Nuclear Collective Excitations and Correlated Realistic Interactions – RPA and beyond –

P. Papakonstantinou

Institut für Kernphysik, T.U.Darmstadt, Germany

Overview

Introduction

- The Unitary Correlation Operator Method (UCOM)
- Ground-state properties
 - Hartree-Fock and Perturbation Theory
- Collective excitations
 - RPA and beyond: Extended RPA and Second RPA
 - The UCOM Hamiltonian as an effective interaction
- Summary

Introduction

Nuclear structure and dynamics starting from a realistic NN interaction?

- Modern NN potentials reproduce precise deuteron and scattering data
- Potentials based on chiral EFT
- Exact calculations possible for light nuclei and nuclear matter
 - For heavy nuclei the size of the model space becomes prohibitive
 - Strong correlations cannot be described by simple model states
- "Effective interactions" based on realistic potentials?

Correlated realistic interactions $V_{\rm UCOM}$

Short-range central and tensor correlations described by a unitary correlation operator $C = C_{\Omega}C_r$

Deuteron: Manifestation of Correlations

Spin-projected two-body density for Argonne V18 potential

$$M_S = 0$$

$$\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$

Fully suppressed at short particle distances $|\vec{r}|$: central correlations

Strong dependence on relative spin orientation: tensor correlations

 $M_S = \pm 1 \\ |\uparrow\uparrow\rangle, |\downarrow\downarrow\rangle$

The Unitary Correlation Operator Method

Correlated realistic interactions $V_{\rm UCOM}$

- Short-range central and tensor correlations (SRC) described by a unitary correlation operator $C = C_{\Omega}C_r$
- Introduce SRC to uncorrelated A-body state or an operator of interest

$$\langle \tilde{\Psi} | O | \tilde{\Psi} \rangle = \langle \Psi | C^{\dagger} O C | \Psi \rangle = \langle \Psi | \tilde{O} | \Psi \rangle$$

realistic NN interaction \rightarrow correlated interaction

- Same for all nuclei
- Phase-shift equivalent to the original NN interaction
- Suitable for use within simple Hilbert spaces

Correlated States

Tjon Line and Correlator Range

- Tjon line: E(⁴He) vs E(³H) for phase-shift equivalent NN interactions
- Change of tensor-correlator range results in shift along the Tjon line

minimize net three-body force by choosing correlator giving energies close to the experimental point

Simplistic "Shell-Model" Calculation

expectation value of Hamiltonian (with AV18) for Slater determinant of harmonic oscillator states

Overview

Use of the $V_{\rm UCOM}$ in many-body calculations across the nuclear chart:

- Ground state properties and excited states of closedshell nuclei:
 - Hartree-Fock calculations and second-order perturbation theory
 - Versions of the RPA: Standard, Extended, Second RPA
- ...and open-shell ones:
 - Hartree-Fock-Bogolyubov, Quasi-particle RPA...
- In what follows, a UCOM Hamiltonian based on the Argonne V18 NN interaction is used

Ground-State Properties

UCOM-HF

Standard Hartree-Fock

Ground state approximated by a single Slater determinant

$$|\text{HF}\rangle = \mathcal{A}\{|\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots |\phi_A\rangle\}$$
 no correlations

■ Single-particle states are expanded in a H.O. basis

$$|\phi_i\rangle = \sum_{\alpha} D_{i\alpha} |\alpha\rangle \quad ; \quad |\alpha\rangle = |n, (\ell \frac{1}{2})jm, \frac{1}{2}m_t\rangle$$

• Expansion coeff's $D_{i\alpha}$ determined by minimizing the energy

$$E_{\rm HF} = \langle {\rm HF} | \hat{H}_{\rm int} | {\rm HF} \rangle = \frac{1}{2} \sum_{i,j=1}^{A} \langle \phi_i \phi_j | T_{\rm rel} + V_{\rm UCOM} | \phi_i \phi_j \rangle$$

inclusion of SR

UCOM-HF + PT

LRC: extending the model space

Second-order perturbation theory

Binding-energy correction:

$$E^{(2)} = -\frac{1}{4} \sum_{i,j}^{\text{occ}} \sum_{a,b}^{\text{unocc}} \frac{|\langle ij|H_{\text{int}}|ab\rangle|^2}{e_a + e_b - e_i - e_j} \quad ; \quad H_{\text{int}} = T_{\text{rel}} + V_{\text{UCOM}}$$

Modified density matrix and occupation numbers

Modified charge radii

UCOM-HF + PT

UCOM-HF + PT

long-range correlations

genuine three-body forces

three-body cluster contributions

Beyond Hartree-Fock

- residual long-range correlations are perturbative
- mostly long-range tensor correlations
- easily tractable within MBPT, CI, CC,...

Net Three-Body Force

- small effect on binding energies for all masses
- cancellation does not work for all observables
- construct simple effective three-body force

Collective Excitations

Vibration creation operator:

 $Q_{\nu}^{\dagger} = \sum_{ph} X_{ph}^{\nu} O_{ph}^{\dagger} - \sum_{ph} Y_{ph}^{\nu} O_{ph} \quad ; \quad Q_{\nu} |\text{RPA}\rangle = 0 \quad ; \quad Q_{\nu}^{\dagger} |\text{RPA}\rangle = |\nu\rangle$

Standard RPA - the RPA vacuum is approximated by the HF ground state:

 $\langle \text{RPA} | \dots | \text{RPA} \rangle \rightarrow \langle \text{HF} | \dots | \text{HF} \rangle \quad ; \quad O_{ph} \rightarrow a_p^{\dagger} a_h$

RPA equations in ph-space:

$$\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} = \hbar \omega_{\nu} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix}$$

 $A_{ph,p'h'} = \delta_{pp'} \delta_{hh'}(e_p - e_h) + H_{hp',ph'} \ ; \ B_{ph,p'h'} = H_{hh',pp'} \ ; \ H = H_{\rm int} = T_{\rm rel} + V_{\rm UCOM}$

Self-consistent HF+RPA: spurious state and sum rules

Standard RPA

Isoscalar monopole response

 $N_{\rm max} = 12$

Isovector dipole response

 $N_{\rm max} = 12$

Standard RPA

Isoscalar quadrupole response

Beyond Standard RPA

The HF+RPA method is based mainly on the following approximations:

rightarrow Coupling to higher order excitations(<math>np - nh) is neglected

Second RPA

The ground state does not deviate much from the HF ground state

Renormalized RPA, "Extended" RPA, ...

RPA Ground State Correlations

- evaluate correlation energy beyond Hartree-Fock via ring summation using RPA amplitudes
- include all parities and charge exchange and correct for double-counting of 2nd order term

Extended RPA

Vibration creation operator:

$$Q_{\nu}^{\dagger} = \sum_{ph} X_{ph}^{\nu} O_{ph}^{\dagger} - \sum_{ph} Y_{ph}^{\nu} O_{ph} \quad ; \quad Q_{\nu} |\text{RPA}\rangle = 0 \quad ; \quad Q_{\nu}^{\dagger} |\text{RPA}\rangle = |\nu\rangle$$

Excitations are built on the RPA vacuum. In general,

$$O_{ph} = \sum_{p'h'} N_{ph,p'h'} a^{\dagger}_{p'} a_{h'}$$

■ ERPA is formulated in the natural-orbital basis:

$$O_{ph} \rightarrow D_{ph}^{-1/2} a_p^{\dagger} a_h \quad ; \quad D_{ph} \equiv n_h - n_p$$

ERPA equations: solved iteratively

$$\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} = \hbar \omega_{\nu} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix}$$
$$A_{ph,p'h'} = \delta_{hh'} e_{pp'} - \delta_{pp'} e_{hh'} + D_{ph}^{1/2} D_{p'h'}^{1/2} H_{hp',ph'} \quad ; \quad B_{ph,p'h'} = D_{ph}^{1/2} D_{p'h'}^{1/2} H_{hh',pp'}$$
$$e_{ij} = \sum_k n_k H_{ik,jk}$$

Extended RPA

Fermi-sea depletion: 2.6-5.0%

Extended RPA

• Vibration creation operator: Includes 2p2h configurations

$$Q_{\nu}^{\dagger} = \sum_{ph} X_{ph}^{\nu} O_{ph}^{\dagger} - \sum_{ph} Y_{ph}^{\nu} O_{ph} + \sum_{p_1 h_1 p_2 h_2} \mathcal{X}_{p_1 h_1 p_2 h_2}^{\nu} O_{p_1 h_1 p_2 h_2}^{\dagger} \\ - \sum_{p_1 h_1 p_2 h_2} \mathcal{Y}_{p_1 h_1 p_2 h_2}^{\nu} O_{p_1 h_1 p_2 h_2}$$

The SRPA vacuum is approximated by the HF ground state:

 $\langle SRPA | \dots | SRPA \rangle \rightarrow \langle HF | \dots | HF \rangle$

SRPA equations in $ph \oplus 2p2h$ -space:

$$\begin{pmatrix} A & \mathcal{A}_{12} & B & 0 \\ \mathcal{A}_{21} & \mathcal{A}_{22} & 0 & 0 \\ \hline -B^* & 0 & -A^* & -\mathcal{A}_{12}^* \\ 0 & 0 & -\mathcal{A}_{21}^* & -\mathcal{A}_{22}^* \end{pmatrix} \begin{pmatrix} X^{\nu} \\ \mathcal{X}^{\nu} \\ \hline Y^{\nu} \\ \mathcal{Y}^{\nu} \end{pmatrix} = \hbar \omega_{\nu} \begin{pmatrix} X^{\nu} \\ \mathcal{X}^{\nu} \\ \hline Y^{\nu} \\ \mathcal{Y}^{\nu} \end{pmatrix}$$

 $A_{ph,p'h'} = \delta_{pp'}\delta_{hh'}(e_p - e_h) + H_{hp',ph'} ; B_{ph,p'h'} = H_{hh',pp'} ; H = H_{int} = T_{rel} + V_{UCOM}$ $\mathcal{A}_{12}: \text{ interactions between } ph \text{ and } 2p2h \text{ states}$ $\mathcal{A}_{22}: \delta_{p_1p'_1}\delta_{h_1h'_1}\delta_{p_1p'_1}\delta_{h_1h'_1}(e_{p_1} + e_{p_2} - e_{h_1} - e_{h_2}) + \text{ interactions among } 2p2h \text{ states}$

- Large model spaces:
 - Up to half a million states for the cases presented here!
 - Even larger for larger nuclei, bases, other excitations
- Use Lanczos
 - Find only the lowest eigenvalues $|\omega_{\nu}|$
 - ... or the ones closest to a set value E_0

$$RX_{\nu} = \omega_{\nu}X_{\nu} \iff R'X_{\nu} = \omega'_{\nu}X_{\nu} , \left\{ \begin{array}{l} R' \equiv R - E_{0}I \\ \omega'_{\nu} \equiv \omega_{\nu} - E_{0} \end{array} \right\}$$

- **Reduce to an** ω -dependent problem of RPA size
 - ... especially if you ignore interactions within 2p2h space:

$$A_{php'h'} \longrightarrow A_{php'h'}(\omega) = A_{php'h'} + \sum_{PHP'H'} \frac{A_{phPHP'H'}^* A_{p'h'PHP'H'}}{\hbar\omega - (\epsilon_P + \epsilon_{P'} - \epsilon_H - \epsilon_{H'}) + i\eta}$$

Centroid energies (m_1/m_0) — RPA … SRPA • exp

Second RPA with 2p2h coupling

Second RPA – extensions?

Summary

Use of $V_{\rm UCOM}$ in nuclear response calculations across the nuclear chart:

- **RPA**: Properties of the $V_{\rm UCOM}$ as an effective interaction
 - Centroid energies overestimated (IVD, ISQ)
- Extended RPA: The role of RPA ground-state correlations
 - Weak effect on the properties of collective excitations
- SRPA: Sizable effect of coupling with 2p2h configurations
 - Important role of residual correlations
 - Discrepancies due to residual three body effects?

Second RPA – to consider

- Nuclei appear softer in Second RPA
 - Possibility to use a simple three-body force?
- Low-lying and other collective excitations
- **Extensions** of the SRPA?
 - Role of ground-state correlations in SRPA
 - Important missing diagrams?
 - Spurious states, sum rules...

Thank you!

Work in collaboration with:

R.Roth, H.Hergert, A. Zapp

Institut für Kernphysik, TU Darmstadt, Germany

N. Paar

University of Zagreb, Croatia

C. Barbieri, H. Feldmeier, T. Neff
GSI, Darmstadt, Germany

Recent References

- P. Papakonstantinou, R. Roth, N.Paar, Phys. Rev. C75, 014310 (2007)
- N.Paar, P. Papakonstantinou, H.Hergert, R. Roth, Phys. Rev. C74, 014318 (2006)
- and many more: http://crunch.ikp.physik.tu-darmstadt.de/tnp/