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The quantum-kinetic energy of a finite number of trapped fermionic atoms provides a restoring
force for shear motion due to a distortion of the momentum distribution. In analogy to the twist
mode of nuclear physics it is proposed that counter-rotating the upper and lower hemisphere of a
spherical atomic cloud yields a finite-frequency mode closely related to transverse zero-sound waves
in bulk Fermi liquids.

The advent of Bose-Einstein condensation of trapped
atomic 87Rb in 1995 has initiated large experimental and
theoretical activities in the field of very dilute, almost
ideal Bose gases [1,2]. The recent experimental achieve-
ments of trapping fermionic alkali-atoms [3] raise hope
that much progress will also be made in the near future
for Fermi gases. Indeed, Fermi-Dirac degeneracy of a
mixture of trapped 40K atoms in two different hyperfine
states has been achieved [4]. Recently, also the cooling
of a mixture of bosonic 7Li and fermionic 6Li atoms into
a quantum degenerate regime was accomplished [5]. On
the theoretical side, intensive studies have started as well.
For instance, the possibility that certain gas species show
attractive interaction (e.g., 6Li) has initiated studies on
the possible superfluidity of such systems [6,7]. The close
analogy with another finite Fermi system, the nucleus,
has been pointed out [7]. It is indeed tempting to trans-
pose many typical features of atomic nuclei to trapped
atomic Fermi gases. Besides the very spectacular su-
perfluidity properties there is interest in the spectrum
of collective excitations, most of them showing features
proper to Landau’s zero-sound modes in bulk Fermi liq-
uids [8]. For finite Fermi systems zero sound translates
into modes analogous to those of an elastic body [9,10].

One of the most remarkable examples is the so-called
’twist mode’ [11–13] in spherical nuclei for which there is
experimental evidence from backward inelastic electron
scattering [14]. This mode has also been predicted to ex-
ist in medium to heavy spherical alkali metal clusters as
the most prominent magnetic multipole excitation [15].
In a macroscopic picture the twist mode comprises a co-
herent oscillation of the particles in the upper half sphere
versus those in the lower half sphere. For small ampli-
tudes it corresponds to a purely kinetic excitation with-
out any spatial distortion of the equilibrium shape. In
this note we wish to investigate to what extent the twist
mode may also occur as a collective mode in very dilute,
atomic Fermi gases in the degenerate limit.

It is well known that the twist mode is generated by
the operator [12]

T = e−iαzlz = eα~u·~∇, ~u = (yz,−xz, 0) (1)

acting on the ground-state wave function of the Fermi
system. As is evident, T induces a rotation of the par-
ticles around the body-fixed z-axis with a rotation angle
proportional to z, i.e., the rotation is clockwise for z > 0
and counterclockwise for z < 0. The amplitude of this
twist is characterized by the angle α. One can verify that
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the twist corresponds to a magnetic mode of spin-parity
Jπ = 2−. Although the operator (1) induces no change
in the spatial distribution, the momenta become locally
distorted. The subsequent derivation of the mode fre-
quency will closely follow the original work of Holzwarth
and Eckart [12]. For atomic Fermi gases with N ' 105

to 106 particles the Thomas-Fermi approach is very ap-
propriate [7] (as is the case of atomic bosons [16]). Most
relevant for our purpose is the total kinetic energy of the
system:

Ekin(α) =

∫

d3rd3p

(2πh̄)3
p2

2m
fα(~r, ~p) , (2)

where fα is the distorted phase-space distribution in
Thomas-Fermi approximation

fα = ν θ
(

p̃2

F (~r, p̂) − p2
)

. (3)

Here ν is the degeneracy factor and θ the unit step
function. The (quadrupole)deformed local momentum
is given by

p̃F (~r, p̂) = pF (~r)N(α)
{

1

− α

√

2π

15

[

y
(

Y21(p̂) − Y2−1(p̂)
)

(4)

+i x
(

Y21(p̂) + Y2−1(p̂)
)]}

where

pF (~r) =
√

2m
[

µ − Vex(~r) − g (ν − 1) ρ(~r)
]

(5)

denotes the local Fermi momentum with chemical poten-
tial µ and trapping potential Vex(~r) and

N(α) = 1 − α2
x2 + y2

15
. (6)

In the dilute gas limit it can be assumed that the two-
body interaction is given by its long-wavelength limit

v(~r − ~r′) = g δ(~r − ~r′) (7)

with g = 4πh̄2a/m, where a is the s-wave scattering
length. For trapped atomic Fermions two situations can
occur. For example 40K can be trapped as a mixture
of atoms in two different mF states, mF = 9/2 and
mF = 7/2 [4]. In this case s-wave scattering is real-
ized and the interaction (7) is active. In contrast, if
the atoms are all in a single hyperfine state, there can
be no s-wave scattering. In the latter case p-wave in-
teractions may become very important [17]. The inclu-
sion of p-wave interactions as well as the description of
Fermion-Boson mixtures requires a substantial extension
of the fluid-dynamical formalism and will be discussed in
a following publication. In the present work we concen-
trate on a two component Fermi gas with equal number
of particles in each magnetic substate. In this case the

equilibrium Thomas-Fermi equation for the density ρ(~r)
of atoms in one of the two mF states is given by [17,7]:

ρ(~r) =
p3

F
(~r)

6π2h̄3
(8)

which leads to a cubic equation for ρ which can be solved
analytically. To second order in α we then obtain

Ekin(α) =

∫

d3r τ0(~r)
[

1 +
α2

3
(x2 + y2)

]

(9)

where τ0 is the total kinetic energy density at equilibrium

τ0(~r) = 2
3

5

h̄2

2m

p5

F
(~r)

6π2h̄3
. (10)

Since in lowest order, the potential energy contains no
contribution from the twist mode, we obtain for the
restoring force (assuming a spherically symmetric trap
of harmonic oscillator shape with frequency ω) :

C =
∂2Ekin(α)

∂α2
=

16π
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∫

dr r4τ0(r) (11)

We also need to evaluate the mass parameter B of the
twist motion. As usual in fluid dynamics it is given by

B = m

∫

d3r 2ρ(~r) u2

= m

∫

d3r 2ρ(~r) z2(x2 + y2)

=
16π

15
m

∫

dr r6 ρ(r) , (12)

where 2ρ(~r) corresponds to the total density of atoms.
The twist frequency ΩT is then obtained as

h̄ΩT =

√

C

B
. (13)

We have considered two systems. One is 6Li with a
very large attractive scattering length of a=-2063a0 (a0

= Bohr radius) [18]. The trapping potential was taken
to be h̄ω = 6.9 nK [5]. The other system is 40K with a
repulsive scattering length of a=157a0 and h̄ω=1.6 nK
[19]. The results for the twist frequency as a function of
the particle number in each magnetic substate are given
in Table 1. In order to see how ΩT depends on the inter-
action strength (which may be variable due to the tuning
of Feshbach resonances) we also list ΩT for various other
values of the scattering lengths (differing from the origi-
nal ones by powers of 10).

From Table 1 it can be inferred that the influence of
the interaction on the twist frequency is very moderate.
It is typically of the order of 10% (except for very large
particle number). This is consistent with the expecta-
tion that, for transverse zero sound, s-wave interactions
give no contribution to the restoring force [13]. The de-
pendence of the twist frequency on the interaction only
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enters through the mass parameter B which depends on
the density (Eq. 12) Depending on the sign of the in-
teraction the gas either expands (repulsive) or contracts
(attractive) relative to the free gas case. Consequently
the frequency is decreased (increased) with respect to its
non-interacting value ΩT0 = ω for repulsion (attraction).
This feature should be measurable even though the ab-
solute effect might be small.

Very interesting possibilities arise when the p-wave in-
teraction becomes strong [17]. In this case there will be
a significant correction to the kinetic energy through the
effective mass and hence a large influence on the twist fre-
quency. One may even encounter instabilities, signaled
by the exponential growth of the twist amplitude. Also,
as mentioned above, one can then have a direct influ-
ence of the interaction in a one component Fermi sys-
tem. Another interesting issue is how the twist mode
is influenced by eventual superfluidity. It can be pre-
dicted that the twist mode ceases to exist once pairing
is strong enough for the system to reach its irrotational
flow limit [7]. There may, however, be intermediate sit-
uations. To our knowledge these possibilities have not
been addressed for the nuclear twist.

The question how to excite the twist mode in the exper-
iment may not be trivial. One could imagine utilizing the
well-developed technique of rotating trapped atoms [20].
First a very elongated trap potential is created. Subse-
quently a rotating laser field is wrapped around the long
axis inducing a rotation of the atomic cloud. If, instead
of applying the laser field parallel to the long axis, it is
incident at a certain angle φ and a mirror is placed paral-
lel to the long axis which reflects the laser beam in such
a way that it hits the other hemisphere at an angle −φ,
then the first hemisphere will rotate in one direction and
the other hemisphere in the opposite direction (at least
approximately) since the rotational sense of the laser is
inverted by the mirror. If the rotation is very gentle and
stopped at a certain time, the system will continue oscil-
lating (approximately) in the twist mode. Whether one
can detect the twist mode by switching off the trap poten-
tial and subsequently imaging the velocity distribution of
the expanding atoms remains an open question.
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TABLE 1: The twist-mode frequencies ΩT in units of the trap frequency ω for several numbers of 6Li (g < 0) and
40K (g > 0) atoms in each hyperfine state for different scattering lengths (in units of the Bohr radius). The frequencies
of the harmonic oscillator traps are ω = 2π× 144 Hz for 6Li and ω = 2π× 33.5 Hz for 40K, which corresponds to level
spacings of h̄ω = 6.9 nK and 1.6 nK, respectively.

N a [a0] ΩT [ω] a [a0] ΩT [ω] a [a0] ΩT [ω]
6Li

1 × 103 -2063.0 1.042 -206.3 1.004 -20.63 1.000

5 × 103 -2063.0 1.056 -206.3 1.005 -20.63 1.000

1 × 104 -2063.0 1.064 -206.3 1.006 -20.63 1.001

5 × 104 -2063.0 1.087 -206.3 1.007 -20.63 1.001

1 × 105 -2063.0 1.101 -206.3 1.008 -20.53 1.001

2 × 105 -2063.0 1.116 -206.3 1.009 -20.63 1.001

5 × 105 -2063.0 1.142 -206.3 1.011 -20.63 1.001

40K

1 × 103 157.0 0.996 15.7 1.000 1570.0 0.966

1 × 104 157.0 0.995 15.7 0.999 1570.0 0.952

1 × 105 157.0 0.992 15.7 0.999 1570.0 0.932

1 × 106 157.0 0.989 15.7 0.999 1570.0 0.906

1 × 107 157.0 0.984 15.7 0.998 1570.0 0.873
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