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Abstract. The stability of trapped dilute Fermi gases against collapse towards large densities
is studied. A Hermitian effective contact interaction for all partial waves is derived, which is
particularly suited for a mean-field description of these systems. Including the s- and p-wave parts,
explicit stability conditions and critical particle numbers are given as a function of the scattering
lengths. The p-wave contribution determines the stability of a single-component gas and can
substantially modify the stability of a two-component gas. Moreover it may give rise to a novel
p-wave stabilized high-density phase.

Since the first realization of a Bose–Einstein condensate of 87Rb atoms in 1995 [1] the field
of trapped ultracold atomic gases has experienced great experimental progress. This raised
the question of whether a Fermi gas can be prepared under similar conditions and whether a
transition to a superfluid state can be achieved. An important step towards a possible superfluid
state of trapped Fermi gases was the cooling of 40K atoms to a temperature regime where
degeneracy dominates [2].

A major problem for the evaporative cooling of fermions is the Pauli exclusion principle.
The relative wavefunction of two indistinguishable fermions has odd parity and hence they
do not feel the s-wave part of the interaction which dominates the force between bosons at
low kinetic energies. This limits the efficiency of evaporative cooling. Several techniques
are under discussion to circumvent this problem, e.g. simultaneous trapping of two fermionic
species [2, 3], sympathetic cooling of a fermion–boson mixture [4], and the use of p-wave
resonances to enable efficient cooling via p-wave interactions [5–7].

In this letter we investigate the question of how p-wave interactions influence the properties
of degenerate Fermi gases. The Thomas–Fermi approximation, together with a new Hermitian
effective contact interaction, is employed to describe the effects of the atom–atom interaction
in a dilute gas including s- and p-wave contributions. We use this formalism to investigate
the influence of p-wave interactions on the stability of trapped one- and two-component Fermi
gases against collapse towards high densities where the atoms escape from the trap due to
three-body collisions and the formation of bound dimers.

In the standard description of trapped atomic gases one uses point interactions in the
s-wave channel only. In the following we present a Hermitian effective contact interaction
(ECI) for all partial waves, which is derived to be an effective mean-field interaction.

Consider two particles of mass m which interact via a spherical potential with a range
much smaller than their relative wavelength. An auxiliary boundary condition at a large radius
leads to a discrete energy spectrum Ēnl , where n numbers the positive energy eigenstates and l

denotes the relative angular momentum. Negative energy states, i.e. bound states, need not be
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taken into account since the ECI is used for the description of systems that are not self-bound.
The energy shift �Enl = Ēnl −Enl with respect to the eigenvalues Enl = k2

nl/m of the kinetic
energy without interaction can be expressed in terms of the phase shift ηl(k) for the lth partial
wave [8].

For mean-field type calculations we require that the expectation value of the ECI calculated
with mean-field states, i.e. free two-body states |nlml〉, equals the exact energy shift

〈nlml|veff
l |nlml〉 != �Enl. (1)

We choose the following Hermitian ansatz for the operator of the ECI in a particular l-channel

veff
l =

∫
d3r |�r〉

�
∂l

∂rl
gl

δ(r)

4πr2

�
∂l

∂rl
〈�r|. (2)

The arrows above the derivatives indicate to which side they act. Using this ansatz in condition
(1) we obtain an explicit expression for the interaction strength gl

gl = −4π

m

[
(2l + 1)!!

l!

]2
ηl(k)

k2l+1
≈ 4π

m

(2l + 1)

(l!)2
a2l+1
l , (3)

where al is the scattering length of the lth partial wave. It turns out that (3) does not depend
explicitly on the auxiliary boundary condition and hence we generalized the result to continuous
momenta and energies. Approximation of the phase shifts ηl(k) in terms of the scattering
lengths al , so that gl is momentum independent, leads to deviations of at most 5% in the energy
shift up to |kal| ∼ 3. For the s-wave and p-wave components this reduces to g0 = 4πa0/m

and g1 = 12πa3
1/m, respectively.

The s-wave part is identical to the widely used local contact interaction. Another way
to include higher partial wave terms is the pseudo-potential of Huang and Yang [9, 10]. This
approach leads to non-Hermitian interactions for l > 0. The two-body energy shift induced
by this pseudo-potential is a factor l+1

2l+1 smaller than the exact one, and is therefore not suited
for mean-field calculations beyond s-waves.

Using the s- and p-wave contributions of the ECI we calculate the Hartree–Fock energy-
density functional of interacting Fermi gases composed of � distinguishable components in
an external potential U(�x). We use the Thomas-Fermi approximation, which is excellent for
these systems [11]. The local energy density of the Fermi gas as a function of the local Fermi
momenta κξ (�x) = [6π2ρξ (�x)]1/3 of the different components ξ = 1, . . . , � reads

E[κ1(�x), . . . , κ�(�x)] = 1

6π2

∑
ξ

Uξ (�x) κ3
ξ (�x) + βt

∑
ξ

κ5
ξ (�x) + β0

∑
ξ ′>ξ

κ3
ξ (�x) κ3

ξ ′(�x)

+ β1

∑
ξ

κ8
ξ (�x) + β1

∑
ξ ′>ξ

1

2

[
κ3
ξ (�x) κ5

ξ ′(�x) + κ5
ξ (�x) κ3

ξ ′(�x)], (4)

with coefficients

βt = 1

20π2m
, β0 = a0

9π3 m
, β1 = a3

1

30π3 m
. (5)

The first two terms are caused by the external potential and the kinetic energy, respectively.
The remaining ones are the contributions of the s- and p-wave parts of the ECI. As a direct
consequence of the Pauli principle, fermions of one kind interact only via the p-wave part, while
fermions belonging to different components feel s- and p-wave interactions. The coefficient
of the last term may be modified by effective range corrections of the s-wave channel. Since in
the following applications a1 is treated as a parameter, this effect and others which contribute
to the same order in κξ are absorbed in a1.
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The ground state properties of the system are determined by minimization of the energy
with respect to the local Fermi momentum under the constraint of a fixed particle number, Nξ ,
for each component. Implementing the constraints by means of chemical potentials, µξ , the
variational problem reduces to an algebraic equation for the local Fermi momentum.

First we consider a single-component Fermi gas, where the extremum condition is given
by

m[µ − U(�x)] = 1

2
κ2(�x) +

8

15π
a3

1 κ5(�x). (6)

Usually the s-wave contribution dominates at low energies, but since s-wave scattering is
excluded here, only p-wave scattering contributes to the mean-field energy.

From the extremum condition (6) we get the following upper bound for the local Fermi
momentum of a single-component gas

−a1 κ(�x) � (3π)1/3

2
, (7)

beyond which no energy minimum exists anymore. Condition (7) can also be expressed as an
upper bound for the chemical potential

a2
1 m[µ − U(�x)] � 3(3π)3/2

40
. (8)

This limits the particle number,N , of a stable single-component Fermi gas for attractive p-wave
interactions.

The stability condition (7) involves the local Fermi momentum or density at some point
in space, which is not easy to access experimentally. Therefore, we express the stability
condition by a phenomenological parametrization as a function of particle number, scattering
length and trap size. For simplicity we restrict ourselves to an external potential U(�x) with
the shape of a deformed harmonic oscillator, where � = (�x�y�z)

1/3 = (m3ωxωyωz)
−1/6

is the geometric mean of the oscillator lengths. The parametrization is fitted to the critical
particle numbers obtained from the numerical solution of the extremum condition (6) for a
given scattering length using the maximum chemical potential (8) for a stable gas. We find
that the parametrized stability condition

C
(

6
√
N
a1

�

)
� 1 with C = −2.246, (9)

for the single-component gas reproduces the numerically calculated stability limit within errors
of 1%.

The critical particle number Nc = [�/(Ca1)]6 of a single-component gas for a typical set
of experimental parameters (a1 = −200aB, � = 1 µm) is about 8 × 109. This is much larger
than the particle numbers achieved in present experiments. Nevertheless, this stability limit
could be exceeded in the near future, e.g. by increased interaction strength or by the use of
tightly confining traps [12].

In the following we consider a gas composed of two fermionic species residing in two
magnetic substates of hyperfine splitting. Although the s-wave interaction between the species
usually dominates, we show that p-wave interactions cannot be neglected in general.

The energy minimization using the energy-density functional (4) for a two-component
system leads to two coupled equations for κ1(�x) and κ2(�x)

m[µ1 − U1(�x)] = 1

2
κ2

1 (�x) +
2

3π
a0 κ3

2 (�x) +
1

30π
a3

1

[
16 κ5

1 (�x) + 3 κ5
2 (�x) + 5 κ2

1 (�x)κ3
2 (�x)

]
.

(10)
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Figure 1. The r.h.s. of equation (11) as a function of the local Fermi momentum κ . The three
curves correspond to different interaction parameters as labelled. Solutions of (11) on the dotted
parts of the curves correspond to maxima of the energy density, while the full branches denote
(local) minima. The inserts (a) and (b) show the densities for two values of µ indicated by the thin
lines for a harmonic trap with mean oscillator length �.

The second equation is generated by the exchange [µ1 − U1(�x)] ↔ [µ2 − U2(�x)] and
κ1(�x) ↔ κ2(�x). These two equations have a great variety of possible solutions, depending
on the signs and the relative strengths of a0 and a1. In this letter we restrict ourselves to
equal particle numbers or [µ − U(�x)] = [µ1 − U1(�x)] = [µ2 − U2(�x)] which leads to equal
local Fermi momenta κ(�x) = κ1(�x) = κ2(�x) and the single extremum condition for both
components:

m[µ − U(�x)] = 1

2
κ2(�x) +

2

3π
a0 κ

3(�x) +
4

5π
a3

1 κ
5(�x). (11)

The generalization to different chemical potentials, different interaction strengths or more
components is straightforward.

For the two-component system with s-wave interactions only, the stability condition was
studied in [11]. Using (11), which includes the p-wave interaction, we obtain the more general
condition

−a0κ(�x) − 2 (a1κ(�x))3 � π

2
(12)

for each component not to collapse just because of mean-field effects. For a1 = 0 this reduces
to the stability condition given in [11], while for a1 < 0 the condition limits the particle number
of a metastable two-component Fermi gas even more. It also shows that a repulsive s-wave
interaction (a0 > 0) does not guarantee a stable gas at larger densities if an attractive p-wave
component is present. In this context it is also interesting to study the transition to spatially
separated components.

Several very interesting effects appear for interactions with attractive s-wave (a0 < 0)
and repulsive p-wave components (a1 > 0). Here a1 need not be the true p-wave scattering
length but may include effective range and other effects which contribute to the κ8-order in the
energy density. In figure 1 the r.h.s. of the extremum condition (11) is depicted as a function
of the local Fermi momentum κ . For an attractive pure s-wave interaction (lower curve) the
r.h.s. exhibits an absolute maximum which leads to an upper bound for the chemical potential
as discussed for the single-component gas. If a repulsive p-wave contribution is added, then
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Table 1. Parameters of the fitted stability condition (14) for the two component Fermi gas for
different interaction types.

Interaction type C0 C1 C01 n

a0 � 0, a1 � 0 −1.835 −2.570 0.656 1
a0 � 0, a1 < 0 −1.378 −2.570 1.360 1
a0 < 0, a1 � 0 −1.835 −1.940 2.246 3

the r.h.s. of (11) grows at large Fermi momenta due to the leading κ5 contribution. For values
of the s- and p-wave scattering lengths which satisfy the condition

a1

|a0| � 2

3π2/3
≈ 0.311 (13)

the stability condition (12) is fulfilled for all values of the local Fermi momentum, i.e. the r.h.s.
of the extremum condition is a monotonic function of κ and the maximum does not appear
anymore (upper curve). Thus the repulsive p-wave interaction stabilizes the gas for any particle
number, even though the s-wave interaction is attractive.

If the ratio of the scattering lengths is below the limit given by (13), then the r.h.s. of the
extremum condition exhibits a low and a high density branch, as shown by the middle curve
of figure 1. For chemical potentials µ below the value of the local maximum, one obtains
the regular low-density solution everywhere in the potential U(�x). An example is shown in
inset (a) of figure 1. For larger µ, novel high-density solutions exist in areas of the trap where
m[µ − U(�x)] is larger than the value of the local maximum. As depicted in inset (b), the
density shows a discontinuous jump from the outer low-density to the central high-density
phase. This phase is stabilized only due to the presence of the repulsive p-wave interaction
and occurs when the condition (12) is violated. For values of µ in between the maximum and
the minimum, a Maxwell construction with equal pressure in the high- and low-density regime
may be used to identify the equilibrium density.

However, when a1/|a0| drops below 2/(3π3/2) the density in the high-density regime
grows rapidly so that the three-body recombination rate and thus the trap loss is not small
anymore. If a1/|a0| < 3

√
160/(729π2) ≈ 0.281 the local minimum of the r.h.s. of (11)

occurs at negative values, so that even a self-bound solution exists. In this case the product
|a0| κ(�x = 0) > 9

8π , which means that in the self-bound area in the centre of the trap the mean
distance ρ−1/3 between the atoms gets close to the scattering length |a0| and the underlying
approximations break down. Nevertheless we expect that for interactions with a1/|a0| ≈ 0.3,
a metastable high-density phase occurs, where the central densities are one order of magnitude
higher than in the outer low-density region.

As for the single-component gas, we express the stability condition in terms of the particle
numberN of each component, the mean oscillator length � of a harmonic trap, and the scattering
lengths a0 and a1. We use the following, slightly more complicated, parametrization for the
stability condition

C0

(
6
√
N
a0

�

)
+ C3

1

(
6
√
N
a1

�

)3
+ Cn+1

01

(
6
√
N
a0

�

)(
6
√
N
a1

�

)n
� 1. (14)

The fit has to be done separately for each type of attractive interaction. The resulting optimal
coefficients are summarized in table 1 and reproduce the numerical stability limit again with
deviations of less than 1%.

The critical particle numbers Nc resulting from the stability condition (14) are shown in
figure 2 as a function of a0 and a1. For negative p-wave scattering length, Nc describes the
maximum particle number of a metastable Fermi gas. The white area in the figure marks the
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Figure 2. Logarithmic contour plot of the critical particle number Nc as a function of the s- and
p-wave scattering length for the two-component Fermi gas. Neighbouring contours are separated
by a factor of 10 in particle number, selected ones are labelled with log10 Nc. The white area
indicates the parameter region where the particle number is not limited.

region where, from the mean-field point of view, a metastable gas with smooth density exists
for all particle numbers. In principle, a positive a1 always leads to a stable mean-field solution.
But for a0 < 0 and values of a1/|a0| � 0.28 this solution is at a density which is too large for
the metastable state. Therefore, the limit for Nc resulting from (14) is plotted. The bending
over of the contour lines close to a1/|a0| ≈ 0.3 indicates the onset of the novel high-density
phase.

As an example for estimating the critical particle number from figure 2, we take a two-
component 6Li gas in a trap with � = 1 µm. The extraordinarily large attractive s-wave
scattering length of a0 = −2160aB [13], i.e. a0/� ≈ −0.1, leads to the rather small critical
particle number Nc = 26 000 for each of the two components. As also seen from figure 2, the
p-wave interaction will change Nc significantly whenever |a1|/|a0| � 0.2.

We conclude that for Fermi gases, p-wave scattering should not be neglected from the
outset. If attractive, it constrains the total particle number in the metastable Fermi gas. If
repulsive, it helps to stabilize multi-component systems with attractive s-wave interactions. In
special cases even a novel high-density phase may occur in the centre of the trap which should
not be confused with Bose condensation of Cooper pairs.
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