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The Unitary Correlation Operator Method (UCOM) [1] pro-
vides a new concept for the treatment of short–range correla-
tions which are induced by the strong short–range repulsion of
particle–particle–interactions. This type of correlations plays
a major role in several many–body systems, e.g., molecules,
atomic clusters and liquids, nuclei and nuclear matter.

The basic idea of UCOM is to treat the correlations by a uni-
tary operatorC which shifts two particles in the uncorrelated
state

�� � away from each other whenever they are so close to-
gether that they feel the strong repulsion of the core. In this way
short–range repulsive correlations are included in the correlated
state

�� e � = C
�� �. The explicit form ofC is obtained by the

requirement that the exact correlated two–body wave function
equals the uncorrelated one at short distances. This is achieved
by a transformation of the radial coordinateer = R�(r). R�(r)
and it’s inverseR+(r) are called correlation functions.

Equivalently one can use the correlation operatorC to de-
fine correlated operators, e.g., the correlated HamiltonianfH =
C
y
HC. They contain, however, many–body operators up to

rankN , the total particle number of the system. For a Hamilto-
nian composed of the kinetic energyT and a two–body poten-
tial V one gets

fH = Cy
TC +Cy

V C = T +fH [2]
+fH [3]

+ � � �+fH [N ]
:

fH [2]
, for example, is the two–body part of the correlated kinetic

energy plus that of the correlated potential. Low order approx-
imations of this expansion are expected to be good if the range
of the correlations is small compared to the distance between
the particles. In this case the probality is small that more than
two particles are at the same time within the range of the short–
range correlations and the neglect of three–body and higher op-
erators is a successful approximation. It has been shown in ref.
[1] that the two–body approximation works very well for nu-
clear few–body systems with simple centralNN–potentials.

The situation is not so favorable in the case of4He droplets.
Here the core radius� = 2:556 Å of the Lennard–Jones–
potentialVLJ (r) = 4 �[(�=r)12 � (�=r)6] (� = 10:22K) is
not much smaller than the distanced � 3:6 Å between the par-
ticles (in liquid 4He). One therefore expects three–body and
higher terms not to be negligible. All expressions up to two–
body order are known analytically [1], beyond this one has to
implement further approximations. To study the possibility to
describe the higher order contributions with density–dependent
correlation functions we look at small clusters of bosonic4He
atoms withN = 3; � � � ; 10 for which ‘exact’ many–body cal-
culations are available [2].

First of all we look at the binding energy of4He droplets
in a variational scheme. Since in the ground state (Bose–
Einstein–condensate) all particles are in the same quantum state
theN–body trial state is assumed to be theN–fold product of
a Gaussian single–particle state with a variable width which
is varied to minimize the energy. The correlation function is
parametrized by

R+(r) = r + ��
� r

��

��
exp[� exp(r=��)]:

The calculation of the energy in two–body approximation (!

diamonds) for correlator parameters�; �; � that map a two–
body trial onto the exactE = 0 solution (� = 1) shows agree-
ment up tpN = 5 but an increasing overbinding for higher par-
ticle numbers, when compared to ‘exact’ calculations [2] (!

open gray squares). This indicates that contributions beyond
two–body order are relevant. To cure this overbinding one may
in a first step try to reduce the strength of the correlator using
the scale factor�. A value of� = 0:957, which is only 4.3% be-
low the value for the two–body case, has to be chosen in order
to match the energy of theN = 10 droplet (! black triangles).
This leads to an underbinding for lower particle numbers, the
N = 3 droplet is not bound at all.

These results show, that it is not possible to describe the en-
ergies for all particle numbers with one fixed state–independent
correlator in two–body approximation. To get an effective de-
scription of higher order contributions in two–body approxima-
tion we implement astate–dependentcorrelator by introduc-
ing a global linear density–dependence into the scaling param-
eter�(�) = 1 � 
�. For low densities the optimal two–body
correlator derived from the two–body system should be suit-
able and for high densities a reduction of the correlator strength
is expected. The slope
 of the density–dependence is again
fixed by the energy of theN = 10 system. The energies for
this density–dependent correlator (! black squares) are in very
good agreement with reference [2] for all particle numbers un-
der consideration.

Apparently it is possible to include the effects of higher order
contributions by an effective density–dependent correlator in
two–body approximation. Up to now the density–dependence
is fixed in a phenomenological way, but it may be possible to
derive it from the known properties of the higher order contri-
butions. Thus we could go beyond the two–body approximation
without loosing practicability.
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