at Uca/j, = 50. Depicted is the energy transfer as
function of time and modulation frequency wmoa (density plots in the lower row)
and the time-averaged energy transfer over the whole simulation. The red line

denotes the resonance frequency wpyoq = Ucq-

particle-hole excitations.
The Fermi gas simulated with the ratios Ued/; (figure 5.4) shows also very
weak resonances for the modulation frequency wy,oq = Ued/o, which indicates

the absorbtion of two photons of the corresponding energy.
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