Nuclear Structure for Exotic Nuclei based on V_{UCOM}

Robert Roth

Institut für Kernphysik Technische Universität Darmstadt

Overview

Motivation

Correlated Realistic NN-Potentials

• Correlations & Unitary Correlation Operator Method

Applications

- No Core Shell Model
- Hartree-Fock & Beyond
- Random Phase Approximation

Nuclear Structure in the 21st Century

RISING, AGATA, REX-ISOLDE, ...

NuSTAR @ FAIR, SPIRAL2, ...

nuclei far-off stability

nuclear astrophysics exotic modes, hyper-nuclei,...

reliable nuclear structure theory for exotic nuclei

bridging between low-energy QCD and nuclear structure theory

Modern Nuclear Structure Theory

Modern Nuclear Structure Theory

Realistic NN-Potentials

QCD motivated

- symmetries, meson-exchange picture
- chiral effective field theory

short-range phenomenology

• short-range parametrization or contact terms

experimental two-body data

 scattering phase-shifts & deuteron properties reproduced with high precision

supplementary three-nucleon force

• adjusted to spectra of light nuclei

Argonne V18 Potential

Ab initio Methods: GFMC

Modern Nuclear Structure Theory

Modern Nuclear Structure Theory

Robert Roth - TU Darmstadt - 11/2006

Why Effective Interactions?

Realistic Potentials

- generate strong correlations in many-body states
- short-range central & tensor correlations most important

Many-Body Approximations

- rely on truncated many-nucleon
 Hilbert spaces for larger A
- not capable of describing shortrange correlations
- extreme: Hartree-Fock based on single Slater determinant

Modern Effective Interactions

- adapt realistic potential to the available model spaces
- conserve experimentally constrained properties (phase shifts)

Unitary Correlation Operator Method (UCOM)

Unitary Correlation Operator Method

Correlation Operator

introduce short-range correlations by means of a unitary transformation with respect to the relative coordinates of all pairs

$$\mathbf{C} = \exp[-\mathrm{i}\,\mathrm{G}] = \exp\left[-\mathrm{i}\sum_{i < j}\mathrm{g}_{ij}
ight]$$

Correlated States $\left| \widetilde{\psi}
ight
angle = \mathbf{C} \; \left| \psi
ight
angle$

 $\widetilde{\mathbf{O}} = \mathbf{C}^{\dagger} \mathbf{O} \mathbf{C}$

$$ig\langle \widetilde{\psi} ig| \, \mathrm{O} ig| \widetilde{\psi'} ig
angle = ig\langle \psi ig| \, \mathrm{C}^\dagger \, \, \mathrm{O} \, \, \mathrm{C} ig| \psi' ig
angle = ig\langle \psi ig| \, \widetilde{\mathrm{O}} ig| \psi' ig
angle$$

 $G^{\dagger} = G$ $C^{\dagger}C = 1$

Central and Tensor Correlators

 $\mathrm{C}=\mathrm{C}_{\Omega}\mathrm{C}_{r}$

Central Correlator C_r

 radial distance-dependent shift in the relative coordinate of a nucleon pair

$$egin{aligned} \mathbf{g}_r &= rac{1}{2} ig[s(\mathbf{r}) \; \mathbf{q}_r + \mathbf{q}_r \; s(\mathbf{r}) ig] \ \mathbf{q}_r &= rac{1}{2} ig[rac{ec{\mathbf{r}}}{\mathbf{r}} \cdot ec{\mathbf{q}} + ec{\mathbf{q}} \cdot rac{ec{\mathbf{r}}}{\mathbf{r}} ig] \end{aligned}$$

Tensor Correlator C_{Ω}

 angular shift depending on the orientation of spin and relative coordinate of a nucleon pair

$$\begin{split} \mathbf{g}_{\Omega} &= \frac{3}{2} \vartheta(\mathbf{r}) \big[(\vec{\sigma}_1 \cdot \vec{\mathbf{q}}_{\Omega}) (\vec{\sigma}_2 \cdot \vec{\mathbf{r}}) + (\vec{\mathbf{r}} \leftrightarrow \vec{\mathbf{q}}_{\Omega}) \big] \\ \vec{\mathbf{q}}_{\Omega} &= \vec{\mathbf{q}} - \frac{\vec{\mathbf{r}}}{\mathbf{r}} \mathbf{q}_r \end{split}$$

s(r) and $\vartheta(r)$ for given potential determined in the two-body system

Correlated States: The Deuteron

Correlated Interaction: V_{UCOM}

$$\widetilde{\mathbf{H}} = \mathbf{T} + \mathbf{V}_{UCOM} + \mathbf{V}_{UCOM}^{[3]} + \cdots$$

- closed operator expression for the correlated interaction V_{UCOM} in two-body approximation
- correlated interaction and original NN-potential are phase shift equivalent by construction
- momentum-space matrix elements of correlated interaction are similar to V_{low-k}
- consistent correlated operators for other observables (transitions, densities,...) available

Application I No-Core Shell Model

in collaboration with Petr Navrátil (LLNL)

UCOM + NCSM

- many-body state is expanded in Slater determinants of harmonic oscillator single-particle states
- large scale diagonalization of Hamiltonian within a truncated model space ($N\hbar\omega$ truncation)
- assessment of short and long-range correlations

⁴He: Convergence

⁴He: Convergence

Tjon-Line and Correlator Range

Tjon-line: E(⁴He) vs. E(³H) for phase-shift equivalent NNinteractions

Tjon-Line and Correlator Range

- Tjon-line: E(⁴He) vs. E(³H) for phase-shift equivalent NNinteractions
- change of C_Ω-correlator range results in shift along Tjon-line

minimise net three-body force by choosing correlator with energies close to experimental value

Tjon-Line and Correlator Range

- Tjon-line: E(⁴He) vs. E(³H) for phase-shift equivalent NNinteractions
- change of C_Ω-correlator range results in shift along Tjon-line

minimise net three-body force by choosing correlator with energies close to experimental value

⁶Li: NCSM throughout the p-Shell

¹⁰B: Hallmark of a 3N Interaction?

¹⁰B: Hallmark of a 3N Interaction?

Outlook: NCSM beyond the p-Shell

NCSM

- converged calculations essentially restricted to p-shell
- 6ħω calculation for ⁴⁰Ca presently not feasible (~10¹⁰ states)

Importance Sampling NCSM

- diagonalization in space of important many-body configurations
- a priori importance measure given by perturbation theory

Conclusions

Unitary Correlation Operator Method (UCOM)

- explicit description of short-range central and tensor correlations
- universal phase-shift equivalent correlated interaction V_{UCOM}

Innovative Many-Body Methods

- No-Core Shell Model
- Hartree-Fock, MBPT, SM/CI, CC,...
- RPA, ERPA, SRPA, GFRPA,...
- Fermionic Molecular Dynamics

unified description of nuclear structure across the whole nuclear chart is within reach

thanks to my group & my collaborators

 T. Böhlen, P. Hedfeld, H. Hergert, M. Hild, N. Paar, P. Papakonstantinou, F. Schmitt, I. Türschmann, A. Zapp Institut für Kernphysik, TU Darmstadt

• P. Navrátil

Lawrence Livermore National Laboratory

• T. Neff

NSCL, Michigan State University

• H. Feldmeier, C. Barbieri, S. Bacca, C. Özen,...

Gesellschaft für Schwerionenforschung (GSI)

supported by the DFG through SFB 634 "Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments..."