Ab Initio Nuclear Structure beyond the p-Shell

Importance Truncated No-Core Shell Model

Robert Roth

Institut für Kernphysik Technische Universität Darmstadt

Overview

Motivation

Modern Effective Interactions

- Unitary Correlation Operator Method
- Similarity Renormalization Group
- Innovative Many-Body Methods
 - No-Core Shell Model
 - Importance Truncated NCSM
- Perspectives

Nuclear Structure

Robert Roth - TU Darmstadt - 04/2008

Nuclear Structure

Realistic Nuclear Interactions

Low-Energy QCD

- chiral interactions: consistent NN & 3N interaction derived within χEFT
- traditional NN-interactions: Argonne V18, CD Bonn,...
- reproduce experimental NN phaseshifts with high precision
- induce strong short-range central & tensor correlations

Nuclear Structure

Exact / Approx. Many-Body Methods

- 'exact' solution of the many-body problem for light and intermediate masses (GFMC, NCSM, CC,...)
- controlled approximations for heavier nuclei (HF & MBPT,...)
- rely on restricted model spaces of tractable size
- not suitable for the description of short-range correlations

Realistic Nuclear Interactions

Low-Energy QCD

Nuclear Structure

Exact / Approx. Many-Body Methods

Modern Effective Interactions

Realistic Nuclear Interactions

Low-Energy QCD

- adapt realistic potential to the available model space
 - tame short-range correlations
 - improve convergence behavior
- conserve experimentally constrained properties (phase shifts)
 - generate new realistic interaction
- provide consistent effective interaction & effective operators
- unitary transformations most convenient

Modern Effective Interactions

Unitary Correlation Operator Method (UCOM)

H. Feldmeier et al. — Nucl. Phys. A 632 (1998) 61
T. Neff et al. — Nucl. Phys. A713 (2003) 311
R. Roth et al. — Nucl. Phys. A 745 (2004) 3
R. Roth et al. — Phys. Rev. C 72, 034002 (2005)

Deuteron: Manifestation of Correlations

exact deuteron solution for Argonne V18 potential

short-range repulsion supresses wavefunction at small distances r

central correlations

tensor interaction generates D-wave admixture in the ground state

tensor correlations

Unitary Correlation Operator Method

explicit ansatz for unitary transformation operator motivated by the physics of short-range central & tensor correlations

Central Correlator C_r

 radial distance-dependent shift in the relative coordinate of a nucleon pair

$$\mathbf{g}_r = \frac{1}{2} \left[s(\mathbf{r}) \ \mathbf{q}_r + \mathbf{q}_r \ s(\mathbf{r}) \right]$$

$$\mathbf{q}_r = rac{1}{2} ig[rac{ec{\mathbf{r}}}{\mathbf{r}} \cdot ec{\mathbf{q}} + ec{\mathbf{q}} \cdot rac{ec{\mathbf{r}}}{\mathbf{r}} ig]$$

Tensor Correlator C_{Ω}

angular shift depending on the orientation of spin and relative coordinate of a nucleon pair

$$\mathbf{g}_{\Omega} = \frac{3}{2}\vartheta(\mathbf{r}) \left[(\vec{\boldsymbol{\sigma}}_{1} \cdot \vec{\mathbf{q}}_{\Omega})(\vec{\boldsymbol{\sigma}}_{2} \cdot \vec{\mathbf{r}}) + (\vec{\mathbf{r}} \leftrightarrow \vec{\mathbf{q}}_{\Omega}) \right]$$
$$\vec{\mathbf{q}}_{\Omega} = \vec{\mathbf{q}} - \frac{\vec{\mathbf{r}}}{\vec{\mathbf{r}}} \mathbf{q}_{r}$$

$$\mathbf{C} = \mathbf{C}_{\Omega} \mathbf{C}_{r} = \exp\left(-i \sum_{i < j} \mathbf{g}_{\Omega, ij}\right) \exp\left(-i \sum_{i < j} \mathbf{g}_{r, ij}\right)$$

• s(r) and $\vartheta(r)$ for given potential determined by constrained energy minimization in the two-body system (for each S, T)

Correlated States: The Deuteron

Correlated Interaction: V_{UCOM}

Modern Effective Interactions

Similarity Renormalization Group (SRG)

Hergert & Roth — Phys. Rev. C 75, 051001(R) (2007) Bogner et al. — Phys. Rev. C 75, 061001(R) (2007) Roth, Reinhardt, Hergert — arXiv:0802.4239

Similarity Renormalization Group

unitary transformation of the Hamiltonian to a band-diagonal form with respect to a given uncorrelated many-body basis

Flow Equation for Hamiltonian

evolution equation for Hamiltonian

$$\widetilde{\mathbf{H}}(\alpha) = \mathbf{C}^{\dagger}(\alpha) \mathbf{H} \mathbf{C}(\alpha) \longrightarrow \frac{\mathrm{d}}{\mathrm{d}\alpha} \widetilde{\mathbf{H}}(\alpha) = \left[\boldsymbol{\eta}(\alpha), \widetilde{\mathbf{H}}(\alpha) \right]$$

 dynamical generator defined as commutator with the operator in whose eigenbasis H shall be diagonalized

$$\boldsymbol{\eta}(\alpha) \stackrel{\text{2B}}{=} \frac{1}{2\mu} \left[\vec{\mathbf{q}}^2, \widetilde{\mathbf{H}}(\alpha) \right]$$

UCOM vs. SRG

 $\eta(0)$ has the same structure as the UCOM generators \mathbf{g}_r and \mathbf{g}_{Ω}

SRG Evolution: The Deuteron

SRG Evolution: The Deuteron

Exact Many-Body Methods No-Core Shell Model

Roth et al. — Phys. Rev. C 72, 034002 (2005) Roth & Navrátil — in preparation

Reminder: No-Core Shell Model

many-body state is expanded in Slater determinants $|\Phi_{\nu}\rangle$ composed of harmonic oscillator single-particle states

$$\left|\Psi\right\rangle = \sum_{\nu} C_{\nu} \left|\Phi_{\nu}\right\rangle$$

• $N_{\max}\hbar\omega$ model space: truncate basis of Slater determinants with respect to number of oscillator quanta (unperturbed excitation energy)

with increasing model space size more and more **correlations can be described** by the shell model states

facilitates systematic study of short- and longrange correlations

⁴He: Convergence

⁴He: Convergence

Three-Body Interactions — Tjon Line

■ **Tjon-line**: *E*(⁴He) vs. *E*(³H) for phase-shift equivalent NN-interactions

Three-Body Interactions — Tjon Line

- **Tjon-line**: *E*(⁴He) vs. *E*(³H) for phase-shift equivalent NN-interactions
- change of C_Ω-correlator range results in shift along Tjon-line

minimize net three-body force by choosing correlator with energies close to experimental value

Three-Body Interactions — Tjon Line

- **Tjon-line**: *E*(⁴He) vs. *E*(³H) for phase-shift equivalent NN-interactions
- same behavior for the SRG interaction as function of α

minimize net three-body force by choosing correlator with energies close to experimental value

¹⁰B: Hallmark of a 3N Interaction?

¹⁰B: Hallmark of a 3N Interaction?

Exact Many-Body Methods

Importance Truncated No-Core Shell Model

Roth & Navrátil — Phys. Rev. Lett. 99, 092501 (2007) Roth, Piecuch, Gour — in preparation Roth — in preparation

Importance Truncated NCSM

- converged NCSM calculations essentially restricted to p-shell
- full 6ħΩ calculation for ⁴⁰Ca presently not feasible (basis dimension ~10¹⁰)

Importance Truncation

reduce NCSM space to relevant states using an a priori importance measure derived from MBPT

Importance Truncation: General Idea

- **start with** $\mathcal{N}_{\max}\hbar\omega$ **space** of the NCSM
 - → separation of intrinsic and center-of-mass component of state
- importance measure: identify important basis states $|\Phi_{\nu}\rangle$ via first-order multiconfigurational perturbation theory

$$\kappa_{\nu} = -\frac{\left\langle \Phi_{\nu} \right| \mathbf{H} \left| \Psi_{\text{ref}} \right\rangle}{\epsilon_{\nu} - \epsilon_{\text{ref}}}$$

- importance truncation: starting from approximation $|\Psi_{ref}\rangle$ of target state, construct importance truncated space spanned by basis states with $|\kappa_{\nu}| \ge \kappa_{min}$
 - → contains 2p2h excitations with respect to $|\Psi_{ref}\rangle$ at most
 - perturbative measure entails NpNh hierarchy, i.e., higher-order NpNh states only enter in higher orders of PT

Importance Truncation: General Idea

- solve **eigenvalue problem** in importance truncated space
 - ➔ rigorous variational upper bound
- iterative scheme: repeat construction of importance truncated model space using eigenstate as improved reference $|\Psi_{ref}\rangle$
 - → recovers full $\mathcal{N}_{\max}\hbar\omega$ space after A/2 iterations in the limit $\kappa_{\min} \rightarrow 0$
 - → typically 2 or 3 iterations to convergence
- threshold extrapolation: constrained extrapolation $\kappa_{\min} \rightarrow 0$ of energies recovers contribution of excluded configurations
- perturbative estimates and Davidson corrections for the contribution of the next iteration also possible

Technicalities: Importance Measure

Technicalities: Threshold Extrapolation

- **smooth** κ_{\min} -dependence allows for robust extrapolation
- include perturbative estimate of excluded configurations for simultaneous constrained extrapola-

tion $\kappa_{\min} \rightarrow 0$

⁴He: Importance Truncated NCSM

- reproduces exact NCSM result for all $\hbar \omega$ and N_{max}
- importance measure and threshold extrapolation are reliable
- no center-of-mass contamination of states

⁴He: Importance Truncated NCSM

- reproduces exact NCSM result for all $\hbar\omega$ and \mathcal{N}_{max}
- iterations converge very fast
- reduction of basis by more than two orders of magnitude w/o loss of precision
- saturation of IT-NCSM dimension indicates convergence
- + full NCSM
- IT-NCSM(1 iter, 2p2h)
- IT-NCSM(2 iter, 4p4h)
- IT-NCSM(3 iter, 4p4h)

¹⁶O: Importance Truncated NCSM

- excellent agreement with full NCSM calculation although configurations beyond 4p4h are not included
- dimension reduced by several orders of magnitude; possibility to go way beyond the domain of the full NCSM

Robert Roth - TU Darmstadt - 04/2008

full NCSM

IT-NCSM(1 iter, 2p2h)

IT-NCSM(2 iter, 4p4h)

+

¹⁶O: Importance Truncated NCSM

• extrapolation to $\mathcal{N}_{\max} \to \infty$

$$\begin{split} E_{\text{IT-NCSM(2 iter)}} &\approx -129 \pm 1 \,\text{MeV} \\ E_{\text{IT-NCSM(2 iter)+MRD}} &\approx -130 \pm 1 \,\text{MeV} \\ E_{\text{exp}} &= -127.6 \,\text{MeV} \end{split}$$

 V_{UCOM} predicts reasonable binding energies also for heavier nuclei

- + full NCSM
- IT-NCSM(1 iter, 2p2h)
- IT-NCSM(2 iter, 4p4h)
- IT-NCSM(2 iter, 4p4h) + MRD

⁴⁰Ca: Importance Truncated NCSM

- 16ħΩ and more are feasible for ⁴⁰Ca in IT-NCSM(2 iter)
- size of individual NpNhcontributions depends on ħΩ
- result consistent with experimental binding energy

- ⊢ full NCSM
- IT-NCSM(2 iter, 2p2h)
- IT-NCSM(2 iter, 3p3h)
- IT-NCSM(2 iter, 4p4h)
- IT-NCSM(2 iter, 4p4h) + MRD

Direct Comparison: CC vs. IT-CI

CR-CC vs. IT-CI:

- good agreement for all $\hbar\Omega$ and models spaces
- lack of strict size extensivity
 in the IT-CI is irrelevant

CR-CC/IT-CI vs. IT-NCSM:

- CC/CI seems to tend to a lower binding energy than IT-NCSM
- CC/CI suffer from center-ofmass contamination

IT-NCSM: Pros and Cons

✓ rigorously fulfills variational principle and Hylleraas-Undheim theorem

- ✓ no sizable center-of-mass contamination induced by IT in $N_{max}\hbar\Omega$ space
- ✓ constrained threshold extrapolation $\kappa_{\min} \rightarrow 0$ recovers contribution of excluded configurations efficiently and accurately
- ✓ perturbative correction and Davidson correction for perturbative energy correction can be used
- compatible with shell-model: excited states and angular-momentum projection via Lanczos, eigenstates in shell-model representation, computation of observables
- **X** only **approximate size-extensivity** if working with few iterations
- **X** computationally still demanding

Perspectives

Modern Effective Interactions

- treatment of short-range central and tensor correlations by unitary transformations: UCOM, SRG, Lee-Suzuki,...
- phase-shift equivalent correlated interaction \mathbf{V}_{UCOM} which is soft and requires minimal three-body forces
- universal input for...

Innovative Many-Body Methods

- No-Core Shell Model,...
- Importance Truncated NCSM, Coupled Cluster Method,...
- Hartree-Fock plus MBPT, Padé Resummed MBPT, BHF, HFB, RPA,...
- Fermionic Molecular Dynamics,...

thanks to my group & my collaborators

 S. Binder, H. Hergert, M. Hild, J. Langhammer, P. Papakonstantinou, A. Popa, S. Reinhardt, F. Schmitt, F. Wagner, A. Zapp

Institut für Kernphysik, TU Darmstadt

• P. Navrátil

Lawrence Livermore National Laboratory, USA

• P. Piecuch, J. Gour

Michigan State University, USA

• H. Feldmeier, T. Neff, C. Barbieri,...

Gesellschaft für Schwerionenforschung (GSI)

supported by the DFG through SFB 634 "Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments..."