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Abstract

The Unitary Correlation Operator Method (UCOM) provides a novel
route towards ab initio nuclear structure calculations starting from
realistic NN-potentials. The basic idea is to describe the dominant
correlations—namely short-range central correlations generated by the
repulsive core of the NN-potential and tensor correlations induced by the
strong attractive tensor force—explicitly by means of a unitary trans-
formation. The application of UCOM to the Argonne V18 potential is
discussed and variational calculations within Fermionic Molecular Dy-
namics up to mass numbers A ∼ 60 are presented.

1 Introduction

In recent years several realistic nucleon-nucleon interactions, like the Argonne
V18 and the Bonn CD potentials, have been constructed on the basis of high-
precision nucleon-nucleon scattering data. These potentials serve as a basis for
ab initio nuclear structure calculations, e.g., in the framework of the Green’s
function Monte Carlo method which are presently feasible for nuclei up to mass
numbers A . 12 [1]. The use of these realistic potentials for nuclear structure
studies in heavier nuclei poses an enormous challenge. Traditional many-body
methods, like Hartree-Fock or the multi-configuration shell-model, cannot be
used in connection with the bare NN-interaction. The reason is the inability
of the restricted model spaces to describe the dominant correlations, which are
present in the exact many-body eigenstates.

The two most important types of correlations manifest themselves in the
deuteron. Figure 1 depicts the diagonal elements of the spin-projected two-
body density matrix ρ

(2)
1,MS

(~r) for the deuteron calculated with the AV18 poten-
tial. Two prominent features of the two-body density distribution are evident:
(i) a complete suppression at small relative distances ~r and (ii) a pronounced
angular structure relative to and depending on the spin orientation.



MS = 0
1√
2
(
∣∣↑↓

〉
+

∣∣↓↑
〉
)

MS = ±1∣∣↑↑
〉
,

∣∣↓↓
〉

Figure 1: Spin-projected two-body density ρ
(2)
1,MS

(~r) of the deuteron calculated

with the AV18 potential. Shown is an iso-density surface for 0.005 fm−3.

The suppression of the two-body density at small interparticle distances is a
direct signature of the central correlations induced by the repulsive core in the
central part of the realistic potential. For energetic reasons the nucleons avoid
the repulsive core which results in a suppression of the probability density for
finding two nucleons at small distances. The pronounced angular structure is
a manifestation of tensor correlations. Depending on the relative alignment
of the spins of proton and neutron (parallel for MS = ±1 or antiparallel for
MS = 0) the spatial two-body density distribution changes dramatically. For
MS = 0 the probability density is concentrated in the plane perpendicular to
the spin direction (doughnut), whereas the probability density for MS = ±1
is largest along the spin axis (dumb-bell). The situation is analogous to the
classical dipole-dipole interaction: for parallel dipoles the interaction energy
is minimal if the distance vector is parallel to the dipole orientation. For anti-
parallel dipoles the distance vectors perpendicular to the dipole moments are
energetically favoured. Neither of these correlations can be modelled by a single
or a superposition of few Slater determinants. Therefore, a naive inclusion
of the bare realistic NN-potential into a Hartree-Fock or multi-configuration
shell-model calculation has to fail.

2 Unitary Correlation Operator Method

The basic idea of the Unitary Correlation Operator Method (UCOM) is to
include the dominant correlations into the many-body state by means of a
unitary transformation [2, 3]. Starting from an uncorrelated many-body state∣∣Ψ

〉
, in the simplest case just a Slater determinant, a correlated state

∣∣Ψ̂
〉

is



defined through the application of the unitary correlation operator C:

∣∣Ψ̂
〉

= C
∣∣Ψ

〉
. (1)

Alternatively one can perform a similarity transformation of the operators
of all relevant observables (e.g. the Hamiltonian, coordinate and momentum
space densities, transition operators, etc.):

Ô = C†OC . (2)

Due to unitarity both approaches are equivalent. For the following many-
body calculations the formulation through correlated operators is, however,
more convenient.

We decompose the correlation operator C into a central correlator Cr and
a tensor correlator CΩ, reflecting the two dominant types of correlations in the
many-body problem

C = CΩCr = exp
[
− i

∑

i<j

gΩ(ij)
]
exp

[
− i

∑

i<j

gr(ij)
]

. (3)

Both operators are defined as exponentials of Hermitian two-body generators
gΩ and gr, respectively. They are given in a closed analytic form and determine
quite intuitively the way the correlation operators act.

Central Correlations. The task of the central correlator Cr is to generate
the hole in the two-body density distribution at small particle distances caused
by the strong repulsive core in the central part of the interaction. Pictorially
speaking, Cr has to shift those pairs of particles, which are closer than the
core radius, apart from one another. The two-body generator for this distance-
dependent shift can be written as gr = 1

2
[s(r)qr + qrs(r)], where qr = 1

2
[~q ·

(~r/r) + (~r/r) · ~q] is the radial component of the relative momentum ~q of a
particle pair. The function s(r) determines the distance dependence of the
shift. It is large for small r and vanishes for large distances.

Tensor Correlations. The tensor correlation operator CΩ has to gener-
ate the complex angular structure of the two-body density distribution with
respect to the spin orientation. Two nucleons with parallel spin are pref-
erentially oriented with their relative position vector aligned with the spin.
Nucleons with antiparallel spins prefer relative position vectors perpendic-
ular to the spin direction. The tensor correlator has to generate this an-
gular shift towards or away from the spin direction. An essential ingredi-
ent is the component of the relative momentum ~q perpendicular to ~r, the
so-called orbital momentum ~qΩ = ~q − ~r

r
qr. The generator has the form



gΩ = 3
2
ϑ(r)

[
(~σ1 · ~qΩ)(~σ2 · ~r) + (~r ↔ ~qΩ)

]
which is similar to the tensor oper-

ator. The function θ(r) describes the magnitude of the shift as a function of
distance.

Correlated Operators and Cluster Expansion. For the following many-body
calculations the notion of correlated operators is advantageous. The operators
of all observables under consideration have to be transformed consistently.
Since the correlation operators are defined as exponentials of two-body opera-
tors, the correlated operators contain irreducible contributions for all particle
numbers. We organise the different irreducible terms according to their rank
in a cluster expansion

Ĥ = C†HC = Ĥ[1] + Ĥ[2] + Ĥ[3] + · · · . (4)

Here we used the Hamiltonian H = T + V as an example, the same holds
true for any other operator. If the range of the correlators is sufficiently small
compared to the average particle distance in the many-body system, three-
body and higher order terms in the cluster expansion are negligible and we
can restrict ourselves to the computationally simple two-body approximation

ĤC2 = T̂[1] + T̂[2] + V̂[2] = T + VUCOM , (5)

where T̂[1] = T and T̂[2] are the one- and two-body contributions of the cor-
related kinetic energy, resp., and V̂[2] is the two-body part of the correlated
NN-potential. All two-body contributions are subsumed in the correlated in-
teraction VUCOM. It is by construction phase-shift equivalent to the original,
uncorrelated NN-potential as long as the correlators have finite range.

In order to ensure the validity of the two-body approximation, we restrict
the range of the correlation functions—most notably for the tensor correlator.
The correlation functions for a given potential are determined for each spin-
isospin channel by a constrained energy minimisation in the two-body system.

3 Correlated Realistic NN-Potentials

We employ the Unitary Correlation Operator Method to construct a correlated
interaction based on the Argonne V18 potential [4]. The charge independent
components of the AV18 potential can be written in the following operator
representation

V =
∑

S,T

[
vc

ST (r) + vl2
ST (r) ~L

2]
ΠST

+
∑

T

[
vt

T (r) S12 + vls
T (r) (~L · ~S) + vls2

T (r) (~L · ~S)2
]
Π1T ,

(6)



where ΠST is the projection operator onto the different spin S and isospin
T channels. Applying the central and tensor correlators leads to a correlated
interaction VUCOM with transformed radial dependencies v̂◦

ST (r). These func-
tions depend on the original radial dependencies v◦

ST (r) as well as on the tensor
and central correlation functions. Moreover, new operator terms emerge. Cor-
relating the kinetic energy, for example, leads to an additional momentum
dependent two-body term of the form ~q v̂qq

ST (r) ΠST ~q. The tensor correla-
tor generates various additional terms, e.g., operators containing the angular
momentum ~L or the orbital momentum ~qΩ.

The nature of the correlated interaction VUCOM can be understood in dif-
ferent ways. By means of the unitary transformation the bare potential is
tamed, meaning that the exact eigenstates of the correlated Hamiltonian do
not exhibit the dominant central and tensor correlations anymore (compare
Fig. 1). The correlated Hamiltonian is thus well suited for an approximate
treatment of the many-body problem in a simplified Hilbert space. Alterna-
tively one may say that the unitary transformation pre-diagonalises the Hamil-
tonian with respect to a simple many-body basis of Slater determinants. From
another point of view the correlator separates low- and high-momentum de-
grees of freedoms in that it treats the high-momentum, short-range features of
the many-body state, i.e. the short-range correlations, explicitly and leaves a
correlated Hamiltonian for describing the low-momentum properties. At this
point the connection to the Vlow−k [5] approach is evident.

Phenomenological Corrections. So far, we have restricted ourselves to a
two-body interaction. It is well known, that these two-body interactions alone
cannot adequately describe the properties of finite nuclei. Quasi-exact Green’s
function Monte Carlo calculations for light nuclei have demonstrated that bind-
ing energies and the charge radii obtained with realistic two-body potentials
are significantly smaller than the experimental values [1]. This discrepancy is
remedied by introducing a local three-body force which is adjusted to ground
and low-lying excited states of light nuclei. Recent developments in chiral per-
turbation theory might supersede these phenomenological three-body forces
and lead towards realistic, first-principles three-body interactions.

In principle the inclusion of three-body forces is also possible in our frame-
work. However, the computational effort to evaluate three-body matrix ele-
ments within a many-body system would be enormous. Within a pragmatic
approach we, therefore, utilise a momentum dependent two-body correction to
simulate the effect of genuine three-body forces. The correction also accounts
for residual higher-order contributions of the cluster expansion and missing
long-range tensor correlations.



We use a spin-isospin independent (Wigner type) correction consisting of
a local, a momentum dependent and a spin-orbit term

Vcorr = vc(r) + ~q vqq(r)~q + vls(r) (~L · ~S) . (7)

Each of the three radial dependencies is described by a single Gauss function.
The parameters of the central and momentum dependent part (2 range and
2 strength parameters) are adjusted such that the binding energy and the
rms-radii of 4He, 16O, and 40Ca agree with experiment. The strength of the
spin-orbit correction is chosen such that the binding energy of 24O and 48Ca
are consistent with experiment. For finite nuclei the correction will contribute
roughly 15% to the total potential energy.

4 Variational Ground State Calculations

In a first step we tackle the many-body problem in the framework of a varia-
tional model. The many-body trial state is given by a simple Slater determi-
nant ∣∣Q

〉
= A(

∣∣q1

〉
⊗

∣∣q2

〉
⊗ · · · ⊗

∣∣qA

〉
) (8)

composed of single-particle states

∣∣q
〉

=
n∑

ν=1

cν

∣∣aν ,~bν

〉
⊗

∣∣χν

〉
⊗

∣∣mt

〉
. (9)

Their coordinate space part is given by a Gaussian wave packet
〈
~x
∣∣aν ,~bν

〉
=

exp[−(~x −~bν)
2/(2 aν)] with a complex vector ~bν encoding mean position and

mean momentum of the wave packet and a complex width parameter aν . Sev-
eral wave packets with different spin orientations can be superposed to enhance
the flexibility of the single-particle trial states. These trial states—the basis
of the Fermionic Molecular Dynamics (FMD) approach [6]—prove to be ex-
tremely versatile. Spherical shell-model type states as well as intrinsically
deformed and α-cluster configurations can be described.

Figures 2 and 4 summarise the results of large-scale variational calcula-
tions for nuclei up to A ∼ 60. For each nucleus the intrinsic energy, i.e. the
expectation value of ĤC2 + Vcorr − Tcm, is minimised. Over all, the binding
energies and the charge radii of the ground state show a nice agreement with
experimental data. Sizable deviations from the experimental binding energies
appear for p-shell and to a lesser extend for sd-shell nuclei. This deviation has
two origins: (i) A single Gaussian wave packet for the wave function of each
nucleon is not optimally suited for light isotopes. A generalisation of the single
particle trial-states by considering a superposition of two Gaussians leads to
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Figure 2: Deviation from the experimental binding energy per nucleon (upper
panel) and charge radius (lower panel) for various stable isotopes. Shown are
the results with one Gaussian wave packet per nucleon ( ) and with two
Gaussians per nucleon ( ).

a significant improvement as Figs. 2 and 3 show. (ii) Away from the magic
numbers the variational ground states exhibit strong intrinsic deformations.
A projection of these intrinsic states onto angular momentum eigenstates be-
comes necessary and leads to a further reduction of the ground state energy.
At the same time one obtains information on the whole rotational band. A
detailed discussion of angular momentum projection and multi-configuration
calculations within the UCOM/FMD framework is presented in a separate
contribution in this volume.

In summary, the Unitary Correlations Operator Method is a promising
tool to facilitate nuclear structure calculations on the basis of realistic NN-
potentials. The correlated interaction can be used in connection with a variety
of traditional nuclear structure methods. Beyond the variational calculations
presented here, Hartree-Fock calculations for larger nuclei are a natural next
step.
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Figure 3: Chart of isotopes. The colour coding represents the difference
between the variational and the experimental binding energy per nucleon
(E − Eexp)/A. The main chart was obtained with a single Gaussian wave
packet per nucleon. The inset shows results with two Gaussians per nucleon.
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