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@ quasi-momentum distribution

directly connected to Lattice Oscillation

interference pattern
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@ most observables are
measured indirectly via the
interference pattern

density peak width (um)
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@ modulation experiments:
broadening of central b T T
interference peak indicates frequency v (kHz)
energy transfer L. Fallani et al., cond-mat/0603655 v2 (2006)
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Overview

@ Bose-Hubbard Model & Truncation Scheme
@ Time Evolution & Oscillating Lattice Potential
@ Linear Response Analysis

@ Interference Pattern

Results

Summary



Framework

Bose-Hubbard Hamiltonian
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Basis Representatlon @ states are defined by coefficients ¢,
@ coefficients c) of eigenstates |v)
are obtained by diagonalisation of
:ZCQ|{n1n2...n[}a> : h

Hamilton matrix




Adaptive Basis Truncation

Problem

@ basis dimension increases rapidly with number of atoms & lattice-sites

Answer: Basis Truncation

@ few number states contribute to low-lying eigenstates

@ diagonal elements of Hamiltonian provide estimate for importance of basis states

@ relevant number states [{ny ny --- n;}) satisfy the inequality

Etrunc > ({my nz - ni}alH|{ny n2 -+ nj}a)

with the truncation energy Erync

=» precise description in the vicinity of the Mott insulating phase J




Time Evolution & Oscillating Lattice Potential

Probing the Excitation Spectrum by lattice oscillation

Optical Lattice Hubbard Parameters

V(x, 1) = Vo(x)(1+F sin (1)) = J(t) =~ Joexp (—Fsin(wh))

. 1
amplitude 7, frequency w Uy =~ U (1+Fsin(wt))”
Energy Transfer
30
Selup 25
@ 10 sites / 10 bosons 20
@ interaction strength Up/Jy = 20 s G
Time Evolution L<]”

@ choose frequency w/Jy Y
@ evolve ground state in time 5
0

© evaluate AE/Jy each timestep 0 20 40 60 80
w/Jo




Linear Response Analysis

Linearisation of the Hamiltonian
lowest-order terms of a Taylor expansion in the oscillation amplitude 7
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Hin(t) = Ho + FVo sin(wt) [

dinJ
HO_J< dv
F=0

Starting at the Ground State of Hg

= [ook for strong matrixelements (O|H,|v)

)

F=0

K. Braun-Munzinger, PhD thesis, Oxford (2004)
Clark et al., New J. Phys. 8 160 (2006)
M. Hild et al., J. Phys. B 39 4547 (2006)



Linear Response Analysis and Time Evolution

10 Bosons / 10 Sites, Interaction Strength U/J = 20

ol ¢ Up/Jo =20 f /‘-60
=
40} 1 {40 =
(=] (=]
& :
" - <
20F 120
—
= =1
0 . . . A . 0
30 20 10 01 10 100 1000
AE/J() v
@ strong matrix elements (0|H,|v) connect to higher eigenstates
@ prediction of the resonance spectrum and fine-structure

Clark et al., New J. Phys. 8 160 (2006), M. Hild et al., J. Phys. B 39 4547 (2006)



Matter Wave Interference Pattern
Example: 10 Bosons / 10 Sites, Interaction Strength U/J = 40

Intensity as Function of the Relative Phase §
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Matter Wave Interference Pattern

Example: 10 Bosons / 10 Sites, Interaction Strength U/J = 40
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Energy Transfer & Interference Pattern

10 Bosons / 10 Sites, Interaction Strength U/J = 40

25 20 15 10 5 0
AE/J 5

Focusing on the 1U-Resonance

higher oscillation frequencies cause occupation of higher quasi-momenta




Benchmarking Different Basis Truncations

Interference Pattern in the Vicinity of the 1U-Resonance

N = 10 bosons, | = 10 sites, interaction strength U/J = 40 J

up to 3p3h up to 2p2h up to 1p1h

-7 —mw/2 0 w2 w - —m/20 w2 T -7 —m/2 0 w2 w
d ) d

v v v

@ 1p1h-basis shows all features in the deep Mott regime

@ energy transfer shows overestimation for higher frequencies at strong
basis truncations




Two-Colour Superlattices
OZ ' | ' ' @ superposition of two

3 } optical standing waves
1k 1]

& 10 15 50 @ incommensurate
i wavelengths
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Modification of the Hamiltonian

I
= Hhopping + Hinteracﬁon +A Z €N

i=1

superlattice modulation amplitude A as additional parameter




Roadmap

12 Bosons in a Two-Color Superlattice of 12 Sites
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Homogeneous
20 / Mott Insulator

usJ

Roth, Burnett; PRA 68, 023604 (2003)



Results

20 Bosons / 20 Sites, U/J = 40, Superlattice Amplitude A/J =0
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@ interference pattern determined by strong matrix elements (0|H,|v) )




Results

20 Bosons / 20 Sites, U/J = 40, Superlattice Amplitude A/J = 1
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@ interference pattern determined by strong matrix elements (0|H,|v) )




Results

20 Bosons / 20 Sites, U/J = 40, Superlattice Amplitude A/J = 2
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@ interference structure gets blurred but is still visible J




Results

20 Bosons / 20 Sites, U/J = 40, Superlattice Amplitude A/J = 4
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@ interference structure vanishes far below the Bose-Glass PT at A ~ U J




@ linear response predicts excitation energies / fine-structure

@ resonances: higher modulation frequencies cause occupation of higher
quasi-momenta

@ stronger superlattice amplitudes cause blurring of the interference
pattern

@ interference structure disappears far below transition to the Bose-Glass
phase
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