Structure and dynamics of ultracold atomic gases in optical 1D superlattices

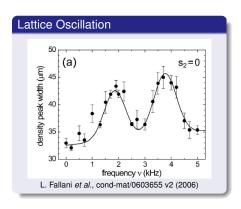
M. Hild F. Schmitt I. Türschmann R. Roth

Institut für Kernphysik • Technische Universität Darmstadt

Ruperto Carola Symposion 19. 07. 2007

Motivation

- quasi-momentum distribution directly connected to interference pattern
- most observables are measured indirectly via the interference pattern
- modulation experiments: broadening of central interference peak indicates energy transfer



Overview

- Bose-Hubbard Model & Truncation Scheme
- Time Evolution & Oscillating Lattice Potential
- Linear Response Analysis
- Interference Pattern
- Results
- Summary

Framework

Bose-Hubbard Hamiltonian

$$\mathbf{H} = \underbrace{-J\sum_{i=1}^{I} \left(\mathbf{a}_{i}^{\dagger}\mathbf{a}_{i+1} + \mathbf{a}_{i+1}^{\dagger}\mathbf{a}_{i}\right)}_{\text{hopping }\mathbf{H}_{J}} + \underbrace{\frac{U}{2}\sum_{i=1}^{I}\mathbf{n}_{i}\left(\mathbf{n}_{i}-1\right)}_{\text{interaction }\mathbf{H}_{U}}$$

tunneling strength J interaction strength U sites I particles N

Basis Representation

$$|\Psi\rangle = \sum_{\alpha}^{D} c_{\alpha} |\{n_{1}n_{2}\dots n_{I}\}_{\alpha}\rangle$$

- lacktriangle states are defined by coefficients $oldsymbol{c}_lpha$
- coefficients $c_{\alpha}^{(\nu)}$ of eigenstates $|\nu\rangle$ are obtained by diagonalisation of Hamilton matrix

Adaptive Basis Truncation

Problem

basis dimension increases rapidly with number of atoms & lattice-sites

Answer: Basis Truncation

- few number states contribute to low-lying eigenstates
- diagonal elements of Hamiltonian provide estimate for importance of basis states
- relevant number states $|\{n_1 \ n_2 \ \cdots \ n_l\}_{\alpha}\rangle$ satisfy the inequality

$$E_{trunc} \ge \langle \{n_1 \ n_2 \ \cdots \ n_I\}_{\alpha} | \mathbf{H} | \{n_1 \ n_2 \ \cdots \ n_I\}_{\alpha} \rangle$$

with the truncation energy E_{trunc}

→ precise description in the vicinity of the Mott insulating phase

Time Evolution & Oscillating Lattice Potential

Probing the Excitation Spectrum by lattice oscillation

Optical Lattice

 $V(x,t) = V_0(x) (1+\mathcal{F}\sin(\omega t))$ amplitude \mathcal{F} , frequency ω

Hubbard Parameters

 $J(t) \approx J_0 \exp(-\mathcal{F}\sin(\omega t))$ $U(t) \approx U_0 (1+\mathcal{F}\sin(\omega t))^{1/4}$

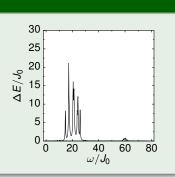
Energy Transfer

Setup

- 10 sites / 10 bosons
- interaction strength $U_0/J_0 = 20$

Time Evolution

- **1** choose frequency ω/J_0
- evolve ground state in time
- 3 evaluate $\Delta E/J_0$ each timestep



Linear Response Analysis

Linearisation of the Hamiltonian

lowest-order terms of a Taylor expansion in the oscillation amplitude ${\mathcal F}$

$$\mathbf{H}_{\mathrm{lin}}(t) = \mathbf{H}_{0} + FV_{0}\sin(\omega t)\left[\frac{d\ln U}{dV}\bigg|_{F=0}\mathbf{H}_{0} - J\left(\frac{d\ln J}{dV}\bigg|_{F=0} - \frac{d\ln U}{dV}\bigg|_{F=0}\right)\mathbf{H}_{J}\right]$$

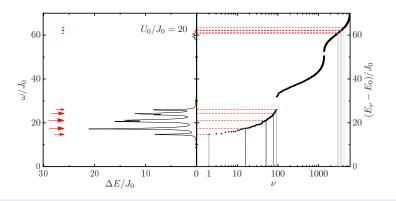
Starting at the Ground State of Ho

 \square look for strong matrixelements $\langle 0|\mathbf{H}_J|\nu\rangle$

K. Braun-Munzinger, PhD thesis, Oxford (2004)
Clark et al., New J. Phys. 8 160 (2006)
M. Hild et al., J. Phys. B 39 4547 (2006)

Linear Response Analysis and Time Evolution

10 Bosons / 10 Sites, Interaction Strength U/J=20



- strong matrix elements $\langle 0|\mathbf{H}_J|\nu\rangle$ connect to higher eigenstates
- prediction of the resonance spectrum and fine-structure

Clark et al., New J. Phys. **8** 160 (2006), M. Hild et al., J. Phys. B **39** 4547 (2006)

Matter Wave Interference Pattern

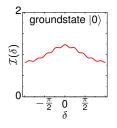
Example: 10 Bosons / 10 Sites, Interaction Strength U/J=40

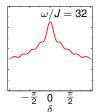
Intensity as Function of the Relative Phase δ

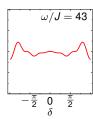
$$\mathcal{I}(\delta) = \frac{1}{I} \sum_{k,k'}^{I} e^{i(k-k')\delta} \langle \psi | \mathbf{a}_k^{\dagger} \mathbf{a}_{k'} | \psi \rangle$$

corresponds to occupation numbers n_q of quasi-momenta $q=\frac{\delta I}{2\pi}$

interference pattern is extracted instanteneously (without re-thermalisation)

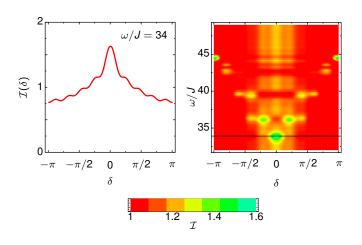






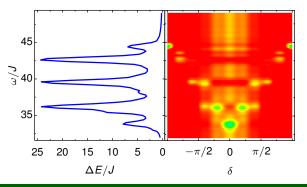
Matter Wave Interference Pattern

Example: 10 Bosons / 10 Sites, Interaction Strength U/J=40



Energy Transfer & Interference Pattern

10 Bosons / $\overline{10}$ Sites, Interaction Strength U/J=40



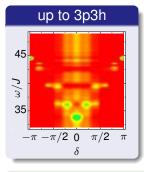
Focusing on the 1U-Resonance

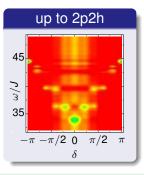
higher oscillation frequencies cause occupation of higher quasi-momenta

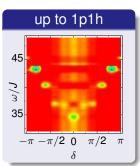
Benchmarking Different Basis Truncations

Interference Pattern in the Vicinity of the 1U-Resonance

$$N = 10$$
 bosons, $I = 10$ sites, interaction strength $U/J = 40$

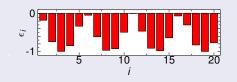






- 1p1h-basis shows all features in the deep Mott regime
- energy transfer shows overestimation for higher frequencies at strong basis truncations

Two-Colour Superlattices

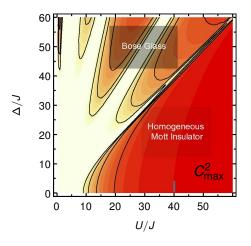


- superposition of two optical standing waves
- incommensurate wavelengths

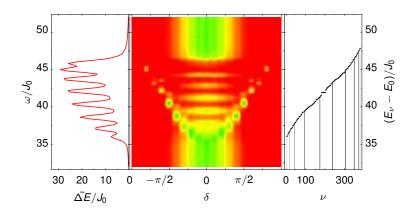
Modification of the Hamiltonian

$$\mathbf{H} = \mathbf{H}_{\text{hopping}} + \mathbf{H}_{\text{interaction}} + \Delta \sum_{i=1}^{I} \epsilon_i \, \mathbf{n}_i$$

superlattice modulation amplitude Δ as additional parameter

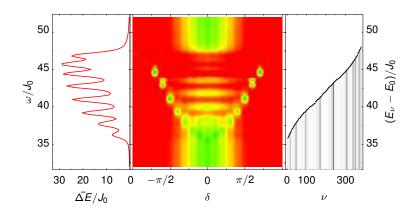


Results 20 Bosons / 20 Sites, U/J = 40, Superlattice Amplitude $\Delta/J = 0$



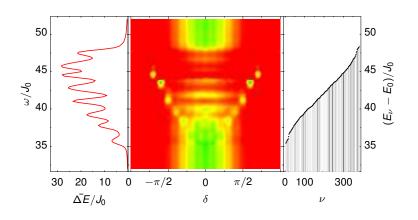
 \bullet interference pattern determined by strong matrix elements $\langle 0 | \mathbf{H}_J | \nu \rangle$

Results 20 Bosons / 20 Sites, U/J = 40, Superlattice Amplitude $\Delta/J = 1$



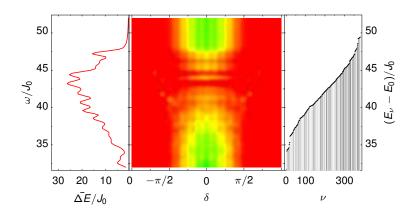
 \bullet interference pattern determined by strong matrix elements $\langle 0 | \mathbf{H}_J | \nu \rangle$

Results 20 Bosons / 20 Sites, U/J = 40, Superlattice Amplitude $\Delta/J = 2$



• interference structure gets blurred but is still visible

Results 20 Bosons / 20 Sites, U/J = 40, Superlattice Amplitude $\Delta/J = 4$



lacktriangle interference structure vanishes far below the Bose-Glass PT at $\Delta \approx {\it U}$

Summary

- linear response predicts excitation energies / fine-structure
- resonances: higher modulation frequencies cause occupation of higher quasi-momenta
- stronger superlattice amplitudes cause blurring of the interference pattern
- interference structure disappears far below transition to the Bose-Glass phase

r arXiv:0706.4260