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The Unitary Correlation Operator Method (UCOM) [1] pro- Rio(r)=r+af (L)77 exp[— exp(r/B¢)].
vides a new concept for the treatment of short—range correla- BE
tions which are induced by the strong short-range repulsion of The calculation of the energy in two—body approximatien (
particle—particle—interactions. This type of correlations playgiamonds) for correlator paramete¥s3, n that map a two—
a major role in several many—body systems, e.g., moleculdshdy trial onto the exacE = 0 solution ¢ = 1) shows agree-
atomic clusters and liquids, nuclei and nuclear matter. ment up tpNV = 5 but an increasing overbinding for higher par-
The basic idea of UCOM is to treat the correlations by a unticle numbers, when compared to ‘exact’ calculations [2] (
tary operatoiC' which shifts two particles in the uncorrelatedopen gray squares). This indicates that contributions beyond
state |1/1> away from each other whenever they are so close towvo—body order are relevant. To cure this overbinding one may
gether that they feel the strong repulsion of the core. In this way a first step try to reduce the strength of the correlator using
short-range repulsive correlations are included in the correlattte scale factog. A value of¢ = 0.957, which is only 4.3% be-
state |J> =C |1/1> The explicit form ofC is obtained by the low the value for the two—body case, has to be chosen in order
requirement that the exact correlated two—body wave functidn match the energy of th& = 10 droplet (— black triangles).
equals the uncorrelated one at short distances. This is achievidds leads to an underbinding for lower particle numbers, the
by a transformation of the radial coordinate- R_(r). R_(r) N = 3 dropletis not bound at all.
and it's inverseR, (r) are called correlation functions. These results show, that it is not possible to describe the en-
Equivalently one can use the correlation operaibto de- ergies for all particle numbers with one fixed state—independent
fine correlated operators, e.g., the correlated HamiltoRfas  correlator in two—body approximation. To get an effective de-
ctHC. They contain, however, many—body operators up tcription of higher order contributions in two-body approxima-
rank V', the total particle number of the system. For a Hamiltotion we implement astate—dependertorrelator by introduc-
nian composed of the kinetic ener@yand a two—body poten- ing a global linear density—dependence into the scaling param-

tial V one gets eter¢(p) = 1 — yp. For low densities the optimal two—body
correlator derived from the two—body system should be suit-
H-ctc+ctve=T+H> + T8 +... . g  ableandforhigh densities a reduction of the correlator strength

is expected. The slope of the density—dependence is again
ixed by the energy of thé& = 10 system. The energies for
his density—dependent correlates (lack squares) are in very
80d agreement with reference [2] for all particle numbers un-

H N , for example, is the two—body part of the correlated kineti
energy plus that of the correlated potential. Low order appro
imations of this expansion are expected to be good if the rang

of the correlations is small compared to the distance betwe ﬁ’gcongd%ra_t;qn. ible to include the effects of hiah q
the particles. In this case the probality is small that more than pparentlyitis possibie to Include the efiects ot higher order

two particles are at the same time within the range of the shor‘fQntrIbUtlonS by an effective density—dependent correlator in

range correlations and the neglect of three—body and highert} _q—body approximation. U_p to now the. densny—deper_ldence
erators is a successful approximation. It has been shown in r _f|_xed_ in a phenomenological way, but it may be possible Fo
[1] that the two—body approximation works very well for nu- erive it from the known properties of the higher order _cont_rl-

clear few—body systems with simple centhlV—potentials. bl_Jtlons. Thu_swe cou_ld gq_beyond the two-body approximation

The situation is not so favorable in the casé dE droplets. without loosing practicability.

Here the core radius = 2.556A of the Lennard—Jones— . . . . . . .
potential Vi, (r) = 4¢[(c/r)'? — (¢/r)%] (¢ = 10.22K) is E/N[L T T T
not much smaller than the distanée- 3.6 A between the par- (K] I \

ticles (in liquid *He). One therefore expects three—body and 0.2
higher terms not to be negligible. All expressions up to two— '
body order are known analytically [1], beyond this one has to

implement further approximations. To study the possibility to -0.4
describe the higher order contributions with density—dependent
correlation functions we look at small clusters of bosdttie -0.6
atoms withN = 3, --- ,10 for which ‘exact’ many—body cal-

culations are available [2]. -0.8

First of all we look at the binding energy dHe droplets
in a variational scheme. Since in the ground state (Bose—
Einstein—condensate) all particles are in the same quantum state . . . . . . o
the N—body trial state is assumed to be tNefold product of 3 4 5 6 7 8 9 10N
a Gaussian single—particle state with a variable width which
is varied to minimize the energy. The correlation function i$1] H. Feldmeier, T. Neff, R. Roth, J. Schnack; Nucl. Phys. A 632 (1998) 61
parametrized by [2] E.W. Schmid, J. Schwager, et al.; Physica 31 (1965) 1143




