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Due to the short-ranged repulsive core in the nucleon-
nucleon potentialV the many-body state is depleted as a func-
tion of the relative distancexi j = j~xi �~xj j for each pair(i j )
when they are close to each other. These short range correla-
tions cannot be described by shell model states. The most com-
mon procedure to remedy this problem is Brueckner’s G-matrix
method which replaces the bareV by an effective interactionG.
The second method is the Jastrow approach where the corre-
lated ground state of the nucleus is assumed to be of the form
∏i< j f (xi j )jΦiwheref (xi j ) is a correlation factor which dimin-
ishes the probability to find two nucleons at small distancesxi j .

We propose a third new method where the correlated state
jΨi is obtained by aunitary transformatione�iS (not to be con-
fused with the expSmethod [1])

jΨi= e�iSjΦi ;

whereS is a hermitean two-body operator which depends in
general on the relative distance~x12, the relative momentum~p12,
the spins and isospins of the two nucleons. The aim ofe�iS is
to push two nucleons away from each other whenever they get
too close. The most simple ansatz which does that is

S=
1
2 ∑

i< j

�
~pi j

~∇s(xi j )+~∇s(xi j )~pi j

�
:

j~∇sj(x) is roughly speaking the distance which the particles are
moved away from each other bye�iS if they are found at a dis-
tancex in jΦi. j~∇sj(x) is largest ifx lies inside the hard core
andj~∇sj(x)! 0 if x is outside the repulsive interaction.

Fig. 1 displays the radial dependence of the correlated and
uncorrelated deuteron wave function together with the Afnan
Tang S3 potential [2]. The functional form ofs(x) is adjusted
such that the correlated statejψdi for short distances equals the
exact solution.

Once the correlatore�iS is adjusted to reproduce the two-
body system at low energies (long wave length) we calculate

the ground state energies of nuclei with many particles by mini-
mizing

E = hΨjHjΨi= hΦjeiSHe�iSjΦi

with respect tojΦi which is a single Slater determinant com-
posed of localized Gaussians (FMD [3]). UnlikeH = T+V

Heff � eiSHe�iS= eiSTe�iS+eiSVe�iS

= T+T[2]
eff +V[2]

eff +T[3]
eff +V[3]

eff + � � �

is not a one- plus two-body operator but contains three-body
and higher interactions.

We calculateT[2]
eff and V[2]

eff, which are then functionals of
s(x), analytically and approximate the energy by neglecting
three-body and higher terms in the cluster expansion. This
turns out to be a very good approximation at typical nuclear
densities. Estimations of the three-body terms give corrections
less than 5% of binding energy for theα-particle. Fig. 2 com-
pares uncorrelated (left column) an correlated (right column)
energies. The correlated potential energyhΦjV[2]

eff jΦi (grey bars
at negative values) is about twice the uncorrelatedhΦjVjΦi in
all nuclei. This gain in binding is counteracted by an increase in
the kinetic energies (grey bars at positive values). Both together
yield binding energies (black bars) which are within 8% devi-
ation from results of Yakubovski calculations [4] for4He and
FHNC calculations [5] for16O and40Ca. This suprises since
Heff is the same for all nuclei and not density dependent. In
addition one may easily conceive improved shell model states
jΦi.
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