Ab Initio Method: In-Medium No-Core Shell Model

E. Gebrerufael¹ K. Vobig¹ H. Hergert² R. Roth¹

¹ Institut für Kernphysik, TU Darmstadt

² NSCL/FRIB Laboratory and Department of Physics & Astronomy, MSU

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Overview

- No-Core Shell Model (NCSM)
- In-Medium Similarity Renormalization Group (IM-SRG)
- In-Medium No-Core Shell Model
- Results
 - Evolution of Ground-State Energy
 - Evolution of Excitation Energies
 - Spectra
- Summary and Outlook

No-Core Shell Model Basics

Barrett, Vary, Navratil, ...

... is one of the most powerful exact *ab initio* methods for the p- and lower sd-shell

- construct matrix representation of Hamiltonian using basis of HO/HF
 Slater determinants truncated w.r.t. excitation quanta N_{max}
- solve large-scale eigenvalue problem for a few smallest eigenvalues
- range of applicability limited by factorial growth of basis with N_{max} & A
- adaptive importance-truncation extends the range of NCSM

In-Medium No-Core Shell Model Why should we merge...

IM-SRG

- + easy access to heavy nuclei
- + soft computational scaling with A
- + decoupling in A-body space

- not exact method
- only for ground state
- spectroscopy not straight forward

NCSM

- limited to light nuclei
- factorial growth of model space
- difficult to obtain model-space convergence
- + exact method
- + easy access to excited states
- + spectroscopy for free

In-Medium No-Core Shell Model Why should we merge...

IM-NCSM

- + easy access to heavy nuclei
- + soft computational scaling with A
- + decoupling in A-body space

not exact method
only for ground state
spectroscopy not straight forward

- limited to light nuclei
- factorial growth of model space
- difficult to obtain model-space convergence
- + exact method
- + easy access to excited states
- + spectroscopy for free

In-Medium No-Core Shell Model How should we merge...

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

In-Medium No-Core Shell Model IM-NCSM is different from ...

IM-NCSM is different from **IM-SRG for valence-space interactions:**

- build on explicit multi-reference formulation
- all model-space truncations are converged

 $s=0.00~{
m MeV^{-1}}$

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

 $s=0.00~{\rm MeV^{-1}}$

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

first basis state = reference state

- N_{max} =0 states couple to reference state $|\Psi_{\text{ref}}\rangle$
- E(s) and N_{max}=0 eigenvalue
 not identical

diagonalization of evolved Hamiltonian necessary

 $N_{\rm max}=0$

Results Evolution of Ground-State Energy

In the second second

In the second second

In the second second

- In the drastically enhanced model-space convergence for IM-NCSM
- NO2B approximation + induced many-body contribution = 4.0 MeV (≈ 5 %)

- drastically enhanced model-space convergence for IM-NCSM
- NO2B approximation + induced many-body contribution = 4.0 MeV (≈ 5 %)
- for *s* > 0.3 MeV⁻¹ induced many-body contribution becomes significant

- drastically enhanced model-space convergence for IM-NCSM
- NO2B approximation + induced many-body contribution = 4.0 MeV (≈ 5 %)
- for s > 0.3 MeV⁻¹ induced many-body contribution becomes significant

- *E*(*s*) more robust than in ¹²C case
- NO2B approximation + induced many-body contribution = 2.3 MeV (< 2 %)</p>

Results TECHNISCHE UNIVERSITÄT NCSM vs. IM-NCSM vs. MR-IM-SRG DARMSTADT -50chiral NN+3N_{NO2B} 10% Iargest deviation in ¹²C -60AC $\Lambda_{3N} = 400 \text{ MeV}$ -70best case ¹⁴C $\alpha = 0.08 \, \mathrm{fm}^4$ [MeV] -80 $\hbar\Omega = 20 \,\mathrm{MeV}$ 10% -90<1% Imag. Time ш 3% 4% 5% -100 $N_{\rm max}^{\rm ref} = 0$ -110arXiv:1610.05254 $e_{\rm max} = 12$ -12020 12 18 10 14 16 NCSM -130very good agreement $@ N_{max}$ extrap. AC Iargest deviation in ²⁶O -140**IM-NCSM** [MeV] @ $N_{max}=4$ -150ш -160<2% **MR-IM-SRG** (HFB, White) -17016 18 20 22 24 26 Experiment Α

• E^* of 2⁺ increases abruptly at the end due to kink in ground-state energy

• E^* of 2⁺ increases abruptly at the end due to kink in ground-state energy

• E^* of 2⁺ increases abruptly at the end due to kink in ground-state energy

- E^{*} of 2⁺ increases abruptly at the end due to kink in ground-state energy
- N_{\max} convergence from above in decoupled regime \rightarrow variational principle

Results Evolution of Excitation Energies

- E* of 2+ increases abruptly at the end due to kink in ground-state energy
- N_{max} convergence from above in decoupled regime \rightarrow variational principle

- E^{*} of 2⁺ increases abruptly at the end due to kink in ground-state energy
- N_{max} convergence from above in decoupled regime \rightarrow variational principle
- first excited 0⁺ behaves differently and drops by \approx 5 MeV \rightarrow Hoyle state?

Results

Signatures of Hoyle State in ¹²C

- trends are compatible with Hoyle-state interpretation
- need better control of induced many-body terms for quantitative statements

Eskendr Gebrerufael - TU Darmstadt - Apr. 2017

- large dependence on s in N_{max}=0
- dependence on s reduces with increasing N_{max}

- large dependence on s in N_{max}=0
- dependence on s reduces with increasing N_{max}
- *E** converges **monotonically from above** for evolved Hamiltonian

- dependence on s reduces with increasing N_{max}
- *E** converges **monotonically from above** for evolved Hamiltonian

• uncertainty band due to flow-parameter variation between $s_{max}/2$ and s_{max}

• uncertainty band due to flow-parameter variation between $s_{max}/2$ and s_{max}

- uncertainty band due to flow-parameter variation between $s_{max}/2$ and s_{max}
- 2⁺ and 1⁺ in IM-NCSM and NCSM in good agreement

- uncertainty band due to flow-parameter variation between s_{max}/2 and s_{max}
- 2⁺ and 1⁺ in IM-NCSM and NCSM in good agreement
- second 0⁺ in NCSM (Hoyle?) slow convergence, IM-NCSM closer to experiment

- uncertainty band due to flow-parameter variation between $s_{max}/2$ and s_{max}
- 2⁺ and 1⁺ in IM-NCSM and NCSM in good agreement
- second 0⁺ in NCSM (Hoyle?) slow convergence, IM-NCSM closer to experiment

- first 2⁺ and 4⁺ robust and well converged in IM-NCSM
- higher-lying states show small flow-parameter dependence
- 1⁺ not yet observed experimentally \rightarrow theoretical prediction

- established a many-body technique IM-NCSM = IM-SRG + NCSM
- ✓ IM-SRG decouples **reference state** from higher N_{max}
- \checkmark extremely enhanced N_{max} convergence for subsequent NCSM
- ✓ N_{max} ≤4 sufficient to extract converged ground-state energies
- variational principle becomes valid for excitation energies since ground-state energy converged
- ✓ preliminary *ab initio* studies regarding Hoyle state in ¹²C

- more detailed analysis of the Hoyle state in ¹²C
- o study of exotic nuclei: island-of-inversion physics, ...
- evolve vector operator, for instance E1 transition operators
- extend applicability of IM-NCSM to odd nuclei using particle-attached particle-removed formalism

0 ...

Thank You For Your Attention

TECHNISCHE UNIVERSITÄT DARMSTADT

Thanks to my group & collaborator

• S. Alexa, T. Hüther, L. Mertes, R. Roth, S. Schulz,

H. Spielvogel, C. Stumpf, A. Tichai, K. Vobig, R. Wirth

Institut für Kernphysik, TU Darmstadt

• H. Hergert

NSCL/FRIB, Michigan State University

COMPUTING TIME

Exzellente Forschung für Hessens Zukunft

Deutsche Forschungsgemeinschaft

DFG

HIC for FAIR Helmholtz International Center

