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The shell model description of halo nuclei requires quite dif-
ferent single–particle states for core nucleons and nucleons in
the dilute and far out reaching halo. The standard shell–model
expansion of these wide–spread states in a harmonic oscillator
basis requires many shells and a large numerical effort. A better
representation is possible in terms of Gaussian single-particle
states (coherent states) which are defined by their parameters
f~r;~p;ag as
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In single-particle space these states form an overcomplete set.
A good representation of a general single–particle state

�
�ν

�

should therefore be given by a superposition of a few Gaussians
with properly chosen parameters
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The generalA–body state
�
�Ψ

�
can then be approximated by a

linear combination of Slater determinants
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where the
�
�Qk

�
are constructed fromA single–particle states of

type
�
�ν

�
. The mixing coefficients are determined by diagonal-

izing the HamiltonianH
�

in the nonorthogonal basis
�
�Qk

�
. The

matrix elements
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can be calculated analytically if
the interaction is also represented by Gaussians because only
Gaussian integrals and determinants appear.

We have performed first calculations [1] to test the useful-
ness of these concepts. We used the ATS3M-interaction with
our Unitary Correlator Operator Method(UCOM) [2] in the
Fermionic Molecular Dynamics(FMD) [3] model.

The advantages of flexible coherent one–particle states are
demonstrated in the case of6He. By using only two Gaussians
for each state

�
�ν

�
in a single Slater determinant the exponen-

tial tail of the nucleon density and the existence of a low density
neutron skin can already be described (Fig. 1). There is also an
increase in binding energy of 3.5 MeV compared to one Gaus-
sian per state.

The concept of configuration mixing is illustrated in Fig. 2.
The FMD ground state of12C using only one Slaterdeterminant
has a pronouncedα -structure. This intrinsic state is in accor-
dance with experimental results and can easily be represented in
FMD by only one Gaussian per state. But the single Slater de-
terminant lacks good quantum numbers in angular momentum
and parity. By a configuration mixing calculation within a set
of randomly rotated determinants we achieve a much improved
description of the ground state and also get the rotational spec-
trum with the right quantum numbers. Compared to the FMD
ground state we gain about 12 MeV in binding energy.
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Fig. 1: Radial nucleon density distributions of the6He ground
state calculated with one (left) and two Gaussians (right)
per one-particle state
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Fig. 2: Density plot in coordinate and momentum space of the
intrinsically deformed12C ground state (top); result of
configuration mixing calculation – energy of the lowest
states as a function of the basis dimension (bottom)
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