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Due to the short-ranged repulsive core in the nucleornthe ground state energies of nuclei with many particles by mini-
nucleon potentia¥/ the many-body state is depleted as a funcmizing . .
tion of the relative distance; = | — Xj| for each pair(ij) E = (VH|W) = (d|°He 'S|D)
when they are close to each other. These short range correla; S . .
tions cannot be described by shell model states. The most covn\zn'iEh respect tg®) which is a single Slater determinant com-

mon procedure to remedy this problem is Brueckner’s G-matr&osed oflocalized Gaussians (FMD [3]). Unlike=T +V

method which replacgs the bardoy an effective interactio®. Het = €SHe S=éSTe S dSyve S
The second method is the Jastrow approach where the corre- 2 2 3 3
lated ground state of the nucleus is assumed to be of the form = TH+Teg+Veg+ T+ Vet

Mi<; f(xij)|®) wheref (x;j) is a correlation factor which dimin- )
ishes the probability to find two nucleons at small distanges IS N0t & one- plus two-body operator but contains three-body

We propose a third new method where the correlated stz4gd higher intera[g]tions. 2 . _
|W) is obtained by aunitarytransformatiore~'S (notto be con- ~ We calculateT o and Vg, which are then functionals of

fused with the exf method [1]) s(x), analytically and approximate the energy by neglecting
_is three-body and higher terms in the cluster expansion. This
W) = @), turns out to be a very good approximation at typical nuclear

whereS is a hermitean two-body operator which depends iflensities. Estimations of the three-body terms give corrections

general on the relative distangg, the relative momentuin,, €SS than 5% of binding energy for theparticle. Fig. 2 com-
the spins and isospins of the two nucleons. The airer6t is pares uncorrelated (left column) an correlated (right column)

. . 2
to push two nucleons away from each other whenever they gitergies. The correlated potential enef@V/ | ®) (grey bars

too close. The most simple ansatz which does that is at negative values) is about twice the uncorrelgefV/|®) in
1 all nuclei. This gain in binding is counteracted by an increase in
S=Z= Z (5” ﬁs(xij )+ ﬁs(xij )5”) . the kinetic energies (grey bars at positive values). Both together
2 i<] yield binding energies (black bars) which are within 8% devi-

5 ation from results of Yakubovski calculations [4] fbe and
|Us|(x) is roughly speaking the distance which the particles afeqNC calculations [5] for80 and4°Ca. This suprises since
moved away from each other lay' if they are found at a dis- {4 is the same for all nuclei and not density dependent. In
tancex in |®). |Us|(x) is largest ifx lies inside the hard core addition one may easily conceive improved shell model states
and|Os|(x) — 0 if x is outside the repulsive interaction. | D).

Fig. 1 displays the radial dependence of the correlated and

uncorrelated deuteron wave function together with the Afnan] H. Kummel, K.H. Lihrmann, J.G. Zabolitzky: Phys. Rep. 39 (1978) 1
Tang S3 potential [2]. The functional form efx) is adjusted [2] I.R. Afnan, Y.C. Tang: Phys. Rev. 175 (1968) 1337
such that the correlated stdtgy) for short distances equals the[3] H. Feldmeier, K. Bieler, J. Schnack: Nucl. Phys. A586 (1995) 493
exact solution. [4] H. Kamada, W. Gdckle: Nucl. Phys. A548 (1992) 205

Once the correlatoe'S is adjusted to reproduce the two-[5] G. Co’ et al.: Nucl. Phys. A549 (1992) 439
body system at low energies (long wave length) we calculate
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