Importance-Truncated No-Core Shell Model for Ab-Initio Nuclear Structure

Institut für Kernphysik

Nuclear Structure

Nuclear Structure

Realistic Nuclear Interactions

Low-Energy QCD

- chiral EFT interactions: consistent NN & 3N interaction derived within χEFT
- traditional NN-interactions: Argonne V18, CD Bonn,...
- reproduce experimental twobody data with high precision
- induce strong short-range central & tensor correlations

Nuclear Structure

Modern Effective Interactions

Realistic Nuclear Interactions

Low-Energy QCD

- adapt realistic potential to the available model space
 - tame short-range correlations
 - improve convergence behavior
- conserve experimentally constrained properties (phase shifts & deuteron)
 - generate new realistic int.
- need consistent effective interaction & effective operators
- unitary transformations most convenient

Nuclear Structure

Modern Effective Interactions

Realistic Nuclear Interactions

Low-Energy QCD

 adapt realistic potential to the available model space

- tame short-range correlations
- improve convergence behavior
- conserve experimentally constrained properties (phase shifts & deuteron)
 - generate new realistic int.
- need consistent effective interaction & effective operators
- unitary transformations most convenient

UCOM SRG

Nuclear Structure

Exact / Approx. Many-Body Tools

Modern Effective Interactions

Realistic Nuclear Interactions

Low-Energy QCD

- 'exact' solution of the manybody problem for light & intermediate masses (NCSM, CC,...)
- controlled approximations for heavier nuclei (HF & MBPT,...)
- rely on restricted model spaces of tractable size
- not suitable for the description of short-range correlations

Nuclear Structure

Exact / Approx. Many-Body Tools

Modern Effective Interactions

Realistic Nuclear Interactions

Low-Energy QCD

- 'exact' solution of the manybody problem for light & intermediate masses (NCSM, CC,...)
- controlled approximations for heavier nuclei (HF & MBPT,...)
- rely on restricted model spaces of tractable size
- not suitable for the description of short-range correlations

this talk: **NCSM**

more on other methods in **HK 83.2**

No-Core Shell Model: Basics

- special case of a full configuration interaction (CI) scheme
- **many-body basis**: Slater determinants $|\Phi_{\nu}\rangle$ composed of harmonic oscillator single-particle states

$$\left|\Psi\right\rangle = \sum_{\nu} C_{\nu} \left|\Phi_{\nu}\right\rangle$$

- **model space**: spanned by basis states $|\Phi_{\nu}\rangle$ with unperturbed excitation energies of up to $N_{\max}\hbar\omega$
 - important difference to conventional CI, where model space is defined by a truncation of the single-particle basis
- numerical solution of eigenvalue problem for the Hamiltonian H_{int} within truncated model space via Lanczos methods
- model spaces of up to 10⁹ basis states are used routinely

No-Core Shell Model: Applications

- typical domain of the NCSM are **nuclei with** $A \lesssim 13$
- Lee-Suzuki transformation used to enhance convergence

Importance-Truncated NCSM

- the model-space dimension is the single limiting factor for the NCSM
- full 6ħω calculation for ⁴⁰Ca presently not feasible (basis dimension ~10¹⁰)

Importance-Truncated NCSM

- the model-space dimension is the single limiting factor for the NCSM
- full 6ħω calculation for ⁴⁰Ca presently not feasible (basis dimension ~10¹⁰)

Importance Truncation

reduce NCSM space to the relevant basis states using an **a priori importance measure** derived from MBPT

Importance-Truncated NCSM

- the model-space dimension is the single limiting factor for the NCSM
- full 6ħω calculation for ⁴⁰Ca presently not feasible (basis dimension ~10¹⁰)

Importance Truncation

reduce NCSM space to the relevant basis states using an **a priori importance measure** derived from MBPT

Importance Truncation: General Idea

- **\blacksquare** given an initial approximation $|\Psi_{ref}\rangle$ for the **target state**
- measure the importance of individual basis state $|\Phi_{\nu}\rangle$ via first-order multiconfigurational perturbation theory

$$\kappa_{\nu} = -\frac{\left\langle \Phi_{\nu} \right| \mathsf{H} \left| \Psi_{\mathsf{ref}} \right\rangle}{\epsilon_{\nu} - \epsilon_{\mathsf{ref}}}$$

- construct **importance-truncated space** spanned by basis states with $|\kappa_{\nu}| \ge \kappa_{\min}$ and solve eigenvalue problem
- **iterative scheme**: repeat construction of importance-truncated model space using eigenstate as improved reference $|\Psi_{ref}\rangle$
- In threshold extrapolations and perturbative corrections can be used to account for discarded basis states

⁴He: Importance-Truncated NCSM

 sequential IT-NCSM(seq): single importance update using (N_{max} – 2)ħω eigenstate as reference

- reproduces exact NCSM result for all N_{max}
- reduction of basis by more than two orders of magnitude w/o loss of precision

+ full NCSMIT-NCSM(seq)

⁴He: Importance-Truncated NCSM

- reproduces exact NCSM result for all ħω and N_{max}
- importance truncation & threshold extrapolation is robust
- no problem with center of mass

+ full NCSM

IT-NCSM(seq)

¹⁶O: Importance-Truncated NCSM

- IT-NCSM(seq) provides excellent agreement with full NCSM calculation
- dimension reduced by several orders of magnitude
- possibility to go way beyond the domain of the full NCSM

- + full NCSM
- IT-NCSM(seq), $C_{\min} = 0.0005$
- IT-NCSM(seq), $C_{min} = 0.0003$

¹⁶O: Importance-Truncated NCSM

• extrapolation to $N_{\max} \rightarrow \infty$

 $E_{\text{IT-NCSM(seq)}} = -133(3) \text{ MeV}$ $E_{\text{exp}} = -127.6 \text{ MeV}$

- V_{UCOM} predicts reasonable binding energies also for heavier nuclei
- slow non-exponential convergence makes precise extrapolation difficult
- + full NCSM
- IT-NCSM(seq), $C_{min} = 0.0005$
- IT-NCSM(seq), $C_{min} = 0.0003$

¹²C: IT-NCSM for Open-Shell Nuclei

excellent agreement with full NCSM calculations

- IT-NCSM(seq) works just as well for non-magic / openshell nuclei
- all calculations limited the available two-body matrix elements of V_{UCOM} only

- + full NCSM
- IT-NCSM(seq), $C_{\min} = 0.0005$
- IT-NCSM(seq), $C_{min} = 0.0003$

Summary

- importance-truncation scheme extends the domain of ab-initio
 NCSM calculations to much larger N_{max} and A
 - $22\hbar\omega$ calculations for ¹²C and ¹⁶O done routinely

IT-NCSM has all the advantages of the full NCSM

- variational principle
- no spurious center-of-mass contamination
- applicable for closed and open-shell nuclei
- ground and excited states are treated on the same footing
- wave-functions for free
- expectation values, transition matrix elements, densities and formfactors can be computed with standard shell-model technology
- Implementation is different from standard NCSM & calculations are computationally demanding

Outlook

- further development of the IT-NCSM technology
- IT-NCSM as tool for testing new interactions
- **full spectroscopy** for lowlying states in nuclei with $A \leq$ 40 in large $N_{max}\hbar\omega$ spaces
- nucleon-nucleus reactions within the RGM approach using IT-NCSM wave functions (with P. Navrátil)

Outlook

- further development of the IT-NCSM technology
- IT-NCSM as tool for testing new interactions
- **full spectroscopy** for lowlying states in nuclei with $A \leq$ 40 in large $N_{max}\hbar\omega$ spaces
- nucleon-nucleus reactions within the RGM approach using IT-NCSM wave functions (with P. Navrátil)

Epilogue

thanks to my group & my collaborators

- S. Binder, B. Erler, A. Günther, H. Hergert, M. Hild, H. Krutsch, J. Langhammer, P. Papakonstantinou, S. Reinhardt, F. Schmitt, N. Vogelmann, F. Wagner Institut für Kernphysik, TU Darmstadt
- P. Navrátil, S. Quaglioni

Lawrence Livermore National Laboratory, USA

• P. Piecuch, J. Gour

Michigan State University, USA

• H. Feldmeier, T. Neff,...

Gesellschaft für Schwerionenforschung (GSI)

Deutsche Forschungsgemeinschaft **DFG**

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz