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1,5,6,7]

are well descri
Hamiltonian[2

e ultracold, dilute atomic gases in optical lattices
ved by the single-band Bose-Hubbard

e these are perfect laboratories to investigate the
rich physics of strongly correlated quantum systems

e the ground state is obtained by an exact diagonal- e with this reduced amount of number-states the static
isation of the corresponding Hamilton matrix using observables are accessible with the same precision as
Lanczos algorithms with the full basis [3,4

e the Bose-Hubbard Hamiltonian is transformed from e for reasons of symmetry only a small fraction of the
the Wannier to the Bloch representation

coefficients of the ground state is non-zero
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e 1D optical lattice with [ lattice sites and /N bosonic particles

e nearest neighbour hopping, and on-site two-particle interactions
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Interaction term

creation, annihilation, occupation-number operators

tunnelling matrix element

two particle interaction energy
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e operators transformed into Bloch basis
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= Bose-Hubbard Hamiltonian in Bloch basis
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e states are represented in a quasimomentum occupation number basis
with dimension D
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information

with quasimomentum equal zero

e in many cases only the ground state observables are of interest

e to calculate those we only have to take into account the Fock-states

e thus we can reduce the size of the Hilbert space without any loss of
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Number of Particles | Dimension Reduced Dimension

3 10 4
5 126 26
7 1716 246
8 6435 810
o) 2431 2704
10 02378 0252
11 352716 32066
12 1352078 112720
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e the total quasimomentum of every non-degenerate eigenstate equals zero

o if the energy eigenvalue is degenerated, the states do not necessarily exhibit a total quasimo-
mentum equal zero

® most eigenstates are superpositions of number states with different quasimomentum

e the groundstate is composed of number states with vanishing quasimomentum
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® mean occupation number n and fluctuation of the mean occupation number o, for 10 particles
with varying interaction strength U/J

e the mean occupaction number at q; = 0 is equal to total particle number for U/J= 0
— a perfect condensate

o for larger U/J the condensate is depleted
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e the maximum coefficient C,,,. decreases with ® the interference pattern is an experimentally
increasing U/J accessible observable

o C,... is strongly correlated to the mean oc- ® for strongly correlated systems the interference

cupation number of the quasimomentum zero pattern forms a broad bump, whereas for small
state U/J on q; = O there is a sharp peak
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