Coupled-Cluster Theory

for

Nuclear Structure

Sven Binder INSTITUT FÜR KERNPHYSIK

TECHNISCHE UNIVERSITÄT DARMSTADT

 Nuclear interaction is not fundamental

- Nuclear interaction is not fundamental
- QCD **non-perturbative** at low energies

- Nuclear interaction is not fundamental
- QCD non-perturbative at low energies

 Low-energy chiral effective field theory for relevant degrees of freedom based on symmetries of QCD

- Nuclear interaction is not fundamental
- QCD non-perturbative at low energies

- Low-energy chiral effective field theory for relevant degrees of freedom based on symmetries of QCD
- Hierarchy of consistent NN, 3N, ...
 interactions (plus currents)

- Nuclear interaction is not fundamental
- QCD non-perturbative at low energies

- Low-energy chiral effective field theory for relevant degrees of freedom based on symmetries of QCD
- Hierarchy of consistent NN, 3N, ...
 interactions (plus currents)

• Given a nuclear interaction, does it describe **medium-mass nuclei**?

- Given a nuclear interaction, does it describe **medium-mass nuclei**?
- Medium-mass and heavy nuclei from Hartree-Fock:

- Given a nuclear interaction, does it describe **medium-mass nuclei**?
- Medium-mass and heavy nuclei from Hartree-Fock:

- Given a nuclear interaction, does it describe **medium-mass nuclei**?
- Medium-mass and heavy nuclei from Hartree-Fock:

- Given a nuclear interaction, does it describe **medium-mass nuclei**?
- Medium-mass and heavy nuclei from Hartree-Fock:

- Given a nuclear interaction, does it describe **medium-mass nuclei**?
- Medium-mass and heavy nuclei from Hartree-Fock:

Hartree-Fock is not exact and gives no handle on uncertainty estimates

- Given a nuclear interaction, does it describe **medium-mass nuclei**?
- Medium-mass and heavy nuclei from Hartree-Fock:

- Hartree-Fock is not exact and gives no handle on uncertainty estimates
- We **cannot** make the interaction **super soft**

- Given a nuclear interaction, does it describe **medium-mass nuclei**?
- Medium-mass and heavy nuclei from Hartree-Fock:

- Hartree-Fock is not exact and gives no handle on uncertainty estimates
- We **cannot** make the interaction **super soft**
- Need *ab initio* calculations!

- Given a nuclear interaction, does it describe **medium-mass nuclei**?
- Medium-mass and heavy nuclei from Hartree-Fock:

- Hartree-Fock is not exact and gives no handle on uncertainty estimates
- We **cannot** make the interaction **super soft**
- Need *ab initio* calculations!

• Exponential Ansatz for wave operator

$$|\Psi\rangle = e^{\hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_A} |\Phi_0\rangle$$

• Exponential Ansatz for wave operator

$$|\Psi\rangle = e^{\hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_A} |\Phi_0\rangle$$

• \hat{T}_n : *npn***h excitation** (cluster) operators

$$\hat{T}_n = \frac{1}{(n!)^2} \sum_{\substack{ijk...\\abc...}} t^{abc...}_{ijk...} \{ \hat{a}^{\dagger}_a \hat{a}^{\dagger}_b \hat{a}^{\dagger}_c \dots \hat{a}_k \hat{a}_j \hat{a}_i \}$$

• Exponential Ansatz for wave operator

$$|\Psi\rangle = e^{\hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_A} |\Phi_0\rangle$$

• \hat{T}_n : *npn***h excitation** (cluster) operators

$$\hat{T}_n = \frac{1}{(n!)^2} \sum_{\substack{ijk...\\abc...}} t^{abc...}_{ijk...} \{ \hat{a}^{\dagger}_a \hat{a}^{\dagger}_b \hat{a}^{\dagger}_c \dots \hat{a}_k \hat{a}_j \hat{a}_i \}$$

• Similarity-transformed Schrödinger equation

$$\hat{\mathcal{H}}|\Phi_0\rangle = \Delta E|\Phi_0\rangle , \quad \hat{\mathcal{H}} = e^{-\hat{T}} \hat{H}_N e^{\hat{T}}$$

• **CCSD**: Truncate \hat{T} at the **2p2h** level, $\hat{T} = \hat{T}_1 + \hat{T}_2$

• $e^{\hat{T}}$ - Ansatz: **Higher** excitations from **products** of lower excitation operators

• **CCSD**: Truncate \hat{T} at the **2p2h** level, $\hat{T} = \hat{T}_1 + \hat{T}_2$

- e^T- Ansatz: **Higher** excitations from **products** of lower excitation operators
- CCSD equations

$$\Delta E^{(\text{CCSD})} = \langle \Phi_0 | \hat{\mathcal{H}} | \Phi_0 \rangle$$
$$0 = \langle \Phi_i^a | \hat{\mathcal{H}} | \Phi_0 \rangle$$
$$0 = \langle \Phi_{ij}^{ab} | \hat{\mathcal{H}} | \Phi_0 \rangle$$

 $\hat{T}_1 \hat{T}_2 \hat{T}_2 |\Phi_0\rangle$

• **CCSD**: Truncate \hat{T} at the **2p2h** level, $\hat{T} = \hat{T}_1 + \hat{T}_2$

- e^T- Ansatz: **Higher** excitations from **products** of lower excitation operators
- CCSD equations

$$\Delta E^{(\text{CCSD})} = \langle \Phi_0 | \hat{\mathcal{H}} | \Phi_0 \rangle$$
$$0 = \langle \Phi_i^a | \hat{\mathcal{H}} | \Phi_0 \rangle$$
$$0 = \langle \Phi_{ij}^{ab} | \hat{\mathcal{H}} | \Phi_0 \rangle$$

• Coupled system of **nonlinear equations**, dimension $\sim 10^8$

Coupled-Cluster Equations

$$0 = \langle \Phi_{ij}^{ab} | \hat{\mathcal{H}} | \Phi_0 \rangle$$

$$0 = \langle \Phi_{ij}^{ab} | \left[\hat{H}_N \left(\mathbb{1} + \hat{T}_1 + \hat{T}_2 + \frac{1}{2!} \hat{T}_1^2 + \hat{T}_1 \hat{T}_2 \right. \\ \left. + \frac{1}{2!} \hat{T}_2^2 + \frac{1}{3!} \hat{T}_1^3 + \frac{1}{2!} \hat{T}_1^2 \hat{T}_2 + \frac{1}{4!} \hat{T}_1^4 \right) \right]_C | \Phi_0 \rangle$$

Coupled-Cluster Equations

$$\begin{split} 0 &= v_{ij}^{ab} + \hat{P}_{ab} \sum_{c} f_{c}^{b} t_{ij}^{ac} - \hat{P}_{ij} \sum_{k} f_{j}^{k} t_{ik}^{ab} + \frac{1}{2} \sum_{cd} v_{cd}^{ab} t_{ij}^{cd} + \frac{1}{2} \sum_{k} v_{ij}^{kl} t_{kl}^{ab} + \hat{P}_{ab} \hat{P}_{ij} \sum_{ck} v_{cj}^{kb} t_{ik}^{ac} \\ &+ \frac{1}{4} \sum_{cdkl} v_{cd}^{kl} t_{ij}^{cd} t_{kl}^{ab} + \hat{P}_{ij} \sum_{cdkl} v_{cd}^{kl} t_{ik}^{ac} t_{jl}^{bd} - \frac{1}{2} \hat{P}_{ij} \sum_{cdkl} v_{cd}^{kl} t_{ik}^{ab} t_{lj}^{b} - \frac{1}{2} \hat{P}_{ab} \sum_{cdkl} v_{cd}^{kl} t_{lk}^{ac} t_{ij}^{db} \\ &+ \hat{P}_{ij} \sum_{c} v_{cj}^{ab} t_{i}^{c} - \hat{P}_{ab} \sum_{k} v_{ij}^{kb} t_{k}^{a} - \hat{P}_{ij} \sum_{ck} f_{c}^{k} t_{kj}^{ab} t_{i}^{c} - \hat{P}_{ab} \sum_{ck} f_{c}^{k} t_{ij}^{cb} t_{k}^{a} \\ &+ \hat{P}_{ab} \hat{P}_{ij} \sum_{cdk} v_{cd}^{ak} t_{kj}^{db} t_{i}^{c} - \hat{P}_{ab} \hat{P}_{ij} \sum_{ckl} v_{kl}^{kl} t_{ij}^{cb} t_{k}^{a} - \frac{1}{2} \hat{P}_{ab} \sum_{ck} v_{cd}^{kb} t_{ij}^{cd} t_{k}^{a} + \frac{1}{2} \hat{P}_{ij} \sum_{ckl} v_{cd}^{kl} t_{ij}^{ab} t_{k}^{c} \\ &+ \hat{P}_{ab} \hat{P}_{ij} \sum_{cdk} v_{cd}^{ak} t_{kj}^{db} t_{i}^{c} - \hat{P}_{ab} \hat{P}_{ij} \sum_{ckl} v_{icl}^{kl} t_{lj}^{cb} t_{k}^{a} - \frac{1}{2} \hat{P}_{ab} \sum_{cdk} v_{cd}^{kb} t_{ij}^{cd} t_{k}^{a} + \frac{1}{2} \hat{P}_{ij} \sum_{ckl} v_{cl}^{kl} t_{kl}^{ab} t_{i}^{c} \\ &+ \hat{P}_{ab} \sum_{cdk} v_{cd}^{ka} t_{ij}^{db} t_{i}^{c} - \hat{P}_{ab} \hat{P}_{ij} \sum_{ckl} v_{icl}^{kl} t_{k}^{ab} + \sum_{cd} v_{cd}^{ab} t_{i}^{c} t_{j}^{d} + \sum_{kl} v_{ij}^{kl} t_{k}^{a} t_{l}^{b} - \hat{P}_{ab} \hat{P}_{ij} \sum_{ckl} v_{cd}^{kl} t_{k}^{a} t_{i}^{c} \\ &+ \hat{P}_{ab} \sum_{cdk} v_{cd}^{kl} t_{kl}^{ab} t_{i}^{c} t_{j}^{d} + \frac{1}{2} \sum_{ckl} v_{cd}^{kl} t_{ij}^{cd} t_{k}^{a} t_{l}^{b} - \hat{P}_{ab} \hat{P}_{ij} \sum_{cdkl} v_{cd}^{kl} t_{i}^{a} t_{l}^{b} - \hat{P}_{ab} \hat{P}_{ij} \sum_{ckl} v_{cd}^{kl} t_{i}^{a} t_{l}^{b} t_{i}^{c} - \hat{P}_{ab} \hat{P}_{ij} \sum_{ckl} v_{cd}^{kl} t_{i}^{a} t_{i}^{b} t_{i}^{c} - \hat{P}_{ij} \sum_{ckl} v_{cd}^{kl} t_{i}^{a} t_{i}^{b} t_{i}^{c} \\ &+ \hat{P}_{ab} \sum_{cdkl} v_{cd}^{kl} t_{kl}^{a} t_{i}^{c} t_{j}^{d} t_{k}^{a} t_{l}^{b} t_{i}^{c} t_{j}^{d} \\ &+ \hat{P}_{ab} \sum_{cdkl} v_{cd}^{kl} t_{i}^{k} t_{i}^{c} t_{j}^{d} t_{i}^{c} t_{i}^{d} t_{i}^{c} t_{i}^{d} t_{i}^$$

 Exploit spherical symmetry for closed-shell nuclei, use spherical tensor operator formulation

$$\hat{T}_{1} = \sum_{ai} t_{i}^{a} \left\{ \hat{a}_{a}^{\dagger} \otimes \hat{\tilde{a}}_{i} \right\}_{0}^{(0)}$$

$$\hat{T}_{2} = \sum_{abij} \sum_{J} t_{ij}^{ab}(J) \left\{ \left\{ \hat{a}_{a}^{\dagger} \otimes \hat{a}_{b}^{\dagger} \right\}^{(J)} \otimes \left\{ \hat{\tilde{a}}_{j} \otimes \hat{\tilde{a}}_{i} \right\}^{(J)} \right\}_{0}^{(0)}$$

 Exploit spherical symmetry for closed-shell nuclei, use spherical tensor operator formulation

$$\hat{T}_{1} = \sum_{ai} t_{i}^{a} \left\{ \hat{a}_{a}^{\dagger} \otimes \hat{\tilde{a}}_{i} \right\}_{0}^{(0)}$$
$$\hat{T}_{2} = \sum_{abij} \sum_{J} t_{ij}^{ab}(J) \left\{ \left\{ \hat{a}_{a}^{\dagger} \otimes \hat{a}_{b}^{\dagger} \right\}^{(J)} \otimes \left\{ \hat{\tilde{a}}_{j} \otimes \hat{\tilde{a}}_{i} \right\}^{(J)} \right\}_{0}^{(0)}$$

• Angular-momentum coupling of external lines

 Exploit spherical symmetry for closed-shell nuclei, use spherical tensor operator formulation

$$\hat{T}_{1} = \sum_{ai} t_{i}^{a} \left\{ \hat{a}_{a}^{\dagger} \otimes \hat{\tilde{a}}_{i} \right\}_{0}^{(0)}$$

$$\hat{T}_{2} = \sum_{abij} \sum_{J} t_{ij}^{ab}(J) \left\{ \left\{ \hat{a}_{a}^{\dagger} \otimes \hat{a}_{b}^{\dagger} \right\}^{(J)} \otimes \left\{ \hat{\tilde{a}}_{j} \otimes \hat{\tilde{a}}_{i} \right\}^{(J)} \right\}_{0}^{(0)}$$

• Angular-momentum coupling of external lines

• Express Coupled-Cluster equations in terms of

$$\langle \stackrel{^{JM}}{pq} | \hat{v} | \stackrel{^{JM}}{rs} \rangle$$
, $\langle \stackrel{^{JM}}{ab} | \hat{t}_2 | \stackrel{^{JM}}{ij} \rangle$, $\langle \stackrel{^{00}}{p} | \hat{f} | \hat{q} \rangle$

¹⁶O: Exact Diagonalization vs. CCSD

chiral NN+3N interaction

\bullet CCSDT, $\hat{T}=\hat{T}_1+\hat{T}_2+\hat{T}_3$, too expensive

• CCSDT,
$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3$$
 , too expensive

Coupled-Cluster energy functional

$$\mathcal{E} = \langle \Phi_0 | (1 + \hat{\Lambda}) \hat{\mathcal{H}} | \Phi_0 \rangle_C$$

• CCSDT,
$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3$$
 , too expensive

Coupled-Cluster energy functional

$$\mathcal{E} = \langle \Phi_0 | (1 + \hat{\Lambda}) \hat{\mathcal{H}} | \Phi_0 \rangle_C$$

• CCSDT,
$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3$$
 , too expensive

Coupled-Cluster energy functional

$$\mathcal{E} = \langle \Phi_0 | (1 + \hat{\Lambda}) \hat{\mathcal{H}} | \Phi_0 \rangle_C$$

• CCSDT,
$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3$$
 , too expensive

Coupled-Cluster energy functional

 $\mathcal{E} = \langle \Phi_0 | (1 + \hat{\Lambda}) \hat{\mathcal{H}} | \Phi_0 \rangle_C$

$$\begin{aligned} \mathbf{CR-CC(2,3)} \\ \delta E^{(\mathrm{T})} &= \frac{1}{(3!)^2} \sum_{\substack{abc\\ijk}} l_{abc}^{ijk} \mathfrak{M}_{ijk}^{abc} \\ \mathfrak{M}_{ijk}^{abc} &= \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_0 \rangle \\ \mathfrak{M}_{abc}^{ijk} &= \langle \Phi_0 | \left(\hat{1} + \hat{\Lambda}^{(\mathrm{CCSD})} \right) \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \left(D_{ijk}^{abc} \right)^{-1} \\ D_{ijk}^{abc} &= -\sum_n \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}_n^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \end{aligned}$$

$$\begin{aligned} \mathbf{CR}-\mathbf{CC}(\mathbf{2},\mathbf{3})\\ \delta E^{(\mathrm{T})} &= \frac{1}{(3!)^2} \sum_{\substack{abc\\ijk}} l_{abc}^{ijk} \mathfrak{M}_{ijk}^{abc}\\ \mathfrak{M}_{ijk}^{abc} &= \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_0 \rangle\\ l_{abc}^{ijk} &= \langle \Phi_0 | \left(\hat{1} + \hat{\Lambda}^{(\mathrm{CCSD})} \right) \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \left(D_{ijk}^{abc} \right)^{-1}\\ D_{ijk}^{abc} &= -\sum_n \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}_n^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \end{aligned}$$

$$\begin{aligned} \mathbf{CR-CC(2,3)} \\ \delta E^{(\mathrm{T})} &= \frac{1}{(3!)^2} \sum_{\substack{abc \\ ijk}} l_{abc}^{ijk} \mathfrak{M}_{ijk}^{abc} \\ \mathfrak{M}_{ijk}^{abc} &= \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_0 \rangle \\ \mathfrak{M}_{ijk}^{ijk} &= \langle \Phi_0 | \left(\hat{1} + \hat{\Lambda}^{(\mathrm{CCSD})} \right) \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \left(D_{ijk}^{abc} \right)^{-1} \\ D_{ijk}^{abc} &= -\sum_n \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}_n^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \end{aligned}$$

Sven Binder - TU Darmstadt - April 2014

$$\begin{aligned} \mathbf{CR-CC(2,3)} \\ \delta E^{(\mathrm{T})} &= \frac{1}{(3!)^2} \sum_{\substack{abc \\ ijk}} l_{abc}^{ijk} \mathfrak{M}_{ijk}^{abc} \\ \mathfrak{M}_{ijk}^{abc} &= \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_0 \rangle \\ \mathfrak{M}_{abc}^{ijk} &= \langle \Phi_0 | \left(\hat{1} + \hat{\Lambda}^{(\mathrm{CCSD})} \right) \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \left(D_{ijk}^{abc} \right)^{-1} \\ D_{ijk}^{abc} &= -\sum_n \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}_n^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \end{aligned}$$

$$\begin{aligned} \mathbf{CR}-\mathbf{CC}(\mathbf{2},\mathbf{3})\\ \delta E^{(\mathrm{T})} &= \frac{1}{(3!)^2} \sum_{\substack{abc\\ijk}} l_{abc}^{ijk} \mathfrak{M}_{ijk}^{abc}\\ \mathfrak{M}_{ijk}^{abc} &= \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_0 \rangle\\ l_{abc}^{ijk} &= \langle \Phi_0 | \left(\hat{1} + \hat{\Lambda}^{(\mathrm{CCSD})} \right) \hat{\mathcal{H}}^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \left(D_{ijk}^{abc} \right)^{-1}\\ D_{ijk}^{abc} &= -\sum_n \langle \Phi_{ijk}^{abc} | \hat{\mathcal{H}}_n^{(\mathrm{CCSD})} | \Phi_{ijk}^{abc} \rangle \end{aligned}$$

 CR-CC(2,3) shows excellent agreement with quasi-exact diagonalizations

• **3N interactions** important for nuclear structure

• 3N interactions important for nuclear structure

• Full inclusion of $\hat{V}_{3\mathrm{N}}$ challenging

• **3N interactions** important for nuclear structure

• Full inclusion of $\hat{V}_{3\mathrm{N}}$ challenging

$$\hat{V}_{3N} = \not\downarrow - \checkmark + \not\downarrow - \checkmark + \cdots$$

Normal-ordering approximation:

$$\hat{V}_{3\mathrm{N}}=\hat{W}^{0\mathrm{B}}+\hat{W}^{1\mathrm{B}}+\hat{W}^{2\mathrm{B}}+\hat{W}^{3\mathrm{B}}$$
 (via normal ordering)

- **3N interactions** important for nuclear structure
- Full inclusion of $\hat{V}_{3\mathrm{N}}$ challenging

$$\hat{V}_{3N} = \not\downarrow - \checkmark + \not\downarrow - \checkmark + \cdots$$

Normal-ordering approximation:

$$\hat{V}_{3\mathrm{N}} = \hat{W}^{0\mathrm{B}} + \hat{W}^{1\mathrm{B}} + \hat{W}^{2\mathrm{B}} + \hat{W}^{3\mathrm{B}}$$
 (via normal ordering)

- 3N interactions important for nuclear structure
- Full inclusion of $\hat{V}_{3\mathrm{N}}$ challenging

$$\hat{V}_{3N} = \not + \not + \not + \not + \dots$$

Normal-ordering approximation:

$$\hat{V}_{3N} = \hat{W}^{0B} + \hat{W}^{1B} + \hat{W}^{2B} + \hat{W}^{3B}$$
 (via normal ordering)

 Generalization of Coupled-Cluster theory to 3N Hamiltonians elaborate, but possible

- **3N interactions** important for nuclear structure
- Full inclusion of $\hat{V}_{3\mathrm{N}}$ challenging

$$\hat{V}_{3N} = \not + \not + \not + \not + \dots$$

Normal-ordering approximation:

$$\hat{V}_{3N} = \hat{W}^{0B} + \hat{W}^{1B} + \hat{W}^{2B} + \hat{W}^{3B}$$
 (via normal ordering)

- Generalization of Coupled-Cluster theory to 3N Hamiltonians elaborate, but possible
- Currently, Coupled-Cluster theory is the only medium-mass ab initio method capable of including full 3N interactions

Coupled Cluster with Full 3N Interactions

Coupled Cluster with Full 3N Interactions

 Accuracy of normal-ordering approximation verified for medium-mass nuclei

(Error < 1%)

Coupled Cluster with Full 3N Interactions

 Accuracy of normal-ordering approximation verified for medium-mass nuclei
(Error < 1%)

(Error < 1%)

 Discarded 3N interaction relevant for CCSD, irrelevant for triples correction

• Many-body treatment: Uncertainties 2-4%

• Many-body treatment: Uncertainties 2-4%

- Systematic overbinding \Rightarrow Still **deficiencies**
 - * Next step: **Consistent 3N** interaction at N³LO

• Many-body treatment: Uncertainties 2-4%

⇒ Ideal tool to **test current and future** chiral Hamiltonians

• Systematic overbinding \Rightarrow Still **deficiencies**

* Next step: **Consistent 3N** interaction at N³LO

 Single Hamiltonian fixed in A≤4 systems able to qualitatively reproduce the experimental trend of binding energies

• Many-body treatment: Uncertainties 2-4%

⇒ Ideal tool to **test current and future** chiral Hamiltonians

• Systematic overbinding \Rightarrow Still **deficiencies**

* Next step: **Consistent 3N** interaction at N³LO

 Single Hamiltonian fixed in A≤4 systems able to qualitatively reproduce the experimental trend of binding energies

Computational Scheme

Chiral Effective Field Theory

Computational Scheme

Computational Scheme

Computing Facilities

Lichtenberg Cluster TU Darmstadt

Loewe-CSC Goethe-Universität Frankfurt

Edison National Energy Research Scientific Computing Center

Computing Facilities

Lichtenberg Cluster TU Darmstadt

Loewe-CSC Goethe-Universität Frankfurt

Edison National Energy Research Scientific Computing Center

Excited States

Excited States

 Generate excited states via linear 1p1h and 2p2h excitations on top of the fully correlated Coupled-Cluster ground state

$$|\Psi_{\mu}\rangle = \hat{\mathfrak{R}}_{\mu} |\Psi^{(\mathrm{CCSD})}\rangle$$

$$\hat{\mathfrak{R}}_{\mu} = (r_{\mu})_{0} + \sum_{ai} (r_{\mu})_{i}^{a} \left\{ \hat{a}_{a}^{\dagger} \hat{a}_{i} \right\} + \frac{1}{4} \sum_{abij} (r_{\mu})_{ij}^{ab} \left\{ \hat{a}_{a}^{\dagger} \hat{a}_{b}^{\dagger} \hat{a}_{j} \hat{a}_{i} \right\}$$

Excited States

 Generate excited states via linear 1p1h and 2p2h excitations on top of the fully correlated Coupled-Cluster ground state

$$|\Psi_{\mu}\rangle = \hat{\mathfrak{R}}_{\mu} |\Psi^{(\mathrm{CCSD})}\rangle$$

$$\hat{\mathfrak{R}}_{\mu} = (r_{\mu})_{0} + \sum_{ai} (r_{\mu})_{i}^{a} \left\{ \hat{a}_{a}^{\dagger} \hat{a}_{i} \right\} + \frac{1}{4} \sum_{abij} (r_{\mu})_{ij}^{ab} \left\{ \hat{a}_{a}^{\dagger} \hat{a}_{b}^{\dagger} \hat{a}_{j} \hat{a}_{i} \right\}$$

• Solve **non-Hermitean** eigenvalue problem

$$\left(\hat{\mathcal{H}}^{(\text{CCSD})}\,\hat{\mathfrak{R}}_{\mu}\,\right)_{c}\left|\Phi_{0}\right\rangle = \omega_{\mu}\,\hat{\mathfrak{R}}_{\mu}\left|\Phi_{0}\right\rangle$$
²⁴O Spectrum from Coupled Cluster

²⁴O: Low-Lying Positive-Parity States

²⁴O: Low-Lying Positive-Parity States

 $e_{\rm max}$

Publications

PRL 107	7, 072501 (2011)	PHYSICAL	REVIEW	LETTERS	week 12 AUC	k ending GUST 2011
Simila	Robert Roth, ^{1,*} Jos	Chiral NN + 3N	Interactions Angelo Calo	for the Ab Initiation of the I	Description of ¹²C a and Petr Navrátil ^{2,3}	nd ¹⁶ O
PRL 10	9, 052501 (2012)	PHYSICAL	REVIEW	LETTERS	week 3 AUGU	ending JST 2012
	Medium-M Robert Roth, "** Sve	fass Nuclei with No n Binder, ' Klaus Vobi	ormal-Order g,' Angelo Ca	red Chiral NN- llci,' Joachim Lan	+ 3N Interactions ghammer, ' and Petr Navi	rátil ²
Ab i S	nitio calculation ven Binder, ^{I,*} Joach	PHYSICAL REVIE IS of medium-ma iim Langhammer, ¹	W C 87, 021 ass nuclei Angelo Calci	303(R) (2013) with explicit (¹ Petr Navrátil, ²	Schiral 3N interacti and Robert Roth ¹	ions
In-med F	l ium similarity re H. Hergert, ^{1,*} S. K. Bo	PHYSICAL REVI normalization gro gner, ² S. Binder, ³ A. C	EW C 87, 0343 Oup with ch alci, ³ J. Langh	07 (2013) iral two- plus ammer, ³ R. Roth, ³	three-nucleon intera and A. Schwenk ^{3,4}	octions
PRL 110	0, 242501 (2013)	PHYSICAL	REVIEW	LETTERS	we 14 J	ek ending UNE 2013
	Ab Initio C H. Hergert,	alculations of Eve Iwo-Plus-Three-N .** S. Binder, ² A. Cal	n Oxygen I Jucleon Inte ci, ² J. Langha	sotopes with C eractions ammer, ² and R. R	hiral	
Exte Sven B	ension of coupled-c inder, ^{1,*} Piotr Piecuc	PHYSICAL REV luster theory with a clusters to thr ch, ^{2,1} Angelo Calci, ^{1,1}	/IEW C 88, 0 noniterative ee-body Har Joachim Lar	54319 (2013) e treatment of c niltonians nghammer, ^{1,§} Petr	onnected triply excited Navrátil, ^{3,1} and Robert	l Roth ^{1,¶}
	Evolved Chiral N Robert Roth,*	N+3N Hamiltonian Angelo Calci, [†] J	ns for Ab In oachim Lar	itio Nuclear Str nghammer,‡ an	ucture Calculations d Sven Binder [§]	

Nonperturbative shell-model interactions from the in-medium similarity renormalization group S. K. Bogner,^{1,*} H. Hergert,^{2,†} J. D. Holt,^{3,4,1,‡} A. Schwenk,^{3,4,§}

S. Binder,⁴ A. Calci,⁴ J. Langhammer,⁴ and R. Roth⁴ submitted to Phys. Rev. Lett.

Ab Initio Path to Heavy Nuclei

Sven Binder,^{1,*} Joachim Langhammer,¹ Angelo Calci,¹ and Robert Roth¹ submitted to Phys. Lett. B

+ Proceedings

Publications

in-medium similarity renormalization group
S. K. Bogner,^{1,*} H. Hergert,^{2,†} J. D. Holt,^{3,4,1,‡} A. Schwenk,^{3,4,§}
S. Binder,⁴ A. Calci,⁴ J. Langhammer,⁴ and R. Roth⁴
submitted to Phys. Rev. Lett.

Ab Initio Path to Heavy Nuclei Sven Binder,^{1,*} Joachim Langhammer,¹ Angelo Calci,¹ and Robert Roth¹ submitted to Phys. Lett. B

+ Proceedings