Hartree-Fock and RPA for Axially Deformed Nuclei with Realistic Interactions

Bastian Erler Institut für Kernphysik, T.U.Darmstadt

21. März 2012

Outline

Introduction

Basics RPA Formalism for Deformed Nuclei

Results ²⁰Ne Angular Momentum Projection Three-Body Forces ²⁸Si Deformation ³²S Transition Densities

Basics

Interaction

Unitarily transformed interaction, based on realistic AV18 NN interaction

- suitable for restricted Hilbert spaces
- tamed short-range correlations
- improved convergence behavior
- conservation of phase shifts
- phenomenological 3-body contact term one parameter

Many body method

Hartree-Fock and Random Phase Approximation (RPA) with axial deformation

- Spherical Harmonic Oscillator basis, truncated at e = 2 n + l ≤ 14, l ≤ 10
- ► HF variation over n,l,j,m_j m_j and parity of l are good quantum numbers (m_j is usually reffered to as k)
- exact angular momentum projection
- approximative variation after projection with β constraint

RPA Formalism for Axially Deformed Nuclei

Vibration creation operator

ph selection rules

$$\begin{split} \hat{Q}_{\omega}^{\dagger} &= \sum_{ph} X_{ph}^{\omega} \, \hat{a}_{p}^{\dagger} \hat{a}_{h} - \sum_{ph} Y_{ph}^{\omega} \, \hat{a}_{h}^{\dagger} \hat{a}_{p} & \pi_{p} - \pi_{h} = \pi_{\omega} \\ & |m_{p} - m_{h}| = |m_{\omega}| \\ \hat{Q}_{\omega} |\mathsf{RPA}\rangle &= 0 & , \qquad \hat{Q}_{\omega}^{\dagger} |\mathsf{RPA}\rangle = |\omega\rangle \end{split}$$

Quasi-Boson-Approximation

$$\langle \mathsf{RPA} | \hat{H} \, \hat{Q}_\omega^\dagger | \mathsf{RPA} \rangle \rightarrow \langle \mathsf{HF} | [\hat{H}, \hat{Q}_\omega^\dagger] | \mathsf{HF} \rangle$$

RPA equations in *ph*-space

$$\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} = \hbar \omega_{\nu} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix}$$
$$A_{ph,p'h'} = \delta_{pp'} \delta_{hh'} (e_p - e_h) + H_{hp',ph'} \quad , \quad B_{ph,p'h'} = H_{hh',pp'}$$

RPA Transition Amplitudes

Unprojected transition amplitudes

$$(\mathsf{RPA} \| \hat{T}^{\lambda} \| \omega) = \sum_{\mu, ph} \left(X^{\omega}_{ph} + (-1)^{K_{ph}} Y^{\omega}_{ph}
ight) \langle h | \hat{T}^{\lambda}_{\mu} | p
angle$$

Projected transition amplitudes

$$(\operatorname{RPA} \| \hat{T}^{\lambda} \| \omega) = (2 J_0 + 1) N_0 N_\omega (-1)^{J_0 - K_0} \sum \begin{pmatrix} J_0 & \lambda & J_\omega \\ -K_0 & \mu & K_0 - \mu \end{pmatrix}$$

no additional approximations for
angular momentum projection
$$\hat{P}^J_{MK} = \frac{2 J + 1}{2} \int_{-1}^{1} d^J_{MK}(\beta) e^{i\beta J_y} d\cos(\beta)$$

HF Ground State - ²⁰Ne

Effect of HF angular momentum projection - ²⁰Ne

Effect of RPA angular momentum projection - ²⁰Ne

Effect of 3-body forces - ²⁰Ne

HF Ground State - ²⁸Si

Effect of prolate and oblate deformation - ²⁸Si

HF Ground State - ³²S

K contributions - ³²S

0.6

 $R(E1IV)~(e^{2}fm^{2}/MeV)$

► K defines the shape of the oscillation

Isovector Dipole

Transition densities - ${}^{32}S$ J = 0 K = 0 E = 8.2MeV

Transition densities - ${}^{32}S$ J = 0 K = 0 E = 11.5MeV

E (MeV)

Transition densities - ${}^{32}S$ J = 0 K = 0 E = 11.6MeV

Transition densities - ${}^{32}S$ J = 0 K = 0 E = 13.9MeV

Transition densities - ${}^{32}S$ J = 2 K = 0 E = 13.9MeV

Transition densities - ${}^{32}S$ J = 2 K = 0 E = 16.0 MeV

Transition densities - ${}^{32}S$ J = 2 K = 1 E = 2.3MeV

Transition densities - ${}^{32}S$ J = 2 K = 1 E = 12.4 MeV

Transition densities - ${}^{32}S$ J = 2 K = 1 E = 18.0MeV

Transition densities - ${}^{32}S$ J = 2 K = 1 E = 18.1MeV

Transition densities - ${}^{32}S$ J = 2 K = 2 E = 20.2MeV

Acknowledgement

TNP++ Group

S. Binder, A.Calci, E. Gebrerufael, A. Günther, H. Krutsch, J. Langhammer, S. Reinhardt, C. Stumpf, R. Trippel, R. Wirth and R. Roth

Institut für Kernphysik, TU Darmstadt

Collaborators

H. HergertOhio State University, USAP. PapakonstantinouIPN Orsay, F

Deutsche Forschungsgemeinschaft DFG Stotewe – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

