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Abstract. The influence of s- and p-wave interactions on trapped degenerate one and two-
component Fermi gases is investigated. The energy functional of a multicomponent Fermi gas
is derived within the Thomas-Fermi approximation including the s- and p-wave terms of an
effective contact interaction. On this basis the stability of the dilute gas against mean-field
induced collapse due to attractive interactions is investigated and explicit stability conditions
in terms of Fermi momentum and s- and p-wave scattering lengths are derived. Furthermore
the spatial separation in a two-component Fermi gas is discussed, explicit conditions for the
onset of component demixing are given, and the density distributions in the separated phase
are calculated. The findings are summarized in a zero-temperature phase diagram for the
degenerate two-component Fermi gas. It is shown that the p-wave interaction has significant
influence on the phase diagram of the degenerate Fermi gas and causes new phenomena like
absolute stabilization against collapse and component separation. It may therefore be useful in
the context of the envisioned BCS transition in trapped atomic Fermi gases.

PACS numbers: 03.75.Fi, 34.20.Cf, 32.80.Pj

1. Introduction

Looking back at the outstanding experimental achievements in the field of trapped ultracold
gases composed of bosonic atoms of the last 6 years one wonders what exciting new
developments one has to envision in the near future [1]. One branch of these developments
will involve dilute and degenerate gases of fermionic atoms. Already today several groups
[2, 3, 4] were able to cool samples of fermionic atoms, 6Li or 40K, to temperatures
corresponding to a fraction of the Fermi energy. These experiments use either a single
fermionic isotope (40K) in two different hyperfine states [2] or a mixture of a fermionic and
a bosonic species (6Li/7Li) [3, 4]. In this way s-wave scatterings between atoms of either
the two fermionic components or between bosons and fermions allow efficient evaporative
cooling of the gas. Remember that in a gas of identical fermions s-wave interactions are
suppressed by the Pauli principle.

The experiments on dilute degenerate Fermi gases open a new and unique field to study
fundamental quantum phenomena. Many of the questions discussed for the Bose-Einstein
condensed Bose gas also apply to degenerate Fermi gases. Examples are the mean-field
induced collapse of the dilute gas due to attractive interactions [5] or the variety of collective
excitations [6]. One of the most challenging experimental goals is the realization of a BCS-
transition from the normal to a superfluid phase [7, 8]. However, a detailed understanding of
the “normal” degenerate Fermi gas is a prerequisite to achieve that.
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In this paper we investigate the influence of interactions on single-component and two-
component Fermi gases in the normal phase with special emphasis on the role of the p-wave
interaction. Therefore in section 2 we construct an effective s- and p-wave contact interaction
and use it to derive the energy density of a multicomponent Fermi gas in Thomas-Fermi
approximation. On this basis we investigate the structure of one- and two-component Fermi
gases at zero temperature. A first question concerns is the stability of the dilute gas against
collapse induced by attractive interactions. In section 3 we derive stability conditions for the
one- and two-component gas and discuss the influence of the p-wave interaction. A second
question deals with the spatial separation of the different components in a two-component
system. Conditions for the onset of component demixing are derived in section 4. We also
discuss the structure of the density distributions in the separated phase. Finally, in section 5 we
summarize our findings by means of a zero-temperature phase diagram for the two-component
Fermi gas.

2. Energy functional of a multicomponent Fermi gas

2.1. Mean-field approximation and effective contact interaction

In general the description of an interacting quantum mechanical many-body system relies
on approximations to render the problem solvable. A general procedure to obtain different
approximation schemes is to restrict the many-body states the system can assume to a certain
subspace—called model space—of the full Hilbert space. A prominent example is the mean-
field approximation where the many-body state is given by a symmetrized or antisymmetrized
product of single-particle states. Within this mean-field model space the many-body problem
can be solved; in case of fermions the solution is obtained by the well known Hartree-Fock
equations.

However, this restriction to a model space of sufficiently simple structure encounters
a serious drawback. Many realistic interactions between the constituents of the many-body
system exhibit a strongly repulsive short-range core in addition to the attractive part. Typical
examples are van der Waals interactions between neutral atoms, e.g. the Lennard-Jones
potential with an attractive part proportional to r−6 and a strong repulsion proportional to r−12.
The repulsive core prevents any of the particles to approach each other closer than the core
radius, in other words, the two-body density distribution is depleted or even zero for particle
distances smaller than the core radius. These short-range correlations cannot be described
within a simple model space like the one of the mean-field approximation [9, 10].

To resolve this discrepancy we transform the realistic potential into an effective
interaction suited for the particular model space under consideration. In the case of cold
and dilute atomic gases the properties of the physical system simplify the construction of
the effective interaction significantly. This is our starting point: (i) We want to describe the
properties of a degenerate Fermi gas in the mean-field approximation, i.e. the many-body
state is an antisymmetrized product state. (ii) The system is cold and dilute, i.e. mean particle
distance and wavelength of relative motion are much larger than the range of the two-body
potential. (iii) The system is in a non self-bound metastable many-body state, the two-body
bound states of the potential are not populated.

Due to (ii) and (iii) the atoms do not probe the detailed radial dependence of the
interaction, therefore we can use a simple zero-range effective potential. To describe
interactions also between particles with relative angular momenta l > 0 the contact interaction
has to be nonlocal. The mapping of the exact onto the effective interaction is done by means
of the two-body energy spectrum: We require that the exact two-body eigenvalues Eexact

nl for
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positive energies (scattering states) is reproduced by the expectation values of the effective
interaction calculated with kinetic energy eigenstates | nlml 〉

〈 nlml | 1
2mred
~q2 + vECI | nlml 〉

!
= Eexact

nl (1)

where ~q = 1
2 (~p1 − ~p2) is the relative momentum of the two particles and mred their reduced

mass. In the following we will consider only particles with equal masses, i.e. mred = m/2.
l and ml are the quantum numbers of relative angular momentum, and n is a radial quantum
number [11]. Guided by (1) we can construct the operator of the effective contact interaction
(ECI) explicitly. Up to the quadratic order in the relative momentum ~q, which includes a
p-wave contribution, the operator of the ECI reads [11]

vECI =
4π a0

m
δ(3)(~r) +

6π b0

m
[δ(3)(~r) (r̂ · ~q)2 + h.a.] +

12π a3
1

m
(~q · r̂) δ(3)(~r) (r̂ · ~q), (2)

where r̂ = ~r/|~r| and ~ = 1. The properties of the exact two-body interaction enter through the
s-wave scattering length a0, the s-wave effective volume b0, and the p-wave scattering length
a1. They are defined by the first terms of the low-momentum expansion of the scattering phase
shifts ηl(q) of the exact potential

tan η0(q)
q

≈ −a0 − b0q2 ,
tan η1(q)

q3 ≈ − 1
3 a3

1. (3)

The first term of the effective contact interaction (2) is identical to the widely used s-
wave pseudopotential [12, 13]. The two additional nonlocal terms are the natural extension to
describe effective range effects and more important the effects of p-wave interactions.

One should be aware that the effective interaction (2) is designed for the application in
a mean-field model space. It does not make sense to use this interaction in a larger model
space or even for the solution of the Schrödinger equation [11]. When using erroneously this
contact interaction to solve the exact scattering problem one does not get back the correct
phase shifts.

2.2. Energy density of a multicomponent Fermi gas

We construct the energy density of the inhomogeneous Fermi gas in an external trapping
potential within the Thomas-Fermi approximation, which was shown [14] to be an excellent
approximation for the particle numbers considered here. The basic assumption of the Thomas-
Fermi approximation is that the energy density of the inhomogeneous system is given locally
by the energy density of the corresponding homogeneous system.

The calculation of the energy density of the homogeneous multicomponent Fermi gas
in mean-field approximation is straightforward. The translational invariant part of the
Hamiltonian of the trapped gas, consists of the kinetic energy operator and the effective
contact interaction (2)

Hhom =
1

2m

N
∑

i

~p2
i +

N
∑

i, j>i

vECI
i j . (4)

The energy density in mean-field approximation is defined by the expectation value of this
Hamiltonian calculated with a Slater determinant |Ψ 〉

Ehom =
1
V
〈Ψ |Hhom |Ψ 〉. (5)

The single-particles states | i 〉 are eigenstates of the momentum operator with momenta ~ki up
to the Fermi momentum κ. To account for the different mF substates that can be trapped
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simultaneously [2] we characterize the single-particle states by an additional component
quantum number ξ = 1, . . . ,Ξ

| i 〉 = |~ki, ξi 〉. (6)

The many-body state |Ψ 〉 is thus an antisymmetrized product of all single-particle states
| i 〉 up to the Fermi momenta κξ of the different components ξ. The calculation of the
expectation value (5) assuming a cubic box of volume V with periodic boundary conditions is
straightforward. Within the Thomas-Fermi approximation Ehom can be directly translated into
the energy density of the inhomogeneous trapped system by replacing the Fermi momenta κξ
with local Fermi momenta κξ(~x) and adding the contribution of the trapping potential Uξ(~x).
This leads to the general form of the energy density of a trapped multicomponent Fermi gas
including s- and p-wave interactions [11, 15]

E[κ1, . . . , κΞ](~x) =
1

6π2

∑

ξ

Uξ(~x) κ3ξ (~x) +
1

20π2m

∑

ξ

κ5ξ (~x) +
a0

9π3m

∑

ξ, ξ′>ξ

κ3ξ (~x)κ3ξ′ (~x)

+
a3

1

30π3m

∑

ξ

κ8ξ (~x) +
a3

1 + b0

60π3m

∑

ξ, ξ′>ξ

[κ3ξ (~x)κ5ξ′ (~x) + κ5ξ (~x)κ3ξ′ (~x)], (7)

where the summations range over all components ξ, ξ′ = 1, . . . ,Ξ. The interaction is
characterized by the s-wave scattering length a0, the s-wave effective volume b0, and the
p-wave scattering length a1. In order to keep the treatment as transparent as possible we
have assumed equal masses m and interaction parameters for the atoms of all components.
The local Fermi momentum κξ(~x) is connected to the partial density ρξ(~x) of the respective
component by

ρξ(~x) =
1

6π2 κ
3
ξ (~x). (8)

For most of the following investigations the detailed form of the trapping potential Uξ(~x) does
not enter. If, however, the shape of the trap is relevant, then we assume a deformed harmonic-
oscillator potential

U(~x) =
m
2

(

ω2
1x2

1 + ω
2
2x2

2 + ω
2
3x2

3

)

, ~x = (x1, x2, x3) , (9)

with a mean oscillator frequency ω = 3
√
ω1ω2ω3 and the corresponding mean oscillator length

` = (mω)−1/2.

2.3. Functional variation and extremum condition

On the basis of the energy density functional (7) we obtain the density distribution of the
degenerate Fermi gas by functional minimization of the energy

E[κ1, . . . , κΞ] =
∫

d3x E[κ1, . . . , κΞ](~x). (10)

with the constraints of given numbers of atoms Nξ of the different components ξ = 1, . . . ,Ξ

Nξ =
∫

d3x ρξ(~x) =
1

6π2

∫

d3x κ3ξ (~x). (11)

For the variational treatment these constraints are implemented via a set of Lagrange
multipliers µξ—the chemical potentials of the different components. This leads to the
Legendre transformed energy

F[κ1, . . . , κΞ] =
∫

d3x F [κ1, . . . , κΞ](~x), (12)
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where the associated energy density F [κ1, . . . , κΞ](~x) is given by

F [κ1, . . . , κΞ](~x) = E[κ1, . . . , κΞ](~x) −
∑

ξ

µξ

6π2 κ
3
ξ (~x). (13)

The set of density distributions ρξ(~x) or local Fermi momenta κξ(~x) that minimizes the
transformed energy describes the state of the trapped degenerate Fermi gas. A necessary
condition for a minimum of the energy F[κ1, . . . , κΞ] is that the derivative of the energy density
F [κ1, . . . , κΞ](~x) with respect to the local Fermi momentum vanishes for this set

∂

∂κξ(~x)
F [κ1, . . . , κΞ](~x) = 0 for all ~x, ξ. (14)

This condition is also fulfilled by maxima or saddle points, therefore one has to check
explicitly whether the solutions describe a minimum of F[κ1, . . . , κΞ]. Inserting the energy
density (13) leads to a set of Ξ coupled polynomial equations for the local Fermi momenta at
the point ~x

m[µξ − Uξ(~x)] =
1
2
κ2ξ (~x) +

2a0

3π

∑

ξ′,ξ

κ3ξ′ (~x) +
8a3

1

15π
κ5ξ (~x)

+
a3

1 + b0

30π

∑

ξ′,ξ

[3 κ5ξ′ (~x) + 5 κ2ξ (~x) κ3ξ′ (~x)] , ξ = 1, . . . ,Ξ. (15)

These extremum conditions are the starting point for the investigations on the stability of the
trapped Fermi gas presented in the following sections.

3. Mean-field collapse

In the presence of attractive interactions between the trapped atoms, i.e., if the (s- or p-wave)
scattering length is negative, the dilute gas may undergo a collective collapse towards a high-
density configuration. The physical origin of the collapse is the attractive mean-field generated
by the interaction. At sufficiently low densities this mean-field attraction is compensated by
the positive kinetic energy contribution. However, if the density grows the negative mean-
field contribution to the energy grows faster than the kinetic energy. At some critical density
the kinetic part is not able to stabilize the gas against the mean-field attraction and the system
collapses. For bosonic systems this phenomenon was observed in a series of outstanding
experiments [16].

The same phenomenon can occur in degenerate Fermi gases with attractive s- or p-wave
interactions. In the following we derive explicit conditions for the stability of one- and two-
component systems.

3.1. Stability of the single-component Fermi gas

For the single-component system the Legendre transformed energy density (13) of the
multicomponent Fermi gas reduces to

F1[κ](~x) =
1

6π2 [U(~x) − µ]κ3(~x) +
1

20π2m
κ5(~x) +

a3
1

30π3m
κ8(~x). (16)

As a consequence of the Pauli principle the s-wave contact interaction does not contribute in
a system of identical fermions. However, the p-wave contact interaction does contribute and
constitutes the leading interaction term in the single-component gas.
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Figure 1. Legendre transformed energy density F1(κ) of the single-component Fermi gas as
function of the Fermi momentum κ for m`2[µ−U(~x)] = 40. The different curves correspond to
different p-wave scattering lengths: a1/` = 0 (thin solid line), −0.08 (solid), −0.0915 (dashed),
and −0.1 (dotted).

To illustrate the origin of the mean-field instability figure 1 shows the energy density (16)
in the centre of the trap as function of the Fermi momentum κ for a fixed value of the chemical
potential µ and different p-wave scattering lengths. We express all quantities in units of the
atom mass m and a length scale `, which later on will be the mean oscillator length of the
trapping potential. The thin solid curve shows the energy density of a noninteracting Fermi
gas (a1/` = 0). The minimum defines the actual Fermi momentum at the given position ~x
according to the variational description discussed above. If we switch on an attractive p-wave
interaction (a1/` < 0), then the dominant κ8 term in (16) leads to a rapid decline of the energy
at large Fermi momenta. For sufficiently weak attractions (thick solid curve) a local minimum
at low Fermi momenta remains. However, if the strength of the p-wave interaction reaches a
critical value the minimum evolves to a saddle point (dashed curve). Beyond this value of the
scattering length the energy density drops monotonically and there is no low-density solution
any more (dotted curve in figure 1). We conclude that for a given chemical potential there is
a limit to the scattering length up to which a metastable low-density solution exists.

The analytic criterion for the instability of the Fermi gas is the vanishing of the local
minimum at low densities; the onset of instability is marked by appearance of a the saddle
point, where first and second derivative of the transformed energy density F1(κ) vanish. It is
advantageous to perform the derivatives of (16) with respect to density ρ = κ3/(6π2) rather
than Fermi momentum. This leads to a condition for the existence of the minimum involving
the p-wave scattering length a1 < 0 and the local Fermi momentum κ‡:

−a1 κ(~x) ≤
3√3π
2

and m[µ − U(~x)] a2
1 ≤

3(3π)2/3

40
. (17)

The second inequality is obtained by inserting the Fermi momentum of the inflection point
into the extremum condition (15) to obtain a limit for the chemical potential. These are
stability conditions for the trapped single-component Fermi gas, in the presence of an
attractive p-wave interaction a1 < 0; any configuration that violates these condition will
collapse.

We obtain a more intuitive relation by replacing the Fermi momentum with the total
number of atoms N in a trap of given geometry; here we assume a deformed harmonic-

‡ Alternatively these conditions can be obtained from the extremum condition (15). The collapse region is
characterized by parameters where (15) has no real positive solution anymore [11, 15].
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oscillator trap (9) with mean oscillator length `. For a given set of p-wave scattering lengths
and the corresponding critical chemical potentials according to (17) we solve the extremum
condition numerically and obtain the critical particle number. The resulting relation between
a1 and the critical particle number Ncrit of a metastable trapped Fermi gas can be parametrized
by the stability condition

−2.246
(

6√
N

a1

`

)

≤ 1, (18)

where the prefactor is adjusted according to the pairs of a1 and Ncrit obtained numerically.
For the single-component Fermi gas the instability induced by attractive p-wave

interactions is no severe limitation in the present experimental parameter regime. For typical
particle numbers of N ≈ 106 and a mean oscillator length of ` = 1 µm the p-wave scattering
length would have to be of the order of a1 ≈ −840 aB (where aB is the Bohr radius) to cause
the instability. However, by exploiting a p-wave Feshbach resonance [17] these values of the
scattering length seem to be reachable.

3.2. Stability of the two-component Fermi gas

The same analysis can be performed for a two-component Fermi gas. In order to keep the
number of parameters small we assume identical local Fermi momenta κ(~x) = κ1(~x) = κ2(~x)
for the two components. A justification of this assumption follows in section 4.1. For these
systems the transformed energy density (13) reduces to

F2[κ](~x) =
1

3π2 [U(~x) − µ]κ3(~x) +
1

10π2m
κ5(~x) +

a0

9π3m
κ6(~x) +

a3
1

10π3m
κ8(~x), (19)

where the s-wave effective volume b0 is neglected. For this discussion it can be included
subsequently through a modified p-wave scattering length a3

1 → a3
1 + b0/3. In contrast to the

single-component Fermi gas s-wave as well as p-wave interactions contribute. Their interplay
leads to a rich variety of phenomena.

As for the single-component system a mean-field instability of the degenerate gas can
emerge as consequence of an attractive interaction. In the two-component case, however, the
s-wave or the p-wave interaction may be attractive which causes a more complicated stability
condition. Evaluating the Fermi momentum associated with the saddle point of the energy
density (19) leads to the stability condition

−a0κ(~x) − 2 [a1κ(~x)]3 ≤ π
2
. (20)

It is convenient to discuss the four possible combinations of signs of the s-wave scattering
length a0 and the p-wave scattering length a1 separately:

a0 > 0, a1 > 0: for purely repulsive interactions the gas is stable against collapse for any
Fermi momentum.

a0 < 0, a1 < 0: for purely attractive interactions both interaction parts cooperate and lower
the critical Fermi momentum compared to a pure s-wave or p-wave attraction.

a0 > 0, a1 < 0: the repulsive s-wave interaction stabilizes the system against p-wave induced
collapse, i.e., the critical Fermi momentum is increased compared to a pure p-wave
attraction.

a0 < 0, a1 > 0: similar to the previous case the p-wave repulsion stabilizes the system, i.e.
increases the critical Fermi momentum, compared to the case of a pure s-wave attraction.
Moreover, if the ratio of p-wave and s-wave scattering lengths exceeds a limit given by

a1

|a0|
≥ 2

3π2/3 ≈ 0.311, (21)
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Figure 2. Logarithmic contour plot of the critical particle number Ncrit up to which the trapped
two-component Fermi gas is stable against mean-field collapse as function of the ratio of s-
wave and p-wave scattering lengths to mean oscillator length ` of the parabolic trap. The white
area in the upper part indicates the parameter region, where no collapse occurs.

then the system is absolutely stabilized by the p-wave repulsion. That means, despite of
the attractive s-wave interaction the mean-field collapse does not occur. Notice that the
p-wave scattering length required for this absolute stabilization is only 1/3 of the s-wave
scattering length.
For repulsive p-wave interactions that are slightly to weak to generate absolute
stabilization, the density profile of the trapped gas shows a peculiar structure: In a region
around the minimum of the trapping potential the density is increased by typically one
order of magnitude compared to peripheral regions. In contrast to the outer low-density
phase, which is governed by a balance between s-wave attraction and kinetic energy,
the inner high-density phase is ruled by the balance between s-wave attraction and p-
wave repulsion. Without the p-wave repulsion the high-density phase would collapse
immediately. We discuss this phenomenon in detail in ref. [11].

The last class of interactions (attractive s-wave and repulsive p-wave) is of special interest
in connection with a BCS phase transition in trapped dilute Fermi gases. The formation of
Cooper pairs of two fermionic atoms requires an attractive interaction. One possibility is an
attractive s-wave interaction in a two-component Fermi gas which would allow Cooper pairs
composed of one atom from each component. The critical temperature for the BCS transition
increases with the product |a0|κ of scattering length and Fermi momentum [7]. At the same
time the mechanical stability of the system is a prerequisite. This sets an upper limit to the
value of |a0|κ—and therewith to the BCS transition temperature—described by the stability
condition (20). However, if an appropriate repulsive p-wave interaction is included, then the
effect of absolute stabilization can be employed to get rid of this limitation of the transition
temperature caused by the mean-field instability§.

An overview of the influence of s- and p-wave interactions on the stability of the
two-component Fermi gas against mean-field induced collapse is given in figure 2. The
contour plot shows the critical particle number Ncrit for a trap of mean oscillator length `
as function of the ratios a0/` and a1/`. The particle number is calculated numerically in
the same way as described for the single-component gas [11, 15]. The plot confirms the

§ Of course it has to be checked that the gain of mechanical stability due to the p-wave repulsion is not counteracted
by a destructive effect on the Cooper pairs.
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relevance of the p-wave part of the interaction for the properties—especially for the stability—
of the dilute degenerate Fermi gas. Two major effects of the p-wave interaction are: (i)
Absolute stabilization of the system by repulsive p-wave interactions in the presence of a
s-wave attraction (white region) and p-wave stabilized high-density phase (region between
the dashed line and the onset of absolute stabilization). (ii) Mean-field collapse induced by
p-wave attraction also for systems with repulsive s-wave interactions (lower right quadrant).
In addition a competition with another effect, the component separation that is discussed in
the following section, appears (dark gray area).

As a rule of thumb, the p-wave part becomes relevant as soon as the p-wave scattering
length exceeds about 1/10 of the value of the s-wave scattering length. A detailed discussion
of the various effects is presented in [11].

4. Component separation

A second structural transition that can occur in degenerate two-component Fermi gases is
the spatial demixing of the two components [18, 19]. The physical mechanism behind this
transition can be understood from the general form of the energy density of a two-component
system resulting from (13)

F2[κ1, κ2](~x) =
1

6π2

[

(U1(~x) − µ1) κ31(~x) + (U2(~x) − µ2) κ32(~x)
]

+
1

20π2m

[

κ51(~x) + κ52(~x)
]

+
a0

9π3m
κ31(~x)κ32(~x) (22)

+
a3

1

30π3m

[

κ81(~x) + κ82(~x) + 1
2κ

3
1(~x)κ52(~x) + 1

2κ
5
1(~x)κ32(~x)

]

.

The driving term for component separation is the s-wave part of the interaction. Its
contribution to the energy density is proportional to the product of the densities of both
components ρ1(~x) ρ2(~x) ∝ κ31(~x) κ32(~x). For strongly repulsive s-wave interactions it is
energetically favourable to spatially separate the two components such that the overlap of
the two density distributions and thus the contribution of the s-wave part to the total energy is
reduced.

A quantitative example is shown in figure 3. The contour plots depict the local energy
density F2(κ1, κ2) for a fixed value of µ1 = µ2 as function of the two Fermi momenta κ1 and
κ2 for two different positive s-wave scattering lengths a0. The left panel (a0/` = 0.07) depicts
a standard case where the energy density has a single minimum at κ1 = κ2 , 0. This class
of solutions with identical density profiles for both components was already discussed in the
context of collapse due to attractive interactions.

A new class of solutions appears, if the strength of the s-wave repulsion is increased
further. As shown in the right panel of figure 3 (a0/` = 0.12) the minimum at equal Fermi
momenta has evolved into a saddle point and two energetically degenerate minima emerge at
κ1 = 0, κ2 > 0 and κ1 > 0, κ2 = 0, respectively. For these interaction strengths the density
of one component is depleted or even zero and the density of the other one is increased in a
central region of the trap.

4.1. Stability conditions

The onset of component demixing is indicated by the transition of the minimum at κ1 = κ2 into
a saddle point. We can derive a relation that characterizes the onset of component separation



Phase diagram of trapped degenerate Fermi gases 10

0 10 20 30
κ1 [`−1]

0 10 20 30
κ1 [`−1]

0

10

20

30

κ
2

[`
−

1 ]

.

a0/` = 0.07 a0/` = 0.12

Figure 3. Contour plots of the local energy density F2(κ1, κ2) of a two-component Fermi gas
in the centre of the trap as function of the Fermi momenta κ1 and κ2 for µ1 = µ2 = 250 m−1`−2.
The left panel shows the case of a moderate s-wave repulsion (a0/` = 0.07, a1/` = 0) that still
supports identical density distributions for both components. The right panel corresponds to
a stronger s-wave repulsion (a0/` = 0.12, a1/` = 0) which forces the components to demix
partially. Brighter shading corresponds to smaller values of the energy density.

by looking at the determinant of the Hesse second derivative matrix

D(ρ1, ρ2) =

∣

∣

∣

∣

∣

∣

∣

∣

∂2F2
∂ρ2

1

∂2F2
∂ρ1∂ρ2

∂2F2
∂ρ2∂ρ1

∂2F2
∂ρ2

2

∣

∣

∣

∣

∣

∣

∣

∣

, (23)

where in F2[κ1(ρ1), κ2(ρ2)] the Fermi momenta are expressed in terms of the densities.
Again, it is convenient to use derivatives with respect to the densities, since this eliminates
the dependence of the transformed energy on the chemical potential automatically. Those
stationary points of the energy density that are minima (or maxima) yield D(ρ1, ρ2) > 0
whereas saddle points are characterized by D(ρ1, ρ2) < 0. The parameter sets where the
transition from a minimum at ρ = ρ1 = ρ2 to a saddle point happens are determined by
D(ρ, ρ) = 0. This is a straightforward generalization of the procedure used in section 3.2 to
obtain the stability condition for mean-field collapse. Inserting the energy density (22) into
(23) leads to

[2a0κ + 4(a1κ)3 + π][−2a0κ + 2(a1κ)3 + π] = 0. (24)

The first factor resembles the stability condition (20) for mean-field collapse of the Fermi gas.
The second factor gives a stability condition for component demixing. The configuration of
overlapping identical density profiles of the two-components is stable only if the condition

a0 κ(~x) − [a1κ(~x)]3 ≤ π
2

(25)

is fulfilled everywhere in the trap. In regions of the trap where this condition is violated the
overlapping configuration is unstable against demixing of the components.

As in the case of collapse it is convenient to consider the different combinations of signs
of the s- and p-wave scattering lengths separately:

a0 > 0, a1 > 0: with increasing s-wave scattering length the critical density for component
separation decreases. A repulsive p-wave interaction stabilizes, i.e., it increases the
critical density. If the ratio of p-wave and s-wave scattering length exceeds the limit

a1

a0
≥ 24/3

3π2/3 ≈ 0.392, (26)
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Figure 4. Logarithmic contour plot of the critical particle number Ncrit up to which the trapped
two-component Fermi gas is stable against component separation as function of the ratio of s-
wave and p-wave scattering lengths to mean oscillator length ` of the parabolic trap. The white
area in the upper part indicates the parameter region, where no separation occurs.

then the overlapping configuration is absolutely stabilized; no component separation
occurs at all.

a0 > 0, a1 < 0: the attractive p-wave interaction destabilizes, i.e., reduces the maximum
density of the overlapping configuration. If the p-wave attraction is sufficiently strong
such that

|a1|
a0
> 2 (3/π)2/3 ≈ 1.939, (27)

then the critical density for a mean-field collapse is lower than the critical density for
component separation. Therefore no component separation but a mean-field collapse of
the overlapping configuration occurs.

a0 ≤ 0: component separation does not occur, even if the p-wave interaction is strongly
repulsive.

The twisted behaviour of the p-wave interaction with respect to component separation can be
understood from the structure of the energy density (22). The driving force of component
separation—the s-wave interaction—contributes a term proportional to the product of the
densities of both components. Thus for repulsive s-wave interactions a configuration with
fully overlapping density distributions is higher in energy than a separated configuration with
small overlap but higher absolute densities. The p-wave interaction, however, has a term
[ρ1 ρ

5/3
2 + ρ

5/3
1 ρ2] proportional to the product of the densities to some power and an additional

term that depends on the sum of the densities, [ρ8/3
1 + ρ8/3

2 ]. Thus a strongly repulsive p-
wave interaction disfavours both, large overlaps of the two density distributions and large
densities of a single component. Therefore a p-wave repulsion alone cannot induce component
separation. Moreover, it stabilizes against separation in connection with a repulsive s-wave
interaction.

A pictorial overview of the influence of s- and p-wave interactions on the onset of
component separation is given by the stability map in figure 4. The contour plot shows the
logarithm of the critical particle number Ncrit as function of the s- and p-wave scattering
lengths. This critical particle number is determined from the solution of the extremum
condition (15) that reaches the critical Fermi momentum (25) in the trap centre. Like in



Phase diagram of trapped degenerate Fermi gases 12

-20 0 20
z [`]

-20 0 20
z [`]

0

200

400

600

ρ
ax

ia
l

1
(r
=

0,
z)

[`
−

3 ]

.

0

200

400

600

ρ
ax

ia
l

1
(r
=

0,
z)

[`
−

3 ]

.

a0/` = 0.065
E/E0 = 1.2138

a0/` = 0.0655
E/E0 = 1.2151

a0/` = 0.07
E/E0 = 1.2269

a0/` = 0.1
E/E0 = 1.2562

Figure 5. Axially symmetric configuration: density profile ρaxial
1 (r = 0, z) along the z-axis for

two-component Fermi gases with N1 = N2 = 107 and different s-wave scattering lengths a0/`.
The distribution of the second component ρaxial

2 (r = 0, z) = ρaxial
1 (r = 0,−z) is obtained by

inversion of the ordinate. An animated GIF of the density distributions is available from the
article’s abstract page in the online journal [20].

section 3.2 a deformed parabolic trap of mean oscillator length ` is assumed. As soon as
the particle number N = N1 = N2 exceeds the critical particle number Ncrit a demixing of
the components appears in the trap centre. The plot clearly reveals the influence of the p-
wave interaction: Attractive p-wave interactions, on the one hand, reduce the critical particle
number. Moreover, for those interaction parameters in the dark gray area the p-wave attraction
is so strong that the mean-field collapse of the overlapping configuration happens before the
critical density for component separation is reached. Repulsive p-wave interactions, on the
other hand, stabilize the overlapping configuration against component separation and prevent
separation completely for interaction parameters in the white region in figure 4.

4.2. Structure of the separated configurations

With a few examples we want to discuss typical shapes of the demixed density distributions
that appear beyond the critical particle number. To discuss the general phenomenology
we restrict ourselves to pure s-wave interactions (a1/` = 0) and equal particle numbers
N = N1 = N2 in a spherical symmetric trapping potential.

Even for fixed particle numbers and interaction strengths there exists a rich variety of
different density distributions that may appear in case of component separation. In general it
depends on the detailed dynamics of the system which of the energetically (almost) degenerate
states is realized. We can distinguish two major classes of separated solutions: Those with
equal chemical potentials µ1 = µ2 for both components and those with µ1 , µ2.

For equal chemical potentials µ1 = µ2 [more precisely µ1 − U1(~x) = µ2 − U2(~x)] the
extremum condition (15) is symmetric with respect to exchange of the two components. If the
s-wave scattering length is large enough for phase demixing then there are two energetically
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Figure 6. Spherical configuration: density profiles ρsph
1 (r = 0, z) (solid line) and ρsph

2 (r = 0, z)
(dashed line) along the z-axis with N1 = N2 = 107 for different s-wave scattering lengths a0/`.

degenerate solutions {ρ(A)
1 (~x), ρ(A)

2 (~x)} and {ρ(B)
1 (~x), ρ(B)

2 (~x)} (compare figure 3), where

ρ
(A)
1 (~x) = ρ(B)

2 (~x), ρ
(A)
2 (~x) = ρ(B)

1 (~x). (28)

In general to construct density profiles with equal number of particles in both components we
can switch between the two solutions depending on the position in the trap. The most simple
ansatz is to take solution (A) in one hemisphere and (B) in the other

ρaxial
ξ (r, z) =



















ρ
(A)
ξ

( √

r2 + z2
)

for z ≥ 0

ρ
(B)
ξ

( √

r2 + z2
)

for z < 0
(29)

which guarantees N1 = N2. Examples for the density profiles ρaxial
1 (r, z) along the z-axis

obtained for different s-wave scattering lengths are shown in figure 5. The upper left panel
corresponds to an interaction strength that is slightly to weak to cause separation. A tiny
increase of a0/` leads to the onset of component separation (upper right panel), a small density
wiggle appears on top of the smooth density profile in the trap centre. Further increase of
the s-wave repulsion enhances this demixing and finally leads to a nearly complete spatial
separation where one component is localized in one hemisphere and the second one in the
other hemisphere (lower right panel).

The ansatz (29) is by no means unique. One could subdivide the trap volume into several
domains and switch between the two solutions in each of them. For example, in a spherical
trap one could imagine domains that look like pieces of a cutted pie. Within the Thomas-
Fermi approximation the total energy is not affected. However, if we go beyond the Thomas-
Fermi approximation, e.g. by including gradient corrections to the kinetic energy, the strong
density variations at the interface of the domains produce a positive energy contribution. For
typical particle numbers of 106 the relative contribution of the gradient corrections for a cutted
distribution like (29) is in the order of 10−5 [14]. Even though this is negligible, we assume
that the configuration with minimal interface is preferred—the axially symmetric profile (29)
in this case.

There is also a class of spherically symmetric solutions with N1 = N2 that was discussed
by several authors [18, 19]. However, it turns out that these spherical solutions are higher in
energy than the axial ones. In figure 6 two examples for these spherical configurations are
shown. The plots also contain the respective values of the total energy in units of the energy
E0 =

3N
2m`2

3√6N of the noninteracting two-component gas with the same particle number. For
comparison the energies of the axially symmetric configurations are given in figure 5. It
should be noted that in the spherical case the components have slightly different chemical
potentials.
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Figure 7. Zero-temperature phase diagrams of a two-component Fermi gas in the parameter
plane spanned by s-wave scattering length a0/` and particle number N = N1 = N2. The
three diagrams correspond to different values of the p-wave scattering length: (a) a1/` = 0,
(b) a1/` = 0.02, (c) a1/` = −0.02. The white area marks the parameter region where both
components show identical overlapping density profiles. The dark gray area indicates the
region of mean-field collapse and the light gray region characterizes parameter combinations
where both components separate (see text). An animated GIF of the phase diagram is available
from the article’s abstract page in the online journal [20].

In an equilibrium situation or during a quasi-stationary process that leads from
overlapping density distributions ρ1(~x) = ρ2(~x) to a separated configuration, e.g. by slowly
increasing the s-wave scattering length using a Feshbach resonance [17], we expect the
energetically lowest, i.e. the axial configuration with least interface shown in figure 5, to
be realized. This evolution of the density distributions is illustrated by an animation that is
available from the article’s abstract page in the online journal or from [20].

5. Summary: Phase diagram of trapped degenerate Fermi gases

To summarize our findings on the stability against mean-field collapse and component
separation we construct a phase diagram of the two-component Fermi gas at zero temperature.
The relevant parameters are the s- and p-wave scattering lengths and the particle number
N = N1 = N2. Figure 7 shows the phase diagram in the plane spanned by the s-wave scattering
length a0/` and the logarithm of the particle number N for three different values of the p-wave
scattering length a1/`. We can identify three classes of density distributions—or phases—of
the trapped two-component Fermi gas: identical overlapping density distributions for both
components (white region), partially or completely demixed density profiles (gray region),
and the p-wave stabilized high-density phase (light gray area). In addition the collapse of the
system due to an attractive mean-field can occur (dark gray).

In absence of the p-wave interaction the phase diagram has a rather simple structure
shown in part (a) of figure 7. If the s-wave interaction is repulsive (a0 > 0) the system
enters the separated phase if the quantity 6√Na0/` exceeds a limiting value. Similarly the gas
collapses in the presence of attractive s-wave interactions if the quantity 6√Na0/` exceeds a
another maximum value.

The inclusion of p-wave interactions modifies this picture significantly. Panel (b) of
figure 7 depicts the phase diagram for a rather weak repulsive p-wave interaction with
a1/` = 0.02. For s-wave interaction strengths below a certain limit the overlapping phase
extents up to very high particle numbers; the p-wave repulsion generates absolute stabilization
against collapse and component separation. Moreover, the p-wave stabilized high density
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phase emerges near the threshold for absolute stabilization against collapse (light gray region).
Dramatic effects on the phase diagram are caused also by weak attractive p-wave

interactions as shown in part (c). The maximum particle numbers possible in the overlapping
phase are significantly reduced, i.e. the p-wave attraction promotes collapse as well as
component separation. In addition it causes the collapse of the separated configuration, an
effect that is in close relation to the collapse of a single component Fermi gas. If the density
or Fermi momentum of one of the components in the separated configuration exceeds the
critical value given by (17) then this component will collapse. Actually this causes a distinct
reduction of the parameter region where a stable separated configuration occurs.

Our investigations show that the p-wave interaction can have big influence on the
properties of trapped degenerate Fermi gases. In the single-component system it is the origin
of the mean-field instability. In a two-component systems it modifies the phase diagram
substantially and gives rise to completely new phenomena like the absolute stabilization
against s-wave induced collapse and separation. In this way the p-wave interaction may be
very useful for the envisioned transition to a superfluid state in trapped dilute Fermi gases.
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