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Recent experimental successes in the trapping and cooling of
mixtures of bosonic and fermionic atoms [1,2] constitute a new
branch in the field of trapped ultracold gases. Similar to the
purely bosonic gases boson-fermion mixtures offer unique pos-
sibilities to study fundamental quantum phenomena. One of the
ultimate experimental goals is the observation of a BCS transi-
tion of the fermionic component to a superfluid state, which
may be achievable by sympathetic cooling of the fermionic
component in a boson-fermion mixture.

Within the mean-field approximation using an effective
contact interaction [3] the density distribution nF(~x) of the
fermionic component is given by
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where UF(~x) is the external trapping potential and µF is the
chemical potential of the fermionic component. We have as-
sumed equal mass m for both species. The interaction between
the bosonic and fermionic atoms – characterized by the boson-
fermion s-wave scattering length aBF – couples the bosonic and
fermionic density. The boson density nB(~x) = Φ2

B(~x) is ob-
tained from a modified Gross-Pitaevskii equation
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ΦB(~x) = µBΦB(~x).

(2)

here µB is the chemical potential of the bosons and aB the
s-wave boson-boson scattering length. We solve these cou-
pled nonlinear differential equations through an efficient imag-
inary time evolution algorithm. In order to keep the discussion
simple we restrict ourselves to spherical symmetric systems
with identical parabolic trapping potentials UB(x) = UF(x) =
x2/(2m`4). The oscillator length ` = (mω)−1/2 serves as fun-
damental length unit for the numerical treatment.

First we consider the case of repulsive boson-boson and at-
tractive boson-fermion interactions (aB ≥ 0, aBF < 0). The
upper row of Fig. 1 shows the density profiles of (meta)stable
configurations with NB = NF = 104 particles for three dif-
ferent values of the boson-fermion scattering length aBF and
fixed aB/` = 0.001 (corresponds to aB ≈ 20 aBohr for a typical

trap with ` = 1µm). Due to the Pauli principle the fermionic
density distribution is much more spread out and has a signif-
icantly lower central density than the bosonic distribution with
the same particle number [notice the different scales for nB(~x)
and nF(~x) in Fig. 1]. Attractive boson-fermion interactions
generate an attractive mean-field for bosons proportional to the
density of the fermions and vice versa. This causes an increase
of both densities in the overlap region as can be seen in panel
(b) of Fig. 1. With increasing strength of the boson-fermion
attraction the fermion density grows substantially. As shown in
Fig. 1(c) the fermion density can easily be increased by a factor
3 compared to the noninteracting case.

Second we consider mixtures with attractive boson-boson
and repulsive boson-fermion interactions (aB < 0, aBF ≥ 0).
The 6Li/7Li mixture used in the experiment of Truscott et al.
[1] belongs to this class of interactions. The lower row of
Fig. 1 shows the density profiles for three different values of
aBF ≥ 0. Already for a very weak boson-fermion repulsion
the two species separate spatially [see Fig. 1(e)], the bosons oc-
cupy the central region of the trap (boson core) and the fermions
constitute a shell around it. The fermionic shell compresses the
boson core, i.e. increases the maximum boson density as it is
clearly seen in Fig. 1(f).

Any attractive interaction component — either boson-boson
or boson-fermion interaction — can induce a mean-field in-
stability of the degenerate mixture. In this case the attractive
mean-field is not stabilized by the positive kinetic energy con-
tribution any more, i.e. the gas can lower its energy by con-
tracting and increasing the density in the central region. This
collapse sets severe limitations on the numbers of bosons and
fermions in order to retain the stability of the mixture. Thus
it restricts that parameter ranges in which sympathetic cooling
schemes can be applied experimentally. We investigate these
phenomena in detail in Refs. [4,5].
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Fig. 1: Radial density profiles of a
boson-fermion mixture with NF =

NB = 10 000 for different inter-
action strengths. The boson den-
sity nB(~x) is given by the solid line
(left scale) and the fermion density
nF(~x) by the dashed line (right scale).
The upper row shows examples with
increasing boson-fermion attraction
and fixed aB/` = 0.001. The lower
row depicts examples with increasing
boson-fermion repulsion and aB/` =

−0.00004.


