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Abstract

In Fermionic Molecular Dynamics the occurrence of multifragmentation
depends strongly on the intrinsic structure of the many-body state. Slater de-
terminants with narrow single-particle states and a cluster substructure show
multifragmentation in heavy-ion collisions while those with broad wave func-
tions, which resemble more a shell-model picture, deexcite by particle emis-
sion. Which of the two type of states occurs as the ground state minimum or as
a local minimum in the energy depends on the effective interaction. Both may
equally well reproduce binding energy and radii of nuclei. This ambiguity
led us to reinvestigate the derivation of the effective interaction from realistic
nucleon-nucleon potentials by means of a unitary correlation operator which is
much more suited for dynamical calculations than the G-matrix or the Jastrow
method. First results of mixing many Slater determinants are also presented.

1 Fermionic Molecular Dynamics

Fermionic Molecular Dynamics (FMD) [2, 3, 5] is a model to describe ground states
of atomic nuclei and heavy-ion reactions in the low to medium energy regime below
the threshold for particle production.

The FMD trial state
∣∣ Q̂

〉
takes care of the Pauli principle explicitly by using a

Slater determinant of gaussian single-particle states
∣∣qi

〉
.

∣∣Q̂
〉

= C∼A∼
(∣∣q1

〉⊗·· ·⊗ ∣∣qA
〉)

(1)

A∼ is the antisymmetrization operator andC∼ is an optional unitary correlation oper-
ator which will be discussed later.



The single-particle states
∣∣qi

〉
are gaussians with mean position and mean mo-

mentum parametrized by 3 complex parameters~b and a dynamical complex width
a. Spin

∣∣χ
〉

and isospin
∣∣ξ

〉
are usually parametrized as two-spinors

〈
~x

∣∣q
〉

=
〈
~x

∣∣a,~b,χ ,ξ
〉

= exp
{−(~x−~b)2

2a
}∣∣χ

〉⊗ ∣∣ξ
〉
. (2)

The description with gaussian single-particle states is the closest analogue to a
classical phase-space trajectory and therefore allows for a descriptive interpretation
of the FMD time evolution. The gaussians form an overcomplete set and allow to
represent shell-model states as well as intrinsically deformed states.

The dynamical equations are derived from the time-dependent variational prin-
ciple

δ
Z

dt

〈
Q̂

∣∣ i d
dt −H∼

∣∣Q̂
〉

〈
Q̂

∣∣Q̂
〉 = 0 . (3)

The variation with respect to the parametersqν which are contained in the trial state∣∣Q̂
〉

leads to the Euler-Lagrange equations of motion

i ∑
ν

Cµν q̇ν =
∂H

∂q?
µ

(4)

with generalized forces given by the gradient of the Hamilton functionH and the
matrixC which describes the geometrical structure of the fermion phase-space.

Cµν =
∂

∂q?
µ

∂

∂qν
ln

〈
Q̂

∣∣Q̂
〉
, H =

〈
Q̂

∣∣H∼
∣∣Q̂

〉
〈

Q̂
∣∣Q̂

〉 (5)

The initial state of a reaction, which is evolved in time according to eq. (4), is the
antisymmetrized product of boosted ground states.

2 Multifragmentation

The results of FMD calculations for multifragmentation reactions show a strong de-
pendence on the intrinsic structure of the nuclear states which is determined by the
effective interaction. All nucleon-nucleon interactions which we use are adjusted to
describe well binding energies and radii of ground states. They differ mainly in their
momentum dependent parts which are poorly determined by the ground state prop-
erties but can lead to very different behavior in the dynamics of a heavy-ion reac-
tion. This effect is demonstrated in fig. 1 where we display density contour plots of
40Ca+40Ca reactions at energyElab = 35AMeV and impact parameterb= 2.75 fm.



Figure 1: Density plots of40Ca+40Ca atElab = 35AMeV andb= 2.75 fm. Crosses
indicate centroids of gaussians. Crosses without surrounding contours are from
wave packets which have spread so much that their density is below the lowest
contour (evaporated nucleon).



The used phenomenological interaction has an FMD ground state with anα -
cluster structure. Only 1 MeV above is a stationary FMD state (local minimum)
which shows no clustering in coordinate space but looks more like a closed spheri-
cal sd-shell nucleus. These two energetically almost degenerate states behave com-
pletely different in heavy ion reactions. The clustered states lead to multifragmen-
tation where the spatial correlations in the initial state survive to a large extend the
collision. Reactions with the spherical states show no multifragmentation. Here we
observe binary inelastic collisions followed by deexcitation through evaporation of
single nucleons. Collisions between the two different types of FMD states result
in a somewhat mixed situation. It also happens that a smooth nucleus sometimes
jumps during a collision into a cluster configuration and vice-versa.

The effect of initial correlations is further studied in the decay of excited56Fe
nuclei where the initial excitation energy was created in different ways. In the upper
rows of fig. 2 we can see the effect of random excitations which destroy the spatial
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Figure 2: Density plots of the decay of excited56Fe nuclei.



correlations in the cluster structure of the ground state. The three different excitation
energies are achieved by randomly displacing the centroids of the gaussian from
their ground state positions but keeping the density at normal values. In all cases
the nuclei show first an expansion caused by the increased pressure. If the excitation
energy or the pressure is not too high (first two rows) a contraction follows in the
center where the mean field is still strong enough to hold together a hot fragment
which finally deexcites by particle evaporation. Typically between 11 and 12AMeV
excitation the nuclei vapourize into individual nucleons.

In the last row the excitation energy of 10AMeV is created by scaling down
the distances between the centroids of the gaussians. In addition small random
displacements are applied. These excitations do not destroy the spatial correlations
between the nucleons and multifragmentation into different clusters is observed.

The conclusion is, that in FMD initial correlations are important to form clus-
ters. There is not enough time during the decay and expansion of a randomly excited
nuclear system to build up the many-body correlations needed to form a rather cold
fragment. Either the fragments originate from cool junks of the initial system or we
observe evaporation residues.

3 Unitary Correlator Operator Method

To avoid the above demonstrated ambiguities and to gain predictive power we want
to start from realistic nucleon-nucleon potentials. There is however the old problem
that realistic interactions, which reproduce the scattering and deuteron data, feature
a strong short range repulsion and also tensor, spin-orbit and momentum-dependent
parts. The numerically convenient single determinant is only appropriate if the
system is dominated by a mean field but it is not sufficient to represent the two-
body correlations induced by the short ranged repulsion and the tensor interaction.
Since we do dynamical calculations with many time steps a G-matrix method with
a Pauli-operator which depends on the actual state and therefore on time is not
advisable.

Our approach to treat these correlations in a simpler fashion is similar to the
Jastrow method but in order to avoid complications with a time-dependent norm
in dynamical calculations we construct a unitary correlation operator which does
not depend on the actual time evolution. This conserves the norm of the correlated
state and also allows to apply the correlation operator in a state-independent way to
operators, resulting in correlated operators.

In a first step we developed the Unitary Correlation Operator Method (UCOM)
[4, 9, 6] to treat the strong short-range repulsion of the realistic interactions. The
correlatorC∼ shifts the relative wave function of each pair of particles out of the



repulsive region of the interaction. In two-body space it is defined with the hermitian
two-body operatorS∼ which acts on the relative coordinate~x in the following way:

〈
~X,~x

∣∣C∼
∣∣Φ

〉
=

〈
~X,~x

∣∣e−iS∼
∣∣Φ

〉
= exp

{
−1

2
s′(x)− s(x)

x
−s(x)

∂

∂x

}〈
~X,~x

∣∣Φ
〉
.

(6)

s(x) determines the amount by which the particles are shifted away from each other.
Using correlation functionsR+ andR− defined by

Z R−(x)

x

dt
s(t)

= −1 ,

Z R+(x)

x

dt
s(t)

= +1 . (7)

We can write the correlated wave function in terms of a coordinate transformation
as

〈
~X,~x

∣∣C∼
∣∣Φ

〉
=

R−(x)
√

R′−(x)
x

〈
~X,

~x
x
R−(x)

∣∣Φ
〉
. (8)

If we apply the correlation operator to operators we get the corresponding cor-
related operators which act between uncorrelated states.

〈
Q̂

∣∣B∼
∣∣Q̂

〉
=

〈
Q

∣∣C∼†B∼C∼
∣∣Q

〉
=

〈
Q

∣∣ B̂∼
∣∣Q

〉
, B̂∼ = C∼

†B∼C∼ (9)

Of special interest is the correlated Hamilton operatorĤ∼ . Besides the trans-
formed two-body potentialV(R+) we get two-body interaction parts from the cor-
related kinetic energy which has momentum-dependent and potential-like contribu-
tions.

Three-body and higher contributions from the correlated operators can be ne-
glected if the correlation volume times the density is small enough so that the prob-
ability to find three ore more particles simultaneously within the range of the strong
repulsion is small.

As a test of the method we applied it to the Afnan-Tang S3M potential. This
pure central potential has been used as a benchmark for many-particle methods. In
fig. 3 the results of FMD calculations with the Unitary Correlation Operator Method
are shown. The agreement with other, numerically much more expensive, methods
is striking. The kinetic energy of the correlated state increases in comparison to
the uncorrelated one but this is overcompensated by the gain in potential energy. It
is amazing to see how accurately the large positive and large negative corrections
from the correlations add up to the correct binding energy.
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Figure 3: FMD calculations using the ATS 3M potential. For each nucleus expec-
tation values of kinetic (top), potential (bottom) and binding (middle) energy per
nucleon are shown. The left hand columns display the values for the uncorrelated
and the right hand columns for the correlated states. The arrows indicate results of
other methods, Yakubovski (4He), FHNC (16O) and CBF (40Ca and48Ca). Refer-
ences in [4].

-6 -4 -2 0 2 4 6
x [fm]

-6

-4

-2

0

2

4

6

y 
[fm

]

0.01

0.01

0.1

0.1
0.5 1.0

1.0

1.
0

-6 -4 -2 0 2 4 6
x [fm]

-6

-4

-2

0

2

4

6

y 
[fm

]

12C

-3 -2 -1 0 1 2 3
kx [fm

-1]

-3

-2

-1

0

1

2

3

k y
 [f

m
-1
]

0.001

0.001

0.01
0.1

0.2

-3 -2 -1 0 1 2 3
kx [fm

-1]

-3

-2

-1

0

1

2

3

k y
 [f

m
-1
]

12C

-6 -4 -2 0 2 4 6
x [fm]

-6

-4

-2

0

2

4

6

y 
[fm

]

0.01

0.01

0.1

0.1

0.5

1.0

-6 -4 -2 0 2 4 6
x [fm]

-6

-4

-2

0

2

4

6

y 
[fm

]

16O

-3 -2 -1 0 1 2 3
kx [fm

-1]

-3

-2

-1

0

1

2

3

k y
 [f

m
-1
]

0.001

0.001

0.01

0.1

-3 -2 -1 0 1 2 3
kx [fm

-1]

-3

-2

-1

0

1

2

3

k y
 [f

m
-1
]

16O

-6 -4 -2 0 2 4 6
x [fm]

-6

-4

-2

0

2

4

6

y 
[fm

]

0.01

0.01

0.1

0.1

0.5

0.5

1.0

-6 -4 -2 0 2 4 6
x [fm]

-6

-4

-2

0

2

4

6

y 
[fm

]

20Ne

-3 -2 -1 0 1 2 3
kx [fm

-1]

-3

-2

-1

0

1

2

3

k y
 [f

m
-1
]

0.001

0.001

0.01

0.1

-3 -2 -1 0 1 2 3
kx [fm

-1]

-3

-2

-1

0

1

2

3

k y
 [f

m
-1
]

20Ne

-6 -4 -2 0 2 4 6
x [fm]

-6

-4

-2

0

2

4

6

y 
[fm

]

0.01

0.
01

0.01

0.1

0.1

0.5

0.5

1.0

1.5

-6 -4 -2 0 2 4 6
x [fm]

-6

-4

-2

0

2

4

6

y 
[fm

]

40Ca

-3 -2 -1 0 1 2 3
kx [fm

-1]

-3

-2

-1

0

1

2

3

k y
 [f

m
-1
]

0.001

0.001

0.01
0.1

-3 -2 -1 0 1 2 3
kx [fm

-1]

-3

-2

-1

0

1

2

3

k y
 [f

m
-1
]

40Ca

Figure 4: FMD ground states with the ATS 3M potential. Plotted are cuts of the
nucleon density in coordinate and momentum space.



Particularly interesting is the FMD result for12C. Other methods have great
difficulties to describe the intrinsic structure of this nucleus well. The FMD result
is shown in fig. 4, where cuts of the nucleon density in coordinate and momentum
space are plotted. One can clearly see that the FMD trial states with gaussians can
describe both intrinsically deformed states like12C or 20Ne and closed shell states
like 16O or 40Ca.

One should, however, keep in mind that in real nuclei a major part of the binding
originates from the tensor interaction which induces correlations between the spin
of two particles and the direction of their relative distance vector. We are developing
a unitary correlator for these tensor correlations but the correlated hamiltonian is of
a rather complicated form and results are not available yet.

4 Configuration Mixing

If one wants to address questions of nuclear structure in the FMD environment
more refined trial states are necessary and possible. The parameterization of the
one-particle state can be improved by using a superposition of several gaussians.
This strategy promises to be useful for the description of halo-nuclei with their far
out reaching exponential tail in the nucleon density [6].

On the other hand superpositions of Slater determinants can lead to a better de-
scription of medium and long ranged many-particle correlations. To demonstrate
this approach we present an improved treatment of the12C ground state. As shown
in the last section the FMD ground state is given by an intrinsically deformed sin-
gle Slater determinant which of course lacks the symmetries of the real12C state
regarding parity and angular momentum. As an alternative to the projection on
the right quantum numbers we perform a configuration mixing calculation in a set
of randomly rotated FMD states. Formally this leads to a generalized eigenvalue
problem where the Hamilton operator is represented in a nonorthogonal set of FMD
states

{∣∣Qi
〉}

:

∑
j

〈
Q̂i

∣∣H∼
∣∣Q̂j 〉 cα

j = Eα ∑
j

〈
Q̂i

∣∣Q̂j 〉 cα
j . (10)

The energies of the lowest eigenstates of such a configuration mixing calculation are
shown in fig. 5 as a function of the number of basis states. With increasing number
of basis states the lowest states become better and better eigenstates of parity and
angular momentum and the rotational bands emerge. One can also observe a rather
large increase in binding energy of about 12 MeV for the ground state.
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Figure 5: Results of configuration mixing calculations – plotted are the energies of
the lowest states as a function of the basis dimension.

5 Some Ideas about Quantum Branching

Since the antisymmetrized products of gaussians form an overcomplete basis set in
Fock space any many-body state, also the exact solution of the Schr¨odinger equa-
tion, can in principle be represented by a superposition of FMD states. The con-
figuration mixing calculation for12C in the previous section shows for example the
ground state as a superposition of many Slater determinants. In a dynamical calcula-
tion we can for numerical reasons only follow the evolution of a single component.
But like in the stationary situation this component mixes via off-diagonal matrix el-
ements of the hamiltonian with other determinants during the time evolution. Many
models, like AMD [8, 7] or QMD [1] simulate these quantum branchings by means
of random collision terms.

A more refined treatment of this effect should be possible by allowing the FMD
state

∣∣Q(t)
〉

to have a certain possibility to jump to another FMD state
∣∣Q′(t)

〉
. This

branching to another trajectory should be determined by the perturbation operator

i ∑
ν

q̇ν
∂

∂qν
−H∼ (11)

which describes the difference between the FMD and the exact time-evolution.
Open problems are the conservation laws and the approximation needed to come



from perturbative transition amplitudes to transition probabilities. If the system is
in an energy regime with high level density statistical arguments may be employed.

Quantum branching is probably not only needed in multifragmentation to jump
from a situation with wide wave packets to cluster states, but also in general to allow
for example crossing of potential barriers which exist in the highly restricted phase
space of the parameters but can be tunneled in reality.

Another example is the breaking of symmetries. The exact final state possesses
the dynamically conserved symmetries of the initial state simply by a superposi-
tion of a channel and its counterpart. An illustrative example is the left-right mirror
symmetry of the40Ca+40Ca reaction. After the collision the measured channels
are of course not symmetric, only the superposition of all channels has the proper
symmetry. When in the approximate scheme only a single state, which has ini-
tially the mirror symmetry, is evolved in time, it will conserve this symmetry in a
too restricted way. During the evolution the symmetry should be broken by quan-
tum branching such that with equal probability each final channel and its mirrored
counterpart can be reached.
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