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Abstract
The influence of disorder on ultracold atomic Bose gases in optical lattices is
discussed in the framework of the one-dimensional Bose–Hubbard model. It
is shown that simple periodic modulations of the well depths generate a rich
phase diagram consisting of superfluid, Mott insulator, Bose glass (BG) and
spatially localized phases. The detailed evolution of mean occupation
numbers and number fluctuations as function of modulation amplitude and
interaction strength is discussed. Finally, the signatures of the different
phases, especially of the BG phase, in matter–wave interference experiments
are investigated.
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1. Introduction

Quantum phase transitions of interacting bosonic many-body
systems in disordered lattice potentials have been a topic
of intense theoretical investigations in the past years. A
rich variety of possible zero-temperature phases has been
predicted such as the Mott insulator (MI) phase, an Anderson
localized phase, and a Bose glass (BG) phase [1–5]. Recently,
impressive experiments on the transition from a superfluid
(SF) to a MI [6] demonstrated that ultracold bosonic atoms in
optical lattices offer unique possibilities to explore the phase
diagram of these systems. The degree of experimental control
is remarkable: the geometry of the lattice potential can be
designed and specified precisely, even spatial modulations of
the well depths can be introduced in a controlled manner [7, 8].
The strength of the two-body interaction can be chosen by
means of Feshbach resonances. Ultimately, the structure of
the ground state can be examined in detail. This makes them a
promising candidate to study the competition between disorder
and interaction experimentally in an unprecedented way.

In this contribution we discuss the ground state phase
diagram of an interacting bosonic many-body system in an
optical superlattice, i.e. a lattice composed of irregular unit
cells. In particular, we investigate a sinusoidal modulation of
the well depths as it can easily be produced by a superposition
of two standing-wave lattices of different wavelengths, a so-
called two-colour lattice. We study the dependence of the exact
ground state on the interaction strength and the amplitude of
the modulation within the Bose–Hubbard model.

2. Bose–Hubbard model

Consider a gas of N bosonic atoms in a one-dimensional lattice
potential at zero temperature. For a sufficiently strong lattice
it is convenient to describe the state of the system in a basis
of localized ‘tight-binding’ wavefunctions, i.e. the Wannier
functions that result from a band structure calculation. We
assume that only the localized ground state of each lattice well
contributes and excited vibrational states can be neglected. For
a system with I lattice sites the many-body state can thus
be represented in terms of number states |n1, . . . , nI 〉 with
occupation numbers ni for the individual sites i = 1, . . . , I .
A complete basis of the model space is formed by the set
of number states |n(α)

1 , . . . , n(α)
I 〉 (α = 1, . . . , D) with all

compositions of the occupation numbers. The dimension
D = (N + I − 1)!/[N !(I − 1)!] of the number basis grows
dramatically; for I = 8 lattice sites and N = 8 particles the
dimension is 6435, for I = N = 10 it is already 92 378. Within
the model space any state can be expanded in this number basis

|ψ〉 =
D∑

α=1

Cα |n(α)
1 , . . . , n(α)

I 〉 (1)

with expansion coefficients Cα . We introduce creation
operators ai and annihilation operators a†

i , which create and
annihilate respectively a particle in the lowest vibrational state
at site i , and the corresponding occupation number operators
ni = a

†
i ai .
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The Hamiltonian of the interacting many-body system
in second quantization is the so-called Bose–Hubbard
Hamiltonian [1–4]

H =
I∑

i=1

[
−J (a†

i+1ai + a†
i ai+1) + εini +

V

2
ni(ni − 1)

]
. (2)

The first term describes the coupling between neighbouring
sites with a strength J . We use cyclic boundary conditions,
i.e. hopping between the first and the last site of the lattice is
included. The last two terms of (2) give the on-site single-
particle energy εi and the on-site two-body interaction with
a strength V . Formally, the parameters are given by matrix
elements of components of the coordinate space Hamiltonian
calculated with the Wannier wavefunctions associated with the
individual sites [8]. The hopping strength J , for example, is
the off-diagonal matrix element of the kinetic energy operator
calculated in the Wannier basis. For an irregular lattice
potential the on-site energies εi depend explicitly on the site
index i ; for simplicity we neglect the site-dependence of J
and V . Interactions between particles at different sites and
long-range hopping are also neglected.

To determine the ground state of the system we solve
the eigenvalue problem of the Bose–Hubbard Hamiltonian
numerically. The Hamilton matrix in the number basis is easy
to calculate; the on-site energy and the two-body interaction
form the diagonal and the hopping term generates a few
off-diagonal matrix elements. Since the Hamilton matrix is
very sparse and we are interested in the lowest eigenstates
only, an iterative Lanczos-type algorithm is most efficient
to solve the eigenvalue problem. This enables us to treat
systems with up to I = 12 and N = 12 on a standard PC
without further approximations. Larger systems can be treated
by Monte Carlo techniques [9, 10]. Two relevant ground
state observables we consider in the following are the mean
occupation number n̄i = 〈ψ |ni |ψ〉 and number fluctuations
σ 2

i = 〈ψ |n2
i |ψ〉 − 〈ψ |ni |ψ〉2 at the individual sites.

3. Mott insulator transition

The interplay between the three terms of the Bose–Hubbard
Hamiltonian (2) generates a rich zero-temperature phase
diagram. Its basic structure can be understood by analysing the
contributions of the different terms to the energy expectation
value for particular states. The off-diagonal hopping term
gives a negative contribution to the total energy if the state
is a superposition of many number states. If only the hopping
is present the coefficients of the ground state (1) are related to
the multinomial coefficients, thus all number states contribute
and number fluctuations σi are large. The particles can tunnel
freely through the lattice and the system resembles a superfluid
(SF).

If a repulsive two-body interaction is included then
number states with large occupation numbers at individual sites
have high energy expectation values. The repulsion favours
homogeneous distributions of the particles over all sites. The
competition between hopping term and two-body interaction
governs one kind of quantum phase transition present in these
systems. For small interaction strengths V/J the hopping
term dominates and the ground state is a superposition of

Figure 1. On-site energies εi for a unit cell of the sinusoidal
superlattice.

many number states—a superfluid. With increasing V/J those
number states with large occupation numbers at some sites are
gradually suppressed because of their large interaction energy.

For integer (commensurate) fillings N/I there is a unique
number state with ni = N/I at each site which minimizes the
expectation value of the two-body interaction. For sufficiently
strong interactions the ground state is given by just this
number state. Therefore number fluctuations σi and also the
expectation value of the hopping term vanish. This phase in
which tunnelling of the particles is inhibited by the repulsive
interaction is called the Mott insulator (MI) phase. Quantum
Monte Carlo calculations for the infinite one-dimensional
Bose–Hubbard model with N/I = 1 show that the SF to MI
transition occurs at (V/J )crit ≈ 4.65 [10], which is confirmed
by a renormalization group study [11] and a strong-coupling
expansion [4]. Mean-field models predict a much larger critical
interaction strength [8, 12].

4. Two-colour superlattices

How does disorder affect the phase diagram of the Bose–
Hubbard model? Most of the theoretical investigations on
disorder-induced effects concentrate on infinite lattices with
completely random on-site energies. More relevant for cold
bosonic atoms in optical lattices are superlattice structures,
i.e. lattices composed of irregular unit cells. As the simplest
example we discuss a one-dimensional optical superlattice
with a sinusoidal modulation of the on-site energies εi . A
unit cell consists of I = 8 lattice sites and the εi vary in the
interval [−�, 0] as shown in figure 1. Experimentally this
modulation can be realized using a superposition of two optical
standing waves with appropriate wavelengths—a so-called
two-colour lattice. This allows the independent control of the
tunnelling strength J and the modulation amplitude �. The
sinusoidal modulation already shows the relevant fundamental
features but is only the most simple realization of disorder1,
more complex superlattices have already been generated
experimentally [7].

Let us start from a noninteracting SF in a regular lattice
(�/J = 0, V/J = 0) and increase the modulation amplitude
� gradually. The mean occupation number n̄i of the site
with lowest εi in each unit cell will increase. For sufficiently
strong disorder the ground state will be composed of number
states which have non-zero occupation only at the deepest well
of each unit cell. This mechanism is similar to Anderson
localization in an infinite system with completely random

1 We use the term disorder not just for completely random lattice potentials
but in a broader sense which comprises all kinds of non-uniform lattices.
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(a) (b)

Figure 2. Mean occupation numbers n̄i (a) and number fluctuations σi (b) for the sinusoidal superlattice with I = 8, N = 8, and �/J = 60
as function of V/J . The different rows correspond to the individual sites of a unit cell.

on-site energies [13]. However, in contrast to the Anderson
localized phase in a random lattice the ground state is still
a superposition of several number states with considerable
number fluctuations σi . Therefore, this state appears almost
like a SF state in a regular lattice with I times the lattice
spacing.

The disorder-induced localization is strongly affected by
repulsive interactions which drive the system towards even
distributions of particles over all sites. To study the detailed
interplay between interactions and disorder we diagonalize the
Hamiltonian numerically for an isolated I = 8 unit cell. This
assumes that the exchange of particles between different unit
cells can be neglected. By direct comparison with two-cell
calculations this turns out to be a very good approximation
for V/J > 0. For the noninteracting system, however, the
results of single- and multi-cell calculations differ. The ground
state obtained in a multi-cell calculation exhibits the large
fluctuations discussed previously. A diagonalization using a
single unit cell will lead, in the limit of large �, to a localized
state with vanishing fluctuations.

Figure 2 shows the mean occupation numbers n̄i and the
number fluctuations σi for the sinusoidal superlattice with
�/J = 60 and commensurate filling (I = 8, N = 8)
as function of the interaction strength V/J . For vanishing
interaction strength all particles are localized at the lowest
energy site within the unit cell. However, with increasing
V/J the mean occupation at this site is reduced rapidly and the
particles are redistributed to sites with higher on-site energies.
This rearrangement happens stepwise, i.e. first the two sites
with second lowest εi are populated. Then at V/J ≈ 10 the
population of the next two sites increases, and so on. Between
successive rearrangements there are extended plateaux (e.g.
for 20 < V/J < 40) with constant and approximately integer
mean occupation numbers n̄i . This characteristic sequence
of rearrangements and stable plateaux is also reflected in the
number fluctuations σi shown in figure 2(b). Within the
rearrangement regions number fluctuations of those sites which
change their mean occupation number are large. Within the
plateaux all σi are small and the ground state is almost a pure
number state. This region of successive rearrangements is
called the Bose glass (BG) phase [2, 3]. In this phase the
energy gap, that is, the energy difference between the ground
state and the first excited state, is small unlike in the MI phase.
At the same time the SF density vanishes, i.e. the system is an
insulator. We will discuss these observables in more detail in
a forthcoming publication.

Eventually, at V ≈ � a final rearrangement occurs and
all sites have equal mean occupation and very small number
fluctuations. This is the transition from the BG to the MI phase
where the ground state is a pure number state with ni = 1 at
each site.

Figure 3(a) summarizes the phase diagram for the
sinusoidal superlattice. The contour plot shows the square of
the largest coefficient C2

max = max(C2
α) in the expansion (1).

The dark shadings indicate that the ground state is a pure
number state. The MI phase appears only for V > �.
For interaction strengths below this boundary two stable
configurations within the BG phase follow. At very small
V/J and large disorder amplitudes the localized phase (L)
appears. The remaining regions resemble a (disordered)
SF. A complementary representation of the phase diagram is
shown in figure 3(b) in terms of the maximum on-site number
fluctuations σmax = max(σi ). Large number fluctuations
indicate that the ground state is a superposition of many number
states, i.e. that C2

max is small.
The structure of the BG phase, i.e. the sequence of

rearrangements, depends strongly on the particular pattern of
on-site energies. More complex modulations of the εi generate
a larger variety of configurations in the BG phase. The same
holds true for non-commensurate fillings. In the sinusoidal
lattice with N = 9, extended regions emerge, where two sites
exhibit mean occupation n̄i = 0.5 or 1.5 in association with
large number fluctuations.

5. Matter–wave interference pattern

How can these structures be observed experimentally? An
experimentally quite simple approach is the imaging of
matter–wave interference patterns after release from the trap
and ballistic expansion [6, 14]. The crucial quantity that
determines the presence or absence of an interference pattern
is the phase coherence between atoms at different lattice sites.
Small phase fluctuations at the individual sites, which imply
phase coherence, are connected to large number fluctuations σi .
An estimate for the phase fluctuations σφ,i can be obtained
from the relation σφ,i = 1/(2σi ) [14]. To simulate the
density interference pattern for a given ground state we
approximate the wavefunction of an atom localized at a lattice
site by a Gaussian wavepacket2. The superposition of the
2 The centroids of the Gaussians for the different sites have a constant distance
δξ . The width

√
0.025 δξ is chosen such that the typical three-peak structure

for the SF phase [6] is reproduced.
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(a) (b)

Figure 3. (a) Contour plot of the square of the largest coefficient C2
max for the sinusoidal superlattice with I = 8, N = 8 as function of V/J

and �/J . Dark shadings indicate that the ground state is a pure number state (insulators). The labels identify the different phases: superfluid
(SF), Mott insulator (MI), Bose glass (BG), and localized (L). (b) Analogous plot for the maximum on-site number fluctuations σmax.

(a) (b)

(c) (d )

(e) ( f )

Figure 4. Matter–wave interference patterns for different
combinations of V/J and �/J . The grey curves show the full
interference pattern of the superlattice; the black curves result from
folding with a Gaussian profile to mimic a restricted experimental
resolution.

wavepackets after free expansion (neglecting interactions)
results in a density interference pattern. To account for the
phase fluctuations we calculate the incoherent average over
typically 10 000 sets of on-site phases, which are chosen
randomly with a Gaussian distribution of width σφ,i .

Figure 4 depicts characteristic interference patterns for
different points of the phase diagram. The superlattice
character is explicitly included by replicating the unit cell. This
gives rise to the short-wavelength oscillations which reflect the
periodicity of the superlattice. The black curves are obtained
by folding with a Gaussian profile to mimic a restricted
experimental resolution. The remaining smooth pattern is
largely determined by the structure within the unit cells.

In the absence of interactions and disorder we obtain the
prominent interference pattern of the SF [6] with pronounced
peaks shown in figure 4(a). This structure dissolves if we
enter the localized phase shown in panel (b) for �/J = 60;
depending on the experimental resolution one may detect the
interference pattern of a lattice with I times the fundamental
lattice spacing. If we include interactions V/J > 0 and
enter the BG phase we observe a characteristic vanishing
and reappearance of interference fringes which is correlated
to the number fluctuations shown in figure 2(b). For weak
interactions V/J = 10 the three-peak structure of the
SF reappears with broader peaks and increased incoherent
background due to the reduced number fluctuations. In the
stable regions of the BG phase, e.g. at V/J = 30, number
fluctuations of all sites are small and the fringes vanish
again; only the incoherent background remains, as shown in
panel (d). In the vicinity of rearrangements certain lattice sites
regain large number fluctuations and cause the reappearance
of interference fringes. Figure 4(e) depicts an example for
V/J = 42, where every second lattice site has considerable
fluctuations (compare figure 2) which create a distinctive
fringe pattern. Eventually, if we enter the MI phase only the
incoherent bump remains, as shown in panel (f ). To obtain
complementary information on the spatial density distribution
of these disordered states Bragg diffraction [7, 15, 16] would
be a useful tool.

6. Summary

In summary, we have shown that ultracold atomic gases
in optical superlattices are an ideal system to study the
complicated interplay between interaction and disorder. As a
function of the interaction strength one can observe the detailed
evolution of the ground state from an spatially localized
state through a BG to the MI, which is accompanied by
a characteristic vanishing and reappearance of interference
fringes. The remarkable degree of experimental access to
all relevant parameters allows a comprehensive study of these
quantum phase transitions.
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