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Abstract. Light nuclei are studied in the Fermionic Molecular Dynamics model. No a priori
assumptions are made with respect to cluster structure or single-particle energies. The same effective
interaction based on the Argonne V18 interaction is used forall nuclei. Short-range central and
tensor correlations are treated explicitly using a unitarycorrelation operator. Calculations of binding
energies and radii for Helium and Carbon isotopes are presented. The evolution of cluster structures
and halos with increasing neutron number is discussed. The spectrum of12C is calculated in a
multiconfiguration calculation. The molecular structure of the excited states is investigated. The
astrophysical S-factors are calculated for the fusion of different Oxygen isotopes.

Keywords: Fermionic Molecular Dynamics, nuclear structure, halo nuclei, S-factor
PACS: 21.10.Gv, 21.60.Gx, 25.60.-t, 25.60.Pj, 24.10.Cn

FERMIONIC MOLECULAR DYNAMICS

The A-body basis states in Fermionic Molecular Dynamics (FMD) [1] are parity and
angular momentum projected Slater determinants
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The single-particle wave functions are described by Gaussian wave packets which are
localized in phase-space
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FMD treats the setq consisting of the complex parameters:ai (width), bi (position in
coordinate and momentum space),χi (spin direction) andci as variational parameters
that can be different for each wave packet. A superposition of two Gaussian wave packets
is used for each single-particle state
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in order to improve the representation of the
surface.ξ stands for proton or neutron. The AMD approach [2] is a model very similar
to FMD but the width parametera is common to all wave packets and the spins are either
"up" or "down".



As a first step FMD many-particle states are determined by minimizing the intrinsic
energy of parity projected Slater determinants
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with respect to the parameters of all single-particle states. After the minimization the
many-particle state is projected on angular momentum. The correlation energy obtained
by the projection can be very large for the often deformed andclustered nuclei in the
p-shell. We therefore improve this projection after variation procedure (PAVπ ) by im-
plementing a variation after projection (VAP) procedure inthe spirit of the generator
coordinate method (GCM). We minimize the energy of the Slater determinants under
additional constraints on collective variables such as: radius, dipole, quadrupole or oc-
tupole moment. The VAP minimum can then be found by minimizing the projected
energies with respect to the constraints. A further improvement is achieved by diago-
nalising the Hamiltonian in a set of many-body states. This also allows for the study of
excited states.

EFFECTIVE INTERACTION

For our calculations we use an effective interaction that isderived from the realistic Ar-
gonne V18 interaction by means of the Unitary Correlation Operator Method (UCOM)
[3, 4, 5, 6]. The correlated interaction includes the short-range central and tensor cor-
relations induced by the repulsive core and the tensor force. The correlated interaction
no longer connects to high momenta and can be used directly with the simple many-
body states of a Hartree-Fock or FMD approach. A two-body correction term is added
which consists of a central momentum dependent part that is adjusted to fix the satu-
ration properties by fitting to the binding energies and radii of 4He, 16O, 40Ca and an
isospin dependent spin-orbit term that is fitted to the binding energies of24O, 34Si and
48Ca. It is supposed to correct for missing contributions fromthree-body correlations
and genuine three-body forces as well as other long range correlations not represented
well by the simplified many-body Hilbert space. The correction term used in this pa-
per differs slightly from the one in [5] as16O and40Ca are considered as tetrahedral
α-cluster states. These are about 5 MeV lower in energy after angular momentum pro-
jection than the spherical trial states. In total the correction term contributes about 15%
of the potential energy.

HELIUM ISOTOPES

Fig. 1 shows the intrinsic states obtained by minimizing theenergy of the Helium
isotopes with parity projected states. In all nuclei a dipole deformation caused by a
displacement of the neutrons against theα-core is found. In6He the configuration with
two neutrons on the same side of the core is preferred to configurations with the two
neutrons located on opposite sides of the core. In8He one approaches thep3/2 neutron
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FIGURE 1. Intrinsic shapes of Helium isotopes corresponding to the variation after parity projection
minima. We show cuts through the nucleon density calculatedwith the intrinsic state before parity
projection. Densities are given in units of nuclear matter densityρ0 = 0.17fm−3.

shell closure with an almost spherical neutron distribution. In Fig. 3 the binding energies
and matter radii obtained after angular momentum projection (PAVπ ) are compared
to the experimental binding energies and radii. To improve the many-body states we
create additional configurations using the dipole moment asa generator coordinate. The
multiconfiguration calculations reproduce the experimental binding energies and radii
very well. This illustrates the importance of the soft-dipole mode, which is realized in
the form of ground state correlations, for the understanding of the borromean nature
of 6He and8He. Besides the neutron halo, in Fig. 2 we can see the broadened proton
distribution that is caused by the motion of theα-core against the center of mass of the
nucleus. For6He we calculate a charge radius of 2.02 fm that has to be compared to the
recently measured value of 2.054±0.014 fm [8].
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FIGURE 2. Radial density distributions for the Helium isotopes usingangular momentum projected
multiconfiguration states. The center of mass motion has been removed.

CARBON ISOTOPES

In the Carbon isotopes we observe many different structuresas can be seen in Fig. 4.
We see a prolate10C and find oblate triangular structures in11C, 12C and13C. In 14C
we find that the fully occupied neutronp-shell induces a spherical configuration. In15C
the additional neutron occupies mainly a 1s1/2 state whereas the subsequent isotopes
from 16C to 18C show prolate deformations caused by filling up neutrons in the sd-
shell. We also observe that the deformation is dominated by the neutrons. In Fig. 5
the proton and neutron densities of the intrinsic state of16C are shown. If we project
out from this intrinsic state the 0+ and 2+ states and calculate theB(E2) value for the
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FIGURE 3. Binding energies and matter and charge radii for the Helium isotopes. Charge radii are
indicated bych. Results are given for the PAVπ and the multiconfiguration calculations. Experimental
matter radii are taken from [7]. The experimental charge radius of 6He is given in [8].

0+ → 2+ transition we obtain a value of 9.3e2fm4, which should be compared to the
surprisingly small experimental value of 3.15± 0.95e2fm4 [9]. No effective charges
are used for protons and neutrons, hence the electrical quadrupole moment reflects
directly the intrinsic shape of the proton distribution. Inour picture the much smaller
than expectedB(E2) value is caused by an almost spherical proton distribution which is
decoupled from the deformed neutron distribution (see Fig.5).

In Fig. 6 we compare calculated values with experimental ones for binding energies
and radii. We find very good agreement between the multiconfiguration calculations and
the experimental binding energies. The binding energies obtained for the single Slater
determinants of the PAVπ approach are able to reproduce the evolution of the binding
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FIGURE 4. Intrinsic densities of Carbon isotopes corresponding to the variation after parity projection
minima.
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FIGURE 5. Proton (left) and neutron (right) densities of the16C intrinsic state for the PAVπ minimum.
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FIGURE 6. Energies and matter and charge radii of Carbon Isotopes. Calculated charge radii (indicated
by ch) are only shown if experimental values are known. Multiconfiguration calculations have only been
done for10C, 12C and14C.

energies up to the heavy isotopes. For12C to 14C experimental charge radii are known
and reproduced well by our calculations. For the matter radii we find significantly larger
values for the lighter isotopes up to14C. There is some uncertainty in the experimen-
tal determination of the matter radii beyond the given errorbars and as we find a good
agreement for our calculated charge radii in this region there might be a problem with
these experimental results. In case of15C our matter radius is much larger. This is prob-
ably explained by the very weak binding of the 1s1/2 neutron. Our calculated neutron
separation energy of15C is too small, thes-orbit is therefore much more extended. For
the heavier isotopes the calculated matter radii agree wellwith experimental values.



TABLE 1. Energies, radii andB(E2) transition strength cal-
culated with various FMD states.

E [MeV] rcharge[fm] B(E2) [e2fm4]

V/PAV -81.4 2.36 -
VAP α-cluster -79.1 2.70 76.9
PAVπ -88.5 2.51 36.3
VAP -89.2 2.42 26.8
Multiconfig (4) -92.2 2.52 42.8
Multiconfig (14) -92.4 2.52 42.9

Experiment -92.2 2.47 39.7± 3.3

12C SPECTRUM

The structure of12C is characterized by an interplay between shell-model and cluster
structure. If we perform an unconstrained minimization of the energy we end up with
a spherical12C that is identical to the(0s1/2)

4(0p3/2)
8 shell model configuration. The

energy for this configuration is about 10 MeV too high compared to experiment and
the radius is too small (see Tab. 1). If we try a Brink typeα-cluster wave function we
find a configuration that has a similar energy but a radius muchlarger than experiment.
Whereas in the shell model configuration the spin-orbit interaction contributes strongly
to the binding energy, theα-cluster configuration has no contribution from the spin-
orbit force. Theα-cluster configuration on the other hand has a very big correlation
energy due to the angular momentum projection. If we minimize after parity projection
(PAVπ ) or search for the variation after projection minimum (VAP using the radius and
the octupole moment as constraints), we find solutions that are significantly lower in
energy. In these configurations the spin-orbit and correlation energy contributions are
somewhere in between the pure shell model andα-cluster configurations.

The angular momentum projection of the PAVπ solution already provides a reasonable
description of the ground state rotational band of12C. We can improve this description
by performing a multiconfiguration calculation with four intrinsic states. Starting with
the VAP configuration we consecutively add configurations that improve the ground
state energy. In the Multifonfig(4) calculation the ground state rotational band including
theB(E2) transition strength for the 0+ → 2+ transition is well reproduced. In addition
we find a second 0+ state, the famous Hoyle state. A description of this state asa Bose
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calculation.
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condensate ofα-particles has been proposed [11]. We improve our many-bodybasis by
creating 10 additionalα-cluster configurations using quadrupole and octupole moments
as constraints. The resulting Multiconfig(14) result is displayed in Fig. 8 indicating a
significant improvement in the 0+

2 energy. We obtain a monopole matrix element for the
0+

1 → 0+
2 transition of 5.67 fm2, which should be compared with the experimental value

of (5.5±0.2) fm2.

ASTROPHYSICAL S-FACTOR

By locating the FMD ground states of two nuclei on a grid at different distances and
antisymmetrizing the product state, one can span a many-body Hilbert space that de-
scribes the relative motion of the nuclei. From the Hamiltonian matrix represented in
this space one can determine the nucleus-nucleus potential. From that the probability
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FIGURE 9. L.h.s.: mass densities (point nucleons) for different Oxygen isotopes. R.h.s.: nucleus-
nucleus potentials calculated in the frozen state approximation.



for fusion can be calculated at energies much below the Coulomb barrier, as occurs in
astrophysical scenarios. The fusion of neutron rich unstable isotopes is expected to take
place in pycno-nuclear reactions when the density is largerthan 10−12g/cm3 and nuclei
are densely frozen in lattice positions, such that the Coulomb barrier is reduced by the
small distances and the electron cloud between neighbouring nuclei [12]. In a micro-
scopic model like FMD there are no adjustable parameters in calculating the potential,
in particular, the isospin dependence comes from the isospin dependence of the nucleon-
nucleon interaction and the neutron to proton ratios in the surface of the nuclei. As an
example, in Fig. 9 we display the ground state densities of16O, 22O, and24O together
with the calculated nucleus-nucleus potential for16O+16O,22O+22O and24O+24O. From
Fig. 10 one sees a dramatic increase in fusion probability for the neutron rich isotopes,
both below and above the barrier (hinted at by the respectivekink in the S-factor).
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