New Horizons in Ab Initio Nuclear Structure Theory

Robert Roth
Ab Initio Nuclear Structure

Nuclear Structure Observables

Exact Solutions
solve nuclear many-body problem with converged truncations

Controlled Approx.
treat many-body problem with controlled & improvable approximations

Similarity Transformations
physics-conserving unitary transformation to adapt Hamiltonian to limited model space

Chiral EFT Hamiltonians
consistent NN,3N,... interactions & current operators

Chiral Effective Field Theory
based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics

Lattice QCD
quarks & gluon on a lattice

Lattice EFT
nucleons & pions on a lattice

Energy-Density Funct.
guided by chiral EFT

Robert Roth – TU Darmstadt – 05/2013
Ab Initio Nuclear Structure

Nuclear Structure Observables

Exact Solutions
- solve nuclear many-body problem with converged truncations

Controlled Approx.
- treat many-body problem with controlled & improvable approximations

Similarity Transformations
- physics-conserving unitary transformation to Hamiltonian to limited model space

Chiral EFT Hamiltonians
- consistent NN, 3N, ... interactions & current operators

Chiral Effective Field Theory
- based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics

Energy-Density Function
- guided by chiral EFT

Robert Roth – TU Darmstadt – 05/2013
Ab Initio Nuclear Structure

Nuclear Structure Observables

Exact Solutions
- solve nuclear many-body problem with converged truncations

Controlled Approx.
- treat many-body problem with controlled & improv-able approximations

Similarity Transformations
- physics-conserving unitary transformation to adapt Hamiltonian to limited model space

Chiral EFT Hamiltonians
- consistent NN,3N,... interactions & current operators

Chiral Effective Field Theory
- based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics

Lattice QCD
- quarks & gluon on a lattice

Lattice EFT
- nucleons & pions on a lattice

Energy-Density Funct.
- guided by chiral EFT

Robert Roth – TU Darmstadt – 05/2013
Nuclear Interactions from Chiral EFT

- **chiral EFT background**: talks by Machleidt & Epelbaum

- **standard Hamiltonian**:
 - NN at N3LO: Entem & Machleidt, 500 MeV cutoff
 - 3N at N2LO: Navrátil, A=3 fit, 500 MeV cutoff

- **alternatives**:
 - modified 3N interaction at N2LO (cutoff, LECs)
 - consistent Hamiltonians at N2LO (NN: Epelbaum, POUNDERs-opt.)
 - consistent Hamiltonians at N3LO
 - Δ-full chiral EFT, YN interaction,...

<table>
<thead>
<tr>
<th></th>
<th>NN</th>
<th>3N</th>
<th>4N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2LO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3LO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ab Initio Nuclear Structure

Nuclear Structure Observables

- **Exact Solutions**
 - solve nuclear many-body problem with converged truncations

- **Controlled Approx.**
 - treat many-body problem with controlled & improvable approximations

Similarity Transformations
- physics-conserving unitary transformation to adapt Hamiltonian to limited model space

Chiral EFT Hamiltonians
- consistent NN,3N,... interactions & current operators

Chiral Effective Field Theory
- based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics
- quarks & gluon on a lattice
- nucleons & pions on a lattice

Robert Roth – TU Darmstadt – 05/2013
continuous transformation driving **Hamiltonian to band-diagonal form** with respect to a chosen basis

- **unitary transformation** of Hamiltonian:
 \[H_\alpha = U_\alpha^\dagger H U_\alpha \]

- **evolution equations** for \(H_\alpha \) and \(U_\alpha \):
 \[\frac{d}{d\alpha} H_\alpha = [\eta_\alpha, H_\alpha] \]

- **dynamic generator**: commutator with the operator in whose eigenbasis \(H_\alpha \) shall be diagonalized
 \[\eta_\alpha = (2\mu)^2[T_{\text{int}}, H_\alpha] \]

simplicity and flexibility are great advantages of the SRG approach

solve SRG evolution equations using two-, three- & four-body matrix representation
SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

\[\alpha = 0.000 \text{ fm}^4 \]
\[\Lambda = \infty \text{ fm}^{-1} \]
\[J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar \Omega = 28 \text{ MeV} \]

NCSM ground state \(^3\text{H}\)

Robert Roth – TU Darmstadt – 05/2013
SRG Evolution in Three-Body Space

$\alpha = 0.320 \text{ fm}^4$

$\Lambda = 1.33 \text{ fm}^{-1}$

$J^\pi = \frac{1}{2}^+, T = \frac{1}{2}, \hbar\Omega = 28 \text{ MeV}$

3B-Jacobi HO matrix elements

suppression of off-diagonal coupling $\hat{=} \text{ pre-diagonalization}$

NCSM ground state ^3H

significant improvement of convergence behavior
evolution induces n-body contributions $H_{\alpha}^{[n]}$ to Hamiltonian

$$H_{\alpha} = H_{\alpha}^{[1]} + H_{\alpha}^{[2]} + H_{\alpha}^{[3]} + H_{\alpha}^{[4]} + \ldots$$

truncation of cluster series formally destroys unitarity and invariance of energy eigenvalues (independence of α)

flow-parameter provides diagnostic tool to assess neglected higher-order contributions

SRG-Evolved Hamiltonians

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN_{only}</td>
<td>use initial NN, keep evolved NN</td>
</tr>
<tr>
<td>$\text{NN} + 3N_{\text{ind}}$</td>
<td>use initial NN, keep evolved NN+$3N$</td>
</tr>
<tr>
<td>$\text{NN} + 3N_{\text{full}}$</td>
<td>use initial NN+$3N$, keep evolved NN+$3N$</td>
</tr>
<tr>
<td>$\text{NN} + 3N_{\text{full}} + 4N_{\text{ind}}$</td>
<td>use initial NN+$3N$, keep evolved NN+$3N+$4N</td>
</tr>
</tbody>
</table>
Nuclear Structure Observables

Exact Solutions
solve nuclear many-body problem with converged truncations

Controlled Approx.
treat many-body problem with controlled & improvable approximations

Similarity Transformations
physics-conserving unitary transformation to adapt Hamiltonian to limited model space

Chiral EFT Hamiltonians
consistent NN, 3N,... interactions & current operators

Chiral Effective Field Theory

based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics

Lattice QCD
quarks & gluon on a lattice

Lattice EFT
nucleons & pions on a lattice

Energy-Density Funct.
guided by chiral EFT
NCSM is one of the most powerful and universal exact ab-initio methods

- construct matrix representation of Hamiltonian using a **basis of HO Slater determinants** truncated w.r.t. HO excitation energy $N_{\text{max}} \hbar \Omega$

- solve **large-scale eigenvalue problem** for a few extremal eigenvalues

- **all relevant observables** can be computed from the eigenstates

- range of applicability limited by **factorial growth** of basis with $N_{\text{max}} \& \Lambda$

- adaptive **importance truncation** extends the range of NCSM by reducing the model space to physically relevant states
converged NCSM calculations essentially restricted to lower/mid p-shell

full $N_{\text{max}} = 10$ calculation for 16O very difficult (basis dimension $> 10^{10}$)

Importance Truncation

reduce model space to the relevant basis states using an *a priori* importance measure derived from MBPT
4He: Ground-State Energies

NN_{only}

$NN + 3N_{\text{ind}}$

$NN + 3N_{\text{full}}$

$h\Omega = 20 \text{ MeV}$

E [MeV]

N_{max}

$\alpha = 0.04 \text{ fm}^4$

$\Lambda = 2.24 \text{ fm}^{-1}$

$\alpha = 0.05 \text{ fm}^4$

$\Lambda = 2.11 \text{ fm}^{-1}$

$\alpha = 0.0625 \text{ fm}^4$

$\Lambda = 2.00 \text{ fm}^{-1}$

$\alpha = 0.08 \text{ fm}^4$

$\Lambda = 1.88 \text{ fm}^{-1}$

$\alpha = 0.16 \text{ fm}^4$

$\Lambda = 1.58 \text{ fm}^{-1}$

Exp.
$^{12}\text{C: Ground-State Energies}$

$E [\text{MeV}]$ vs N_{max}

- $\hbar \Omega = 20 \text{ MeV}$
- $\alpha = 0.04 \text{ fm}^4$
- $\Lambda = 2.24 \text{ fm}^{-1}$
- $\alpha = 0.05 \text{ fm}^4$
- $\Lambda = 2.11 \text{ fm}^{-1}$
- $\alpha = 0.0625 \text{ fm}^4$
- $\Lambda = 2.00 \text{ fm}^{-1}$
- $\alpha = 0.08 \text{ fm}^4$
- $\Lambda = 1.88 \text{ fm}^{-1}$
- $\alpha = 0.16 \text{ fm}^4$
- $\Lambda = 1.58 \text{ fm}^{-1}$

Exp.

Robert Roth – TU Darmstadt – 05/2013
16O: Ground-State Energies

\[E_\text{NN only} \]

\[E_\text{NN+3N_{ind}} \]

\[E_\text{NN+3N_{full}} \]

\(h\Omega = 20 \text{ MeV} \)

\(N_{max} \)

\(E [\text{MeV}] \)

\(\alpha = 0.04 \text{ fm}^4 \)
\(\Lambda = 2.24 \text{ fm}^{-1} \)

\(\alpha = 0.05 \text{ fm}^4 \)
\(\Lambda = 2.11 \text{ fm}^{-1} \)

\(\alpha = 0.0625 \text{ fm}^4 \)
\(\Lambda = 2.00 \text{ fm}^{-1} \)

\(\alpha = 0.08 \text{ fm}^4 \)
\(\Lambda = 1.88 \text{ fm}^{-1} \)

\(\alpha = 0.16 \text{ fm}^4 \)
\(\Lambda = 1.58 \text{ fm}^{-1} \)

option 1: suppress induced 4N by modifying initial 3N

option 2: explicitly include induced 4N terms in IT-NCSM

clear signature of induced 4N originating from initial 3N

Roth, et al; PRL 107, 072501 (2011)
16O: Lowering the Initial 3N Cutoff

standard

reduced 3N cutoff

c_E refit to 4He binding energy

500 MeV

$c_D = -0.2$
$c_E = -0.205$

450 MeV

$c_D = -0.2$
$c_E = -0.016$

400 MeV

$c_D = -0.2$
$c_E = 0.098$

350 MeV

$c_D = -0.2$
$c_E = 0.205$

$\alpha = 0.04 \text{ fm}^4$
$\Lambda = 2.24 \text{ fm}^{-1}$

$\alpha = 0.05 \text{ fm}^4$
$\Lambda = 2.11 \text{ fm}^{-1}$

$\alpha = 0.0625 \text{ fm}^4$
$\Lambda = 2.00 \text{ fm}^{-1}$

$\alpha = 0.08 \text{ fm}^4$
$\Lambda = 1.88 \text{ fm}^{-1}$

lowering the initial 3N cutoff suppresses induced 4N terms
^{16}O: Explicit Inclusion of Induced $4N$

- induced $4N$ from SRG evolution in four-body Jacobi-HO
- transformation to m- or JT-scheme $4N$ matrix elements
- explicit $4N$ terms in IT-NCSM

![Graph showing energy levels as a function of N_{max}.](image)

- $E_{4\text{max}} = 6$
- $\hbar \Omega = 24\text{MeV}$

Legend

- $\text{NN+3N}_{\text{full}}$
- $\text{NN+3N}_{\text{full}}+4N_{\text{ind}}(0^+0)$

- $\alpha = 0.04 \text{ fm}^4$
- $\alpha = 0.0625 \text{ fm}^4$
- $\alpha = 0.08 \text{ fm}^4$
- $\alpha = 0.16 \text{ fm}^4$
16O: Explicit Inclusion of Induced 4N

- inclusion of explicit 4N is feasible (at least partially)
- effect of SRG-induced 4N as expected

- induced 4N from SRG evolution in four-body Jacobi-HO
- transformation to m- or JT-scheme 4N matrix elements
- explicit 4N terms in IT-NCSM

<table>
<thead>
<tr>
<th>α</th>
<th>\rm{fm}^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0.04$</td>
<td>$\alpha = 0.0625$</td>
</tr>
</tbody>
</table>

$\frac{\hbar^2}{\Omega} = 24\,\text{MeV}$
$E_{4\,\text{max}} = 6$
Ab Initio Nuclear Structure

Nuclear Structure Observables

Exact Solutions
solve nuclear many-body problem with converged truncations

Controlled Approx.
treat many-body problem with controlled & improvable approximations

Similarity Transformations
physics-conserving unitary transformation to adapt Hamiltonian to limited model space

Chiral EFT Hamiltonians
consistent NN,3N,... interactions & current operators

Chiral Effective Field Theory
based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics

Lattice QCD
quarks & gluon on a lattice

Lattice EFT
nucleons & pions on a lattice

Energy-Density Funct.
guided by chiral EFT
Ground States of Oxygen Isotopes

$NN + 3N_{\text{ind}}$ (chiral NN)

$NN + 3N_{\text{full}}$ (chiral NN+3N)

E_{MeV}

$\Lambda_{3N} = 400 \text{ MeV}$, $\alpha = 0.08 \text{ fm}^4$, $E_{3\text{max}} = 14$, optimal $h\Omega$

Hergert et al., PRL (2013); arXiv:1302.7294
Ground States of Oxygen Isotopes

Hergert et al., PRL (2013); arXiv:1302.7294

\[\Lambda_{3N} = 400 \text{ MeV}, \quad \alpha = 0.08 \text{ fm} \]

Parameter-free ab initio calculations with full 3N interactions

Highlights predictive power of chiral NN+3N Hamiltonians
Ground States of Oxygen Isotopes

\[\Lambda_{3N} = 400 \text{ MeV}, \quad \alpha = 0.08 \text{ fm}^4, \quad E_{3\text{max}} = 14, \quad \text{optimal } h\Omega \]
Ground States of Oxygen Isotopes

Different many-body approaches using the same NN+3N Hamiltonian give consistent results.

\(\Lambda_{3N} = 400 \text{ MeV}, \quad \alpha = 0.08 \text{ fm}^2, \quad E_{3\text{max}} = 14, \quad \text{optimal } \Omega \)

Minor differences are understood (NO2B, \(E_{3\text{max}} \), ...)

\(\text{Hergert et al., PRL (2013); arXiv:1302.7294} \)
Ab Initio Nuclear Structure

Nuclear Structure Observables

Exact Solutions
- solve nuclear many-body problem with converged truncations

Controlled Approx.
- treat many-body problem with controlled & improvable approximations

Similarity Transformations
- physics-conserving unitary transformation to adapt Hamiltonian to limited model space

Chiral EFT Hamiltonians
- consistent NN, 3N, ... interactions & current operators

Chiral Effective Field Theory
- based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics

Robert Roth – TU Darmstadt – 05/2013
CC is one of the most efficient methods for the description of ground states of medium-mass or heavy closed-shell nuclei.

- Many-body state parametrized as **exponential wave operator** applied to single-determinant **reference state** $|\Phi_{\text{ref}}\rangle$

$$|\Psi_{\text{CC}}\rangle = \Omega |\Phi_{\text{ref}}\rangle = \exp(T_1 + T_2 + T_3 + \cdots + T_A) |\Phi_{\text{ref}}\rangle$$

- Truncation with respect to n-particle-n-hole **excitation operators** T_n

- Solve **non-linear system** of equations for the amplitudes in T_1, T_2, T_3, \ldots

- Extensions to near-closed-shell nuclei and excited states through **equations-of-motion methods**

- We have developed a parallelized CC code for **CCSD** and Λ-**CCSD(T)**
Inclusion of 3N Interactions

Robert Roth – TU Darmstadt – 05/2013

- **premium option:** explicit 3N
 - extend coupled-cluster equations for explicit 3N interactions
 - CCSD-3B, Λ-CCSD(T)-3B are feasible, but much more expensive

- **low-cost option:** normal-ordered two-body approximation
 - write 3N interaction in normal-ordered form with respect to the actual A-body reference determinant (HF state)

\[
V_{3N} = \sum V^{3N}_{\ldots\ldots\ldots} a_0^\dagger a_0^\dagger a_\alpha a_\alpha a_\alpha
\]

\[
= W^{0B} + \sum W^{1B}_{\ldots\ldots\ldots} \{a_\alpha\} + \sum W^{2B}_{\ldots\ldots\ldots} \{a_\dagger a_\dagger a_\alpha a_\alpha\}
\]

\[
+ \sum W^{3B}_{\ldots\ldots\ldots\ldots\ldots\ldots\ldots} \{a_\dagger a_\dagger a_\dagger a_\alpha a_\alpha a_\alpha\}
\]

- discard normal-ordered three-body term and use two-body coupled-cluster formalism
CCSD with Explicit 3N Interactions

Roth, et al., PRL 109, 052501 (2012); Binder et al., PRC 87, 021303(R) (2013)

\[\text{NN+3N}_{\text{full}} \]

\[E_{\text{MeV}} = \begin{align*}
16\text{O} & : h\Omega = 20 \text{ MeV} \\
24\text{O} & : h\Omega = 20 \text{ MeV} \\
40\text{Ca} & : h\Omega = 24 \text{ MeV} \\
48\text{Ca} & : h\Omega = 28 \text{ MeV}
\end{align*} \]

NO2B approximation reproduces explicit-3N results with better than 1% accuracy

\(\alpha = 0.02 \text{ fm}^4 \)
\(\alpha = 0.04 \text{ fm}^4 \)
\(\alpha = 0.08 \text{ fm}^4 \)

HF basis
\(E_{3\text{max}} = 12 \)
\(\Lambda_{3\text{N}} = 400 \text{ MeV} \)
Λ-CCSD(T) with NO2B Approximation

Roth, et al., PRL 109, 052501 (2012); Binder et al., PRC 87, 021303(R) (2013)

NN+3N

- Experimental binding energies for Ca isotopes reproduced within 10%
- No parameter adjustments!

Λ-CCSD(T)

- α = 0.02 fm⁴
- α = 0.04 fm⁴
- α = 0.08 fm⁴

CCSD

- HF basis

E₃ₓₐₓ = 14

Λ₃Ν = 400 MeV

Robert Roth – TU Darmstadt – 05/2013
Ab Initio Nuclear Structure

Nuclear Structure Observables

Exact Solutions
solve nuclear many-body problem with converged truncations

Controlled Approx.
treat many-body problem with controlled & improvable approximations

Similarity Transformations
physics-conserving unitary transformation to adapt Hamiltonian to limited model space

Chiral EFT Hamiltonians
consistent NN,3N,... interactions & current operators

Chiral Effective Field Theory
based on relevant degrees of freedom & symmetries of QCD

Low-Energy Quantum Chromodynamics

Lattice QCD
- quarks & gluon on a lattice

Lattice EFT
- nucleons & pions on a lattice

Energy-Density Funct.
guided by chiral EFT
Ab Initio Hyper-Nuclear Structure

Hyper-Nuclear Structure Observables

- **Exact Solutions**
 - solve nuclear many-body problem with converged truncations

- **Controlled Approx.**
 - treat many-body problem with controlled & improvable approximations

- **Similarity Transformations**
 - physics-conserving unitary transformation to adapt Hamiltonian to limited model space

- **Chiral EFT Hamiltonians**
 - consistent NN, 3N, YN, YY, ... interactions & current operators

- **Chiral Effective Field Theory**
 - based on relevant degrees of freedom & symmetries of QCD

- **Energy-Density Funct.**
 - guided by chiral EFT

Lattice QCD
- quarks & gluon on a lattice

Lattice EFT
- nucleons & pions on a lattice

Low-Energy Quantum Chromodynamics
Motivation: Hypernuclear Structure

- precision data on hypernuclear ground states and spectroscopy are available
- ab initio few-body ($A \lesssim 4$) and phenomenological shell model or cluster calculations so far
- chiral EFT interactions including hyperons are being constructed
- constrain YN & YY interaction by ab initio hypernuclear structure calculations
■ **Hamiltonian from chiral EFT**
 - NN+3N: standard chiral Hamiltonian (Entem&Machleidt, Navrátil)
 - YN: LO chiral interaction (Haidenbauer et al.), NLO in progress

■ **Similarity Renormalization Group**
 - consistent SRG-evolution of NN, 3N, YN interactions
 - using particle basis and including $\Lambda\Sigma$-coupling (larger matrices)
 - $\Lambda-\Sigma$ mass difference and $p\Sigma^\pm$ Coulomb included consistently

■ **Importance Truncated No-Core Shell Model**
 - include explicit (p, n, Λ, Σ^+, Σ^0, Σ^-) with physical masses
 - larger model spaces easily tractable with importance truncation
 - all p-shell single-Λ hypernuclei are accessible
Application: $^7_\Lambda$Li

^6Li

$^7\Lambda\text{Li}$

Jülich’04

NN @ N3LO
Entem&Machleidt
$\Lambda_{NN} = 500$ MeV

3N @ N2LO
Navratil
$\Lambda_{3N} = 500$ MeV
triton fit

Jülich’04
Haidenbauer et al.
scatt. & hypertriton

$\alpha = 0.08 \text{ fm}^4$

$h\Omega = 20$ MeV

Robert Roth – TU Darmstadt – 05/2013
Application: $^7_\Lambda$Li

- ^6Li
- $^7\Lambda\text{Li}$

Hypernuclear Structure

Sets tight constraints on YN interaction.

Start Investigating

Sensitivity of spectra on YN input.

NN @ N3LO
- $\Lambda_{NN} = 500$ MeV
- Entem & Machleidt

3N @ N2LO
- $\Lambda_{3N} = 500$ MeV
- Navratil
- Triton fit

YN @ LO
- Haidenbauer et al.
- $\Lambda_{YN} = 700$ MeV
- Scatt. & hypertriton

$\alpha = 0.08 \text{ fm}^4$

$h\Omega = 20$ MeV
Conclusions
Conclusions

- new era of **ab-initio nuclear structure and reaction theory** connected to QCD via chiral EFT
 - chiral EFT as universal starting point... propagate uncertainties & provide feedback

- consistent **inclusion of 3N & 4N interactions** in similarity transformations & many-body calculations
 - breakthrough in treatment of 3N & 4N matrix elements

- **innovations in many-body theory**: extended reach of exact methods & improved control over approximations
 - versatile toolbox for different observables & mass ranges

- many **exciting applications** ahead...
thanks to my group & my collaborators

 Institut für Kernphysik, TU Darmstadt

- **P. Navrátil**
 TRIUMF Vancouver, Canada

- J. Vary, P. Maris
 Iowa State University, USA

- S. Quaglioni, G. Hupin
 LLNL Livermore, USA

- P. Piecuch
 Michigan State University, USA

- **H. Hergert**, K. Hebeler
 Ohio State University, USA

- P. Papakonstantinou
 IPN Orsay, F

- C. Forssén
 Chalmers University, Sweden

- H. Feldmeier, T. Neff
 GSI Helmholtzzentrum
Happy Birthday James !!!

...and many more happy & productive visits to Darmstadt